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Abstract. For use in earlier approaches to automated module interface
adaptation, we seek a restricted form of program synthesis. Given some
typing assumptions and a desired result type, we wish to automatically
build a number of program fragments of this chosen typing, using func-
tions and values available in the given typing environment. We call this
problem term enumeration. To solve the problem, we use the Curry-
Howard correspondence (propositions-as-types, proofs-as-programs) to
transform it into a proof enumeration problem for an intuitionistic logic
calculus. We formally study proof enumeration and counting in this cal-
culus. We prove that proof counting is solvable and give an algorithm to
solve it. This in turn yields a proof enumeration algorithm.

1 Introduction

1.1 Background and motivation

Researchers have recently expressed interest [7, 8, 1] in type-directed program
synthesis that outputs terms of a desired goal typing (i.e., environment of type
assumptions and result type) using the values (possibly functions) available in
the type environment. These terms are typically wanted for use in simple glue
code that adapts one module interface to another, overcoming simple interface
differences. There are usually many terms of the goal typing, with many compu-
tational behaviors, and only some will satisfy all the user’s criteria. To find terms
of the goal typing that satisfy all the criteria, it is desirable to systematically
enumerate terms of the typing. The enumerated terms can then be filtered [7, 8],
possibly with user assistance [1], to find the most suitable ones.

Higher-order typed languages (e.g., the ML family) are suitable for this kind
of synthesis. They have expressive type systems that allow specifying precise
goals. They also support easily composing and decomposing functions, tuples,
and tagged variants, which can accomplish most of what is needed for the kind
of simple interface adaptation we envision.
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1.2 Applications

Both the AxML module adaptation approach [7, 8] and work on signature sub-
typing modulo isomorphisms [1] do whole module adaptation through the use of
higher-order ML functors.

In AxML, term enumeration is mainly needed to fill in unspecified holes in
adaptation code and the main adaptation work is done by other mechanisms.
Term enumeration is useful because an unspecified hole may indicate that the
programmer has not thought things through and they might benefit from seeing
possible alternatives for filling the hole. This will mainly be useful when the
alternatives are small and have somewhat distinct behavior, so a systematic
breadth-first enumeration is expected to be best and enumerating many large
chunks of code would likely be less useful.

In the work on signature subtyping modulo isomorphisms, requirements for
the calculus are quite light: only arrow types (and a subtyping rule) are needed.
Typical examples involve applying a functor to a pre-existing module, in order
to get a module having the same signature as the result of the functor. For
example, we might compose a functor resulting in a map over a given type with
a module containing a generic comparison function.

1.3 Possible approaches to term enumeration

Program synthesis such as term enumeration seeks to find functions with some
desired behavior, which is similar to library retrieval. Closer to our task, some
retrieval systems also compose functions available in the library (see [8] for dis-
cussion), but are not suitable for enumeration. Research on type inhabitation
[2, 11, 15] is related, but is mostly concerned with the theoretical issue of the
number of terms in a typing (mainly whether there is at least 1), and the result-
ing enumeration algorithms are overly inefficient.

The most closely related work is on proof search. Although most of this work
focuses on yes/no answers to theorem proving queries or on building individual
proofs, there has been some work on proof enumeration in various logics [4, 12,
14]. With constructive logics, we can use the Curry-Howard correspondence to
generate terms from the proofs of a formula. We follow this approach here.

1.4 Overview

We explain in Sec. 2 that the existing calculus LJT is the most suited to our
task and we modify it slightly in Sec. 4 to make the even more suitable LJTEnum.
Next, we present in Sec. 5 a graph representation of proofs and use it to show
solvability of proof counting. In Sec. 6, we present Count, a direct proof counting
algorithm, and outline proof enumeration. We then discuss in Sec. 7 the links
between proof counting and term enumeration and add proof terms to LJTEnum.

1.5 Acknowledgements
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2 Which calculus for proof enumeration?

As already mentioned, proof enumeration is defined as the enumeration of all
the proofs of a formula, as opposed to finding only one proof. Using the Curry-
Howard correspondence, term enumeration can be reduced to proof enumeration;
but for that approach to be usable, there must exist some guaranties on the
correspondence. For example, 1-∞ correspondences are unsuitable, because we
might have to examine an infinity of proofs to find different program fragments.

In our case, it is important to find a calculus in which the proofs are in
bijection with normal λ-terms, or equivalently with the set of normal terms in
natural deduction style. Dyckhoff and Pinto [4] provide a survey of various calculi
usable for proof enumeration. They argue that “the appropriate proof-search
calculi are those that have not only the syntax-directed features of Gentzen-style
sequent calculi but also a natural 1–1 correspondence between the derivations and
the real objects of interest, normal natural deductions” and we agree with their
analysis. Unfortunately, calculi having these properties are quite rare.

For example, a sequent calculus such as Gentzen’s LJ does not meet the
previous criteria. Indeed, due to possible permutations in the proofs, or to the
use of cut rules, two proofs can be associated to the same term. In fact, it
has been long known that 2 proofs in LJ are “the same”, meaning that they are
equivalent to the same normal deduction proof in NJ, if they are interpermutable.
As a result, we have to consider cut-free and permutation-free calculi.

Historically, the first calculus having those properties is Herbelin’s LJT [9].
Proofs in LJT are in bijection with the terms of the simply typed λ-calculus.
Later, Herbelin introduced LKT [10], which is based on Gentzen’s classical cal-
culus LK, and Pinto and Dyckhoff [14] proposed two other calculi for systems
with dependent types. Of all these calculi, LJT is better adapted to our purpose,
because the additional features in the three others do not help our task.

The permutation-free property of LJT is achieved by adding in each sequent
a special place, called a stoup, used to focus the proof. The stoup can either be
empty or filled by one variable. Once the stoup is full, deductions can only be
made based on its content, and it cannot be emptied easily. The content of the
stoup is interpreted as the head variable in the standard λ-calculus.

All the sequents provable in LJ are provable in LJT. The cut-free version of
LJT is a sequent calculus which enjoys the subformula property, and is syntax-
directed, with few sources of non determinism. LJT also enjoys a cut elimination
theorem [9, 5], so we can restrict ourselves to considering only cut-free proofs.
Finally, as was needed, while the traditional proof terms in LJ correspond to
the simply-typed λ-terms, the proof terms in the cut-free version of LJT are in
bijection with the simply-typed λ-terms in normal form, so all interesting terms
may potentially be found.

3 Mathematical preliminaries

Given a set E, let Set(E) be the set of all subsets of E. Let a multiset over E
be a function from E to N (the natural numbers); if M is a multiset, we say



that m ∈ M iff M(m) > 0. A multiset M is finite iff {m m ∈M} is finite.
Let MSet(E) be the set of all multisets over E. Let FinMSet(E) be the set of all
finite multisets over E. Multiset literals use the same notation as sets.

Multiset union is defined as usual by (M1 ]M2)(x) = M1(x) +M2(x). A
“set-like” multiset union is defined by (M1 ∪M2)(x) = max(M1(x),M2(x)).
Let S range over the names Set and MSet. Let ∪Set = ∪ and ∪MSet = ].

We extend the arithmetic operators + and × and the relation ≤ to N∪{∞}
using the usual arithmetic rules for members of N, and by letting n +∞ = ∞,
n ×∞ = ∞ if n 6= 0, 0 ×∞ = 0, and n ≤ ∞. Also, as usual let Σx∈∅v(x) = 0
and let Πx∈∅v(x) = 1 for any function v.

Given a set S, a directed graph G over S is a pair (V,E) where V ⊂ S and
E ⊂ S×S. The elements of V are the vertexes of G, and those of E are the edges
of G. Given a graph G = (V,E), let succG(v) = {v′ ∈ V | (v, v′) ∈ E}. Given
two graphs G1 = (V1, E1) and G2 = (V2, E2), let G1 ∪G2 be (V1 ∪ V2, E1 ∪E2).

We represent mathematical functions as sets of pairs. Let the domain of a
function f be Dom(f) = {x (x, y) ∈ f }. To modify functions, we write f, x : v
for (f \ { (x, y) (x, y) ∈ f }) ∪ {(x, v)}.

4 The calculus LJTEnum

In this section, we present LJTEnum, a slightly modified version of LJT more suit-
able for term enumeration. The following pseudo-grammars define the syntax.

Q ∈ Propositional-Variables ::= Qi

X, Y ∈ Basic-Propositions ::= Q | Q[A1, . . . , An]
A,B ∈ Formulas ::= X | A1→A2 | A1 ∧A2 | A1 ∨A2

A? ∈ Stoups ::= A | •
Γ ∈ EnvironmentsMSet = FinMSet(Formulas)
s ∈ SequentsMSet ::= Γ ;A? ` B

Let also EnvironmentsSet = {Γ ∈ EnvironmentsMSet | ∀A ∈ Formulas, Γ (A) ≤ 1}.
Let SequentsSet be the subset of SequentsMSet such that the environment of each
sequent is in EnvironmentsSet. The symbol • is the empty stoup.

Basic propositions which are not propositional variables are used to encode
parameterized ML types, such as list. For example, if int is encoded as A
and list as B, int list is encoded as B[A]. Note that we do not yet support
polymorphism as in ∀α. α list. Separate functions for handling int list or
bool list must be supplied in the environment.

We present the rules of LJTEnum
S in Fig. 1, which are basically the cut-free

rules of LJT. The rules which add elements in the environment are parameterized
by the operation to use. The two systems LJTEnum

Set and LJTEnum
MSet prove essentially

the same judgements, but with possibly different proof trees. This distinction
helps in analyzing the problem of term enumeration and devising our solution.
These points will be developed in Secs. 5 and 6.



Axiom rule Contraction rule

Γ ; X ` X
Ax

Γ ] {A}; A ` B

Γ ] {A}; • ` B
Cont(A)

Left implication rule Right implication rule
Γ ; • ` A Γ ; B ` C

Γ ; A→B ` C
ImpL

Γ ∪S {A}; • ` B

Γ ; • ` A→B
ImpR

Left conjunction rule Right conjunction rule
Γ ; Ai ` B

Γ ; A1 ∧A2 ` B
AndLi

Γ ; • ` A Γ ; • ` B

Γ ; • ` A ∧B
AndR

Left disjunction rule Right disjunction rule
Γ ∪S {A}; • ` C Γ ∪S {B}; • ` C

Γ ; A ∨B ` C
OrL

Γ ; • ` Ai

Γ ; • ` A1 ∨A2

OrRi

Fig. 1. Rules of LJTEnum
S (i ∈ {1, 2})

5 The proof counting problem

In this section, we formally study the problems of proof counting in LJTEnum. We
interpret sequent resolution as a graph problem. From that we prove that finding
the number of proofs (which is ∞ if there are an infinite number of proofs) of a
sequent is computable.

Let CS(s) be the number of proofs of a sequent s in LJTEnum
S . CMSet(s) is

strongly related to the number of different terms which can be obtained from
the proofs of s; Sec. 7.2 will discuss this. Although apparently less interesting,
CSet(s) is much easier to compute, and can help in finding CMSet(s).

5.1 A graph representation of possible proofs

We start by defining the notion of applicable rule to a sequent. Let R be the set
of rules R = {Ax, ImpL, ImpR, AndL1

, AndL2
, AndR, OrL, OrR1

,OrR2
,

Cont(A) | A ∈ Formulas}. Let r range over R.
A rule r with conclusion c is applicable to a sequent s iff, viewing the basic

propositions and formulas in r as meta-variables, there is a substitution σ from
these meta-variables to basic propositions or formulas such that σ(c) = s. If the
rule is Cont(A), the formula A must be the one chosen from the environment Γ .
Let RA(s) be the set of rules applicable to a sequent s. Let the valid sequent/rule
pairs be VPS = {(s, r) | s ∈ SequentsS, r ∈ RA(s)}. Let τ range over VPS.

Given a sequent s and a rule r applicable to s via a substitution σ, let
PrS(s, r, i) be the ith premise of σ(r) if r has at least i premises, using ∪S as the
combining operator on the environment.

Definition 5.1. Let GS = (VS,ES) be the directed graph of all possible sequents
and rule uses in LJTEnum

S defined by:



– VS = SequentsS ∪ VPS.

– E1,S = {(s, (s, r)) | s ∈ SequentsS, r ∈ RA(s)}.
– E2,S = {((s, r), s′, n) | n ∈ N, s′ = PrS(s, r, n)}.
– ES = E1,S ∪ E2,S.

The elements of VS which are in SequentsS are called sequent vertexes. Their
outgoing edges (which are in E1,S) go to valid pairs. The elements of VS which
are in VPS are called rule-use vertexes. Their outgoing edges (which are in E2,S)
go to the sequents which are the premises of the rule use. On each outgoing
edge we add a number indicating which premise we are considering (needed only
when there is more than one premise). An example of part of GSet and GMSet is
provided in Fig. 2.

Cont(X→X) // s1 = (X→X, X; X→X ` X)

��
s0 = (X→X, X; • ` X)

OO

��

ImpL1oo

2

��
Cont(X) // s2 = (X→X, X; X ` X) // Ax

Fig. 2.
GSet(s0) = GMSet(s0)

The lowering of a multiset M to a “set-like” multiset M is defined such
that M(x) = min(1,M(x)). Let (Γ ;A? ` B) = (Γ ;A? ` B), let (s, r) = (s, r),
let (s, τ) = (s, τ ), and let (τ, s, i) = (τ , s, i). Given any set W , let (W ) =
{ w w ∈ W }. For graphs, let (V,E) = (V , E ). Note that GMSet = GSet.

A graph g = (V,E) is an S-subgraph iff V ⊆ VS, E ⊆ ES, and s, τ ∈ V
whenever (s, τ) ∈ E or (τ, s, i) ∈ E. An S-subgraph g = (V,E) is valid iff for
every τ = (s, r) ∈ V where r has n premises, (τ,PrS(s, r, i), i) ∈ E for 1 ≤ i ≤ n.

Given a sequent s, let GS(s) be the subgraph of GS containing all the sequent
and rule-use vertexes reachable from s. From a practical viewpoint, GS(s) is
the largest subgraph of GS that a procedure attempting to find proofs of s
should have to consider. It is worth noting that in the general case, GSet(s) and
GMSet(s) may be cyclic graphs (e.g., in Fig. 2). Note that GMSet(s) = GSet(s)
and raise(s,GSet(s)) = GMSet(s).

Lemma 5.2 (Finiteness). GSet(s) is always finite. GMSet(s) can be infinite.

Proof. When environments are sets, it is a direct consequence of the fact that
LJTEnum enjoys the subformula property. When environments are multisets, a
sufficient condition for the graph to be infinite is to have in the context a function
taking as an argument a function, or a disjunction. We can then find a derivation
branch in which a formula can be added an arbitrary number of times in the
environment, making the graph infinite. See for example Fig. 3.



A; • ` Y // Cont(A) // A; A ` Y // ImpL 2 //

1
rrr

rr

yyrrr
rr

A; Y ` Y

��
ImpR

xxqqqqqqqqqq
A; • ` Y →Y //oo . . . Ax

A, Y ; • ` Y //

��

Cont(A) // A, Y ; A ` Y // ImpL 2 //

1
rrr

rr

yyrrr
rr

A, Y ; Y ` Y

��
. . . ImpR

qr� qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

bj MMMMMMMMMM

MMMMMMMMMM
A, Y ; • ` Y →Y //oo . . . Ax

A, Y, Y ; • ` Y _ *4 . . .

//
GSet ∪ GMSet

//
GSet ∪ GMSet

+3
GSet

_*4
GMSet

_*4
GMSet

Fig. 3. A subgraph of GMSet(A; • ` Y ) and GSet(A; • ` Y ) with A = (Y →Y )→Y

5.2 Proof trees and their relationship with the graph

We now define a structure which captures exactly one proof of a sequent.

Definition 5.3 (Proof trees). Let proof trees be given by this pseudo-grammar:

T ∈ ProofTree ::= τ(T1, . . . , Tn)

Let Seq(s, r) = s and let Seq(τ(T1, . . . , Tn)) = Seq(τ). A particular proof tree
T = (s, r)(T1, . . . , Tn) is an S-proof tree iff (1) s ∈ SequentsS, (2) r ∈ RA(s),
and (3) r has n premises and for 1 ≤ i ≤ n it holds that Ti is an S-proof tree
such that Seq(Ti) = PrS(s, r, i). We henceforth consider only S-proof trees.

We recursively fold an S-proof tree into a S-valid subgraph of GS(s) by:

FoldS((s, r)(T1, . . . , Tn))
= ({s, (s, r)} ∪ {Seq(Ti) 1 ≤ i ≤ n },

{(s, (s, r))} ∪ { ((s, r),Seq(Ti), i) 1 ≤ i ≤ n })
∪ (

⋃
1≤i≤n FoldS(Ti))

To allow lowering MSet-proof trees to Set-proof trees, let τ(T1, . . . , Tn) =
τ (T1 , . . . , Tn ). Similarly, a Set-proof tree T can be raised to an MSet-proof
tree T ′ such that Seq(T ′) = Seq(T ):

raise(s, (s, r)(T1, . . . , Tn))
= (s, r)(raise(PrMSet(s, r, 1), T1), . . . , raise(PrMSet(s, r, n), Tn))

An S-proof tree T is acyclic iff FoldS(T ) is acyclic. Given an acyclic S-proof
tree T , there are only a finite number (possibly more than 1) of S-proof trees T ′

such that FoldS(T ′) = FoldS(T ). Given a sequent s for which GS(s) is finite, it



is possible to count the number of acyclic S-proof trees for s, by a simple brute
force enumeration (there are only a finite possible number of them).

An S-proof tree T is cyclic iff FoldS(T ) is cyclic. Given a cyclic S-proof tree T ,
there are an infinite number of S-proof trees T ′ such that FoldS(T ′) = FoldS(T ).
This follows from the fact that in a cyclic S-proof tree, the proof of some sequent
s depends on a smaller proof of s. Thus, each time we find a proof of s, we can
build a new, bigger (with respect to the height of the proof tree) proof of s, by
unfolding the proof already found.

The raising of an acyclic Set-proof tree is an acyclic MSet-proof tree, and the
lowering of a cyclic MSet-proof tree is a cyclic Set-proof tree. But the lowering
of an acyclic MSet-proof tree can be a cyclic Set-proof tree. Similarly, the raisng
of a cyclic Set-proof tree can be an acyclic MSet-proof tree. Fig. 3 shows part of
an example of the last two points.

5.3 Proof counting

Lemma 5.4. Let s be a sequent.

– There are the same number of LJTEnum
S proofs of s and S-proof trees for s.

– Suppose GS(s) is finite. If there is no cyclic S-proof tree for s, then the
number of S-proof trees for s is finite; otherwise it is infinite.

– Suppose GS(s) is infinite. If there is no cyclic S-proof tree for s, then the
number of S-proofs of s can be either finite or infinite; otherwise it is infinite.

Lemma 5.5. Given an MSet-sequent s, if there exists an infinity of acyclic
MSet-proof trees for s, then there exists a cyclic Set-proof tree for s .

Proof. We say that a proof tree is of height n iff its longest path goes through
n sequent nodes. Let N be the number of Set-sequent nodes in GSet(s).

We first prove that there exists an MSet-proof tree T for s of height greater
than N . For this, construct a (possibly infinite in branching and number of
nodes) tree BT (“big tree”) by unfolding the graph GMSet(s) starting from s into
a tree, choosing some arbitrary order for the rule-use children of a sequent node,
and making all sequent nodes at depth N (not counting rule-use nodes and with
the root sequent node at depth 1) into leaves and adding no further children
beyond depth N . By construction, all MSet-proof trees of s of height less than
N can be seen to be “embedded” in BT .

Now we observe that BT is finitely branching. For every sequent s′ occurring
in BT , there are a finite number of rule uses that can use other sequents to prove
s′. This is so because R is finite except for rules of the form Cont(A), and at
most a finite number of those can apply to s′ because the environment Γ of s′

can mention only a finite number of distinct formulas.
Now, by König’s lemma, BT contains a finite number of nodes. As a conse-

quence, there are only a finite number of distinct MSet-proof trees embedded in
BT . Thus T exists and has height m > N .

The Set-proof tree T has the same height as T , so T has at least one
path of length m. Along this path, some Set-sequent nodes must be repeated in
FoldSet(T ), and thus T is a cyclic Set-proof tree for s .



Theorem 5.6. Let s ∈ SequentsMSet. Then all of the following statements hold:

– CSet(s) ≤ CMSet(s).

– CSet(s) = ∞ ⇐⇒ CMSet(s) = ∞.

– CSet(s) = 0 ⇐⇒ CMSet(s) = 0.

Proof. The first point is easy: for each Set-proof tree T for s , raise(s, T ) is a
MSet-proof tree for s, and raise is injective. This also proves that CSet(s) =
∞⇒ CMSet(s) = ∞ and CMSet(s) = 0 ⇒ CSet(s) = 0.

Next, suppose that CSet(s) = 0. If there was an MSet-proof tree T for s, then
T would be a Set-proof tree for s and we would have CSet(s) 6= 0. Absurd.

Finally suppose that CMSet(s) = ∞. There are two cases: (1) There is a cyclic
MSet-proof tree T for s. Then T is a cyclic Set-proof tree for s ; (2) There are
no cyclic MSet-proof trees for s. By Lemma 5.4, it means there are an infinite
number of acyclic MSet-proof trees for s. Then by Lemma 5.5, there is a cyclic
Set-proof tree for s . In both cases, by Lemma 5.4, CSet(s) = ∞.

Theorem 5.7. Proof counting is computable for LJTEnum
Set and LJTEnum

MSet .

Proof. The following algorithm CountNaive counts the proofs of a sequent s:

1. Build GSet(s); by Lemma 5.2, it is finite.
2. Search for a cyclic Set-proof tree for s. For this, use the same exhaustive

enumeration as when searching for acyclic ones, but stop as soon as a cyclic
one is found. If a cyclic Set-proof tree is found, then return ∞ = CMSet(s) =
CSet(s) (by Theorem 5.6).

3. Otherwise CMSet(s) and CSet(s) are finite, by Theorem 5.6. If we are searching
for CSet(s), return the number of Set-proof trees for s found by the exhaustive
enumeration in the previous step.

4. Otherwise, we are searching for CMSet(s). Build a restricted (and finite) sub-
graph g of GMSet(s) containing all the foldings of the MSet-proof trees for
s. For this, start at s and do a breadth-first exploration. At each new node
s′ visited, check whether or not it is provable, by finding the number of
proofs of s′ in GSet(s), which is the number of Set-proof trees for s′ (indeed,
GSet(s′ ) ⊆ GSet(s) and thus cannot contain a cyclic Set-proof tree). If s′ is
unprovable, so is s′ by Theorem 5.6; do not explore its successors. Because
there are no arbitrarily large acyclic MSet-proof trees for s (by Lemma 5.5),
g is finite and this process terminates.

5. Find the number of MSet-proof trees for s whose foldings are in g by ex-
haustive enumeration. By construction, it is CMSet(s).

5.4 The generality of the idea

Our approach (using GSet to study GMSet) resembles a static analysis where in-
stead of considering the number of times a formula is present in the environment,
we consider only its presence or absence. That property is interesting because
provability does not depend on duplicate formulas in the environment. In our



case, proof counting is also compatible with our simplifying hypothesis (because
CSet(s) = ∞⇒ CMSet(s) = ∞). This idea is quite general because it is usable in
every calculus in which the environment only increases.

6 An algorithm for counting and enumerating proofs in
LJTEnum

The algorithm CountNaive could theoretically be used to find the number
of proofs of a sequent. Unfortunately, it is overly inefficient. In this section we
propose Count, a more efficient algorithm to compute CS(s). We also link proof
counting to proof enumeration.

6.1 Underlying ideas

The main inefficiency of CountNaive is that it does not exploit the inductive
structure of proof trees. Indeed, the number of proofs of a sequent vertex is the
sum of the number of proofs of its successors, and the number of proofs of a
rule-use vertex is the product of the number of proofs of its successors. That
simple definition cannot be trivially computed, because a proof for a sequent
s can use inside itself another proof of s; instead we must explicitly check for
loops. As a consequence, instead of returning CS(s), we return equations verified
by CS(s′), for all the s′ in GS(s).

Consider for example Fig. 2. The equations verified by CS(s0), CS(s1) and
CS(s2) are:

CS(s0) = CS(s1) + CS(s2)
CS(s1) = CS(s0) · CS(s2)
CS(s2) = 1

Afterward, this set of equations must be solved, using standard mathematical
reasoning. But we are only interested in the smallest solutions. Indeed, consider
the system CS(s) = CS(s′),CS(s′) = CS(s). All the solutions CS(s) = CS(s′) = k
are mathematically acceptable, but only the solution CS(s) = CS(s′) = 0 counts
the valid finite proof trees (none in this case).

Formally, these are polynomial equations over N ∪ {∞}. An algorithm for
finding the smallest solution of such systems of polynomial equations has already
been given by Zaionc [15].

6.2 Formal description of the algorithm Count

An exploration of a sequent s is complete when all the subgraphs of GS(s) which
could possibly lead to finding a proof have been considered. A complete explo-
ration of GMSet(s) is not always possible, because it can be infinite. For this
reason, we suppose the existence of a procedure Oracle which in the case of
S = MSet can calculate and return the value of CSet(s) (justified by Theorem 5.6),
although if CSet(s) = ∞ we may deliberately continue exploring GMSet(s) when



enumerating proofs instead of just counting. We can also use the oracle to de-
liberately cut off the search early when we have enumerated enough proofs.

We also suppose the existence of an algorithm Solve which takes as input
a system of polynomials over N ∪ {∞}, and returns as result the least solution
of the system; the result should be a function from the variables used in the
polynomials to their values in the solution.

In order to find CS(s), the algorithm CountSequent presented below first
gathers polynomial equations verified by the sequents present in GS(s) and then
uses Solve to solve the resulting system. In the polynomials, for each sequent
s′ ∈ GS(s) we use the variable cs′ to stand for CS(s′).

CountSequent(S, R, s)
1 if cs ∈ Dom(R) then return R
2 match Oracle(S, s) with
3 | 0⇒ return {(cs, 0)} ∪R
4 | ∞ ⇒ return {(cs,∞)} ∪R
5 v ←

P
τ∈succGS

(s)

Q
s′∈succGS

(τ) cs′

6 R′ ← {(cs, v)} ∪R
7 L← { s′ s′ ∈ succGS

(τ), τ ∈ succGS
(s) }

8 return CountSet(S, R′, L)

CountSet(S, R, L)
1 match L with
2 | ∅ ⇒ return R
3 | {s} ∪ L′ ⇒
4 R′ ← CountSequent(S, R, s)
5 return CountSet(S, R′, L′)

Count(S, s)
1 R← CountSequent(S, ∅, s)
2 return (Solve(R))(cs)

With a correctly choosen oracle, the algorithm always terminates. Following
the results from Sec. 5, valid oracles would be:

– The function which always answers “No answer” in the Set case; termination
is guaranteed by the finiteness of GS(s) anyway.

– Count called with S = Set in the MSet case. This follows from Theorem 5.6.

Count(S, s) returns exactly CS(s) given a valid oracle as described just above.
Otherwise, if Oracle(S, s) is always a lower bound on CS(s) (or “No answer”),
Count(CS, s) is a lower bound on CS(s) (but termination may fail).

To check the feasibility of our proof counting algorithm, we have built a
completely working implementation. We present in Fig. 5 (p. 16) its output on
an example. After each sequent, the number of proofs of that sequent is indicated.
Unlike the examples presented in Sec. 5, which were hand-made, this example is
automatically3 generated.

Our implementation uses various improvements over the algorithm presented
here. For example, once a count of 0 is found in calculating a product, we do not
explore the other sequents whose counts are the other factors in the product.
Also, instead of calling Solve on the whole set of equations, is is more efficient
to call it on all the strongly connected components of the equations, which can
be found while exploring the graph in CountSequent.

3 With some manual annotations added to get a better graph layout.



6.3 Links between proof counting and proof enumeration

Exhaustive proof enumeration in GS could be done by a breadth-first traversal of
GS to find proof trees, but that is inefficient. In particular, some infinite subparts
of GS do not lead to the finding of a proof. Our approach using proof counting is
more efficient. We stop exploring a branch whenever we find out that it contains
0 solutions, and we use the more efficient computation of CSet(s) to help when
computing CMSet(s). Of course, if there are an infinite number of solutions, only
a finite number of them can ever be enumerated.

7 Proof terms

In this section, we assign proof terms to proofs in LJTEnum. We also discuss the
links between the number of different terms which can be found from the proofs
of a sequent s and CMSet(s).

7.1 The assignment of proofs to λ-expressions

Proofs of LJT are assigned to terms of a calculus called the λ-calculus. Compared
with Herbelin’s [10], our presentation is much shorter because in our cut-free
calculus we only need terms in normal form. We call our restricted version of
the λ-calculus the λ

′
-calculus.

In the λ
′
-calculus, the usual application constructor between terms is trans-

formed into an application constructor between a variable and a list of argu-
ments. So there are two sorts of λ

′
-expressions: λ

′
-terms and lists of arguments,

defined by the following pseudo-grammars where i ∈ {1, 2} and j ∈ N:

x, y ∈ Variables ::= xj

t, u ∈ λ
′
-Terms ::= (x l) | (λx.t) | 〈t1, t2〉 | inji(t)

l ∈ Argument-Lists ::= [ ] | [〈(x1)t1|(x2)t2〉] | [〈x, y〉t] | [t :: l] | [πi :: l]

As usual, [ ] is the empty list of arguments, and [t :: l] is the list resulting from
the addition of t at the beginning of l. We abbreviate (x [ ]) by x.

Solely to aid the reader’s understanding of the meaning of λ
′
-terms, we will

relate them to terms of the λ-calculus extended with pairs and tagged variants.
We define the extended λ-terms by this pseudo-grammar where i ∈ {1, 2}:

t̂ ∈ λ-Terms ::= x | λx.t̂ | t̂1 t̂2 | 〈t̂1, t̂2〉 | inji(t̂) | πi(t̂) | let x, y = t̂ in û |
case t̂ of inj1(x) ⇒ t̂1, inj2(x) ⇒ t̂2

Now we translate λ
′
-terms into extended λ-terms:

(x l)∗ = ϕ(x, l) ϕ(t̂, [ ]) = t̂
(λx.t)∗ = λx.t∗ ϕ(t̂, [u :: l]) = ϕ(t̂ u∗, l)
〈t1, t2〉∗ = 〈t∗1, t∗2〉 ϕ(t̂, [πi :: l]) = ϕ(πi(t̂), l)

ϕ(t̂, [〈x, y〉u]) = let x, y = t̂ in û
(inji(t))∗ = inji(t∗) ϕ(t̂, [〈(x1)t1|(x2)|t2〉]) =

case t̂ of inj1(x) ⇒ t∗1, inj2(x) ⇒ t∗2



Let a named environment be a partial function from variables to formulas,
and let Σ range over named-environments.

Applicative contexts formation rules Terms formation rules

Σ; . : X ` [ ] : X
Ax

Σ, x : A; . : A ` l : B

Σ, x : A; • ` (x l) : B
Cont(x : A)

Σ; • ` u : A Σ; . : B ` l : C

Σ; . : A→ B ` [u :: l] : C
ImpL

Σ, x : A; • ` u : B

Σ; • ` λx.u : A→ B
ImpR

Σ; . : Ai ` l : B

Σ; . : A1 ∧A2 ` [πi :: l] : B
AndLi

Σ; • ` t : A Σ; • ` u : B

Σ; • ` 〈t, u〉 : A ∧B
AndR

Σ, x : A; • ` t : C Σ, y : B; • ` u : C

Σ; . : A ∨B ` [〈(x)t|(y)u〉] : C
OrL

Σ; • ` u : Ai

Σ; • ` inji(u) : A1 ∨A2

OrRi

Fig. 4. Proof terms for the rules of LJTEnum
Term (i ∈ {1, 2})

The rules of LJTEnum with the corresponding proof terms, which we call
LJTEnum

Term , are given in Fig. 4.
Formulas in the goal are associated to a λ

′
-expression. By construction, goals

of rules in which the stoup is empty are λ
′
-terms while those in which the stoup is

full are lists of arguments waiting to be applied. Formulas which are in the stoup
are not associated to a λ

′
-expression, as is indicated by the notation “. : A”.

7.2 Number of different proof terms

Given a sequent s, there are strong ties between CMSet(s) and the number of
different λ-terms up to α-conversion which can be built from the proofs of s.
In fact, the only source of difference is that CMSet(s) does not capture multiple
uses of Cont on propositions which occur multiple times in the context, with
different variable names.

From there, it is easy to devise a proof counting and enumerating algo-
rithm for LJTEnum

Term : in GMSet, just duplicate n times the edge between s and
(s, Cont(A)) if A appears n times in the environment of s. All the results and
theorems applicable to GMSet remain true with that modification. As a result,
proof enumeration is no more difficult in LJTEnum

Term than in LJTEnum.

8 Related work

Dyckhoff and Pinto propose a confluent rewriting relation ≺ on the structure
of cut-free proofs in LJ [6]. The normal forms of the proofs in LJ w.r.t. to ≺



are in 1-1 correspondence with normal natural deductions in NJ. That solution
would not have been suitable for our purpose however, because we could easily
have ended up finding an important number of proofs in LJ which would all have
corresponded to the same normal proof in NJ.

Howe proposes two mechanisms to efficiently add an history to a sequent
proof in LJT, in order to avoid loops in the proof [12]. One of these mechanisms
has been added to our implementation of Count.

Pinto presents a mechanism to define names for proof-witnesses of formulae
and thus to use Gentzen’s cut-rule in logic programming [13]. Because using the
cut-rule can make some proofs exponentially shorter, it should be possible to
discover terms which are much more efficient from a computational standpoint
than those we can generate using a cut-free calculus. Devising an exhaustive
term enumeration procedure for such a calculus would be an interesting task.

Ben-Yelles [2], Hindley [11], Zaionc [15], Broda and Damas [3] propose various
algorithms to solve the problem of type inhabitation in the simply typed λ-
calculus. Zaionc’s approach is somewhat similar to our own, using fixpoints on
polynomials. Broda and Damas propose a tool for studying inhabitation of simple
types. In all four cases only simple types are considered.

9 Conclusion

9.1 Summary of contributions

We have presented Count, a proof counting algorithm for the LJTEnum calculus
of intuitionistic logic. The idea is reusable for any calculus in which the envi-
ronment of assumptions only increases (e.g., Gentzen’s LJ). Using Count and
the Curry-Howard correspondence, we have implemented an algorithm which
effectively builds all the possible program fragments of a given typing.

We believe our approach to proof counting and enumeration is the first that
has the following properties. First, we use the easier solution for assumption
sets to build a more efficient solution for multisets, which is closer to our moti-
vating goal of term enumeration. Second, our method works directly on logical-
deduction style sequent derivations as normally used in proof search (i.e., L-
systems with left-introduction rules instead of right-elimination rules), while
earlier approaches instead count λ-terms in normal forms. Third, our method
uses a graph representation of all proofs which seems essential for practicality.

9.2 Future work

Let us mention some promising ways to extend the expressiveness of our program
fragments synthesizer. First, to better handle ML languages, adding some sup-
port for polymorphism would be useful; but this will break the syntax-directed
property of the calculus, and probably the finiteness of GSet(s).

Ideally, we would also support full algebraic datatypes. We partially achieve
this goal in that the method in this paper handles parametric types (e.g., the



type constructor list as used in the type int list in Standard ML), provided
the environment has functions to build and use them.

Furthermore, the addition of fully general sum types to model inductive
datatypes, as well as of recursion, could also be interesting. This could be done
for example using recursive propositions. However, a potential pitfall to avoid is
generating “dead code” or predictably non-terminating functions.

Finally, while theoretically sound, the OrL rule generates a huge number of
λ-term which are extensionally equal. It is possible to rule out the less inefficient
ones after they have been produced, but we are also investigating the possibility
of pruning them during an earlier phase of the search.

References

[1] M. V. Aponte, R. Di Cosmo, C. Dubois, B. Yakobowski. Signature subtyping modulo type
isomorphisms. In preparation, 2004.
[2] C.-B. Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics. PhD thesis,
Mathematics Dept., University of Wales Swansea, UK, 1979.
[3] S. Broda, L. Damas. On the structure of normal λ-terms having a certain type. In 7th Workshop
on Logic, Language, Information and Computation (WoLLIC 2000), Brazil, 2000.
[4] R. Dyckhoff. Proof search in constructive logics. In Logic Colloquium ’97, 1998.
[5] R. Dyckhoff, L. Pinto. Cut-elimination and a permutation-free sequent calculus for intuitionistic
logic. Studia Logica, 60(1), 1998.
[6] R. Dyckhoff, L. Pinto. Permutability of proofs in intuitionistic sequent calculi. Theoret. Com-
put. Sci., 212(1–2), 1999.
[7] C. Haack. Foundations for a tool for the automatic adaptation of software components based
on semantic specifications. PhD thesis, Kansas State University, 2001.
[8] C. Haack, B. Howard, A. Stoughton, J. B. Wells. Fully automatic adaptation of software
components based on semantic specifications. In Algebraic Methodology & Softw. Tech., 9th Int’l
Conf., AMAST 2002, Proc., vol. 2422 of LNCS. Springer-Verlag, 2002.
[9] H. Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In
Proc. Conf. Computer Science Logic, vol. 933 of LNCS. Springer-Verlag, 1994.
[10] H. Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure.
Available at http://coq.inria.fr/~herbelin/LAMBDA-BAR-FULL.dvi.gz, 1994.
[11] J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1997.
[12] J. M. Howe. Proof Search Issues In Some Non-Classical Logics. PhD thesis, University of St
Andrews, 1998.
[13] L. Pinto. Cut formulae and logic programming. In R. Dyckhoff, ed., Extensions of Logic
Programming: Proc. of the 4th International Workshop ELP’93. Springer-Verlag, 1994.
[14] L. Pinto, R. Dyckhoff. Sequent calculi for the normal terms of the λΠ and λΠΣ calculi. In
D. Galmiche, ed., Electronic Notes in Theoretical Computer Science, vol. 17. Elsevier, 2000.
[15] M. Zaionc. Fixpoint technique for counting terms in typed lambda calculus. Technical Report
95-20, State University of New York, 1995.

http://www.ncc.up.pt/~sbb/publications.html
http://www.dcs.st-and.ac.uk/~rd/publications/
http://www.dcs.st-and.ac.uk/~rd/publications/
http://www.dcs.st-and.ac.uk/~rd/publications/
http://www.dcs.st-and.ac.uk/~rd/publications/
http://fpl.cs.depaul.edu/chaack/papers/
http://fpl.cs.depaul.edu/chaack/papers/
http://www.macs.hw.ac.uk/~jbw/papers/#Haa+How+Sto+Wel:AMAST-2002
http://www.macs.hw.ac.uk/~jbw/papers/#Haa+How+Sto+Wel:AMAST-2002
http://coq.inria.fr/~herbelin/publis-eng.html
http://coq.inria.fr/~herbelin/publis-eng.html
http://coq.inria.fr/~herbelin/LAMBDA-BAR-FULL.dvi.gz
http://www.cs.kent.ac.uk/pubs/1998/946/
http://www.dcs.st-and.ac.uk/~rd/publications/
http://www.dcs.st-and.ac.uk/~rd/publications/
http://www.ii.uj.edu.pl/~zaionc/papers.html


2

1

1

2
2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

P
S
fr

a
g

re
p
la

ce
m

en
ts

A
x

A
x

A
x

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
L

I
m
p
R

A
n
d
L

1

A
n
d
L

2

A
n
d
R

O
r
L

O
r
R

1

O
r
R

2

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

1
→

x
2
)

C
o
n
t
(x

1
→

x
3
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

C
o
n
t
(x

2
)

C
o
n
t
(x

2
→

x
3
)

C
o
n
t
(x

1
)

C
o
n
t
(x

2
→

x
1
)

Σ
; •
`

x
3

:
∞

Σ
;x

2
→

x
1
`

x
3

:
0

Σ
; •
`

x
2

:
∞

Σ
;x

2
→

x
1
`

x
2

:
0

Σ
;x

1
`

x
2

:
0

Σ
;x

2
→

x
3
`

x
2

:
0

Σ
;x

3
`

x
2

:
0

Σ
;x

2
`

x
2

:
1

Σ
;x

1
→

x
3
`

x
2

:
0

Σ
; •
`

x
1

:
∞

Σ
;x

2
→

x
1
`

x
1

:
∞

Σ
;x

1
`

x
1

:
1

Σ
;x

2
→

x
3
`

x
1

:
0

Σ
;x

3
`

x
1

:
0

Σ
;x

2
`

x
1

:
0

Σ
;x

1
→

x
3
`

x
1

:
0

Σ
;x

1
→

x
2
`

x
1

:
0

Σ
;x

1
→

x
2
`

x
2

:
∞

Σ
;x

1
`

x
3

:
0

Σ
;x

2
→

x
3
`

x
3

:
∞

Σ
;x

3
`

x
3

:
1

Σ
;x

2
`

x
3

:
0

Σ
;x

1
→

x
3
`

x
3

:
∞

Σ
;x

1
→

x
2
`

x
3

:
0

1

Fig. 5. GSet(Σ; • ` x3) = GMSet(Σ; • ` x3) with Σ = {x1, x2, x1→ x2, x2→ x1,
x1→x3, x2→x3}
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