Part I: Interpreters and operational semantics

Exercise I.1 (**) Prove theorem 2 (the unique decomposition theorem). Hint: use the fact that a value cannot reduce.

Exercise I.2 (*) Check that the reduction rules for derived forms (let, if/then/else, fst, snd) are valid.

Exercise I.3 (*) Consider \(a = 1 \) \(2 \). Does there exist a value \(v \) such that \(a \Rightarrow v \)? Same question for \(a' = (\lambda x. x x) (\lambda x. x x) \). Do you see a difference between these two examples?

Exercise I.4 (**). As claimed in the proof of theorem 4, show that if \(a \rightarrow b \) and \(b \Rightarrow v \), then \(a \Rightarrow v \). Hint: proceed by induction on the derivation of \(a \rightarrow b \) in SOS and by case analysis on the last rule used to derive \(b \Rightarrow v \).

Programming exercise I.5 (**). Implement a naive interpreter that follows exactly the Wright-Felleisen presentation of CBV semantics. The core function to implement is `decomp`, taking a term \(a \) as argument and returning a pair of a reduction context \(E \) and a subterm \(a' \) such that \(a = E[a'] \) and \(a \) reduces iff \(a' \) reduces at head. How will you represent contexts? Compare the efficiency of this interpreter with that of the naive interpreter based on the SOS presentation shown in the course.

Exercise I.6 (*) We relax the (app-r) reduction rule as follows:

\[
\frac{b \rightarrow b'}{a \ b \rightarrow a \ b'} \quad \text{(app-r')}
\]

That is, we allow reductions to take place on the right of an application, even if the left part of the application is not yet reduced to a value.

1. Show by way of an example that the reduction relation is no longer deterministic: give three terms \(a, a_1, a_2 \) such that \(a \rightarrow a_1 \) and \(a \rightarrow a_2 \) and \(a_1 \neq a_2 \).
2. Check that theorems 3 and 4 ($a \Rightarrow v$ if and only if $a \xrightarrow{\ast} v$) still hold for this relaxed, non-deterministic reduction relation. Conclude that the left-to-right evaluation order makes no difference for terminating terms.

3. Give an example of a term that evaluates differently under the two reduction strategies (left-to-right and non-deterministic).