Formal verification of a static analyzer: abstract interpretation in type theory

Xavier Leroy

Inria Paris-Rocquencourt

TYPES meeting, 2014-05-14
In memoriam Radhia Cousot, † 2014
With thanks to…

David Pichardie

and the Verasco project team:

Sandrine Blazy, Vincent Laporte, André Maronèze (Rennes)
Jacques-Henri Jourdan, Jérôme Feret, Xavier Rival, Arnaud Spiwack
(Paris-Rocquencourt)
Alexis Fouilhé, David Monniaux, Michael Pépin (Grenoble)
Jean Souyris (Airbus)
Plan

1. An overview of static analysis
2. Abstract interpretation, in set theory and in type theory
3. Scaling up: the Verasco project
4. Conclusions and future work
Static analysis in a nutshell

Statically infer properties of a program that hold for all its executions.

\[At \text{ this program point, } 0 < x \leq y \text{ and pointer } p \text{ is not NULL.}\]

Emphasis on infer: no help from the programmer. (E.g. loop invariants are not written in the source.)

Emphasis on statically:

- The inputs to the program are not known.
- The analysis must terminate.
- The analysis must run in reasonable time and space.
Example of properties that can be inferred

Properties of the value of one variable: (value analysis)

\[
\begin{align*}
 x &= a & \text{constant propagation} \\
 x &> 0 \text{ ou } x = 0 \text{ ou } x < 0 & \text{signs} \\
 x &\in [a, b] & \text{intervals} \\
 x &= a \pmod{b} & \text{congruences} \\
 \text{valid}(p[a…b]) & & \text{memory validity} \\
 p \text{ pointsTo } x \text{ or } p \neq q & & \text{(non-) aliasing between pointers}
\end{align*}
\]

\((a, b, c \text{ are constants inferred by the analyzer.})\)
Example of properties that can be inferred

Properties of several variables: (relational analysis)

\[\sum a_i x_i \leq c \] polyhedra
\[\pm x_1 \pm \cdots \pm x_n \leq c \] octogons
\[expr_1 = expr_2 \] Herbrand equivalences
\[doubly-linked-list(p) \] shape analysis

Non-functional properties:
- Memory consumption.
- Worst-case execution time (WCET).
Using static analysis for code optimization

Apply algebraic identities when their conditions are met:

\[x / 4 \rightarrow x >> 2 \quad \text{if analysis says } x \geq 0 \]
\[x + 1 \rightarrow 1 \quad \text{if analysis says } x = 0 \]

Optimize array accesses and pointer dereferences:

\[a[i]=1; a[j]=2; x=a[i]; \rightarrow a[i]=1; a[j]=2; x=1; \quad \text{if analysis says } i \neq j \]
\[*p = a; x = *q; \rightarrow x = *q; *p = a; \quad \text{if analysis says } p \neq q \]

Automatic parallelization:

\[loop_1; loop_2 \rightarrow loop_1 \parallel loop_2 \quad \text{if } polyh(loop_1) \cap polyh(loop_2) = \emptyset \]
Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time errors:

\[x \in [a, b] \land 0 \notin [a, b] \implies x/y \text{ cannot fail} \]

\[\text{valid}(p[a...b]) \land i \in [a, b] \implies p[i] \text{ cannot fail} \]

Report an alarm otherwise.
Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time errors:

\[x \in [a, b] \land 0 \notin [a, b] \implies x/y \text{ cannot fail} \]

\[\text{valid}(p[a \ldots b]) \land i \in [a, b] \implies p[i] \text{ cannot fail} \]

Report an alarm otherwise.
True alarms, false alarms

True alarm
(wrong behavior)

False alarm
(analysis too imprecise)

More precise analysis (polyhedron instead of intervals):
the false alarm goes away.
Some properties verifiable by static analysis

Absence of run-time errors:

- **Arrays and pointers:**
 - No out-of-bound accesses.
 - No dereferencing the null pointer.
 - No access after a `free`.
 - Alignment constraints are respected.

- **Integer arithmetic:**
 - No division by zero.
 - No (signed) arithmetic overflows.

- **Floating-point arithmetic:**
 - No arithmetic overflows (result is $\pm\infty$)
 - No undefined operations (result *Not a Number*)
 - No catastrophic cancellation.

Simple programmer-inserted assertions:

E.g. `assert (0 <= x && x < sizeof(tbl))`.
Plan

1. An overview of static analysis
2. Abstract interpretation, in set theory and in type theory
3. Scaling up: the Verasco project
4. Conclusions and future work
Basic idea:
analyzing a program is executing it with a nonstandard semantics
Abstract interpretation in a nutshell

Execute ("interpret") the program with a semantics that:

- Computes over an abstract domain of the desired properties (e.g. \(x \in [a, b] \)’ for interval analysis) instead of computing with concrete values and states (e.g. numbers).

- Handle Boolean conditions even if they cannot be resolved statically:
 - The then and else branches of an if are both taken \(\rightarrow \) joins.
 - Loops and recursions execute arbitrarily many times \(\rightarrow \) fixpoints.

- Always terminates.
Examples of abstract interpretation

<table>
<thead>
<tr>
<th>In the concrete</th>
<th>In the abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ x = 3, y = 1 }</td>
<td>{ x^{#} = [0, 9], y^{#} = [-1, 1] }</td>
</tr>
<tr>
<td>z = x + 2 * y;</td>
<td></td>
</tr>
<tr>
<td>{ z = 3 + 2 * 1 = 5 }</td>
<td>{ z^{#} = [0, 9] +^{#} 2 *^{#} [-1, 1] = [-2, 11] }</td>
</tr>
</tbody>
</table>
Examples of abstract interpretation

<table>
<thead>
<tr>
<th>In the concrete</th>
<th>In the abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ x = 3, y = 1 }</td>
<td>{ x# = [0, 9], y# = [−1, 1] }</td>
</tr>
<tr>
<td>(z = x + 2 \times y;)</td>
<td>(z# = [0, 9] +# 2 \times# [−1, 1] = [−2, 11])</td>
</tr>
<tr>
<td>{ z = 3 + 2 \times 1 = 5 }</td>
<td>{ z# = [0, 9] +# 2 \times# [−1, 1] = [−2, 11] }</td>
</tr>
<tr>
<td>{ b = \text{true}, x = 3, y = 1 }</td>
<td>{ b# = \top, x# = [0, 9], y# = [−1, 1] }</td>
</tr>
<tr>
<td>(z = (\text{if } b \text{ then } x \text{ else } y);)</td>
<td>(z# = [0, 9] \sqcup [−1, 1] = [−1, 9])</td>
</tr>
<tr>
<td>{ z = 3 }</td>
<td>{ z# = [0, 9] \sqcup [−1, 1] = [−1, 9] }</td>
</tr>
</tbody>
</table>
Idea #2:
a variable can have different abstractions at different program points
Sensitivity to control flow

Imperative variable assignment:

{ \(x\# = [0,9] \) }

\(x = x + 1; \)

{ \(x\# = [1,10] \) }

Refining the abstraction at conditionals:

{ \(x\# = [0,9] \) }

if (x == 0) {

\[\ldots \]

\[\ldots \]

} else {

{ \(x\# = [0,0] \) }

\[\ldots \]

}
Sensitivity to control flow

Contrast with dependent pattern-matching, where the type of the scrutinee is unchanged, but additional facts are added to the environment.

```ml
match eq_dec x 0 with
| left  (EQ: x = 0) => ... 
| right (NEQ: x <> 0) => ...
end.

match x as z return x = z -> T with
| None  => fun (P: x = None) => ... 
| Some y => fun (P: x = Some y) => ... 
end (refl_equal x).
```
Idea #3:
we can also infer relations between the values of several variables
Non-relational / relational analysis

Non-relational analysis:

abstract environment = variable \mapsto abstract value

(Like simple typing environments.)

Relational analysis:
abstract environments are a domain of their own, featuring:
- a semi-lattice structure: \perp, \top, \sqsubseteq, \sqcup
- an abstract operation for assignment / binding.

Example: polyhedra, i.e. conjunctions of linear inequalities $\sum a_i x_i \leq c$.
Idea # 4: widening
fixpoints can be computed
even in non-well-founded domains
Fixpoints – the recurring problem

Static analysis of a loop:

\[
\{ \ e^\# = X_0 \ \}\ \\
\text{while (\ldots) \{} \\
\quad \{ \ e^\# = X \ \} \\
\quad \ldots \\
\quad \{ \ e^\# = \Phi(X) \ \}\}
\]

Given \(X_0\) (the abstract state before the loop) and \(\Phi\) (the transfer function for the loop body), find \(X\) (the loop invariant).

\[X \sqsupseteq X_0\] (first iteration) \quad \[X \sqsupseteq \Phi(X)\] (next iterations)

\(X\) is, ideally, the smallest fixpoint of \(F = X \mapsto X_0 \sqcup \Phi(X)\) or at least any post-fixpoint of \(F\) \((X \sqsupseteq F(X))\).
Theorem (Tarski)

Let \((A, \sqsubseteq, \bot)\) a partially ordered set such that \(\sqsubseteq\) is well founded (no infinite increasing sequences).
Let \(F : A \to A\) an increasing function.
Then \(F\) has a smallest fixpoint, obtained by finite iteration from \(\bot\):

\[\exists n, \quad \bot \sqsubseteq F(\bot) \sqsubseteq \ldots \sqsubseteq F^n(\bot) = F^{n+1}(\bot)\]
Most abstract domains are not well founded. Examples:

- Integer intervals: $[0, 0] \subseteq [0, 1] \subseteq [0, 2] \subseteq \cdots \subseteq [0, n] \subseteq \cdots$
- Environments: $\text{variable} \mapsto \text{abstract values}$.

Moreover, even when Tarski iteration converges, it converges too slowly:

$$x = 0; \quad \text{while} \ (x \leq 10000) \{ \ x = x + 1; \ \}$$

(Starting with $x^# = [0, 0]$, it takes 10000 iterations to reach the fixpoint $x^# = [0, 10000]$.)

Paradise regained: widening

A widening operator $\nabla : A \rightarrow A \rightarrow A$ computes a majorant of its second argument in such a way that the following iteration converges always and quickly:

$$X_0 = \bot \quad X_{i+1} = \begin{cases} X_i & \text{if } F(X_i) \subseteq X_i \\ X_i \nabla F(X_i) & \text{otherwise} \end{cases}$$

The limit X of this sequence is a post-fixpoint: $F(X) \subseteq X$.

Example: widening for intervals:

$$[l_1, u_1] \nabla [l_2, u_2] = \begin{cases} -\infty & \text{if } l_2 < l_1 \\ l_1 & \text{if } u_2 > u_1 \\ \infty & \text{else } u_1 \end{cases}$$
Widening in action

\[F(X) \]

Tarski iteration\n
Widened iteration
Narrowing the post-fixpoint

The quality of the post-fixpoint can be improved by iterating \(F \) some more:

\[
Y_0 = \text{a post-fixpoint} \quad Y_{i+1} = F(Y_i)
\]

If \(F \) is increasing, each \(Y_i \) is a post-fixpoint: \(F(Y_i) \sqsubseteq Y_i \).

Often, \(Y_i \sqsubseteq Y_0 \), improving the analysis quality.

Iteration can be stopped when \(Y_i \) is a fixpoint, or at any time.
Widening plus narrowing in action

$F(X)$

Narrowing

Tarski iteration

Widened iteration
Specification of widening

A simple variation on the constructive definition of well foundedness:

\[
\begin{align*}
\text{Inductive } \text{Acc} : \ A \rightarrow \text{Prop} & : = \\
| \text{Acc_intro} : \forall \ x, \\
\quad (\forall y, \ y \sqsubseteq x \rightarrow \text{Acc} \ y) \rightarrow \\
\quad \text{Acc} \ x.
\end{align*}
\]

\[
\begin{align*}
\text{Definition } \text{well_founded} & : = \\
\forall x, \ \text{Acc} \ x.
\end{align*}
\]

\[
\begin{align*}
\text{Inductive } \text{AccW} : \ A \rightarrow \text{Prop} & : = \\
| \text{AccW_intro} : \forall \ x, \\
\quad (\forall y, \ y \sqsubseteq x \rightarrow \text{AccW} \ (x \nabla y)) \rightarrow \\
\quad \text{AccW} \ x.
\end{align*}
\]

\[
\begin{align*}
\text{Definition } \text{widening_correct} & : = \\
\forall x, \ \text{AccW} \ x.
\end{align*}
\]
Specification of widening

A simple variation on the constructive definition of well foundedness:

Inductive Acc : A -> Prop :=
 | Acc_intro : \forall x, (
 \forall y, y \sqsubseteq x -> Acc y
) -> Acc x.

Definition well_founded :=
 \forall x, Acc x.

Inductive AccW : A -> Prop :=
 | AccW_intro : \forall x, (
 \forall y, y \sqsubseteq x -> AccW (x \sqcup y)
) -> AccW x.

Definition widening_correct :=
 \forall x, AccW x.

Even Coq understands that widened iteration terminates:

Fixpoint postfixpoint (F : A->A) (x : A) (acc : AccW x) {struct acc} :=
 let y := F x in
 match decide (x \sqsubseteq y) with
 | left LE => x
 | right GT => postfixpoint F (x \sqcup y) (AccW_inv x acc y GT)
 end.
Idea #6: Galois connections: abstract operators can be calculated in a systematic, sound, and optimal manner
A Galois connection

A semi-lattice \mathcal{A}, \subseteq of abstract states and two functions:

- **Abstraction function** α: set of concrete states \rightarrow abstract state
- **Concretization function** γ: abstract state \rightarrow set of concrete states

E.g. for intervals $\alpha(S) = [\inf S, \sup S]$ and $\gamma([a, b]) = \{x | a \leq x \leq b\}$.
Axioms of Galois connections

The adjunction property:

\[\forall a, S, \quad \alpha(S) \sqsubseteq a \iff S \subseteq \gamma(a) \]

or, equivalently:

- \(\alpha \) increasing
- \(\gamma \) increasing
- \(\forall S, \quad S \subseteq \gamma(\alpha(S)) \) (soundness)
- \(\forall a, \quad \alpha(\gamma(a)) \sqsubseteq a \) (optimality)
Calculating abstract operators

For any concrete operator $F : C \rightarrow C$ we define its abstraction $F^\# : A \rightarrow A$ by

$$F^\#(a) = \{F(x) \mid x \in \gamma(a)\}$$

This abstract operator is:

- **Sound**: if $x \in \gamma(a)$ then $F(x) \in \gamma(F^\#(a))$.

- **Optimally precise**: every a' such that $x \in \gamma(a) \Rightarrow F(x) \in \gamma(a')$ is such that $F^\#(a) \sqsubseteq a'$.

Moreover, an algorithmic definition of $F^\#$ can be calculated from the definition above.
Calculating $+\#$ for intervals

\[
[a_1, b_1] +\# [a_2, b_2]
\]
\[
= \alpha\{x_1 + x_2 \mid x_1 \in \gamma[a_1, b_1], x_2 \in \gamma[a_2, b_2]\}
\]
\[
= \left[\inf\{x_1 + x_2 \mid a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2\},
\sup\{x_1 + x_2 \mid a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2\}\right]
\]
\[
= [+\infty, -\infty] \text{ if } a_1 > b_1 \text{ or } a_2 > b_2
\]
\[
= [a_1 + b_1, a_2 + b_2] \text{ otherwise}
\]

Note: the intuitive definition $[a_1, b_1] +\# [a_2, b_2] = [a_1 + b_1, a_2 + b_2]$ is sound but not optimal.
Trouble ahead:
Galois connections in type theory
Type-theoretic difficulties

Minor issue: the calculations of abstract operators are poorly supported by interactive theorem provers such as Coq:

$$F\# a = \alpha(\lambda x. P) = \alpha(\lambda x. P') = \ldots$$

$$\uparrow$$

because $\forall x, P \Leftrightarrow P'$

Either:

- use setoid equalities everywhere, or
- add extensionality axioms (functional, propositional).
Type-theoretic difficulties

Major issue: γ is easily modeled as

$$\gamma : A \to (C \to \text{Prop}) \quad \text{(two-place predicate)}$$

but α is generally not computable as soon as C is infinite:

$$\alpha : (C \to \text{Prop}) \to A \quad \text{morally constant functions only?}$$
$$\alpha : (C \to \text{bool}) \to A \quad \text{can only query a finite number of } C \text{'s}$$

(E.g. $\alpha(S) = [\inf S, \sup S]$, no more computable than \inf and \sup.)

→ Need more axioms (description, Hilbert’s epsilon).
Fundamental difficulty

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \leq 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.
Fundamental difficulty

For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \leq 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x, y) \mid x^2 + y^2 \leq 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.)
For some domains, the abstraction function α does not exist! (The optimality condition $a \sqsubseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \leq 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x, y) \mid x^2 + y^2 \leq 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.)
Fundamental difficulty

For some domains, the abstraction function α does not exist! (The optimality condition $a \subseteq \alpha(\gamma(a))$ cannot be satisfied.)

Example 1: intervals of rationals.

$$\alpha\{x \mid x^2 \leq 2\} = ???$$

There is no best rational approximation of $[-\sqrt{2}, \sqrt{2}]$.

Example 2: polyhedra

$$\alpha\{(x, y) \mid x^2 + y^2 \leq 1\} = ???$$

(It works in practice nonetheless, because the abstract interpreter and abstract operators are set up in such a way that non-abstractible sets like the above never occur.)
Plan B:
soundness (γ) is essential,
optimality (α) is optional
Getting rid of α

Remember the two properties of abstract operators $F^\#$ calculated from $F^\#(a) = \alpha\{F(x) \mid x \in \gamma(a)\}$:

1. **Soundness:** if $x \in \gamma(a)$ then $F(x) \in \gamma(F^\#(a))$.

2. **Optimality:** every a' such that $x \in \gamma(a) \Rightarrow F(x) \in \gamma(a')$ is such that $F^\#(a) \sqsubseteq a'$.

Instead of calculating $F^\#$, we can guess a definition for $F^\#$, then verify

- property 1: soundness (mandatory!)
- possibly property 2: optimality (optional sanity check).

These proofs only need the concretization relation γ, which is unproblematic.
Soundness first!

Having made optimality entirely optional, we can further simplify the analyzer and its soundness proof, while increasing its algorithmic efficiency:

- Abstract operators that return over-approximations (or just \top) in difficult / costly cases.
- Join operators \sqcup that return an upper bound for their arguments but not necessarily the least upper bound.
- “Fixpoint” iterations that return a post-fixpoint but not necessarily the smallest (widening + return \top when running out of fuel).
- Validation a posteriori of algorithmically-complex operations, performed by an untrusted external oracle. (Next slide.)
Validation a posteriori

Some abstract operations can be implemented by unverified code if it is easy to validate the results a posteriori by a validator. Only the validator needs to be proved correct.

Example: the join operator \(\sqcup \) over polyhedra.

Computing the join (convex hull) vs. Inclusion test (Presburger formula)

The inclusion test can itself use validation a posteriori. (Cf. talk by Fouilhe, Boulmé and Périn.)
Plan

1. An overview of static analysis
2. Abstract interpretation, in set theory and in type theory
3. Scaling up: the Verasco project
4. Conclusions and future work
The Verasco project
Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract interpretation:

- Language analyzed: the CompCert subset of C.
- Nontrivial abstract domains, including relational domains.
- Modular architecture inspired from Astrée’s.
- Decent alarm reporting.

Slogan: if “CompCert = 1/10th of GCC but formally verified”, likewise “Verasco = 1/10th of Astrée but formally verified”.
Architecture

CompCert C → Clight → C#minor → ...

Alarms → Abstract interpreter

Memory & value domain → Z → bits

F.P. intervals → Flocq

Nonrel → Rel

Integer intervals & congruences

Polyhedra → VPL

CompCert

control flow

states

machine numbers

ideal numbers

Flocq

Verified static analyzer

X. Leroy (Inria)
Upper layer: the abstract interpreter

\[\text{CompCert C} \rightarrow \text{Clight} \rightarrow \text{C#} \text{minor} \rightarrow \text{C} \text{minor} \rightarrow \text{RTL} \rightarrow \ldots \]

Abstract interp 1

Abstract interp 2

Connected to the intermediate languages of the CompCert compiler.

Parameterized by a relational abstract domain for execution states (environment + memory state + call stack).

1. Abstract interpreter for RTL (Blazy, Maronèze, Pichardie, SAS 2013)
 Unstructured control \rightarrow per-function fixpoints (Bourdoncle).

2. Abstract interpreter for C# minor (Jourdan, in progress)
 Local fixpoints for each loop + per-function fixpoint for goto + per-program fixpoint for function calls.
Lower layer: numerical domains

Non-relational:
- Integer intervals and congruences (over \mathbb{Z}).
- Floating-point intervals (on top of the Flocq library).

Relational:
- The VPL library (Fouillhé, Monniaux, Périn, SAS 2013): polyhedra with rational coefficients, implemented in OCaml, producing certificates verifiable in Coq.
- Integration in progress in Verasco.
What is a generic interface for a numerical domain?

For a non-relational domain:

- A semilattice \((A, \sqsubseteq)\) of abstract values.
- A concretization relation \(\gamma : A \to \mathbb{Z} \to \text{Prop}\)
- Abstract operators such as
 \[
 \text{add: } A \to A \to A;
 \]
 \[
 \text{add_sound: } \forall a b x y,\quad
 x \in \gamma a \rightarrow y \in \gamma b \rightarrow (x + y) \in \gamma (\text{add } a b);
 \]
- Inverse abstract operators (to refine abstractions based on the results of conditionals) such as
 \[
 \text{eq_inv: } A \to A \to \text{bool} \to A \times A;
 \]
 \[
 \text{eq_inv_sound: } \forall a b c x y,\quad
 x \in \gamma a \rightarrow y \in \gamma b \rightarrow
 (\text{if } c \text{ then } x = y \text{ else } x <> y) \rightarrow
 x \in \gamma (\text{fst (eq_inv } a b c))
 \land
 y \in \gamma (\text{snd (eq_inv } a b c));
 \]
What is a generic interface for a numerical domain?

For a relational domain, the main abstract operations are:

- **assign**: $var = expr$
- **forget**: $var = \text{any-value}$
- **assume**: $expr$ is true or $expr$ is false

var are program variables or abstract memory locations.

$expr$ are simple expressions ($+ \ - \ \times \ \div \ \mod \ \ldots$) over variables and constants.

To report alarms, we also need to query the domain, e.g. “is $x < y$?” or “is $x \mod 4 = 0$?”. The basic query is

- **get_itv**: $expr \rightarrow \text{variation interval}$

(Next slide: Coq interface.)
Class ab_ideal_env (var t:Type) '{EqDec var}: Type := {
 id_wl:> weak_lattice t;
 id_gamma:> gamma_op t (var->ideal_num);
 id_adom:> adom t (var->ideal_num) id_wl id_gamma;
 get_itv: iexpr var -> t -> IdealIntervals.abs+⊥;
 assign: var -> iexpr var -> t -> t+⊥;
 forget: var -> t -> t+⊥;
 assume: iexpr var -> bool -> t -> t+⊥;
 get_itv_sound: forall e ρ ab,
 ρ ∈ γ ab ->
 eval_iexpr ρ e ⊆ γ (get_itv e ab);
 assign_sound: forall x e ρ n ab,
 ρ ∈ γ ab ->
 n ∈ eval_iexpr ρ e ->
 (upd ρ x n) ∈ γ (assign x e ab);
 forget_sound: forall x ρ n ab,
 ρ ∈ γ ab ->
 (upd ρ x n) ∈ γ (forget x ab);
 assume_sound: forall c ρ ab b,
 ρ ∈ γ ab ->
 (INz (if b:bool then 1 else 0)) ∈ eval_iexpr ρ c ->
 ρ ∈ γ (assume c b ab)
}.

X. Leroy (Inria)
Verified static analyzer
2014-05-14 50 / 57
Machine integers vs. mathematical integers

Machine integers = \(N \)-bit vectors, with arithmetic modulo \(2^N \), and two possible interpretations (signed or unsigned).

For intervals, ad-hoc solutions based on pairs of \(\mathbb{Z} \)-intervals:

\[
\begin{array}{c|c|c|c}
\text{signed interpretation} & \text{unsigned interpretation} \\
\hline
-2^{N-1} & 0 & 2^{N-1} & 2^N \\
\end{array}
\]

or on cyclic intervals:

\[
\begin{array}{c}
\text{max}_\text{sint} \\
\text{min}_\text{sint} \\
0 \\
-1 = 2^N - 1 \\
\end{array}
\]

What about relational domains?
A domain transformer for machine integers

(J-H. Jourdan)

Given a relational domain \((A, \gamma)\) over \(\mathbb{Z}\), construct a relational domain over \(N\)-bit machine integers as follows:

- Same abstract domain \(A\).

- New concretization:
 \[\gamma'(a) = \{ b : \text{bitvect}(N) \mid \exists n : \mathbb{Z}, n \in \gamma(a) \land n \equiv b \pmod{2^N} \} \]

- Same abstract operators for addition, subtraction, multiplication.

- For other operators (comparisons, division, . . .): try first to reduce the ideal integers modulo \(2^N\) to the interval \([0, 2^N)\) or \([-2^{N-1}, 2^{N-1})\), depending on whether the operation is signed or unsigned.
Middle layer: abstracting memory and state

The CompCert memory model: memory location = block $b \times$ offset δ.

\[
\begin{align*}
 b_1: & & b_2: & & b_3: \\
 \delta_2 & & & & \\
\end{align*}
\]

Abstraction of offsets \rightarrow integer domain.

Abstraction of blocks:

- First attempt (Pichardie): 1 concrete block $= 1$ abstract block
 “global variable x” or “local variable y of function f”.

- Recursion, dynamic allocation \rightarrow need for imprecise abstract blocks
 (standing for several concrete blocks).

- In progress (Laporte): abstract memory model with block fusion and weak updates.
Plan

1. An overview of static analysis

2. Abstract interpretation, in set theory and in type theory

3. Scaling up: the Verasco project

4. Conclusions and future work
Conclusions

Trying to bridge elegant foundations and nitty-gritty details (low-level language, algorithmic efficiency).

Abstract interpretation is a very effective guideline once we forget about optimality of the analysis.
Future work

Much remains to be done to reach a realistic static analyzer:

- “Good” abstractions for memory.
- More (combinations of) abstract domains: symbolic equalities, reduced products, trace partitioning, . . .
- Algorithmic efficiency needs more work, esp. on sharing between representations of abstract states.
- Good alarm reports.
- Debugging the precision of the analyses.
One step at a time...

... we get closer to the formal verification of the tools that participate in the production and verification of critical embedded software.