

Language-based software security, fourth lecture

Tempus fugit : timing attacks and cache attacks

Xavier Leroy

2022-03-31

Collège de France, chair of software sciences xavier.leroy@college-de-france.fr

Execution time as an information channel

User experience with an old Unix system

login: dmr
password: *****

(two seconds later...)

Login incorrect

User experience with an old Unix system

login: dmr
password: *****

(two seconds later...)

Login incorrect

Second attempt:

```
int check_login(char * username, char * password)
{
    struct passwd * userinfo = getpwnam(username);
    if (userinfo == NULL) return 0; // no user with this name
    char * hash = crypt(password); // takes 2 seconds
    return (strcmp(hash, userinfo->pw_password) == 0);
}
```

The function terminates faster if there is no account named username than if there is one.

 \Longrightarrow Enables an attacker to easily check if a given account exists.

```
for (int i = 0; i < N; i++) {
    if (input[i] != pin[i]) return false;
}
return true;</pre>
```

This loop takes time proportional to the number of correct digits at the beginning of input.

 \implies An attacker can find a *N*-digit PIN in time 10 *N* instead of 10^{*N*}.

An alternate implementation where the loop always runs for *N* iterations:

```
valid = true;
for (int i = 0; i < N; i++) {
    if (input[i] != pin[i]) valid = false;
}
return valid;
```

Now, the execution time is a + bn, where n is the number of wrong digits (= number of assignments valid = false).

```
\Longrightarrow An efficient attack remains possible.
```

Let's make the code more symmetrical by counting the number of correct digits and the number of wrong digits.

```
valid = 0; invalid = 0;
for (int i = 0; i < N; i++) {
    if (input[i] != pin[i]) ++invalid; else ++valid;
}
return (invalid == 0);
```

Branch prediction in the processor can still cause variations in execution time, but it's getting hard to exploit them.

The correct way to write this PIN-checking code is to use constant-time operations only, that is, operations that run in time independent of the values of their arguments.

```
d = 0;
for (int i = 0; i < N; i++) {
    d = d | (input[i] ^ pin[i]);
}
return (d == 0);
```

(Variable d accumulates the bits that differ between input and password; it remains 0 if and only if there are no differences.)

Based on modular exponentiation:

$$M \xrightarrow{\text{encryption}} C = M^e \mod N \xrightarrow{\text{decryption}} C^d \mod N$$
$$M \xrightarrow{\text{signature}} S = M^d \mod N \xrightarrow{\text{verification}} S^e \mod N$$

A modulus N = pq product of two prime numbers p, q.

A secret exponent d and a public exponent e such that $de \mod (p-1)(q-1) = 1$.

The public key is (N, e).

The secret key is d or sometimes (p, q, d).

The "Russian peasant" algorithm for fast exponentiation:

Decompose d in bits d_n, \ldots, d_0 $(d = \sum_{i=0}^n d_i 2^i)$ $C := 1; \quad z := M;$ for i = 0 to n do if d_i then $C := C \cdot z \mod N$ $z := z^2 \mod N$ done

z takes successive values *M*, *M*², *M*⁴, *M*⁸, ..., *M*^{2ⁿ} (mod *N*). At the end we have $C = \prod \{M^{2^i} | d_i = 1\} = M^{\sum \{2^i | d_i = 1\}} = M^d$ for i = 0 to n do if d_i then $C := C \cdot z \mod N$ $z := z^2 \mod N$ done

The running time of the loop depends on the d_i , obviously: we perform w + n + 1 modular multiplications, where w is the Hamming weight (number of 1 bits) of the secret d.

However, knowing w doesn't help to guess d.

Moreover, we can easily remove this dependence on w:

if d_i then $C := C \cdot z \mod N$ else $tmp := C \cdot z \mod N$

```
for i = 0 to n do
if d_i then C := C \cdot z \mod N else tmp := C \cdot z \mod N
z := z^2 \mod N
done
```

The time it takes to compute $C \cdot z \mod N$ depends significantly on the value of C, even more so if clever algorithms are used.

This suffices to mount attacks on RSA by observing execution times.

Take k random messages M_1, \ldots, M_k .

Have them signed: $S_i = M_i^d \mod N$ and measure the time T_i .

Guess the bits of *d* one after the other:

- $d_0 = 1$ always.
- Assume $d_1 = 1$. Then, the computation of S_i would start by computing $M_i \cdot M_i^2 \mod N$.
 - Measure the times t_i to compute $M_i \cdot M_i^2 \mod N$.
 - If the t_i are correlated with the T_i , we do have $d_1 = 1$.
 - If there's no correlation, we have $d_1 = 0$.
- Iterate for the following bits.

OpenSSL has a more efficient implementation of RSA:

- Uses the Chinese remainder theorem: compute $M^d \mod p$ and $M^d \mod q$, then combine the results to obtain $M^d \mod N$ (with N = pq).
- Uses Montgomery's representation to speed up modular multiplications C · z mod q.
- Several multiplication algorithms, selected based on the sizes of the arguments.

Each of these features contributes to leak more information through execution times...

Montgomery's algorithm performs additional reduction steps when the product *g* gets close to the modulus *p* or *q*.

(Brumley & Boneh, 2003)

A binary search that identifies the most significant bits of the *q* factor. Once half the bits are known, Coppersmith's algorithm recovers the whole secret key.

The attack can be conducted across a network connection!

Cache memory as an information channel

Cache memory

Speed up accesses to a memory location that has been accessed recently (temporal locality), or that is near a recently-accessed location (spatial locality).

Cache attacks

The time taken by a memory read varies greatly whether a data at a nearby location has been accessed recently.

Overall structure of a cache attach:

- 1. Flush the cache (L1 or more) (clflush instruction, etc)
- 2. Execute privileged code that manipulates secret data.
- 3. Measure access times for several memory locations.
- 4. Infer which locations were accessed by the privileged code.
- 5. Deduce information on the secret data.

(In step 1-, instead of emptying the cache, we can also pre-fill it with locations that conflict with the locations we want to observe.)

(2- and 3- can take place concurrently.)

Cache attacks

Note: it is not necessary to have read and write permissions on the memory area we want to observe. We can use any memory area that shares the same cache entries. Put letters in uppercase and normalize non-printable characters.

```
for (size_t i = 0; i < len; i++) s[i] = tbl[s[i]];
}</pre>
```

get_hashed_password: a protected function that reads a
password from the keyboard, normalizes it with normalize, and
hashes it.

- 1. Flush the cache.
- 2. Call get_hashed_password.
- Measure the time taken by normalize on inputs "a", "b", "c", etc.
- 4. Infer the elements of the tbl array accessed by normalize when called from get_hash_password. (Assuming cache lines of size 1 byte.)
- 5. Deduce which letters a, b, c, etc, appear in the password.

The AES-128 symmetric cipher

Software implementations of AES usually tabulate the subst/shift/mix steps.

 T_0, T_1, T_2, T_3 : tables of 256 32-bit constants.

 x_0, \ldots, x_{15} : the 16 bytes of the current state.

 $\begin{aligned} (x'_0, x'_1, x'_2, x'_3) &= T_0[x_0] \oplus T_1[x_5] \oplus T_2[x_{10}] \oplus T_3[x_{15}] \oplus K_0 \\ (x'_4, x'_5, x'_6, x'_7) &= T_0[x_4] \oplus T_1[x_9] \oplus T_2[x_{14}] \oplus T_3[x_3] \oplus K_1 \\ (x'_8, x'_9, x'_{10}, x'_{11}) &= T_0[x_8] \oplus T_1[x_{13}] \oplus T_2[x_2] \oplus T_3[x_7] \oplus K_2 \\ (x'_{12}, x'_{13}, x'_{14}, x'_{15}) &= T_0[x_{12}] \oplus T_1[x_1] \oplus T_2[x_6] \oplus T_3[x_{11}] \oplus K_3 \end{aligned}$

Cache attack on AES

(Osvik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES, 2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key retrieval in cache access attacks, 2016.)

 $\begin{aligned} (x'_0, x'_1, x'_2, x'_3) &= T_0[x_0] \oplus T_1[x_5] \oplus T_2[x_{10}] \oplus T_3[x_{15}] \oplus K_0 \\ (x'_4, x'_5, x'_6, x'_7) &= T_0[x_4] \oplus T_1[x_9] \oplus T_2[x_{14}] \oplus T_3[x_3] \oplus K_1 \\ (x'_8, x'_9, x'_{10}, x'_{11}) &= T_0[x_8] \oplus T_1[x_{13}] \oplus T_2[x_2] \oplus T_3[x_7] \oplus K_2 \\ (x'_{12}, x'_{13}, x'_{14}, x'_{15}) &= T_0[x_{12}] \oplus T_1[x_1] \oplus T_2[x_6] \oplus T_3[x_{11}] \oplus K_3 \end{aligned}$

Assuming cache lines are 4 32-bit words, each access $T_i[x_j]$ "leaks" the 4 most significant bits of x_j .

First round: x = chosen text \oplus key, hence we can recover the 4 most significant bits of each byte of the key.

Cache attack on AES

(Osvik, Shamir, Tromer, Cache attacks and countermeasures: the case of AES, 2005. Ashokummar, Giri, Menezes, Highly efficient algorithms for AES key retrieval in cache access attacks, 2016.)

 $\begin{aligned} (x'_0, x'_1, x'_2, x'_3) &= T_0[x_0] \oplus T_1[x_5] \oplus T_2[x_{10}] \oplus T_3[x_{15}] \oplus K_0 \\ (x'_4, x'_5, x'_6, x'_7) &= T_0[x_4] \oplus T_1[x_9] \oplus T_2[x_{14}] \oplus T_3[x_3] \oplus K_1 \\ (x'_8, x'_9, x'_{10}, x'_{11}) &= T_0[x_8] \oplus T_1[x_{13}] \oplus T_2[x_2] \oplus T_3[x_7] \oplus K_2 \\ (x'_{12}, x'_{13}, x'_{14}, x'_{15}) &= T_0[x_{12}] \oplus T_1[x_1] \oplus T_2[x_6] \oplus T_3[x_{11}] \oplus K_3 \end{aligned}$

Assuming cache lines are 4 32-bit words, each access $T_i[x_j]$ "leaks" the 4 most significant bits of x_j .

Finer analysis of the second round lets us recover the whole key using a small number of encryptions (10 to 1000).

Protections against timing attacks

How can we avoid leaking information through execution time?

Various approaches:

- "Constant-time" programming.
- Prevent precise time measurements.
- Quantize execution or communication times.
- Blinding secrets with random noise.

Many timing attacks cannot be conducted remotely: the attacker must run on the same machine as the attacked code.

To measure elapsed time precisely, the attacker needs

- access to a high-resolution hardware clock
 (e.g. the Time Stamp Counter register on x86 processors);
- or parallel execution of two threads.

```
while true do

time := time + 1

done T_0 := time;

computation to be timed;

T_1 := time
```

The operating system or the execution environment can:

- Prohibit access to high-resolution clocks (e.g. block the rdtsc x86 instruction).
- Force the threads of the attacker to run on the same processor core as the attacked code, by interleaving.
- Schedule threads independently from execution time.

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based scheduling, 2013.)

```
\begin{array}{c|c} \mbox{fillArray}(L);\\ \mbox{if secret then} & \mbox{for } i=1 \mbox{ to } n \\ \mbox{fillArray}(H) & \mbox{do skip done}; \\ \mbox{else} & \mbox{readArray}(L); \\ \mbox{skip} & \mbox{x} := 1 \end{array} \qquad \mbox{for } i=1 \mbox{ to } n+m \\ \mbox{do skip done}; \\ \mbox{x} := 0 \\ \mbox{x} := 1 \end{array}
```

With a schedule based on time slices (preemption after a fixed time *T*), we terminate with x = 0 or x = 1 depending on the running time of readArray(*L*), which depends on the state of the cache.

Scheduling based on instruction counts

(Stefan et al, Eliminating cache-based timing attacks with instruction-based scheduling, 2013.)

```
\begin{array}{c|c} \text{fillArray}(L);\\ \text{if secret then} & \text{for } i=1 \text{ to } n \\ \text{fillArray}(H) & \text{do skip done;} \\ \text{else} & \text{readArray}(L); \\ \text{skip} & x:=1 \end{array} \quad \text{for } i=1 \text{ to } n+m\\ \text{do skip done;} \\ x:=0 \\ \end{array}
```

With a schedule based on instruction counts (preemption after *N* instructions were executed), the final value of *x* is independent from the cache state.

Time quantization

Add a delay at the end of computation to guarantee that it runs in constant time D_{max} .

 $T_0 := \text{now};$ for i = 0 to n do if d_i then $C := C \cdot z \mod N$ else $tmp := C \cdot z \mod N$ $z := z^2 \mod N$ done $D = \text{now} - T_0;$ sleep $(D_{max} - D)$

No more temporal leaks!

... at the cost of slowing down all computations.

D_{max} can be hard to determine a priori.

Variation: adjust running time to an integer multiple of Δ . (E.g. $\Delta = 10^7$ cycles for the Brumley-Boney attack.)

 $T_0 := ext{now};$... $D = ext{now} - T_0;$ $ext{sleep}(ext{ceil}(D/\Delta) imes \Delta - D)$

Time Quantization

(Askarov, Zhang, Myers, *Predictive black-box mitigation of timing channels*, 2010.) Variation: adjust *D_{max}* on the fly, following an exponential law.

```
T_0 := \text{now};
...
D = \text{now} - T_0;
if D > D_{max} then D_{max} := D_{max} \times (1 + \varepsilon)
else sleep(D_{max} - D)
```

The attacker gains one bit of information each time $D > D_{max}$. This happens at most one by time slice of duration $(1 + \varepsilon)^k$. Hence, information leakage is $O(\log^2 t)$.

More subtle laws can be used, see Askarov et al.
Blinding

Inject randomness in the computation so that running time is no longer correlated with the value of the secret.

Artificial example:

checking a PIN code using a random permutation.

```
// draw a random permutation S of {0,...,n-1}
for (int i = 0; i < N; i++) {
    if (input[S[i]] != pin[S[i]]) return false;
}
return true;</pre>
```

The running time for one execution only gives a lower bound on the number of correct digits.

If *M* is the message to be signed, we can blind it using a random number *R* before modular exponentation.

$$C \stackrel{def}{=} (R^{e} \cdot M)^{d} = (R^{e})^{d} \cdot M^{d} = R^{ed} \cdot M^{d} = R \cdot M^{d} \pmod{N}$$

since $ed \mod \varphi(N) = 1$ and $R^{\varphi(N)} = 1 \pmod{N}$ (Euler's theorem).

Then, we can un-blind, obtaining the correct result:

$$S \stackrel{def}{=} R^{-1} \cdot C \pmod{N}$$

The time it takes to compute $(R^e \cdot M)^d$ gives no information to the attackers, since they choose M but not R.

Constant-time programming

A programming discipline to write programs that run in time independent from secret data.

Relies on a classification of the base operations of the programming language / of the instructions of the processor:

- Constant-time operations: same execution time regardless of the values of the arguments of the operation and of the state of the processor.
- Variable-time operations: timing is sensitive to the values of the arguments or to the processor state (caches, branch predictors, etc).

	Constant time	Variable time		
Integer arithmetic (1)	+ – * & ^ shifts, comparisons	division, modulus		
Memory reads and writes (²)		x[i] *p		
Conditional branches		if while &&		

(1) Some processors have variable-time integer multiplication.

(2) For writes x[i] = v and *p = v, execution time depends on x, i, p (the accessed address) but not on v (the stored value).

An information flow property:

A value at level *H* (secret) must not be used as argument to a non-constant-time operation.

Examples:

$$\checkmark z^{H} := x^{H} + y^{H} \qquad \qquad \checkmark z^{H} := x^{H} / y^{H}$$

$$\checkmark \text{ if } x^{H} < y^{H} \text{ then } z^{H} := 1$$

$$\checkmark x^{H} := t^{L}[i^{H}]$$

In the style of the type systems for information flow of lecture #2.

$\vdash a_1: \ell a_2: \ell$	$\vdash a_1: L a_2: L$
$\vdash a_1 + a_2 : \ell$	$\vdash a_1/a_2:\ell$
$\vdash b: L \vdash c_1: * \vdash c_2: *$	⊢ b : L ⊢ c :*
\vdash if <i>b</i> then c_1 else c_2 :*	\vdash while b do c

Note: indirect flows (if b^H then $x^L := 1$ else $x^L := 0$) are automatically excluded; no need to trace the *pc* level any longer.

We can materialize information leaks caused by non-constant-time operations by a program transformation:

$$\begin{bmatrix} z := x + y \end{bmatrix} = z := x + y$$

$$\begin{bmatrix} z := x/y \end{bmatrix} = \operatorname{out}(x); \operatorname{out}(y); z := x/y$$

$$\begin{bmatrix} \text{if } x < y \quad \text{then } c_1 \text{ else } c_2 \end{bmatrix} = \operatorname{out}(x); \operatorname{out}(y);$$

$$\text{ if } x < y \quad \text{then } \llbracket c_1 \rrbracket \text{ else } \llbracket c_2 \rrbracket$$

$$\begin{bmatrix} \text{while } x < y \text{ do } c \text{ done} \end{bmatrix} = \operatorname{out}(x); \operatorname{out}(y);$$

$$\text{while } x < y \text{ do}$$

$$\begin{bmatrix} c \end{bmatrix}; \operatorname{out}(x); \operatorname{out}(y)$$

On secret data: no conditionals, no array indexing, just arithmetic and bitwise operations \approx combinatorial circuits.

Example (reminder):

```
d = 0;
for (int i = 0; i < N; i++) {
    if (input[i] != pin[i]) d = 1; X
}
return (d == 0);
```

On secret data: no conditionals, no array indexing, just arithmetic and bitwise operations \approx combinatorial circuits.

Example (reminder):

```
d = 0;
for (int i = 0; i < N; i++) {
    d = d | (input[i] ^ pin[i]);    
}
return (d == 0);
```

Avoiding arrays and indexing

N-bit integers can replace arrays of N Booleans.

Example: a DES S-box = a function 6 bits \rightarrow 4 bits.

The usual tabulated implementation:

int tbl[64] = { /* 64 4-bit integers */ }; int sbox(int x) { return tbl[x]; }

Tabulation using 4 64-bit integers:

```
uint64_t tbl0 = ..., tbl1 = ..., tbl2 = ..., tbl3 = ...;
int sbox(int x) {
    return (tbl0 >> x & 1) << 0 | (tbl1 >> x & 1) << 1 |
        (tbl2 >> x & 1) << 2 | (tbl3 >> x & 1) << 3;
}
```

(Constant-time... but much slower!)

Base case:

if b then $x := a_1$ else $x := a_2 \implies x := \operatorname{sel}(b, a_1, a_2)$

 $\text{ if } b \text{ then } x := a_1 \implies x := \operatorname{sel}(b,a_1,x) \\$

The $sel(b, a_1, a_2)$ operator

- evaluates *b*, *a*₁ et *a*₂;
- returns the value of a₁ if b is true;
- returns the value of *a*² if *b* is false;

in time independent from the value of b ("constant time").

More generally:

- Execute both then and else branches, renaming the variables that are assigned.
- Select the final values for the variables using operator sel.

Example:

This transformation applies only if the then and else branches

- always terminate;
- never trigger run-time errors;
- have no effects observable by the remainder of the program.

Problematic example:

 $\begin{array}{ll} \text{if } y \neq 0 \text{ then } z := x/y \text{ else abort()} \\ \\ \not \Longrightarrow \quad z_1 := x/y; \text{ abort(); } z := \texttt{sel}\big(y \neq 0, z_1, z\big) \end{array}$

Implementing the selection operator

Using specific processor instructions (conditional move, predicated instructions, etc).

Portably, when b, a_1 and a_2 have type bool:

$$\mathtt{sel}(b, a_1, a_2) = b \wedge a_1 \vee \neg b \wedge a_2$$

Portably, when a_1 and a_2 are integers and b = 0 or 1:

$$sel(b, a_1, a_2) = b \times a_1 + (1 - b) \times a_2$$

 $sel(b, a_1, a_2) = a_2 + b \times (a_1 - a_2)$
 $sel(b, a_1, a_2) = (-b) \wedge a_1 \vee (b - 1) \wedge a_2$

(If b = 0, we have $b - 1 = 11 \dots 11$ and $-b = 00 \dots 00$. If b = 1, we have $b - 1 = 00 \dots 00$ and $-b = 11 \dots 11$.) An optimizing compiler can perform "IF-conversion" itself, thus making certain conditionals constant-time:

if b then $x := a_1$ else $x := a_2 \rightarrow x := \operatorname{sel}(b, a_1, a_2)$

But it can also introduce conditional branches to compute arithmetic or logical expressions, such as our sel implementations!

 $x := b \times a_1 + (1-b) \times a_2 \rightarrow \texttt{if } b \texttt{ then } x := a_1 \texttt{ else } x := a_2$

(Simon, Chisnall, Anderson, What you get is what you C: controlling side effects in mainstream C compilers, 2018).

Experiment: 4 implementations of sel in portable C, compiled for x86-32 by various versions of Clang.

		VERS	ION_1	VERSION_2		VERSION_3		VERSION_4	
		inlined	library	inlined	library	inlined	library	inlined	library
0.	-00								
llang 3	-01		1		1		1		X
	-02	1	\checkmark	1	X	X	\checkmark	1	X
0	-03	1	1	1	×	X	1	1	X
ω;	-00		 Image: A start of the start of		 Image: A set of the set of the		 Image: A set of the set of the		
llang 3	-01	1	\checkmark	1	\checkmark	1	X	1	X
	-02	1	\checkmark	X	X	X	X	X	X
0	-03	1	1	X	X	X	X	X	X
6.	-00	-	 Image: A start of the start of	-	 Image: A start of the start of	-	 Image: A set of the set of the		
00 00	-01	1	1	1	1	1	×	1	X
llan	-02			X	X	X	X	X	X
0	-03	1	1	X	X	X	X	X	X

- constant-time code is generated.
- **×** = a conditional branch is generated.

Attacks on speculative execution

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1: ...

Memory loads take a lot of time.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1: ...

The processor predicts (based on previous executions) that x0 will not be zero and the branch will not be taken.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1: ...

The processor executes the following instructions speculatively, in a way that can be reversed if needed.

(For example, the initial values of x3 and x4 are kept somewhere.)

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1: ...

When the load terminates, the conditional branch is resolved. If x0 is 0, the prediction was wrong. The processor rolls back the speculative execution: the effects of the speculated instructions are ignored (e.g. registers x3, x4 are reset to their initial values), and execution resumes at point L1.

load x0, [x1]
branch if x0 = 0 to L1
mul x3, x2, x3
add x4, x3, x4
branch to L2
L1: ...

If x0 is not zero, the prediction is confirmed, and the processor *commits* the actions of the speculated instructions, then continues execution.

Many instructions can be executed speculatively:

- arithmetic and logical operations
- branches
- memory reads
- memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back the modified registers and the memory stores.

Many instructions can be executed speculatively:

- arithmetic and logical operations
- branches
- memory reads (incl. accessing and updating the caches)
- memory writes (as long as they stay in the write buffer).

The processor can backtrack on these executions by rolling back the modified registers and the memory stores. However, the cache state is kept, not rolled back.

The Spectre family of attacks

Principle:

A privileged piece of code, executed speculatively, reads memory at an address that depends on a secret.

The attacker measures the state of the cache and infers part of the secret.

Spectre v1: circumventing array bounds checks

```
const unsigned int len = ...;
unsigned char buf[len];
int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])
{
   int i;
   if (idx < len)
       return table[buf[idx] * CACHE_LINE_SIZE];
   else
       return -1;
}
```

Function f runs in privileged mode, e.g. within the kernel. Parameters idx and table are controlled by the attacker.

Spectre v1: circumventing array bounds checks

```
const unsigned int len = ...;
unsigned char buf[len];
int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])
{
   int i;
   if (idx < len)
       return table[buf[idx] * CACHE_LINE_SIZE];
   else
       return -1;
}
```

The attacker calls f several times with valid idx values (to train branch prediction), then prepares the cache and calls f with idx too large.

Spectre v1: circumventing array bounds checks

```
const unsigned int len = ...;
unsigned char buf[len];
int f(unsigned int idx, int table[256 * CACHE_LINE_SIZE])
{
    int i;
    if (idx < len)
       return table[buf[idx] * CACHE_LINE_SIZE];
   else
       return -1;
}
```

The then branch of the if is executed speculatively.

The value of the byte at buf + idx leaks via the cache. This makes it possible to read a good chunk of the kernel memory space. Harden array bounds checks against speculation (macros _nospec in the Linux kerne).

The usual access with bounds checking:

```
T safe_read(T * tbl, unsigned len, unsigned idx)
{
    if (idx >= len) abort();
    return tbl[idx];
}
```

Harden array bounds checks against speculation (macros _nospec in the Linux kerne).

Access hardened against speculation:

```
T safe_read_nospec(T * tbl, unsigned len, unsigned idx)
{
    if (idx >= len) abort();
    return tbl[sel(idx < len, idx, 0)];
}</pre>
```

The effect of sel(idx < len, idx, 0) is to clip the idx value so that it is never too big during speculative execution. During normal execution, idx < len and access takes place at

index idx, as desired.

Variation: circumvent the BPF static code verifier

(Schlüter, Borkmann, Krysiuk, BPF and Spectre PRISC 2022.)

r1: valid pointer to a reachable variable.r2: aribtrary integer, controlled by the attacker.

1: if r0 != 0 goto line 3
2: r1 = r2
3: if r0 != 1 goto line 5
4: r2 = load(r1)
5: // leak the value of r2

The verifier knows that r0 cannot be both 0 and 1. Therefore, load(r1) at line 4 is a load from a valid address.

If both conditional branches (lines 1 and 3) are predicted as not taken, the code speculatively reads address r_2 .

Generalization: attacks by transient executions

Many kinds of transient state in processors can leak data via timing channels.

\rightarrow Seminar by F. Piessens on 21/04.

Spectre v1 Bounds Check Bypass	2017-5753 <i>@</i>
Spectre v2 Branch Target Injection	2017-5715@
SpectreRSB ^[25] /ret2spec ^[26] Return Mispredict	2018-15572@
Meltdown Rogue Data Cache Load	2017-5754@
Spectre-NG v3a	2018-3640@
Spectre-NG v4 Speculative Store Bypass	2018-3639@
Foreshadow L1 Terminal Fault, L1TF	2018-3615 _# 2
Spectre-NG Lazy FP State Restore	2018-3665#
Spectre-NG v1.1 Bounds Check Bypass Store	2018-3693@
Spectre-NG v1.2 Read-only Protection Bypass (RPB)	
Foreshadow-OS L1 Terminal Fault (L1TF)	2018-3620@
Foreshadow-VMM L1 Terminal Fault (L1TF)	2018-3646@
RIDL/ZombieLoad Microarchitectural Fill Buffer Data Sampling (MFBDS)	2018-12130@

RIDL Microarchitectural Load Port Data Sampling (MLPDS)	2018-12127#
RIDL Microarchitectural Data Sampling Uncacheable Memory (MDSUM)	2019-11091@
Fallout Microarchitectural Store Buffer Data Sampling (MSBDS)	2018-12126@
Spectre SWAPGS ^{[34][35][36]}	2019-1125@
RIDL/ZombieLoad v2 Transactional Asynchronous Abort (TAA) ^{[37][38][39]}	2019-11135g
RIDL/CacheOut L1D Eviction Sampling (L1DES) ^{[41][42][43]}	2020-0549%
RIDL Vector Register Sampling (VRS) ^{[41][42]}	2020-0548@
Load Value Injection (LVI) ^{[44][45][46][47]}	2020-0551@
Take a Way ^{[48][49]}	
CROSSTalk Special Register Buffer Data Sampling (SRBDS) [52][53][54]	2020-0543⊉
Blindside ^[55]	
Branch History Injection (BHI)	CVE-2022-0001@ CVE-2022-0002@

Summary

Execution time is a significant source of information leaks.

These leaks are amplified by features of modern processors: caches, speculative execution, etc.

Some (mostly cryptographic) computations can be hardened against these attacks via constant-time programming, or blinding, or hardware assistance (crypto coprocessors).

Some (incomplete?) protections can be found in operating systems and in Web browsers (JavaScript execution engines).

Intel SGX enclaves are being retired, in part because they are too vulnerable to transient execution attacks.
By observation:

- Power consumption.
- Electromagnetic emission.
- And much more \rightarrow Anderson, Security Engineering, chap. 19.

By perturbation:

+ Fault injection \rightarrow seminar by K. Heydemann on 07/04