
Language-based software security, sixth lecture

Compilation and security

Xavier Leroy
2022-04-14

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

In this lecture

source
code

compilation executable
code

development

execution

What does compilation contribute (positively or negatively) to
the security of the compiled code (the code that actually runs)?

2

Compilation that implements
security measures

Checking bounds for array accesses

A crucial check to guarantee safe execution and to prevent buffer
overflow attacks.

x := A[i] ⇝ assert(0 ≤ i < size(A)); x := *(A + i)

A[i] := x ⇝ assert(0 ≤ i < size(A)); *(A + i) := x

assert(b) aborts execution or raises an exception if b is false.

*(A + i) stands for a direct memory read or write, without
bounds checking.

3

Checking bounds for array accesses

A crucial check to guarantee safe execution and to prevent buffer
overflow attacks.

x := A[i] ⇝ assert(0 ≤ i < size(A)); x := *(A + i)

A[i] := x ⇝ assert(0 ≤ i < size(A)); *(A + i) := x

size(A) is the size of array A, determined
• either statically from the declaration of A, as in int A[10];

• or dynamically from the in-memory representation of A.

size(A)

A[0] A[size(A)-1]

A

3

Avoiding useless bounds checks

Sometimes, the context of the array access guarantees that it is
within bounds:

for (int i = 0; i < size(A); i++) x += A[i];

We can recognize this code pattern and compile it without adding
an assert.

It is safer and more general to systematically generate the
dynamic test (assert), then eliminate it when possible,
via optimizations exploiting the results of static analyses.

(→ lectures of 19/12/2019 and 16/01/2020)

4

Eliminating redundant assertions

No need to check the same assertion twice in a row!
(An instance of Common Subexpression Elimination.)

Source code:

t = A[i]; A[i] = t + 1;

Adding bounds checks:

assert(0 ≤ i < size(A)); t = *(A + i);

assert(0 ≤ i < size(A)); *(A + i) = t + 1;

Eliminating a redundant check:

assert(0 ≤ i < size(A)); t = *(A + i);

assert(0 ≤ i < size(A)); *(A + i) = t + 1;

5

Optimizations based on interval analysis

The static analysis infers properties of the shape a ≤ x ≤ b
(x: program variable; a, b constants inferred by the analyzer)

Source code:

int A[10];

for (int i = 2; i < 8; i++) {
x += A[i];

}

6

Optimizations based on interval analysis

The static analysis infers properties of the shape a ≤ x ≤ b
(x: program variable; a, b constants inferred by the analyzer)

Adding bounds checks:

int A[10];

for (int i = 2; i < 8; i++) {
assert(0 ≤ i < 10);

x += *(A + i);

}

6

Optimizations based on interval analysis

The static analysis infers properties of the shape a ≤ x ≤ b
(x: program variable; a, b constants inferred by the analyzer)

Interval analysis:

int A[10];

for (int i = 2; i < 8; i++) {
// invariant: 2 ≤ i ≤ 7

assert(0 ≤ i < 10);

x += *(A + i);

}

6

Optimizations based on interval analysis

The static analysis infers properties of the shape a ≤ x ≤ b
(x: program variable; a, b constants inferred by the analyzer)

Exploiting interval information:

int A[10];

for (int i = 2; i < 8; i++) {
// invariant: 2 ≤ i ≤ 7

assert(true);

x += *(A + i);

}

6

Optimizations based on interval analysis

The static analysis infers properties of the shape a ≤ x ≤ b
(x: program variable; a, b constants inferred by the analyzer)

Removing trivial assertions:

int A[10];

for (int i = 2; i < 8; i++) {
// invariant: 2 ≤ i ≤ 7

assert(true);

x += *(A + i);

}

To go further: relational analyses
(polyhedra ax+ by ≤ c, octagons ±x± y ≤ c, etc)

6

Moving assertions outside loops

(An instance of Loop-Invariant Code Motion.)

Source code:

int A[10];

for (int i = 0; i < 10; i++) {
B[j] = B[j] + A[i];

}

7

Moving assertions outside loops

(An instance of Loop-Invariant Code Motion.)

Adding bounds checks:

int A[10];

for (int i = 0; i < 10; i++) {
assert(0 ≤ i < 10);

assert(0 ≤ j < size(B));

assert(0 ≤ j < size(B));

*(B + j) = *(B + j) + *(A + i);

}

7

Moving assertions outside loops

(An instance of Loop-Invariant Code Motion.)

Applying the previous optimizations:

int A[10];

for (int i = 0; i < 10; i++) {
assert(0 ≤ i < 10);

assert(0 ≤ j < size(B));

assert(0 ≤ j < size(B));

*(B + j) = *(B + j) + *(A + i);

}

7

Moving assertions outside loops

(An instance of Loop-Invariant Code Motion.)

Lifting the assertion before the loop:

int A[10];

assert(0 ≤ j < size(B));

for (int i = 0; i < 10; i++) {
assert(0 ≤ i < 10);

assert(0 ≤ j < size(B));

assert(0 ≤ j < size(B));

*(B + j) = *(B + j) + *(A + i);

}

7

Function inlining

Inlining (expanding) a function at its call site can allow the
compiler to remove more bounds checks:

int f(int A[], int i) {
assert (0 ≤ i < size(A));

return *(A + i) + 1;

}
int B[10];

int g(void) { return f(B, 2); }

After inlining f in g:

int B[10];

int g(void) {
assert (0 ≤ 2 < size(B));

return *(B + 2) + 1;

} 8

Protecting against the Spectre v1 attack

Ensure that the speculative execution of an out-of-bounds access
cannot access memory “far away” from the array.

x := A[i] ⇝ assert(0 ≤ i < size(A));

x := *(A + clip(i, size(A)))

A[i] := x ⇝ assert(0 ≤ i < size(A));

*(A + clip(i, size(A))) := x

where clip(i, n) is a branchless expression such that

clip(i, n) =

i if 0 ≤ i < n

0 otherwise

x86 implementation: cmp Ri, Rn; sbb Rc, Rc; and Rc, Ri.

9

Other examples

Efficient implementation of dynamic type-checking.

Protections against hardware faults. (→ K. Heydemann’s seminar)

Protections against other attacks on speculative execution.
(→ F. Piessens’s seminar)

Code obfuscation. (→ S. Blazy’s seminar)

10

Compilation that removes
security measures

The compiler’s contract

The compiler shall produce machine code, as efficient as
possible, that computes “the same thing” as the source program.

Two major hypotheses:

• The machine behaves as described in its ISA manual.
(No faults; timing and speculative executions are not
observable; . . .)

• The source program is free of undefined behaviors.
(E.g. because it passed static type-checking, or because the
programmer swears it.)

11

“Optimizing” protections against fault attacks

(See K. Heydemann’s seminar on April 7.)

The programmer writes a redundant test:

if (cond) {
assert (cond);

...

} else {
assert (! cond);

...

}

A trivial static analysis shows that cond is true in the then branch
and false in the else branch
→ the compiler removes both assertions.

12

“Optimizing” protections against fault attacks

Redundancy between control flow and data:

t = 0;

if (cond) {
t |= 1; ...

} else {
t |= 2; ...

}
assert (t != 0 && t != 3);

Interval analysis shows that t ∈ [1, 2] at the point of the assertion.
Therefore, the assertion is always true and gets removed.

13

“Optimizing” the protection against Spectre v1

As outlined in the 4th lecture:

x := A[i] ⇝ assert(0 ≤ i < size(A));

x := *(A + sel(0 ≤ i < size(A), i, 0))

A trivial static analysis “knows” that after assert(b), condition b
is true. Therefore, the access can be rewritten into

x := *(A + sel(true, i, 0))

then simplified into
x := *(A + i)

Hence the need to use *(A + clip(i, size(A)))

with an “opaque” clip operator that cannot be optimized away.

14

“Optimizing” constant-time codes

The compiler is allowed to use conditional branches or memory
accesses (tabulation) to implement source code that contains
neither.

Example: if b has type bool,

x = b * a1 + (1 - b) * a0;

⇝ if (b) x = a1; else x = a0;

or even
⇝ int t[2] = { a0, a1 }; x = t[b];

15

“Optimizing” constant-time codes (recap from lecture #4)

(Simon, Chisnall, Anderson, What you get is what you C: controlling side effects
in mainstream C compilers, 2018).

Experiment: 4 implementations of sel in portable C, compiled
for x86-32 by various versions of Clang.

1 u i n t 3 2 t s e l e c t u 3 2 (boo l b , u i n t 3 2 t x , u i n t 3 2 t
y)

2 {
3 r e t u r n b ? x : y ;
4 }

Listing 1: Naive selection of x or y.

for any key used by a cryptographic algorithm. Failure to
maintain time indistuishability has led to key or plaintext
recovery time and time again. This may be exploited not
just by malicious code running on the same machine as the
sensitive code, whether in smartphones [21] or virtualized
cloud environments [22–26]; but also sometimes remotely,
by protocol counterparties or by wiretappers [27–29]. Yet
it is still not possible to control such side effects in modern
C compilers today. So it is particularly difficult to control
them at the source code level, as we describe next.

2.2.1. Constant-Time Selection. Something as simple as
selecting between two variables x and y, based on a secret
selection bit b in constant time, is rigged with pitfalls.
Naively, the selection function could be written as in List-
ing 1. But we risk the generated code containing a jump. In
fact, if we compile this code for x86 with gcc and Clang
with options -m32 -march=i386, the generated code
contains a jump regardless of the optimization used. Be-
cause of branch prediction, pipeline stalls and/or attacker-
controlled cache evictions, the execution time may depend
on whether x or y is returned, leaking the secret bit b:
this is called a timing side channel vulnerability. Cryptog-
raphers must therefore come up with ingenious ways to get
a compiler to respect implicit invariants. The usual idea is
to write obfuscated code to outwit the compiler, hoping it
will not spot the trick and optimize it away. Unfortunately
this is not always reliable in practice.

TABLE 1: Constant-timeness of generated code for
ct_select_u32 with boolean condition bool b for
different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 7
-O2 3 3 3 7 7 3 3 7
-O3 3 3 3 7 7 3 3 7

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

Attempts at constant-time coding are presented in List-
ing 2. The source code of ct_select_u32() is care-
fully designed to contain no branch. This sort of obfuscated
code is used in smartcard implementations and in widely-
used cryptographic libraries. We tested each of the four ver-
sions (annotated VERSION 1 to VERSION 4 in Listing 2)
by compiling them with options -m32 -march=i386 for
clang-3.0, clang-3.3, clang-3.9 and for different
optimization levels -O1, -O2, -O3. We then looked at

1 i n t c t i s n o n z e r o u 3 2 (u i n t 3 2 t x) {
2 r e t u r n (x|�x) >>31;
3 }
4 u i n t 3 2 t c t mask u32 (u i n t 3 2 t b i t) {
5 r e t u r n �(u i n t 3 2 t) c t i s n o n z e r o u 3 2 (b i t) ;
6 }
7 u i n t 3 2 t c t s e l e c t u 3 2 (u i n t 3 2 t x , u i n t 3 2 t y ,

boo l b i t /⇤ ={0 ,1} ⇤ /) {
8 / / VERSION 1
9 u i n t 3 2 t m = ct mask u32 (b i t) ;

10 r e t u r n (x&m) | (y&˜m) ;
11

12 / / VERSION 2 . Same as VERSION 1 b u t w i t h o u t
13 / / u s i n g m u l t i p l e f u n c t i o n s
14 u i n t 3 2 t m = �(u i n t 3 2 t) ((x|�x)>>31) ;
15 r e t u r n (x&m) | (y&˜m) ;
16

17 / / VERSION 3
18 s i g n e d b = 1� b i t ;
19 r e t u r n (x⇤ b i t) | (y⇤b) ;
20

21 / / VERSION 4
22 s i g n e d b = 0 � b i t ;
23 r e t u r n (x&b) | (y&˜b) ;
24

25 }
Listing 2: Constant-time selection of x or y.

TABLE 2: Constant-timeness of generated code for
ct_select_u32 with integer condition uint32_t b
for different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 3 3 7 3 3 3
-O3 3 3 3 3 7 3 3 3

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

the code generated for each version of the function 1) in
a shared library, and 2) when inlined in the caller (e.g.
typically the case if the function is defined and called in
the same module).

We present the findings in TABLE 1. First, not all
optimization levels generate constant-time code: the com-
piler sometimes introduces a jump (refer to Listing 3 on
the following page for output). We also note that as the
compiler version increases (Clang 3.0, 3.3 and 3.9), more
implementations become insecure (i.e. non-constant time):
this is because compilers become better at spotting and
optimizing new idioms. This is a real problem because
code that is secure today may acquire a timing channel
tomorrow. More interestingly, we observe differences if we
use a single function (VERSION 2) or split its code into
several smaller functions (VERSION 1). For more tradi-
tional C code, this is never a problem; but when considering
side effects, even the smallest of changes can matter. There
are also noticable differences in shared libraries vs. inlined
code. Again, this is highly unpredictable and hard for a

3

✔ = constant-time code is generated.
✘ = a conditional branch is generated.

16

Undefined behaviors in C / C++

The ISO C 2018 standard lists over 200 undefined behaviors. . .

Some undefine behaviors, such as out-of-bounds array writes,
can actually cause the program to do anything.

Example (from lecture #1): overflowing a stack-allocated buffer
int check(void) {

char b[80]; int ok = 0;

gets(b); ...; return ok;

}

If gets writes beyond the end of b, this can
– overwrite the value of ok→ wrong result
– invalidate the return address → crash when check returns
– overwrite the return address → arbitrary code execution

17

Undefined behaviors in C / C++

Historically, many undefined behaviors are cases where different
processors behave differently, and we wish to allow the compiler
to “follow” the behavior of the machine. For example:

• NULL pointer dereference:
a load or store processor instruction can either raise a
segmentation fault, or access memory at address 0 normally.

• Overflow in a signed integer addition:
the add processor instruction can take the result modulo 2N,
or saturate it to INT_MAX or INT_MIN, or raise a fault.

This is far from “doing anything” !

18

Compiling C/C++ in the presence of undefined behaviors

20th century interpretation: exploit the freedom left by
undefined behaviors to translate the language operations to
simple processor instructions, as long as they correctly
implement the cases defined by the standard.

Operation Compiled code
array indexing t + i add(t, mul(i, sizeof(τ)))
pointer dereference ∗p load(p) store(p)
signed integer addition x + y add(x, y)

21st century interpretation: exploit the freedom left by undefined
behavior to optimize under the assumption that there are no
undefined behaviors, even if the compiled code is absurd if there
are some.

Operation Information usable for optimization
array indexing t + i i is within the bounds of t
pointer dereference ∗p p ̸= NULL and is a valid pointer
signed integer addition x + y INT_MIN ≤ x + y ≤ INT_MAX

19

Compiling C/C++ in the presence of undefined behaviors

20th century interpretation: exploit the freedom left by
undefined behaviors to translate the language operations to
simple processor instructions, as long as they correctly
implement the cases defined by the standard.

21st century interpretation: exploit the freedom left by undefined
behavior to optimize under the assumption that there are no
undefined behaviors, even if the compiled code is absurd if there
are some.

Operation Information usable for optimization
array indexing t + i i is within the bounds of t
pointer dereference ∗p p ̸= NULL and is a valid pointer
signed integer addition x + y INT_MIN ≤ x + y ≤ INT_MAX

19

“Optimizing” a division by zero

(Linux kernel, lib/mpi/mpi-pow.c. Example discussed in Wang et al, Undefined
behavior: what happened to my code?, 2012.)

if (!msize)

msize = 1 / msize; /* provoke a signal */

The compiler removes the test and the division.

if (!msize) msize = 1 / msize; else skip;

(constant propagation)
⇝ if (!msize) msize = 1 / 0; else skip;

(assumption: no undefined behaviors)
⇝ if (!msize) unreachable; else skip;

(redundant branch elimination)
⇝ skip

20

“Optimizing” a null pointer test

(Linux kernel, drivers/net/tun.c)

unsigned int tun_chr_poll(struct file *file, poll_table * wait)

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk; // (1)
if (!tun) return POLLERR; // (2)
...

}

The compiler removes line (2): since the tun->sk access on
line (1) was defined, it must be the case that tun is not NULL . . .

Enables an attack by putting valid memory at address 0,
using mmap.

21

“Optimizing” a test for integer overflow

(Linux kernel, fs/open.c; discussed in Wang et al.)

int do_fallocate(..., loff_t offset, loff_t len)

{

struct inode *inode = ...;

if (offset < 0 || len <= 0) return -EINVAL;

/* Check for wrap through zero too */
if ((offset + len > inode->i_sb->s_maxbytes)

|| (offset + len < 0))

return -EFBIG;

...

}

The compiler assumes offset + len >= 0, since offset and
len are positive and the addition offset + len is assumed to
not overflow.

22

“Optimizing” error reporting

Some compilers assume not only that no undefined behavior
occurred in the past during execution, but also that none will
occur in the future!

int safe_div(int x, int y)

{

int res;

if (y == 0) error("division by zero"); // (1)
res = x / y; // (2)
return res;

}

Some compilers take the liberty to schedule the division (line 2)
before the test and the call to error (line 1). This defeats the
purpose of this function, which is to log an error message and
perhaps raise an exception before division by zero takes place.

23

The land mine

To me, this is deeply dissatisfying, partially because the
compiler inevitably ends up getting blamed, but also because
it means that huge bodies of C code are land mines just
waiting to explode.

(Chris Lattner, 2011)

A compiler can reduce the security of a source program by
eliminating security measures present in the source.

Yet, the compiler is not doing anything malicious! It just applies

• classic, obvious optimizations
(constant propagation, simplification of conditionals, scheduling);

• the interpretation of “undefined behavior” as “I can produce
any machine code of my choosing”.

24

Navigating the land mine

Static or dynamic analysis tools to detect undefined behaviors
and unwanted optimizations.

Optimize less aggressively.
(Many -fno-* options in GCC and Clang to turn optimizations off.)

Define more behaviors.
(For example, CompCert C defines integer arithmetic modulo 2N,
evaluation orders, preserving behaviors up to the first undefined
behavior, etc.)

Reconsider our choices of programming languages?

25

Security of compiled code
executed in a hostile context

Security of compiled code

We expect the executable code produced by the compiler to be
“as secure as” the source code, in the following sense:

Any attack on the compiled, executable code (leading to
a violation of integrity, confidentiality, or availability)
can also be conducted on the source code and explained
in terms of the source language semantics.

26

Simple case: whole program executed in isolation

The source code:

• a whole program, without free variables
• interacts via explicit input/output operations.

The compiled code:

• executes in isolation (→ lecture #3)
• the only attack surface is to provide bad inputs or observe

leaky outputs.

27

Semantic preservation ⇒ secure compilation

A compiler that preserves the semantics of programs (such as
CompCert) guarantees that

the observable behavior of the compiled code (I/O traces)
is one of the behaviors allowed by the semantics of the source.

An attack on the compiled code
= an I/O trace T that triggers an unwanted behavior.

The same trace T triggers the same unwanted behavior in the
source code!

Therefore, compilation is secure.

28

Separate compilation and linking

machine
code

↭ machine
code

↭ machine
code

executable program

compilation

program
fragment

compilation assembly

A program fragment: function, class, abstract type, . . .
compiled to machine code,
then linked with other pieces of machine code
(compiled from the same language, or from another language, or hand-written).

29

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Given the address p of an instance of Account, machine code can
access field bal directly (typically at address p + 8 or p + 16),
bypassing the private protection ⇒ the invariant is violated.

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Machine code can observe the contents of registers and stack
after a call to deposit, and recover the value of bal.

⇒ confidential information leakage.

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Machine code can call deposit with a this argument that is the
null pointer or a pointer to a different object

⇒ crash or corruption of another object.

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Machine code can call deposit with amount being a 32-bit
integer larger than a short, bypassing the non-overflow test.

⇒ the invariant is violated.

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Machine code can jump directly to address withdraw+ δ,
skipping over the validation of amount

⇒ the invariant is violated.

30

Machine-level attacks on a Java class

class Account {

private short bal; // always >= 0
void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

void withdraw(short amount) {

if (amount >= 0 && amount <= bal)

bal -= amount;

}

}

Machine code can call deposit with a return address and a call
stack doctored so as to fool the stack inspection performed by
the SecurityManager. ⇒ confused deputy attack.

30

A JVM-level attack on a Java class

(M. Abadi, Protection in programming-language translations, 1998.)

The JVM has no notion of inner class. Java’s inner classes are
compiled to disjoint JVM classes, making it necessary to increase
the visibility of some private fields.
Java source code:

class D {

class E {

private int y = x;

}

private int x;

public void set_x(int v) { this.x = v; }

}

31

A JVM-level attack on a Java class

(M. Abadi, Protection in programming-language translations, 1998.)

The JVM has no notion of inner class. Java’s inner classes are
compiled to disjoint JVM classes, making it necessary to increase
the visibility of some private fields.
The compiled JVM code, in pseudo-Java:

class D {

private int x;

public void set_x(int v)

{ this.x = v; }

static int access$000(D d)

{ return d.x; }

}

class D$E {

final D this$0;

private int y;

D$E(D d)

{ this$0 = d;

y = D.access$000(d); }

}

Hand-written JVM code can read x by invoking D.access$000.
31

Low-level attacks and observational equivalences

Abadi (1998) proposes to study these low-level attacks on
compiled code in terms of observational equivalences and their
(non-)preservation during compilation.

Rough idea:

a low-level attack’
= two source code fragments F1, F2

indistinguishable at the source language level
whose compiled codes C(F1), C(F2)

can be distinguished at the target language level.

32

Example where observational equivalence is not preserved

class D {

class E {

private int y = x;

}

private int x;

public void set_x(int v)

{ this.x = v; }

}

class D {

class E {

private int y = 0;

}

private int x;

public void set_x(int v)

{ this.x = v; }

}

The two D classes cannot be distinguished by Java code,
but their JVM codes can be distinguished by JVM code
(the class on the left has a method access$000 that reveals the
value of x, but not the class on the right).

33

Observational equivalence
and full abstraction

Observational equivalence

Two code fragments (functions, classes, abstract types, libraries)
F1 and F2 are observationally equivalent if, for every context C
(= program with a hole), the programs C[F1] and C[F2] behave
identically w.r.t. termination:

F1 ≈ F2
def
= ∀C, C[F1] terminates ⇐⇒ C[F2] terminates

Example: the two Java classes D shown previously are
observationally equivalent.

34

Examples of observational equivalences
for a strict, typed functional language

At base types, equivalence is equality:

0 ≈ 0 0 ̸≈ 1

(The context if [] = 0 then Ω else () distinguishes 0 from 1.)

For functions over base types, equivalence is extensional equality
(same arguments give same results):

(λx : int. x + x) ≈ (λx : int. x × 2)
succ ̸≈ pred

(λx : unit. x) ≈ (λx : unit. ())

(λx : bool. x) ≈ (λx : bool. if x then true else false)

(if [] 0 = 1 then Ω else () distinguishes succ from pred.)

35

Examples of observational equivalences

For higher-order functions, equivalence reveals how these
functions use their arguments.

(λf : unit → unit. f()) ≈ (λf : unit → unit. f(); f())

(λf : unit → unit. f()) ̸≈ (λf : unit → unit. ())

(The context [] (λx.Ω) distinguishes the bottom two functions.)

“Left sequential or” and “right sequential or” are not equivalent:

orleft
def
= λx, y : unit → bool. if x() then true else y()

orright
def
= λx, y : unit → bool. if y() then true else x()

(They are distinguished by the context [] (λx.Ω) (λx.true))

36

Observational equivalence and security properties

Several basic security properties of a programming language can
be characterized by observational equivalences.

Integrity of local variables:

λf : unit → unit.

let x = ref 0 in

f(); !x

≈ λf : unit → unit.

f(); 0

Confidentiality of local variables:

λf : unit → unit.

let x = 0 in f()
≈ λf : unit → unit.

let x = 1 in f()

37

Observational equivalence and security properties

Indifference with respect to allocation order:

let x = ref 0 in

let y = ref 0 in

x

≈ let x = ref 0 in

let y = ref 0 in

y

Procedural encapsulation:

let c = ref 0 in

λ(). incr c; !c
≈ let c = ref 0 in

λ(). decr c; 0 − !c

(The internal state c goes 0, 1, 2, . . . for the first function
and 0, −1, −2, . . . for the second function, but this is not observable
outside of the functions.)

38

Observational equivalence and security properties

Type abstraction:

struct

type t = permission list

let init () = [P0;P1;P2]

let allowed = List.mem

let drop = List.remove

end : Capa

≈

struct

type t = int

let mask = function

P0 -> 1 | P1 -> 2 | P2 -> 4

let init () = 7

let allowed p c =

c land mask p <> 0

let drop p c =

c land lnot (mask p)

end : Capa

(Constructing a logical relation is an effective way to prove
observational equivalence.)

39

Observational equivalence and denotational semantics

Consider a denotational semantics in the style of Milner (1978)
(as seen in lecture #5):

D : Expr → Env → V

where V is a Scott domain such that

V = (Int + · · ·+ (V → V) + {wrong})⊥

The semantics is adequate if D(e1) = D(e2) ⇒ e1 ≈ e2

The semantics is complete if e1 ≈ e2 ⇒ D(e1) = D(e2)

The semantics is fully abstract if it is adequate and complete.

40

Adequacy

D(e1) = D(e2) ⇒ e1 ≈ e2

Example of a non-adequate semantics:
a semantics that “doesn’t have enough values” and maps the
constants true and false of the language to the same element
of V. But this is a terrible semantics!

In practice, “good” denotational semantics are always adequate.

41

Adequacy

D(e1) = D(e2) ⇒ e1 ≈ e2

Proof sketch:

Assume e1 ̸≈ e2. Thus, we have a context C such that

C[e1] diverges C[e2] terminates

We expect the semantics to distinguish terminating terms from
diverging terms: D(C[e1]) = ⊥ D(C[e2]) ̸= ⊥

We expect the semantics to be compositional:
D(C[e]) is a function of D(e).

Therefore, D(e1) ̸= D(e2), and the adequacy result follows by
contraposition.

41

Completeness

e1 ≈ e2 ⇒ D(e1) = D(e2)

Many “good” denotational semantics are incomplete, typically
because the domain V contains semantic values that cannot be
defined within the programming language.

Example: in Scott domains, the set of continuous functions
V → V contains “parallel” functions that cannot be defined in a
purely sequential language.

42

Parallel “or”

A lazy “or” function that returns true as soon as one of its
arguments returns true.

por x y =

true if x() = true (even if y() diverge) (1)
true if y() = true (even if x() diverge) (2)
false if x() = false and y() = false

⊥ otherwise

It cannot be defined in a sequential language: the evaluation
must start either by evaluating x(), invalidating (2),
or by evaluating y(), invalidating (1).

43

Incompleteness of Scott domains

(G. Plotkin, LCF considered as a programming language, 1977.)

Define two “or-tasting functions” M0 and M1:

Mk
def
= λf : (unit → bool) → (unit → bool) → bool.

if f (λ .true) (λ .Ω)

∧ f (λ .Ω) (λ .true)

∧ ¬ f (λ .false) (λ .false)

then k else Ω

M0 and M1 do not have the same denotation, since

D(M0) por = 0 ̸= 1 = D(M1) por

Yet, M0 ≈ M1, since no function f definable in the PCF language
satisfies the three conditions of the if.

44

Fully-abstract compilation

Fully-abstract compilation

Abadi (1998) defines full abstraction for a compiler as the
preservation of observational equivalences in both directions:

F1 ≈source F2 if and only if C(F1) ≈compiled C(F2)

Such a fully-abstract compiler is interesting for security:

• All low-level attacks (by a context written in machine
language) are also possible at the high level (by a context
written in the source language, then compiled).

• Therefore, we can reason about the correctness and the
security of a program entirely at the source language level.

45

“Adequacy”: compilation that preserves semantics

F1 ̸≈source F2 =⇒ C(F1) ̸≈compiled C(F2)

This generally follows from the fact that a correct compiler
preserves the semantics of source programs.

Let S be a source context such that S[F1] diverges but not S[F2].

By semantic preservation, the compiled code C(S[F1]) diverges but not
the compiled code C(S[F2]).

If the compiler is compatible with separate compilation,
C(S[F1]) = M[C(F1)] and C(S[F2]) = M[C(F2)],
where M is a machine context obtained by translating S.

Therefore, C(F1) et C(F2) are not observationally equivalent.

46

“Completeness”: compilation that preserves equivalences

F1 ≈source F2 =⇒ C(F1) ≈compiled C(F2)

This is the difficult part of fully-abstract compilation.

We saw several examples where a machine-level context M can,
by direct inspection of memory and registers, distinguish two
compiled codes C(F1) and C(F2).

It is often impossible to construct a source context S
(by “back translation” of M) that can distinguish F1 and F2 at the
source language level.

47

An example of fully-abstract compilation:
from a statically-typed language to a dynamically-typed language

Source language: simply-typed λ-calculus with Booleans,
products, and sums.

Types: τ, σ ::= unit | bool | σ → τ

| σ × τ | σ + τ

Terms: a ::= x | λx : τ. a | a1 a2 | fix functions (recursive)
| () | false | true
| if a1 then a2 else a3 Booleans
| (a1, a2) | fst(a) | snd(a) products
| inl(a) | inr(a) | match . . . sums

Target language: the same λ-calculus, but dynamically typed.

48

Compilation

(Devriese, Patrignani, Piessens, Fully-abstract compilation by approximate
back-translation, 2016.)

Basic compilation: just erase the types! C(a) = a

However, this does not preserve equivalences. . .

λx : unit. x ≈typed λx : unit. ()

λx. x ̸≈untyped λx. ()

Secure compilation: erase types + protect the term by
dynamically checking the values coming from the context
(e.g. the argument x in λx : unit. x).

C(a : τ) = protectτ (a)

49

Protection against ill-typed contexts

From the typed world to the untyped world:

protectunit = λx.x

protectbool = λx.x

protectσ×τ = λx.(protectσ(fst(x)), protectτ (snd(x)))

protectσ→τ = λf .λx.(protectτ (f (confineσ(x))))

From the untyped world to the typed world:

confineunit = λx.()

confinebool = λx. if x then true else false

confineσ×τ = λx.(confineσ(fst(x)), confineτ (snd(x)))

confineσ→τ = λf .λx.(confineτ (f (protectσ(x))))

50

Example of protection

C(λx : bool. x)

= λx. let x = if x then true else false in x

C(λx : bool. if x then true else false)

= λx. let x = if x then true else false in

if x then true else false

Observational equivalence holds even in untyped contexts:
the two protected functions map true to true, false to false,
and all other values to wrong.

51

Full abstraction by back-translation of contexts

Consider an untyped context M that distinguishes C(a1 : τ) and
C(a2 : τ)

M (protectτ (a1)) diverges M (protectτ (a2)) terminates

Can we “back-translate” M to a typed context S that distinguishes
a1 from a2?
Yes, relatively easily, if the source language contains a universal
type U able to represent untyped terms:

type U = Wrong | Unit | Bool of bool

| Pair of U * U | Fun of (U -> U)

We translate M in a typed context SU where the hole has type U,
then into S where the hole has type τ .

52

Full abstraction by back-translation of contexts

Consider an untyped context M that distinguishes C(a1 : τ) and
C(a2 : τ)

M (protectτ (a1)) diverges M (protectτ (a2)) terminates

Can we “back-translate” M to a typed context S that distinguishes
a1 from a2?
Yes, with much more work, even if the source language has no
recursive types, using level-n approximations of type U:

U0 = unit Un+1 = unit+ bool+ (Un × Un) + (Un → Un)

n is chosen large enough to observe the difference of behavior
between a1 and a2.
(Devriese, Patrignani, Piessens, Fully-abstract compilation by approximate
back-translation, 2016.)

52

Fully-abstract compilation
of a statically-typed language to JavaScript

(Fournet, Swamy, Chen, Dagand, Strub, Livshits, Fully Abstract Compilation to
JavaScript, 2013.)

Source language: functional and imperative, with static typing
(originally a fragment of F*; in later work, TypeScript).

Target language: JavaScript.

Compilation: naive translation that erases types

[[λx : τ. a]] = function(x){var y⃗; return [[a]]; }
[[a1 a2]] = [[a1]] [[a2]]

[[(a1, a2)]] = {tag : "Pair"; 0 : [[a1]]; 1 : [[a2]]}

followed by protection against the context.

53

Protection functions

typed world JavaScript
down τ

up τ

function downunit(x) { return x;}

function upunit(x) { return undefined;}

function downbool(x) { return x;}

function upbool(z) { return (z ? true : false);}

function downstring(x) { return x;}

function upstring(x) { return (x + "");}

function downpair(dn_a, dn_b) {

return function (p) {

return {"tag":"Pair", "0":dn_a(p["0"]),"1":dn_b(p["1"])};}}

function uppair(up_a, up_b) {

return function(z) {

return {"tag":"Pair", "0":up_a(z["0"]),"1":up_b(z["1"])};}}
54

Protecting function values

function downfun (up_a,down_b) {

return function (f) {

return function (z) { return (down_b (f (up_a(z)))); }}}

function upfun (down_a,up_b) {

return function (f) {

return function (x) {

var z = down_a(x);

var y = undefined;

function stub(b) {

if (b) { stub(false); } else { y = up_b(f(z)); } }

stub(true); return y; };};}

All these tricks prevent f (which is provided by the possibly
malicious context) to inspect the call stack and to interfere with
the protection.

55

Using hardware protection mechanisms such as “enclaves”

(Agten, Strackx, Jacobs, Piessens, Secure compilation to modern processors,
2012).

Assume given two protected memory areas, a code area MC and a
data area MD:

code MC data MD

entry points

Code outside MC can only jump to one of the entry points.

Only the code within MC can access data in MD or jump elsewhere
within MC.

(Examples: Intel SGX enclaves; Memory Access Controllers on smart cards.)

56

Source language (simplified)

Statically-allocated objects having private instance variables and
public or private methods, taking and returning values of base
types.

class Account {

private short bal = 0;

public void deposit(short amount) {

if (amount >= 0 && bal + amount <= Short.MAX_VALUE)

bal += amount;

}

public short balance() { return bal; }

}

57

Compilation (simplified)

Instance variables and a private stack are placed in the protected
data area MD.

Code is placed in the protected code area MC.

Public methods are entry points.

On entry to each public method:

• switch to the private stack, save the return address;
• validate the arguments (e.g. short is in [−215, 215 − 1]).

On exit:

• erase all registers except the one containing the result value
• reload the return address R; check that R /∈ MC

• switch to the caller’s stack and jump to address R.

58

Main results

(Agten, Strackx, Jacobs, Piessens, Secure compilation to modern processors,
2012; Patrignani, Clarke, Piessens, Secure compilation of object-oriented
components to protected module architectures, 2013.)

Extensions of the compilation schema:

• Callbacks from methods to functions (in non-protected code
area) passed as arguments.

• Dynamic allocation of objects in the protected data area.

Semantics based on execution traces that capture function and
method calls and returns.

A full abstraction result: if a machine context M in non-protected
code area distinguishes C(O1) from C(O2), we know how to
construct a source context S that distinguishes O1 from O2.
S is constructed from the traces of M[C(O1)] and M[C(O2)]. 59

Summary

Principles of secure compilation

An active research area.

A characterization in terms of full abstraction that is elegant, but
extraordinarily difficult to achieve.

Other characterizations were proposed, in terms of compilation
that preserves (hyper-)properties:

• properties of one run of the program
→ preservation of integrity guarantees

• hyper-properties relating of two runs of the program
→ preservation of confidentiality guarantees.

(See the survey by Patrignani, Ahmed and Clarke, Formal Approaches to
Secure Compilation, 2019.)

60

Practice of secure compilation

A tension (of a social nature) between

• aggressive optimization of codes (perceived as) having no
security implications;

• respecting the intent of the source code, including security
protections.

A nonobvious choice between

• adding security protections during compilation, or
• adding security protections to the source code and

preserving them during compilation.

61

	Compilation that implements security measures
	Compilation that removes security measures
	Security of compiled code executed in a hostile context
	Observational equivalence and full abstraction
	Fully-abstract compilation
	Summary

