
Language-based software security, seventh lecture

Computing over encrypted or private data

Xavier Leroy
2022-04-21

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr



The cryptographic approach

A number of cryptographic primitives

• encryption (symmetric or public-key)
• signature (public-key)
• hashes
• etc.

that we combine and apply

to guarantee confidentiality and integrity of information

at rest (storage) and in transit (networks).

2



Example: an encrypted file system

Encryption with a secret key, randomly-generated, itself
encrypted with the passwords of authorized users.

The best known protection against low-level attacks
(stealing the computer, stealing the disk, booting another OS).

The best known way to erase instantaneously a lot of data.

3



Example: network protocols: TLS, SSH, Signal, . . .

Point-to-point communication over
the Internet, with
• encryption and authentication

of the messages
(no eavesdropping, no packet
injection, no packet replay);

• authentication of the server
(no impersonation, no
man-in-the-middle attack).

The only known protection against an attacker who controls parts
of the network.

4



What about data during computation?

Programs usually operate over data in the clear.

Consider for example a database management system:
to perform queries, it “obviously needs” access to cleartext data.

However, it is difficult to guarantee confidentiality of data during
computation:

• complex flows of information;
• indirect flows: time, caches, speculative execution, . . .

5



In this lecture

Cryptographic solutions to the problem of computing over data
while preserving its confidentiality.

Two detailed examples:

• Homomorphic encryption: to computer directly over
encrypted data, without decrypting it.

• Secure multiparty computation: several participants
compute jointly a function of their private data,
without revealing their data to the others.

6



Homomorphic encryption



Homomorphic encryption

x1, . . . , xn c1, . . . , cn

y c

F F̂

D

E

D

Let F be a n-argument function: y = F(x1, . . . , xn).

An encryption E ,D is homomorphic for function F if there exists a
function F̂ such that

D(F̂(c1, . . . , cn)) = F(D(c1), . . . ,D(cn))

for all encrypted arguments c1, . . . , cn.

As a corollary, for all cleartext arguments x1, . . . , xn, we have

D(F̂(E(x1), . . . , E(xn)) = F(x1, . . . , xn)
7



Example: RSA is homomorphic for multiplication

RSA encryption: (public key is e,N; secret key is d)

E(m) = me mod N D(c) = cd mod N

If c1, c2 are two encrypted messages,

D(c1) · D(c2) = cd1 · cd2 = (c1 · c2)
d = D(c1 · c2) (mod N)

If F is multiplication modulo N, its homomorphic function F̂ is
multiplication modulo N.

8



Application: tallying a vote

Votes vi: 1 for blank vote, 2 for Alice, 3 for Bob.

Each voter i encrypts their vote vi with the public key of the
voting authority.

The voting operator collects the votes E(vi) and computes their
product

P def
= E(v1) · · · E(vn) (mod N)

The product P (still encrypted) is sent to the voting authority,
which decrypts it:

D(P) = D(E(v1)) · · · D(E(vn)) = v1 · · · vn (mod N)

If v1 · · · vn < N, this result D(P) is 2a · 3b

where a is the number of Alice votes and b that of Bob votes.

(Warning: terrible protocol, do not use!)
9



El Gamal’s encryption

A finite group G of order q.

Secret key: x ∈ {1, . . . , q− 1}.
Public key: a generator g of G, and h def

= gx.

Encryption: E(m) = (c1, c2) with
y ∈ {1, . . . , q− 1} randomly generated
s = hy the shared secret
c1 = gy and c2 = gm · s.

Decryption: D(c1, c2) = m where
we recover the shared secret s by computing cx1
we recover gm by computing c2 · s−1

we recover m by discrete logarithm in time O(
√
m).

10



El Gamal is homomorphic for addition

Homomorphism:

E(m1) · E(m2) = (gy1 · gy2 , (gm1 · hy1) · (gm2 · hy2))

= (gy, gm1+m2 · hy) (with y = y1 + y2 mod q)
= an encryption of m1 +m2

Therefore, the homomorphic operation for addition of cleartexts
is multiplication of ciphertexts.

This property is used in the Belenios electronic voting system.

11



Fully-homomorphic encryption and Boolean circuits

A crucial step: find an encryption schema that is homomorphic
both for addition (modulo 2) and for multiplication (modulo 2).

Such an encryption is said to be fully homomorphic
(FHE, Fully Homomorphic Encryption)
because it makes it possible to evaluate any Boolean circuit.

Logic gate Arithmetic computation (mod 2)

exclusive or (a+ b) mod 2
and a · b
not 1 − a = (1 + a) mod 2
or = 1 − (1 − a) · (1 − b)

12



Example: a comparator

x1

y1

x2

y2

x3

y3

x4

y4

Evaulated homomorphically, this circuit can be used for
searching in an encrypted database.

13



Encryption = adding noise

We’ll use encryption algorithm that rely on the idea that

encrypting a message m = drown out m in (random) noise

in such a way that

decrypting the ciphertext = removing the noise to recover m

is easy if we have the secret key, and infeasible otherwise.

14



An example based on Euclidean lattices

3 LATTICE THEORY

In this section, we will review some concepts of the lattice theory that are useful for this chapter. For more
details on lattice theory, we refer to [Micciancio et al.,2002] and [de Weger,2012]. We also describe some
classical lattice problems, especially the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP) and their connection to cryptography. Finally, we describe the LLL algorithm, which is the main
technique in lattice reduction.

3.1 Basic notions on lattices

The LLL algorithm was invented in 1982 and was called LLL after its inventors A.K. Lenstra, H.W.
Lenstra et L. Lovász [Lenstra et al.,1982]. Originally, it was aimed to factor polynomials with integer
coefficients. Since its invention, the LLL algorithm has served in many topics such as solving diophantine
equations and cryptanalysis of certain cryptosystems. It is mainly used to find a very good basis for
discrete sets of Rn, called lattices.

Definition 1. Let n and d be two positive integers. Let b1 · · · , bd 2 Rn be d linearly independent vectors.
The lattice L generated by (b1 · · · , bd) is the set

L =

dX

i=1

Zbi =

(
dX

i=1

xibi | xi 2 Z

)
.

The vectors b1 · · · , bd are called a vector basis of L. The lattice rank is n and the lattice dimension is d.
If n = d then L is called a full rank lattice.

If L ⇢ Rn is a lattice of dimension d, then it is an additive subgroup of Rn and a basis for L can be
written as the rows of a d ⇥ n matrix.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

b1

b2

Figure 1: A lattice with the basis (b1, b2)

A lattice L with dimension d � 2 has infinitely many bases. Any two such bases have the same number
of elements and are related with a unimodular matrix.

5

A lattice = the set of vectors with integer coordinates in a given
base B = (b1, . . . ,bn). { n∑

i=1
pi bi

∣∣∣∣∣ pi ∈ Z

}

15



The closest vector problem (CVP)

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

v

v0

Figure 3: The closest vector to v is v0

Some of such problems have been shown to be NP-hard, and in general, are known to be hard when the
dimension is sufficiently large. No efficient algorithm is known to find the shortest vector nor the closest
vector in a lattice. The next result, due to Minkowski gives a theoretical explicit upper bound in terms of
dim(L) and det(L).

Theorem 10 (Minkowski). Let L be a lattice with dimension n. Then there exists a non-zero vector
v 2 L satisfying

kvk  p
n det(L)

1
n .

On the other hand, the Gaussian Heuristic implies that the expected shortest non-zero vector in a lattice
L is approximately �(L) where

�(L) =

r
dim(L)

2⇡e
(det(L))

1
dim(L) .

We notice that Minkowski’s theorem as well as the Gaussian Heuristic are not useful for practical imple-
mentations. For implementation purposes, the LLL algorithm is more useful and approximately solves
the SVP within a factor of 2n/2.

3.2 The LLL algorithm

The LLL algorithm is the most useful tool in the algorithmic study of lattices. It provides a partial answer
to SVP since it runs in polynomial time and approximates the shortest vector of a lattice of dimension n
up to a factor of 2n/2. On the other hand, Babai [Babai,1986] gave an algorithm that approximates the
CVP problem by a factor of

�
3/

p
2
�n

. In some cases, the LLL algorithm gives extremely striking results
both in theory and practice that are enough to solve lattice problems.
The LLL algorithm uses the well known Gram-Schmidt orthogonalization method. The Gram-Schmidt
process is an iterative method to orthonormalize the basis of a vector space.

Theorem 11 (Gram-Schmidt). Let V be a vector space of dimension n and (b1 · · · , bn) a basis of V .
Let (b⇤1 · · · , b⇤n) be n vectors such that

b⇤1 = b1, b⇤i = bi �
i�1X

j=1

µi,jb
⇤
j ,

8

Given a vector v, find the coordinates of a vector v0 belonging to
the lattice and closest to v.

A computationally hard problem, even in the average case, even
for approximate solutions, even with a quantum computer.

16



Good bases

The condition (6) is called Lovász’s condition. If µi,j = 0 for all i and j, then the basis is orthogonal,
and consequently is minimal according to Hadamard’s inequality as in Corollary 12.
Since a lattice has infinitely many basis, some basis are better than others. A good basis is generally a
basis with short and almost orthogonal vectors. Consequently, a LLL-reduced basis is a candidate for a
good basis.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

Figure 4: A lattice with a bad basis (b1, b2)

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

b1

b2

u1

u2

Figure 5: The same lattice with a good basis (u1, u2)

The original version of the LLL algorithm is presented in Algorithm (2).
An LLL-reduced basis has various properties such as the following ones.

Theorem 14. Let (b1 · · · , bn) be an LLL-reduced basis with Gram-Schmidt orthogonolization (b⇤1, · · · , b⇤n).
Then

1. kb⇤jk2  2i�jkb⇤i k2 for 1  j  i  n.

2.
Qn

i=1 kbik  2
n(n�1)

4 det(L).

3. kbjk  2
i�1
2 kb⇤i k for 1  j  i  n.

10

We can change base while preserving the set of lattice vectors:
B 7→ U.B where U is a unimodular matrix.

The CVP is easily solved if we have a good base, whose vectors
are short and nearly orthogonal.

17



Encrypting with noise (Goldreich–Goldwasser–Halevi)

Secret key: a good base B0, a unimodular matrix U.

Public key: the bad base B = U.B0.

To encrypt a message (m1, . . . ,mn) (a n-tuple of integers):

E(m1, . . . ,mn) =
n∑

i=1
mi bi + e

where e is a small error, randomly generated.

To decrypt c
Find the vector of the lattice closest to c

(using U, switch to base B0, solve the CVP, switch to base B)
It has the shape

∑n
i=1 mi bi, and (m1, . . . ,mn) is the cleartext.

18



Simple encryption based on integers

(Craig Gentry, Computing arbitrary functions of encrypted data, 2010.)

Key: an odd integer p of P bits.

Encrypting one bit m ∈ {0, 1}:

Ep(m) = pq+ 2r +m
q random Q-bit integer
r ≪ p random N-bit integer

In other words: a multiple of p plus an error 2r +m.
The message is the least significant bit of the error.

(Typical parameters: N = λ, P = λ2, Q = λ5.)

19



Simple encryption based on integers

p(q− 1) pq p(q+ 1)c

error

Decryption:
Dp(c) = (c mod p) mod 2

Intuition: the multiple of p immediately below c is p⌊c/p⌋.
The error 2r +m is c− p⌊c/p⌋ = c mod p.
The message m is (2r +m) mod 2.

An attacker cannot recover p from ciphertexts c1, . . . , cn
(this is the approximate GCD problem, believed to be hard).

20



Simple encryption based on integers

To turn this schema into a public-key encryption schema, we can
keep p as the secret key and publish as public key a set Z of
random encryptions of zero:

pk = {2ri+pqi | ri random N-bit integer, qi random Q-bit integer}

To encrypt one bit m ∈ {0, 1}:

Epk(m) = m+
∑

z∈Z
z

where Z is a random subset of pk of appropriate cardinal.

21



Somewhat homomorphic encryption (SHE)

Ep(m1) + Ep(m2) = (m1 + 2r1 + pq1) + (m2 + 2r2 + pq2)

= m1 ⊕m2 + 2(m1m2 + r1 + r2) + p(q1 + q2)

Decrypts to m1 ⊕m2 as long as the noise 2(m1m2 + r1 + r2)
remains less than p.

Ep(m1) · Ep(m2) = (m1 + 2r1 + pq1) (m2 + 2r2 + pq2)

= m1m2 + 2(r1m2 + r2m1 + 2r1r2) + p(. . .)

Decrypts to m1m2 as long as the noise 2(r1m2 + r2m1 + 2r1r2)
remains less than p.

22



Somewhat homomorphic encryption (SHE)

Noise increases

• slowly (+ 1 bit) at each addition;
• quickly (× 2 bits) at each multiplication.

When the noise gets larger than p, encrypted results become
false.

This limits strongly the multiplicative depth (and weakly the
additive depth) of the computations that we can perform
homomorphically.

23



Limited circuits

The multiplicative depth of a circuit is the maximal number of
“and” / “or” gates between an input and an output.

Example: a n-bit comparator has multiplicative depth ⌈log2 n⌉.

x1

y1

x2

y2

x3

y3

x4

y4

24



From SHE to FHE: how to reduce noise?

To homomorphically evaluate circuits with arbitrary depth, we
must reduce noise of some of the encrypted intermediate results
so that the noise never exceeds P bits.

Naive idea: we decrypt, then encrypt again!

c 7→ Epk(Dsk(c))

The noise that was reaching P bits drops to N bits.

Problems: (1) the intermediate result Dsk(c) is in the clear;
(2) we do not have the secret key sk to begin with.

25



From SHE to FHE: Gentry’s bootstrap

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

D
secret key sk

ciphertext c
cleartext Dsk(c)

The decryption algorithm D can be implemented by a Boolean
circuit.

If its multiplicative depth is low enough, this circuit can be
evaluated homomorphically using our somewhat homomorphic
encryption schema (SHE).

The result is a ciphertext equivalent to c, but whose noise
depends only on the multiplicative depth of the decryption
circuit.

26



From SHE to FHE: Gentry’s bootstrap

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

D̂
enc. secret key Epk(sk)
enc. ciphertext Epk(c)

enc. cleartext Epk(Dsk(c))

The decryption algorithm D can be implemented by a Boolean
circuit.

If its multiplicative depth is low enough, this circuit can be
evaluated homomorphically using our somewhat homomorphic
encryption schema (SHE).

The result is a ciphertext equivalent to c, but whose noise
depends only on the multiplicative depth of the decryption
circuit.

26



Bootstrapping problems

D̂
Epk(sk)
Epk(c)

Epk(Dsk(c))

Cryptographers hate the idea of encrypting a secret key sk
with its public key pk.

→ We can change keys at bootstrap points.

To bootstrap as many times as necessary, the homomorphic
evaluation receives a sequence of public keys pki
and encryptions of the corresponding secret keys Epki+1(ski).

27



Bootstrapping problems

D̂
Epki+1(ski)

Epki+1(c)
Epki+1(Dski(c))

Cryptographers hate the idea of encrypting a secret key sk
with its public key pk.
→ We can change keys at bootstrap points.

To bootstrap as many times as necessary, the homomorphic
evaluation receives a sequence of public keys pki
and encryptions of the corresponding secret keys Epki+1(ski).

27



Bootstrapping problems

D̂
Epki+1(ski)

Epki+1(c)
Epki+1(Dski(c))

The multiple encryption Epki+1(c) greatly increases the size of the
encrypted intermediate result c.

The decryption circuit is often too “deep”
→ Favor SHEs with simple decryption algorithms

(e.g. based on lattices).
→ Tweak encryption to leave hints that simplify decryption

(without weakening encryption too much).

28



Summary on homomorphic encryption

Much research work since Gentry’s smashing result:

• other somewhat homomorphic encryption scheme;
• multiplication algorithms that increase noise less;
• more efficient bootstrap.

Several implementations with almost reasonable performance,
such as TFHE (https://github.com/tfhe/tfhe):

• evaluating a logic gate ≈ 20 ms
• bootstrap ≈ 100 ms.

New direction: approximate homomorphic encryption,
for machine learning from confidential data.

29

https://github.com/tfhe/tfhe


Secure multiparty computation



The millionaires problem (A. Yao, 1982)

Alice and Bob want to know who is the wealthier, without
revealing their wealth to the other.

With a trusted third-party (Charlie):
Alice tells her wealth to Charlie.
Bob does likewise.
Charlie announces who is the wealthier, and reveals nothing else.

Without a trusted third-party: which distributed algorithm,
executed by Alice and by Bob, would give the same result and the
same privacy guarantees?

30



Secure multiparty computation

n participants, having a secret datum xi each,
cooperate to compute a function y = F(x1, . . . , xn)
without revealing anything about the xi that is not implied by the
result y.

Example: a public tender

F(x1, . . . , xn) = (i, xi) where xi = min(x1, . . . , xn)

Reveals the identity of the lowest bidder and their bid, but not
the other bids.

Other examples: statistical indicators over the xi
(average, median, histogram for deciles, etc.)

31



Using homomorphic encryption

A secret key sk cut in n shares (sk1, . . . , skn)
+ the corresponding public key pk.

1. Each participant encrypts their data and publishes it: E(xi).
2. Someone computes F homomorphically from the E(xi).
3. The participants collaborate to decrypt the result.

This is a correct solution. However, it is much more efficient to
distribute the computation between the participants.

32



Bit sharing

How can we share a secret bit b between two participants?

• Draw a random bit r.
• Send b1 = r to one participant and b2 = b⊕ r to the other.

None of the participants can recover b by itself.

If both participants publish their bits b1 and b2, they recover b by
computing b1 ⊕ b2 = r ⊕ b⊕ r = b.

We write [b] for a sharing of a bit b: a pair of bits (b1, b2)

such that b = b1 ⊕ b2.

33



Sharing private bits

Bit sharing also enables two participants A,B to share two private
bits, a provided by A and b provided by B:

• A draws a sharing [a] = (a1, a2) and sends a2 to B.
• B draws a sharing [b] = (b1, b2) and sends b1 to A.

a

b

a1, b1

a2, b2

34



Adding two shared bits

We have two shared bits, [x] = (x1, x2) and [y] = (y1, y2).

Participant 1 knows x1 and y1, and computes z1
def
= x1 ⊕ y1.

Participant 2 knows x2 and y2, and computes z2
def
= x2 ⊕ y2.

The pair (z1, z2) is a sharing of x ⊕ y:

z1 ⊕ z2 = (x1 ⊕ y1)⊕ (x2 ⊕ y2) = (x1 ⊕ x2)⊕ (y1 ⊕ y2) = x ⊕ y

The computation is local (no communication between the
participants).

35



Multiplying two shared bits

We have two shared bits, [x] = (x1, x2) and [y] = (y1, y2), and we
wish to compute a sharing (z1, z2) of x ∧ y.

No purely local computation suffices. In particular,

(x1 ∧ y1)⊕ (x2 ∧ y2) ̸= (x1 ⊕ x2) ∧ (y1 ⊕ y2)

An expensive solution based on 1-in-4 oblivious transfer.

36



Multiplication by oblivious transfer

P1 chooses z1 randomly and tabulates the correct value of z2

(z2 = z1 ⊕ ((x1 ⊕ x2) ∧ (y1 ⊕ y2))) for the unknowns x2 and y2:

line x2 y2 z2

0 0 0 z1 ⊕ (x1 ∧ y1)

1 0 1 z1 ⊕ (x1 ∧ ¬y1)

2 1 0 z1 ⊕ (¬x1 ∧ y1)

3 1 1 z1 ⊕ (¬x1 ∧ ¬y1)

P2 chooses the line (0 to 3) corresponding to its values of x2 and
y2 and receives the corresponding z2.

P1 does not know which line P2 chose. (“Oblivious”.)

P2 learns nothing about the other lines.

37



Multiplication using Beaver triples

Ahead of time, we can prepare multiplicative triples also called
Beaver triples:
a number of shared bits [a], [b], [c] such that c = a ∧ b.

(By oblivious transfer, or other zero-knowledge protocols, or via a
trusted third-party.)

P1 has the (a1, b1, c1) parts of the triples and P2 the (a2, b2, c2)

parts.

38



Multiplication using Beaver triples

To compute a sharing (z1, z2) of x ∧ y:

P1 and P2 pick the next Beaver triple (a, b, c) on their list.

P1 publishes a1 ⊕ x1 and b1 ⊕ y1.
(i.e. its shares of x, y blinded by a, b)

P2 publishes a2 ⊕ x2 and b2 ⊕ y2 likewise.

P1 and P2 now know d = a⊕ x and e = b⊕ y.

P1 computes z1 and P2 computes z2 as follows:

zi = d ∧ e⊕ d ∧ bi ⊕ ai ∧ e⊕ ci

It’s a sharing of x ∧ y since

x ∧ y = (d⊕ a) ∧ (e⊕ b) = d ∧ e⊕ d ∧ b⊕ a ∧ e⊕ a ∧ b︸ ︷︷ ︸
=c

39



Generalization to n > 2 participants

We can share a bit b between n > 2 participants:

[b] = (b1, . . . , bn) with b = b1 ⊕ · · · ⊕ bn

If b1, . . . , bn−1 are chosen randomly, none of the participants has
any information about b.

The n participants must share their knowledge to recover b.

A collusion of t < n participants cannot recover b.

Problem: as soon as one participant crashes or produces a wrong
result, the multiparty computation fails or produces a wrong
result.

40



Secret sharing: the general case

Divide a secret s into n shares s1, . . . , sn so that

• t shares suffice to recover s;
• fewer than t shares reveal nothing about s.

s

s1

s2

...

sn
Distribution of n shares

s

Reconstruction from t parts

41



Shamir’s secret sharing

The secret s is an element of a finite field such as Z/pZ.

Sharing the secret:

• Choose a polynomial P of degree t− 1 whose constant
coefficient is s and the other coefficients are random.

• The shares are si = P(i) for i = 1, . . . , n.

42



Shamir’s secret sharing

The secret s is an element of a finite field such as Z/pZ.

Recovering the secret:

To know t shares = to know t points (x1, y1), . . . , (xt, yt) on the
curve of P.

Since P has degree t− 1, these t points determine P entirely.

The secret s is P(0).

More directly, using Lagrange’s interpolation formula:

s = P(0) =
t∑

j=1
yj

t∏

k=1,k̸=j

xk
xk − xj

(Note: if more than t shares are revealed, we can not only recover s but also
check that the shares are consistent.)

42



Computing with Shamir sharings: addition

Let [a] = (a1, . . . , an) and [b] = (b1, . . . , bn) be Shamir sharings of
the secrets a, b.

Then, (a1 + b1, . . . , an + bn) is a Shamir sharing of a+ b.

It can be computed locally by each of the n participants.

43



Computing with Shamir sharings: multiplication

Let [a] = (a1, . . . , an) and [b] = (b1, . . . , bn) be Shamir sharings
for the secrets a, b:

a = A(0) ai = A(i) b = B(0) bi = B(i)

where A and B are polynomials with degree t− 1.

The points (i, aibi) belong to the curve of polynomial AB.

But AB has degree 2t− 2, hence t− 1 points are not enough to
determine AB(0) = ab.

Therefore, (a1b1, . . . , anbn) is not a sharing of ab.

44



Computing with Shamir sharings: multiplication

Each of the first 2t− 1 participants prepares a sharing of its
coefficient aibi, that is, a random polynomial Pi of degree t− 1
such that Pi(0) = aibi.

They publish these sharings:
participant i sends Pi(j) to participant j.

Then, the n participants reconstruct a sharing (c1, . . . , cn) using
Lagrange’s interpolation formula:

cj =
2t−1∑

i=1
Pi(j)λi where λi =

2t−1∏

k=1,k̸=i

k
k− i

It’s a sharing of ab, since P =
∑2t−1

i=1 Piλi is a polynomial of degree
t− 1 that has value ab at 0: P(0) =

∑2t−1
i=1 aibiλi = AB(0) = ab.

45



Summary



Computing over encrypted or blinded data

Three approaches that are now well understood:

Multiparty Homomorphic Functional
computation encryption encryption

Inputs blinded encrypted encrypted
Outputs in the clear encrypted in the clear
Communications yes no no
Efficiency decent low decent in

special cases

Other approaches remain theoretical, such as
indistinguishable obfuscation.

46



Protecting data during computation

The cryptographic approach:

• high security that can be characterized mathematically;
• expensive computations;
• limited expressiveness

(circuits only, no conditionals, no loops).

Already usable in practice for simple but highly confidential
computations: electronic voting, secret auctions, . . .

47


	Homomorphic encryption
	Secure multiparty computation
	Summary

