
From ML to MLF

Graphic type constraints with efficient type inference

Who? Boris Yakobowski, Didier Rémy

Where? INRIA, Gallium team

When? ICFP 2008

MLF

Extends both ML and System F, combining the benefits of both

Compared to ML

◮ The expressivity of first-class polymorphism is available

◮ All ML programs remain typable unchanged

Compared to System F

◮ MLF has type inference

◮ Programs have principal types (taking type annotations into account)

Moreover:

◮ in practice, programs require very few type annotations

◮ typable programs remain typable under all expected program
transformations

(Lack of) modularity of System F

◮ System F does not have principal types

Programs cannot be typed modularly

Example

choose : ∀α. α → α → α id : ∀β. β → β

choose id :

{

∀γ. (γ → γ) → (γ → γ)
(∀β. β → β) → (∀β. β → β)

No most general type in System F

Bounded quantification

MLF types

MLF types extend System F types with instance-bounded
quantification ∀ (α > τ) τ ′:

◮ All occurrences of α in τ ′ have a (same) instance of τ

◮ Both τ and τ ′ can be instantiated

choose id : ∀ (α > ∀β. β → β) α → α

⊑ (∀β. β → β) → (∀β. β → β)
taking α = ∀β. β → β

⊑ ∀γ. (γ → γ) → (γ → γ)
taking α = γ → γ for a fresh γ

Graphic types

◮ An alternative representation of MLF types (or ML ones)

◮ Simplify the meta-theory of MLF

A graphic type

The superposition of

◮ a term-dag, representing the skeleton of the type

→

→

⊥ α

→

β →

γ ⊥ ⊥ α

∀α. (α → α) → (α → α) ∀α. ∀ (β > ∀γ. γ → α) β → β

Graphic types

◮ An alternative representation of MLF types (or ML ones)

◮ Simplify the meta-theory of MLF

A graphic type

The superposition of

◮ a term-dag, representing the skeleton of the type

◮ a binding tree, indicating where and how variables are bound

→

→

⊥ α

→

β →

γ ⊥ ⊥ α

∀α. (α → α) → (α → α) ∀α. ∀ (β > ∀γ. γ → α) β → β

Graphic constraints

◮ Used to perform ML or MLF type inference on graphic types

Graphic constraints

◮ Used to perform ML or MLF type inference on graphic types

◮ An extension of graphic types (only three new constructs):

unification edges
generalization scopes
instantiation edges

Very small extension: we can reuse all the existing results on graphic types

Graphic constraints

◮ Used to perform ML or MLF type inference on graphic types

◮ An extension of graphic types (only three new constructs):

unification edges
generalization scopes
instantiation edges

Very small extension: we can reuse all the existing results on graphic types

◮ Using constraints is more general than a type inference algorithm

e.g. different solving strategies

Typing abstractions or applications graphically

a

b

→

⊥

α

⊥

β

T (a b) = ∃α, ∃β,

(α → β = T (a) ∧ α = T (b)). β

→

α ⊥ a ⊥ β

x

T (λ(x) a) = ∃α, ∃β,

(α = T (x) ∧ β = T (a)). α → β

◮ Green arcs are unification edges

◮ Circled nodes are the result type

Type generalization

◮ Type generalization is needed in ML (and in MLF)

◮ We introduce special G-nodes in graphs to promote types
to type schemes

G

g

G

g ′

→

α ⊥

→

⊥ β

g : ∀β. β → β

g ′ : ∀α. α → β

β is free at the level of g ′

◮ G-nodes are also used to delimit generalization scopes
(also, strong correspondance with ranks in efficient ML type inference)

Instantiation edge

◮ Constrain a node to be an instance of a type scheme

G

g

G

g ′

→

α ⊥

→ n

⊥ β

e

g ′ : ∀α. α → β

n : β → β

e is solved (take α = β)

Instantiation edge

◮ Constrain a node to be an instance of a type scheme

G

g

G

g ′

→

α ⊥

→ n

⊥ β

e

g ′ : α → β

n : β → β

e is not solved (α 6= β)

Typing constraints

◮ Source language: (MLF only)

a ::= x | λ(x) a | a a | let x = a in a | (a : σ) | λ(x : σ) a

Typing constraints

◮ Source language: (MLF only)

a ::= x | λ(x) a | a a | let x = a in a | (a : σ) | λ(x : σ) a

◮ λ-terms are translated into typing constraints compositionnally

a represents the typing constraint for a

The blue arrows are constraint edges (unification or instantiation)

for the free variables of a

Typing constraints

◮ Source language: (MLF only)

a ::= x | λ(x) a | a a | let x = a in a | (a : σ) | λ(x : σ) a

◮ λ-terms are translated into typing constraints compositionnally

◮ One generalization scope by subexpression
in ML, only needed for let; in MLF, needed everywhere

◮ Exact same typing constraints for ML and MLF

the useless G-nodes can be removed in ML
MLF constraints allow the more general types of MLF, and have a more
general notion of generalization

Typing constraint for an application

a b G

a

b

→

⊥

α

⊥

β

T (a b) = GEN(∃α, ∃β, (T (a) ⊑ α → β ∧ T (b) ⊑ α). β)

Typing constraint for an abstraction

λ(x) a G

→

⊥

α

a ⊥

β
x

T (λ(x) a) = GEN(∃α, ∃β, (T (x) = α ∧ T (a) ⊑ β). α → β)

Typing constraint for a let

let x = a in b b

a

x

◮ Each occurrence of x in b must have a (possibly different)
instance of T (a)

Typing constraint for variables

x

X

 G

⊥

x ∈ X

◮ A trivial type scheme (∀α. α)

◮ But the variable is constrained by the appropriate edge
from the environment

Coercions

◮ Annotated terms are not primitive, but syntactic sugar

(a : σ) , cσ a

λ(x : σ) a , λ(x) let x = (x : σ) in a

◮ Coercion functions

cσ : →

σ σ

The domain of the arrow is frozen

The codomain can be freely instantiated

Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

g : ∀α. α → (β → β)
n : ∀γ. γ → γ

Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

→

⊥ →

⊥

g : ∀α. α → (β → β)
n : ∀γ. γ → γ

Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme, and add an unification edge between the
constrained node and this copy

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

→

⊥ →

⊥

g : ∀α. α → (β → β)
n : ∀γ. γ → γ

Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme, and add an unification edge between the
constrained node and this copy

G

G

g

→

α ⊥ →

β ⊥

→

n

→

g : ∀α. α → (β → β)
n : (β → β) → (β → β)

Acyclic constraints

◮ Constraints can encode problems with polymorphic recursion

let rec x = a in b b

x a

x

◮ Restriction to constraints with an acyclic dependency relation

Dependency relation

g depends on g ′ if either g ′ +
g or if g ′ n with n

+
g

◮ Typing constraints are acyclic

Solving acyclic constraints

Solving a constraint χ

1. Solve the initial unification edges

2. Order the instantiation edges according to the dependency relation

3. Propagate the first unsolved instantiation edge e, and solve the
unification edges this operation has created

This solves e, and does not break already solved instantiation edges

4. Iterate step 3 until all instantiation edge are solved

Solving acyclic constraints

Solving a constraint χ

1. Solve the initial unification edges

2. Order the instantiation edges according to the dependency relation

3. Propagate the first unsolved instantiation edge e, and solve the
unification edges this operation has created

This solves e, and does not break already solved instantiation edges

4. Iterate step 3 until all instantiation edge are solved

Correctness

This algorithm computes a principal instance of χ in which all edges
are solved

Complexity of inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003] : type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes

Complexity of inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003] : type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes

◮ In ML, d is the maximal left-nesting of let
(i.e. let x = (let y = . . . in . . .) in . . .)

Complexity of inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003] : type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes

◮ In MLF, unification has the same complexity as in ML, but we
introduce more type schemes

Still, d is invariant by right-nesting of let

Complexity of MLF type inference

Under the hypothesis that programs are composed of a cascade of
toplevel let declarations, type inference in MLF has linear complexity.

Summary

◮ Graphic constraints provide a new, simple, presentation of efficient
ML type inference

◮ Our framework is generic: it extends to MLF by changing only
unification and the operation of taking a fresh instance of a scheme

◮ We obtain optimal theoretical complexity, and excellent practical
complexity

Graphs can be used to explain type inference in a simple way

Perspectives

◮ Solved constraints are translated into an explicit language xMLF

(this ensures type soundness of the system)

◮ Graphic constraints should help explain and implement all
the variants of MLF—including HML and FPH

The good tool for ML-like type systems

See http://gallium.inria.fr/~remy/mlf for other
MLF-related material

http://gallium.inria.fr/~remy/mlf

