
A proposal for recursive modules in Objective Caml

Xavier Leroy
INRIA Rocquencourt

Version 1.1, May 13, 2003

This notes describes a design and prototype implementation of an extension of the Objective
Caml language with mutually-recursive module definitions.

1 Syntax

The syntax for recursive module definitions is as follows:

definition ::=
...

| module rec ident 1 : module-type 1 = module-expr 1

and ...
and ident n : module-type n = module-expr n

A module rec definition can appear anywhere a regular module definition module ident = module-
expr can appear: at the top-level of a compilation unit, within a struct. . . end structure definition,
or as a phrase for the top-level interactive loop.

However, a recursive module definition must be contained whole within a compilation unit: the
proposal does not support recursion between compilation units. The latter can however be encoded
using separately-compiled functors, whose fix-point is taken later using the module rec construct.1

The scope of the identifiers ident1, . . . , identn encompasses not only the module expressions
module-expri, but also the module types module-typei. Thus, not only the modules are recursive,
but also their types.

The typing annotations module-typei are syntactically required. There is no way to type-check
recursive module definitions if the expected module types are not provided by the user.

To allow declaring the types of recursively-defined modules in signatures and compilation unit
interfaces, syntax is provided for recursive module declarations:

specification ::=
...

1Recursion between value components of implementations of compilation units (the .ml files) can be supported
without language extension, by modifying the linker only. This is what Fabrice Le Fessant implemented a while ago
in one of his patches, and this implementation is entirely orthogonal to what is described in this note. However,
recursion between the interfaces of the compilation units (the .mli files), as required to split type definitions between
several units, is significantly harder to achieve, and requires at the very least that all .mli files that refer to each
other are compiled simultaneously.

1



| module rec ident 1 : module-type 1

and ...
and ident n : module-type n

Example: we will use the following, often wished-for recursive module definition as our running
example.

module A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int

end
= struct

type t = Leaf of string | Node of ASet.t
let compare t1 t2 =
match (t1, t2) with
(Leaf s1, Leaf s2) -> Pervasives.compare s1 s2

| (Leaf _, Node _) -> 1
| (Node _, Leaf _) -> -1
| (Node n1, Node n2) -> ASet.compare n1 n2

end
and ASet : Set.S with type elt = A.t

= Set.Make(A)

2 Type-checking

2.1 Checking recursive module types

For recursively-defined module types, checking their type-correctness and elaborating them to in-
ternal form is complicated by the very fact that they refer to each other in a recursive fashion.
Consider the recursive module declaration

module rec X1 : module-type1 and . . . and Xn : module-typen

Checking is done in three steps:

1. Each module type expression module-typei is syntactically approximated by a module type Ai

that records only the names of type, module, and module type components, and declares all
types as abstract, retaining only their arities. For example,

module
val x : int
type ’a t = A | B of ’a
class c : ...
module M : sig type (’a,’b) t = ’a * ’b val y : bool end

end

is syntactically approximated by

2



module
type ’a t
type c
module M : sig type (’a, ’b) t end

end

2. The module type expressions module-typei are checked and translated to module types Mi

under the typing assumptions X1 : A1, . . . , Xn : An. The approximations, while imprecise,
capture the valid type paths rooted at the Xj along with their arities, allowing the translation
to module types to go through if the declaration is type-correct. Errors such as references to
unbound type paths or type arity mismatches are caught at this point.

3. The module type expressions module-typei are checked again under the typing assumptions
X1 : M1, . . . , Xn : Mn. This re-checking is necessary e.g. to ensure that constraints on
parameters of type constructors are satisfied.

The approximation phase (step 1) fails if it encounters one of the following situations:

• include module-type in a module signature, in case module-type refers to one of the recursively-
defined module identifiers Xi;

• inherit class-type in a class body type, in case class-type refers to a class component of one
of the recursively-defined module identifiers Xi.

Both situations correspond to cases where the existence of a fixpoint for the recursive definition of
the module types is highly unclear.

Another failure case for the checking of recursive module types is ill-funded type definitions, as
in module A : sig type t = A.t end. This is caught by a generalization of the cyclicity test in
type definitions (the mechanism that prevents definitions such as type t = t).

2.2 Typing recursive modules

Consider now the recursive module definition

module rec . . . Xi : module-typei = module-expri and . . .

Typing this definition proceeds in three steps:

1. Check the module type expressions module-typei and translate them to module types Mi as
described in section 2.1.

2. Type the module expressions module-expri and infer their types Ni under the typing assump-
tions X1 : M1, . . . , Xn : Mn.

3. Check that Ni <: Mi under the typing assumptions X1 : M1, . . . , Xn : Mn.

Datatype generativity complicates steps 2 and 3 to some extent. This is best explained on examples.
For step 3, consider:

3



module rec A : sig type t = C val x: A.t end
= struct type t = C let x = C end

The module type inferred for the right-hand side is N = sig type t = C val x: t end, and
this is not a subtype of M = sig type t = C val x: A.t end, since the t type component
of the first signature is treated as a new, freshly-generated type. To allow this definition to be
accepted, it is not the inferred type N that is checked to be a subtype of the declared type M , but
the result of strengthening N by the identifier A, i.e. of adding type equalities to reflect the fact
that N is the type of a module bound to A. The result of the strengthening is N ′ = sig type t
= A.t = C val x: t end, and N ′ is indeed a subtype of M .

A similar problem occurs during step 2 when the right-hand side is a structure defining datatypes.
Consider:

module rec A : sig type t ... end
= struct

type t = C
... B.f C ...

end
and B : sig val f: A.t -> int end

= ...

When B.f C is type-checked, C is known to be of type t = C, which is a freshly-generated type,
distinct from A.t. Thus, the argument to B.f is not of the expected type A.t.

To address this issue, when the right-hand side of a recursive module definition is a structure, a
strengthening of the datatype definitions is performed on the fly during the typing of the structure.
In the example above, when the structure component type t = C is processed, the remainder of
the structure is typed under the assumption type t = A.t = C rather than just type t = C. This
allows the remainder of the structure to “know” that the types t and A.t are indeed the same. This
incremental strengthening also applies to sub-modules, as shown by the following, more complex
example.

module rec A
: sig type t module M : sig type u end end
= struct

type t = C
(* here we enter type t = A.t = C in the environment *)
type ’a u = D
(* here we enter type ’a u = D since there is no A.u component

in the declared signature *)
module M = struct
type u = E
(* here we enter type u = A.M.u = E in the environment *)
...

end
(* here we enter module M : sig type u = A.M.u = E end *)
...

end

4



3 Compilation and evaluation

The run-time representation of modules is composed of records (for structures) and functions (for
functors). Hence, the evaluation of a recursive module definition entails taking fixpoints involving
both functions and records.

The “in-place update” scheme The core Caml language already supports let rec definitions
involving records and functions in the right-hand sides of the let rec, such as

let rec x = { a = function y -> x.b (y + 1);
b = function y -> y * 2 }

These let rec definitions are evaluated using the “in-place update” trick: first, x is bound to a
block of the same size as the result of the defining expression (here, 2), initialized with dummy
values; then, the defining expression is evaluated; finally, the contents of the block resulting from
the evaluation of the defining expression are copied in place to the dummy block, thus building the
required cycles in the data representation.

However, this scheme is statically restricted to ensure that the evaluation of the defining expres-
sion does not destructure the recursively-defined identifier, but only uses the pointer representing
it. Otherwise, the defining expression could go wrong by accessing and using the dummy values
contained in the dummy block.

The syntactic restrictions that prevent this behavior are unfortunately too strong for recursive
modules. In particular, they would disallow any functor application to one of the recursively-defined
modules, which is something that we really want to do. In other terms, if we were to apply the let
rec scheme to recursive modules, the only recursive module definitions that would be supported
are those where the defining module expressions are literal struct...end structures where (to a
first approximation) the only uses of the recursively-defined module identifiers are under syntactic
functions. Again, this would rule out many interesting examples.

The “lazy evaluation” scheme At the other end of the expressivity spectrum, lazy evaluation
(or similar schemes involving additional indirections and run-time tests) could be used to support
arbitrary right-hand sides, with run-time failures in case of ill-founded definitions. For instance,
the definition

module rec A : ... = struct ... A.f 3 ... end

would be compiled down to

let rec A = lazy { ... (Lazy.force A.f) 3 ... }
let A = Lazy.force A

One drawback of this approach is that the additional indirection and test entailed by lazy evaluation
has a run-time cost. Another drawback is that functor applications must be manually eta-expanded:

module rec A : sig val f: t->t end = F(A)

would be compiled down to

5



let rec A = lazy(F(Lazy.force A))
let A = Lazy.force A

systematically causing a run-time error. The user would have to write

module rec A : sig val f: t->t end = F(struct let f x = A.f x end)

to avoid forcing A too early.

The “relaxed in-place update” scheme The evaluation scheme that I propose for recursive
modules is a variant of the “in-place update” scheme where we trade the possibility of run-time
failures (in case of ill-founded definitions) for greater expressiveness. Namely, we allow the defining
module expressions to use recursively-defined module identifiers arbitrarily provided that these
identifiers can be bound to a dummy block containing safe values for the expected types, e.g.

function x -> raise Undefined_recursive_module

for a field of functional type. Ill-founded recursion thus leads to this safe value being used; evaluation
cannot go wrong, but may raise the Undefined_recursive_module exception.

Unlike the lazy evaluation scheme, this variant of the “in-place update” scheme entails no
additional indirections and no additional run-time tests. Thus, run-time efficiency is preserved.

More precisely, we say that a module is safe if it is a structure, and all the value components
it contains have a function type or a Lazy.t type, and all the module components it contains are
themselves safe.2 All other modules are unsafe. Note that the safe/unsafe determination is done
by looking only at the type of the module, not at its actual definition. In the A/ASet example of
section 1, the module A is safe because its only value component, A.compare, is of functional type;
ASet is unsafe because it contains e.g. ASet.empty, which is of an abstract type ASet.t.

Consider the recursive module definition

module rec X1 : M1 = m1 and . . . and Xn : Mn = mn

After classifying X1, . . . , Xn as safe or unsafe based on their types M1, . . . ,Mn, the compiler reorders
the bindings so that the following criterion holds:

For each i, there does not exist j ≥ i such that Xj is unsafe and occurs free in mi.

If no such reordering exists, the definition is statically rejected. This happens when we have
dependency cycles that do not cross at least one safe definition, for instance: X1 is free in m2, X2

is free in m1, and both X1 and X2 are unsafe.
In general, several valid reorderings exist. The following heuristics are applied to choose one:

1. Retain the original ordering of definitions as much as possible;

2. Evaluate a right-hand side mi after all the recursively-defined identifiers Xj that are free in
mi have been evaluated.

2Notice that a functor is always unsafe. The reason for this is that the size of the closure representing the functor
at run-time cannot be determined from its type, thus preventing the construction of a suitable initial value in phase 1
of the compilation scheme described later.

6



If a suitable ordering was found, we emit the following code for the recursive module definition.

1. All safe Xi are bound to an initial value derived from the type Mi. Value fields of functional
type are initialized to function x -> raise(Undefined_recursive_module loc), where loc
is the source location of the recursive module. Value fields of lazy type are initialized to lazy
(raise Undefined_recursive_module(loc). Exception fields are initialized to a suitable
exception identifier. Class fields are initialized with an empty method table and class ini-
tializer and object construction functions that just raise the Undefined_recursive_module
exception. Sub-modules are recursively set to correct initial values for their types.

2. Then, the definitions Xi = mi are processed in sequence from i = 1 to i = n. For each
definition, the defining module expression mi is computed normally. If Xi is unsafe, the value
of mi is let-bound to Xi. If Xi is safe, the contents of the initial value Xi are overwritten
(in place) by the contents of the value of mi.

Owing to the reordering criterion described above, the evaluation of mi cannot refer to a not-yet-
bound recursively-defined identifier Xj : either j < i and Xj was already evaluated to its final value,
or j ≥ i and Xj is safe, thus bound to an initial value of the correct type.

Example Continuing the A/ASet example of section 1, we have that A is safe (because its only
value component, compare, has a function type) and ASet is unsafe (because it contains non-
functional value components). Thus, the reordering phase decides to evaluate ASet first, then A.
The generated code is

(* phase 1 *)
let A = { compare = fun x -> raise(Undefined_recursive_module loc) } in
(* phase 2 *)
let ASet = Set.Make(A) in
update(A, { compare = fun x y -> match (x,y) with ... });
...

The Undefined_recursive_module exception is not raised provided the Set.Make functor does
not use immediately the field A.compare of its argument, which is the case.

4 Extended examples

Putting it all together, here are some more examples illustrating the various aspects of the design.

The expression/binding example This example comes from the paper “What is a recursive
module?” by Crary, Harper and Puri. It type-checks and evaluates as expected. Type-checking
requires the incremental type-strengthening trick described in section 2.2.

module rec Expr
: sig

type t =
Var of string

7



| Const of int
| Add of t * t
| Binding of Binding.t * t
val make_let: string -> t -> t -> t
val simpl: t -> t

end
= struct

type t =
Var of string

| Const of int
| Add of t * t
| Binding of Binding.t * t
let make_let id e1 e2 = Binding([id, e1], e2)
let rec simpl = function
Var s -> Var s

| Const n -> Const n
| Add(Const i, Const j) -> Const (i+j)
| Add(Const 0, t) -> simpl t
| Add(t, Const 0) -> simpl t
| Add(t1,t2) -> Add(simpl t1, simpl t2)
| Binding(b, t) -> Binding(Binding.simpl b, simpl t)

end

and Binding
: sig

type t = (string * Expr.t) list
val simpl: t -> t

end
= struct

type t = (string * Expr.t) list
let simpl b =
List.map (fun (id,e) -> (id, Expr.simpl e)) b

end

Okasaki’s bootstrapped heaps The following example comes from Okasaki’s book Purely func-
tional data structures. It shows a higher-order functor that takes a fixpoint of its functorial param-
eter. In addition, it seems genuinely useful.

module type ORDERED =
sig
type t
val eq: t -> t -> bool
val lt: t -> t -> bool
val leq: t -> t -> bool

end

8



module type HEAP =
sig
module Elem: ORDERED
type heap
val empty: heap
val isEmpty: heap -> bool
val insert: Elem.t -> heap -> heap
val merge: heap -> heap -> heap
val findMin: heap -> Elem.t
val deleteMin: heap -> heap

end

module Bootstrap (MakeH: functor (Element:ORDERED) ->
HEAP with module Elem = Element)

(Element: ORDERED) : HEAP with module Elem = Element =
struct
module Elem = Element
module rec BE
: sig type t = E | H of Elem.t * PrimH.heap

val eq: t -> t -> bool
val lt: t -> t -> bool
val leq: t -> t -> bool

end
= struct

type t = E | H of Elem.t * PrimH.heap
let leq (H(x, _)) (H(y, _)) = Elem.leq x y
let eq (H(x, _)) (H(y, _)) = Elem.eq x y
let lt (H(x, _)) (H(y, _)) = Elem.lt x y

end
and PrimH
: HEAP with type Elem.t = BE.t
= MakeH(BE)

type heap = BE.t
let empty = BE.E
let isEmpty = function BE.E -> true | _ -> false
let rec merge x y =
match (x,y) with
(BE.E, _) -> y

| (_, BE.E) -> x
| (BE.H(e1,p1) as h1), (BE.H(e2,p2) as h2) ->

if Elem.leq e1 e2
then BE.H(e1, PrimH.insert h2 p1)
else BE.H(e2, PrimH.insert h1 p2)

let insert x h =

9



merge (BE.H(x, PrimH.empty)) h
let findMin = function

BE.E -> raise Not_found
| BE.H(x, _) -> x

let deleteMin = function
BE.E -> raise Not_found

| BE.H(x, p) ->
if PrimH.isEmpty p then BE.E else begin
let (BE.H(y, p1)) = PrimH.findMin p in
let p2 = PrimH.deleteMin p in
BE.H(y, PrimH.merge p1 p2)

end
end

Polymorphic recursion Recursive modules support polymorphic recursion: polymorphic func-
tions that call themselves at a different type than the one they were invoked with.

module rec PolyRec
: sig

type ’a t = Leaf of ’a | Node of ’a list t * ’a list t
val depth: ’a t -> int

end
= struct

type ’a t = Leaf of ’a | Node of ’a list t * ’a list t
let x = (PolyRec.Leaf 1 : int t)
let depth = function
Leaf x -> 0

| Node(l,r) -> 1 + max (PolyRec.depth l) (PolyRec.depth r)
end

Litmus tests Here are some “litmus tests” for the static or dynamic detection of ill-founded
recursion. The following example is rejected statically:

module rec A : sig val x : int end = struct let x = B.x + 1 end
and B : sig val x : int end = struct let x = A.x * 2 end

Indeed, both modules A and B are unsafe, yet depend on each other.
The following variant is accepted because it contains no such cyclic unsafe dependency:

module rec A : sig val x : int end = struct let x = B.x + 1 end
and B : sig val x : int end = struct let x = 2 end

and causes B to be evaluated first, followed by A.
The following example is accepted statically, but raises a run-time exception at run-time (more

precisely, at module initialization time):

module rec Bad : sig val f : int -> int end
= struct let f = let y = Bad.f 5 in fun x -> x+y end

10


