Language-based software security, seventh lecture

## Computing over encrypted or private data

Xavier Leroy
2022-04-21

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

## The cryptographic approach

A number of cryptographic primitives

- encryption (symmetric or public-key)
- signature (public-key)
- hashes
- etc.
that we combine and apply
to guarantee confidentiality and integrity of information at rest (storage) and in transit (networks).


## Example: an encrypted file system



Encryption with a secret key, randomly-generated, itself encrypted with the passwords of authorized users.

The best known protection against low-level attacks (stealing the computer, stealing the disk, booting another OS).

The best known way to erase instantaneously a lot of data.

## Example: network protocols: TLS, SSH, Signal, ...

Point-to-point communication over
the Internet, with

- encryption and authentication of the messages (no eavesdropping, no packet injection, no packet replay);
- authentication of the server (no impersonation, no man-in-the-middle attack).


The only known protection against an attacker who controls parts of the network.

## What about data during computation?

Programs usually operate over data in the clear.
Consider for example a database management system:
to perform queries, it "obviously needs" access to cleartext data.
However, it is difficult to guarantee confidentiality of data during computation:

- complex flows of information;
- indirect flows: time, caches, speculative execution, ...


## In this lecture

Cryptographic solutions to the problem of computing over data while preserving its confidentiality.

Two detailed examples:

- Homomorphic encryption: to computer directly over encrypted data, without decrypting it.
- Secure multiparty computation: several participants compute jointly a function of their private data, without revealing their data to the others.


## Homomorphic encryption

## Homomorphic encryption



Let $F$ be a $n$-argument function: $y=F\left(x_{1}, \ldots, x_{n}\right)$.
An encryption $\mathcal{E}, \mathcal{D}$ is homomorphic for function $F$ if there exists a function $\hat{F}$ such that

$$
\mathcal{D}\left(\hat{F}\left(c_{1}, \ldots, c_{n}\right)\right)=F\left(\mathcal{D}\left(c_{1}\right), \ldots, \mathcal{D}\left(c_{n}\right)\right)
$$

for all encrypted arguments $c_{1}, \ldots, c_{n}$.
As a corollary, for all cleartext arguments $x_{1}, \ldots, x_{n}$, we have

$$
\mathcal{D}\left(\hat{F}\left(\mathcal{E}\left(x_{1}\right), \ldots, \mathcal{E}\left(x_{n}\right)\right)=F\left(x_{1}, \ldots, x_{n}\right)\right.
$$

## Example: RSA is homomorphic for multiplication

RSA encryption:
(public key is $e, N$; secret key is $d$ )

$$
\mathcal{E}(m)=m^{e} \bmod N \quad \mathcal{D}(c)=c^{d} \bmod N
$$

If $c_{1}, c_{2}$ are two encrypted messages,

$$
\mathcal{D}\left(c_{1}\right) \cdot \mathcal{D}\left(c_{2}\right)=c_{1}^{d} \cdot c_{2}^{d}=\left(c_{1} \cdot c_{2}\right)^{d}=\mathcal{D}\left(c_{1} \cdot c_{2}\right) \quad(\bmod N)
$$

If $F$ is multiplication modulo $N$, its homomorphic function $\hat{F}$ is multiplication modulo $N$.

## Application: tallying a vote

Votes $v_{i}: 1$ for blank vote, 2 for Alice, 3 for Bob.
Each voter $i$ encrypts their vote $v_{i}$ with the public key of the voting authority.

The voting operator collects the votes $\mathcal{E}\left(v_{i}\right)$ and computes their product

$$
P \stackrel{\text { def }}{=} \mathcal{E}\left(v_{1}\right) \cdots \mathcal{E}\left(v_{n}\right) \quad(\bmod N)
$$

The product $P$ (still encrypted) is sent to the voting authority, which decrypts it:

$$
\mathcal{D}(P)=\mathcal{D}\left(\mathcal{E}\left(v_{1}\right)\right) \cdots \mathcal{D}\left(\mathcal{E}\left(v_{n}\right)\right)=v_{1} \cdots v_{n} \quad(\bmod N)
$$

If $v_{1} \cdots v_{n}<N$, this result $\mathcal{D}(P)$ is $2^{a} \cdot 3^{b}$
where $a$ is the number of Alice votes and $b$ that of Bob votes.
(Warning: terrible protocol, do not use!)

## El Gamal's encryption

A finite group $G$ of order $q$.
Secret key: $x \in\{1, \ldots, q-1\}$.
Public key: a generator $g$ of $G$, and $h \stackrel{\text { def }}{=} g^{x}$.
Encryption: $\mathcal{E}(m)=\left(c_{1}, c_{2}\right)$ with
$y \in\{1, \ldots, q-1\}$ randomly generated
$s=h^{y}$ the shared secret
$c_{1}=g^{y}$ and $c_{2}=g^{m} \cdot s$.
Decryption: $\mathcal{D}\left(c_{1}, c_{2}\right)=m$ where
we recover the shared secret $s$ by computing $c_{1}^{x}$ we recover $g^{m}$ by computing $c_{2} \cdot s^{-1}$
we recover $m$ by discrete logarithm in time $O(\sqrt{m})$.

## El Gamal is homomorphic for addition

Homomorphism:

$$
\begin{aligned}
\mathcal{E}\left(m_{1}\right) \cdot \mathcal{E}\left(m_{2}\right) & =\left(g^{y_{1}} \cdot g^{y_{2}},\left(g^{m_{1}} \cdot h^{y_{1}}\right) \cdot\left(g^{m_{2}} \cdot h^{y_{2}}\right)\right) \\
& =\left(g^{y}, g^{m_{1}+m_{2}} \cdot h^{y}\right) \quad\left(\text { with } y=y_{1}+y_{2} \bmod q\right) \\
& =\text { an encryption of } m_{1}+m_{2}
\end{aligned}
$$

Therefore, the homomorphic operation for addition of cleartexts is multiplication of ciphertexts.

This property is used in the Belenios electronic voting system.

## Fully-homomorphic encryption and Boolean circuits

A crucial step: find an encryption schema that is homomorphic both for addition (modulo 2) and for multiplication (modulo 2).

Such an encryption is said to be fully homomorphic (FHE, Fully Homomorphic Encryption) because it makes it possible to evaluate any Boolean circuit.

| Logic gate | Arithmetic computation $(\bmod 2)$ |  |
| :--- | :--- | :--- |
| exclusive or |  |  |
| and | $(a+b) \bmod 2$ |  |
| not | $\square$ | $a \cdot b$ |
| or | $\square=2-a=(1+a) \bmod 2$ |  |
|  | $1-(1-a) \cdot(1-b)$ |  |

## Example: a comparator



Evaulated homomorphically, this circuit can be used for searching in an encrypted database.

## Encryption = adding noise

We'll use encryption algorithm that rely on the idea that encrypting a message $m=$ drown out $m$ in (random) noise
in such a way that
decrypting the ciphertext $=$ removing the noise to recover $m$
is easy if we have the secret key, and infeasible otherwise.

## An example based on Euclidean lattices



A lattice = the set of vectors with integer coordinates in a given base $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$.

$$
\left\{\sum_{i=1}^{n} p_{i} \mathbf{b}_{i} \mid p_{i} \in \mathbb{Z}\right\}
$$

## The closest vector problem (CVP)



Given a vector $\mathbf{v}$, find the coordinates of a vector $\mathbf{v}_{0}$ belonging to the lattice and closest to $\mathbf{v}$.

A computationally hard problem, even in the average case, even for approximate solutions, even with a quantum computer.

## Good bases



We can change base while preserving the set of lattice vectors: $B \mapsto U . B$ where $U$ is a unimodular matrix.

The CVP is easily solved if we have a good base, whose vectors are short and nearly orthogonal.

## Encrypting with noise (Goldreich-Goldwasser-Halevi)

Secret key: a good base $B_{0}$, a unimodular matrix $U$.
Public key: the bad base $B=U \cdot B_{0}$.
To encrypt a message $\left(m_{1}, \ldots, m_{n}\right)$ (a $n$-tuple of integers):

$$
\mathcal{E}\left(m_{1}, \ldots, m_{n}\right)=\sum_{i=1}^{n} m_{i} \mathbf{b}_{i}+\mathbf{e}
$$

where $\mathbf{e}$ is a small error, randomly generated.
To decrypt c
Find the vector of the lattice closest to $c$
(using $U$, switch to base $B_{0}$, solve the CVP, switch to base $B$ ) It has the shape $\sum_{i=1}^{n} m_{i} \mathbf{b}_{i}$, and $\left(m_{1}, \ldots, m_{n}\right)$ is the cleartext.

## Simple encryption based on integers

(Craig Gentry, Computing arbitrary functions of encrypted data, 2010.)

Key: an odd integer $p$ of $P$ bits.
Encrypting one bit $m \in\{0,1\}$ :

$$
\mathcal{E}_{p}(m)=p q+2 r+m
$$

$q$ random $Q$-bit integer
$r \ll p$ random $N$-bit integer

In other words: a multiple of $p$ plus an error $2 r+m$.
The message is the least significant bit of the error.
(Typical parameters: $N=\lambda, P=\lambda^{2}, Q=\lambda^{5}$.)

## Simple encryption based on integers



Decryption:

$$
\mathcal{D}_{p}(c)=(c \bmod p) \bmod 2
$$

Intuition: the multiple of $p$ immediately below $c$ is $p\lfloor c / p\rfloor$.
The error $2 r+m$ is $c-p\lfloor c / p\rfloor=c \bmod p$.
The message $m$ is $(2 r+m) \bmod 2$.

An attacker cannot recover $p$ from ciphertexts $c_{1}, \ldots, c_{n}$ (this is the approximate GCD problem, believed to be hard).

## Simple encryption based on integers

To turn this schema into a public-key encryption schema, we can keep $p$ as the secret key and publish as public key a set $Z$ of random encryptions of zero:
$p k=\left\{2 r_{i}+p q_{i} \mid r_{i}\right.$ random $N$-bit integer, $q_{i}$ random $Q$-bit integer $\}$

To encrypt one bit $m \in\{0,1\}$ :

$$
\mathcal{E}_{p k}(m)=m+\sum_{z \in Z} z
$$

where $Z$ is a random subset of $p k$ of appropriate cardinal.

## Somewhat homomorphic encryption (SHE)

$$
\begin{aligned}
\mathcal{E}_{p}\left(m_{1}\right)+\mathcal{E}_{p}\left(m_{2}\right) & =\left(m_{1}+2 r_{1}+p q_{1}\right)+\left(m_{2}+2 r_{2}+p q_{2}\right) \\
& =m_{1} \oplus m_{2}+2\left(m_{1} m_{2}+r_{1}+r_{2}\right)+p\left(q_{1}+q_{2}\right)
\end{aligned}
$$

Decrypts to $m_{1} \oplus m_{2}$ as long as the noise $2\left(m_{1} m_{2}+r_{1}+r_{2}\right)$ remains less than $p$.

$$
\begin{aligned}
\mathcal{E}_{p}\left(m_{1}\right) \cdot \mathcal{E}_{p}\left(m_{2}\right) & =\left(m_{1}+2 r_{1}+p q_{1}\right)\left(m_{2}+2 r_{2}+p q_{2}\right) \\
& =m_{1} m_{2}+2\left(r_{1} m_{2}+r_{2} m_{1}+2 r_{1} r_{2}\right)+p(\ldots)
\end{aligned}
$$

Decrypts to $m_{1} m_{2}$ as long as the noise $2\left(r_{1} m_{2}+r_{2} m_{1}+2 r_{1} r_{2}\right)$ remains less than $p$.

## Somewhat homomorphic encryption (SHE)

Noise increases

- slowly (+ 1 bit) at each addition;
- quickly ( $\times 2$ bits) at each multiplication.

When the noise gets larger than p, encrypted results become false.

This limits strongly the multiplicative depth (and weakly the additive depth) of the computations that we can perform homomorphically.

## Limited circuits

The multiplicative depth of a circuit is the maximal number of "and" / "or" gates between an input and an output.

Example: a $n$-bit comparator has multiplicative depth $\left\lceil\log _{2} n\right\rceil$.


## From SHE to FHE: how to reduce noise?

To homomorphically evaluate circuits with arbitrary depth, we must reduce noise of some of the encrypted intermediate results so that the noise never exceeds $P$ bits.

Naive idea: we decrypt, then encrypt again!

$$
c \mapsto \mathcal{E}_{p k}\left(\mathcal{D}_{s k}(c)\right)
$$

The noise that was reaching $P$ bits drops to $N$ bits.
Problems: (1) the intermediate result $\mathcal{D}_{\text {sk }}(c)$ is in the clear;
(2) we do not have the secret key sk to begin with.

## From SHE to FHE: Gentry's bootstrap

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)


The decryption algorithm $\mathcal{D}$ can be implemented by a Boolean circuit.

## From SHE to FHE: Gentry's bootstrap

(Craig Gentry, A fully homomorphic encryption scheme, PhD, Stanford, 2009.)

The decryption algorithm $\mathcal{D}$ can be implemented by a Boolean circuit.

If its multiplicative depth is low enough, this circuit can be evaluated homomorphically using our somewhat homomorphic encryption schema (SHE).

The result is a ciphertext equivalent to $c$, but whose noise depends only on the multiplicative depth of the decryption circuit.

## Bootstrapping problems



Cryptographers hate the idea of encrypting a secret key $s k$ with its public key pk.

## Bootstrapping problems



Cryptographers hate the idea of encrypting a secret key $s k$ with its public key pk.
$\rightarrow$ We can change keys at bootstrap points.

To bootstrap as many times as necessary, the homomorphic evaluation receives a sequence of public keys $p k_{i}$ and encryptions of the corresponding secret keys $\mathcal{E}_{p k_{i+1}}\left(s k_{i}\right)$.

## Bootstrapping problems

$$
\begin{array}{r}
\mathcal{E}_{p k_{i+1}}\left(s k_{i}\right) \longrightarrow \widehat{\mathcal{D}} \\
\mathcal{E}_{p k_{i+1}}(c) \longrightarrow \mathcal{E}_{p k_{i+1}}\left(\mathcal{D}_{s k_{i}}(c)\right), ~
\end{array}
$$

The multiple encryption $\mathcal{E}_{p k_{i+1}}(c)$ greatly increases the size of the encrypted intermediate result $c$.

The decryption circuit is often too "deep"
$\rightarrow$ Favor SHEs with simple decryption algorithms
(e.g. based on lattices).
$\rightarrow$ Tweak encryption to leave hints that simplify decryption
(without weakening encryption too much).

## Summary on homomorphic encryption

Much research work since Gentry's smashing result:

- other somewhat homomorphic encryption scheme;
- multiplication algorithms that increase noise less;
- more efficient bootstrap.

Several implementations with almost reasonable performance, such as TFHE (https://github.com/tfhe/tfhe):

- evaluating a logic gate $\approx 20 \mathrm{~ms}$
- bootstrap $\approx 100 \mathrm{~ms}$.

New direction: approximate homomorphic encryption, for machine learning from confidential data.

## Secure multiparty computation

## The millionaires problem (A. Yao, 1982)

Alice and Bob want to know who is the wealthier, without revealing their wealth to the other.

With a trusted third-party (Charlie):
Alice tells her wealth to Charlie.
Bob does likewise.
Charlie announces who is the wealthier, and reveals nothing else.

Without a trusted third-party: which distributed algorithm, executed by Alice and by Bob, would give the same result and the same privacy guarantees?

## Secure multiparty computation

$n$ participants, having a secret datum $x_{i}$ each, cooperate to compute a function $y=F\left(x_{1}, \ldots, x_{n}\right)$
without revealing anything about the $x_{i}$ that is not implied by the result $y$.

Example: a public tender

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(i, x_{i}\right) \quad \text { where } x_{i}=\min \left(x_{1}, \ldots, x_{n}\right)
$$

Reveals the identity of the lowest bidder and their bid, but not the other bids.

Other examples: statistical indicators over the $x_{i}$ (average, median, histogram for deciles, etc.)

## Using homomorphic encryption

A secret key sk cut in $n$ shares $\left(s k_{1}, \ldots, s k_{n}\right)$

+ the corresponding public key pk.

1. Each participant encrypts their data and publishes it: $\mathcal{E}\left(x_{i}\right)$.
2. Someone computes $F$ homomorphically from the $\mathcal{E}\left(x_{i}\right)$.
3. The participants collaborate to decrypt the result.

This is a correct solution. However, it is much more efficient to distribute the computation between the participants.

## Bit sharing

How can we share a secret bit $b$ between two participants?

- Draw a random bit $r$.
- Send $b_{1}=r$ to one participant and $b_{2}=b \oplus r$ to the other.

None of the participants can recover $b$ by itself.
If both participants publish their bits $b_{1}$ and $b_{2}$, they recover $b$ by computing $b_{1} \oplus b_{2}=r \oplus b \oplus r=b$.

We write $[b]$ for a sharing of a bit $b$ : a pair of bits $\left(b_{1}, b_{2}\right)$
such that $b=b_{1} \oplus b_{2}$.

## Sharing private bits

Bit sharing also enables two participants $A, B$ to share two private bits, $a$ provided by $A$ and $b$ provided by $B$ :

- $A$ draws a sharing $[a]=\left(a_{1}, a_{2}\right)$ and sends $a_{2}$ to $B$.
- $B$ draws a sharing $[b]=\left(b_{1}, b_{2}\right)$ and sends $b_{1}$ to $A$.



## Adding two shared bits

We have two shared bits, $[x]=\left(x_{1}, x_{2}\right)$ and $[y]=\left(y_{1}, y_{2}\right)$. Participant 1 knows $x_{1}$ and $y_{1}$, and computes $z_{1} \stackrel{\text { def }}{=} x_{1} \oplus y_{1}$. Participant 2 knows $x_{2}$ and $y_{2}$, and computes $z_{2} \stackrel{\text { def }}{=} x_{2} \oplus y_{2}$.

The pair $\left(z_{1}, z_{2}\right)$ is a sharing of $x \oplus y$ :

$$
z_{1} \oplus z_{2}=\left(x_{1} \oplus y_{1}\right) \oplus\left(x_{2} \oplus y_{2}\right)=\left(x_{1} \oplus x_{2}\right) \oplus\left(y_{1} \oplus y_{2}\right)=x \oplus y
$$

The computation is local (no communication between the participants).

## Multiplying two shared bits

We have two shared bits, $[x]=\left(x_{1}, x_{2}\right)$ and $[y]=\left(y_{1}, y_{2}\right)$, and we wish to compute a sharing $\left(z_{1}, z_{2}\right)$ of $x \wedge y$.

No purely local computation suffices. In particular,

$$
\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{2} \wedge y_{2}\right) \neq\left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right)
$$

An expensive solution based on 1-in-4 oblivious transfer.

## Multiplication by oblivious transfer

P1 chooses $z_{1}$ randomly and tabulates the correct value of $z_{2}$ $\left(z_{2}=z_{1} \oplus\left(\left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right)\right)\right)$ for the unknowns $x_{2}$ and $y_{2}$ :

| line | $x_{2}$ | $y_{2}$ | $z_{2}$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $z_{1} \oplus\left(x_{1} \wedge y_{1}\right)$ |
| 1 | 0 | 1 | $z_{1} \oplus\left(x_{1} \wedge \neg y_{1}\right)$ |
| 2 | 1 | 0 | $z_{1} \oplus\left(\neg x_{1} \wedge y_{1}\right)$ |
| 3 | 1 | 1 | $z_{1} \oplus\left(\neg x_{1} \wedge \neg y_{1}\right)$ |

P2 chooses the line (0 to 3) corresponding to its values of $x_{2}$ and $y_{2}$ and receives the corresponding $z_{2}$.

P1 does not know which line P2 chose. ("Oblivious".)
P2 learns nothing about the other lines.

## Multiplication using Beaver triples

Ahead of time, we can prepare multiplicative triples also called Beaver triples:
a number of shared bits $[a],[b],[c]$ such that $c=a \wedge b$.
(By oblivious transfer, or other zero-knowledge protocols, or via a trusted third-party.)

P 1 has the $\left(a_{1}, b_{1}, c_{1}\right)$ parts of the triples and P2 the $\left(a_{2}, b_{2}, c_{2}\right)$ parts.

## Multiplication using Beaver triples

To compute a sharing $\left(z_{1}, z_{2}\right)$ of $x \wedge y$ :
P1 and P2 pick the next Beaver triple ( $a, b, c$ ) on their list.
P1 publishes $a_{1} \oplus x_{1}$ and $b_{1} \oplus y_{1}$.
(i.e. its shares of $x, y$ blinded by $a, b$ )

P2 publishes $a_{2} \oplus x_{2}$ and $b_{2} \oplus y_{2}$ likewise.
P1 and P2 now know $d=a \oplus x$ and $e=b \oplus y$.
P1 computes $z_{1}$ and P2 computes $z_{2}$ as follows:

$$
z_{i}=d \wedge e \oplus d \wedge b_{i} \oplus a_{i} \wedge e \oplus c_{i}
$$

It's a sharing of $x \wedge y$ since

$$
x \wedge y=(d \oplus a) \wedge(e \oplus b)=d \wedge e \oplus d \wedge b \oplus a \wedge e \oplus \underbrace{a \wedge b}_{=c}
$$

## Generalization to $n>2$ participants

We can share a bit $b$ between $n>2$ participants:

$$
[b]=\left(b_{1}, \ldots, b_{n}\right) \quad \text { with } \quad b=b_{1} \oplus \cdots \oplus b_{n}
$$

If $b_{1}, \ldots, b_{n-1}$ are chosen randomly, none of the participants has any information about $b$.

The $n$ participants must share their knowledge to recover $b$.
A collusion of $t<n$ participants cannot recover $b$.
Problem: as soon as one participant crashes or produces a wrong result, the multiparty computation fails or produces a wrong result.

## Secret sharing: the general case

Divide a secret $s$ into $n$ shares $s_{1}, \ldots, s_{n}$ so that

- $t$ shares suffice to recover $s$;
- fewer than $t$ shares reveal nothing about $s$.


Distribution of $n$ shares
Reconstruction from $t$ parts

## Shamir's secret sharing

The secret $s$ is an element of a finite field such as $\mathbb{Z} / p \mathbb{Z}$.
Sharing the secret:

- Choose a polynomial $P$ of degree $t-1$ whose constant coefficient is $s$ and the other coefficients are random.
- The shares are $s_{i}=P(i)$ for $i=1, \ldots, n$.



## Shamir's secret sharing

The secret $s$ is an element of a finite field such as $\mathbb{Z} / p \mathbb{Z}$.
Recovering the secret:
To know $t$ shares $=$ to know $t$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{t}, y_{t}\right)$ on the curve of $P$.

Since $P$ has degree $t-1$, these $t$ points determine $P$ entirely.
The secret $s$ is $P(0)$.
More directly, using Lagrange's interpolation formula:

$$
s=P(0)=\sum_{j=1}^{t} y_{j} \prod_{k=1, k \neq j}^{t} \frac{x_{k}}{x_{k}-x_{j}}
$$

(Note: if more than $t$ shares are revealed, we can not only recover $s$ but also check that the shares are consistent.)

## Computing with Shamir sharings: addition



Let $[a]=\left(a_{1}, \ldots, a_{n}\right)$ and $[b]=\left(b_{1}, \ldots, b_{n}\right)$ be Shamir sharings of the secrets $a, b$.

Then, $\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$ is a Shamir sharing of $a+b$.
It can be computed locally by each of the $n$ participants.

## Computing with Shamir sharings: multiplication

Let $[a]=\left(a_{1}, \ldots, a_{n}\right)$ and $[b]=\left(b_{1}, \ldots, b_{n}\right)$ be Shamir sharings for the secrets $a, b$ :

$$
a=A(0) \quad a_{i}=A(i) \quad b=B(0) \quad b_{i}=B(i)
$$

where $A$ and $B$ are polynomials with degree $t-1$.
The points $\left(i, a_{i} b_{i}\right)$ belong to the curve of polynomial $A B$.
But $A B$ has degree $2 t-2$, hence $t-1$ points are not enough to determine $A B(0)=a b$.

Therefore, $\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$ is not a sharing of $a b$.

## Computing with Shamir sharings: multiplication

Each of the first $2 t-1$ participants prepares a sharing of its coefficient $a_{i} b_{i}$, that is, a random polynomial $P_{i}$ of degree $t-1$ such that $P_{i}(0)=a_{i} b_{i}$.

They publish these sharings: participant $i$ sends $P_{i}(j)$ to participant $j$.

Then, the $n$ participants reconstruct a sharing $\left(c_{1}, \ldots, c_{n}\right)$ using Lagrange's interpolation formula:

$$
c_{j}=\sum_{i=1}^{2 t-1} P_{i}(j) \lambda_{i} \quad \text { where } \quad \lambda_{i}=\prod_{k=1, k \neq i}^{2 t-1} \frac{k}{k-i}
$$

It's a sharing of $a b$, since $P=\sum_{i=1}^{2 t-1} P_{i} \lambda_{i}$ is a polynomial of degree $t-1$ that has value $a b$ at $0: P(0)=\sum_{i=1}^{2 t-1} a_{i} b_{i} \lambda_{i}=A B(0)=a b$.

## Summary

## Computing over encrypted or blinded data

Three approaches that are now well understood:

|  | Multiparty <br> computation | Homomorphic <br> encryption | Functional <br> encryption |
| :--- | :--- | :--- | :--- |
| Inputs | blinded | encrypted | encrypted |
| Outputs | in the clear | encrypted | in the clear |
| Communications | yes | no | no |
| Efficiency | decent | low | decent in <br> special cases |

Other approaches remain theoretical, such as indistinguishable obfuscation.

## Protecting data during computation

The cryptographic approach:

- high security that can be characterized mathematically;
- expensive computations;
- limited expressiveness
(circuits only, no conditionals, no loops).

Already usable in practice for simple but highly confidential computations: electronic voting, secret auctions, ...

