
Language-based software security, second lecture

Information flow

Xavier Leroy
2022-03-17

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Multi-level security
and information flow

Multi-level security

A computer system that handles data with different levels of
confidentiality and integrity.

Example: two confidentiality levels,

• secret (restricted)
• public (unrestricted)

Example: two integrity levels,

• reliable (coming from trusted sources)
• dubious (coming from untrusted sources)

2

Using access control

Example: a file /root/data that must be kept secret and reliable.

Reading and writing restricted to root, the superuser.

/root/data root root - r w - - - - - - -

owner group
rights for

the owner

rights for

the group

rights for

others

3

Access control is not enough

/root/data root root - r w - - - - - - -

Editing the file via a temporary file:

/root/data /tmp/123

copy

copy

edit

If the temporary file was created by the attacker, they can read its
contents, and modify it before the copy to /root/data.

4

Information flow

Control not only accesses to resources (data at rest)
but also information flow between resources. (data in transit)

Confidentiality policy: information can flow only from less secret
to more secret.

public→ public public→ secret
secret→ secret secret ̸→ public

Integrity policy: information can flow only from more reliable to
less reliable.

reliable→ reliable reliable→ dubious
dubious→ dubious dubious ̸→ reliable

5

Formalizing confidentiality

A partial order over confidentiality levels

A ⊑ B

“B is more secret or as secret as A.”

“Someone with credentials B can access information classified A.”

Example: the public/secret classification.

H (high)

L (low)

6

Formalizing confidentiality

Example: the US government classification.

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

SECRET/A SECRET/B

TOP SECRET/A TOP SECRET/B

7

Bell and Lapadula’s confidentiality policy

(D. E. Bell et L. J. LaPadula, Secure Computer Systems: Mathematical
Foundations, 1973, MITRE Corporation.)

No read up: (Simple Security Property)

A principal at level ℓ can read only objects of level ℓ′ ⊑ ℓ.

No write down: (Star Security Property)

A principal at level ℓ can write only objects of level ℓ′ ⊒ ℓ.

Object 1
Principal

Object 2
read

⊑

write

⊑

8

Variant: the high-water mark policy

Each principal has two levels:

• R: highest level for reading, fixed;
• W: lowest level for writing, increases over time.

An object at level ℓ can be read if and only if ℓ ⊑ R.
If so, the writing level is increased: W ← W ⊔ ℓ.

An object at level ℓ can be written if and only if W ⊑ ℓ.

9

Formalizing integrity

A partial order over integrity levels

A ⊑ B
“A is at least as reliable as B.”

“Someone with credentials A can modify level B data.”

Examples: Reliable/dubious Windows (since Vista)

H (high)

L (low)

Low (Web)

Medium

High

System

10

Biba’s integrity policy

K. J. Biba, Integrity Considerations for Secure Computer Systems, 1975, MITRE
Corporation.

No write down:
a principal at level ℓ can write only objects at level ℓ′ ⊒ ℓ.

No read up:
a principal at level ℓ can read only objects at level ℓ′ ⊑ ℓ.

Object 1
Principal

Object 2
read

⊑

write

⊑

11

Combining confidentiality and integrity

Levels = pairs (confidentiality level, integrity level).

Partial order = product of the confidentiality and integrity orders.

(L,H)

(H, L)

(H,H) (L, L)

(public, reliable)

(public, dubious)

(secret, dubious)

(secret, reliable)

12

Information flow in a program

Multi-level security in a program

A given program can manipulate data at several confidentiality or
integrity levels.

Example: a pay-per-use tax filing program.

Tax filing
software

Income info

Name, address

Tax forms

Billing

To preserve confidentiality, the billing information sent to the
software provider must not reveal any of the income info.

13

Bell-LaPadula for a program

Associate confidentiality levels to inputs, outputs, and
intermediate results of the program.

HIncome info

LName, address

H Tax forms

L Billing

Check that information flows always “go up”:
an output with level ℓ depends only on inputs with levels ℓ′ ⊑ ℓ.

14

Dynamic verification of information flow

Replace each piece of data by a (value, level) pair.

Check the levels at each operation over the data.

assert (x.level <= z.level);

z := (x + y) / 2 ⇒ assert (y.level <= z.level);

z.value := (x.value + y.value) / 2

This suffices to control explicit flows.

15

The problem with implicit flows

Consider two Boolean variables:
x, which is secret (level H) and y, which is public (level L).

if x then y := true else y := false

This code behaves like y := x.

Yet, only public values (true or false) are assigned to y.

16

Dynamic verification of implicit flows

We add a variable pc of type “level” to keep track of information
revealed by conditional branches.

This variable is updated at conditional statements and loops:

if x then ... else ... ⇒ pc := max(pc, x.level);

if x.value then ... else ...

This variable is taken into account during assignments:

assert (x.level <= z.level);

z := (x + y) / 2 ⇒ assert (y.level <= z.level);

assert (pc <= z.level);

z.value := (x.value + y.value) / 2

17

Dynamic verification of implicit flows

This succeeds in controlling implicit information flows:

if x then y := true else y := false

⇒ pc := max(pc, x.level);

if x.value

then assert (pc <= y.level); y := true

else assert (pc <= y.level); y := false

18

Label creep

The level of the pc never decreases!

A single test on a H-level variable forces the remainder of the
program to operate at level H.

if xH then yH := true else yH := false;

✘ zL := false // rejected, since pc = H

We are tempted to reset pc to its level before the conditional:

if x then ... else ... ⇒ pc1 := pc; pc := max(pc, x.level);

if x.value then ... else ...;

pc := pc1

But this would be unsound. . .
19

Label creep

The lack of an assignment can also create an implicit flow!

yL := false;

if xH then yL := true else skip;

C

If the program reaches point C, without having failed the
assertion pc <= y.level, it knows the secret “xH is false”.

Therefore, the program must execute C with pc = H.

20

Static typing
of information flow

Static verification of information flow

By dataflow analysis (Denning & Denning, 1973).

As a type system (Volpano, Irvine, Smith, 1996):

⊢ a : ℓ the value of expression a has level ℓ

pc ⊢ c : ∗ command c is safe in a context of level pc

21

IMP: a small imperative language with structured control

Arithmetic expressions:
a ::= xℓ variables with their levels ℓ

| 0 | 1 | . . . constants
| a1 + a2 | a1 × a2 | . . . operations

Boolean expressions:
b ::= a1 ≤ a2 | . . . comparisons
| b1 and b2 | not b | . . . connectives

Commands:
c ::= skip empty command
| xℓ := a assignment
| c1; c2 sequence
| if b then c1 else c2 conditional
| while b do c loop

22

Typing rules for information flow in IMP

Arithmetic and Boolean expressions:

ℓ′ ⊑ ℓ for every variable xℓ′ free in a

⊢ a : ℓ

ℓ′ ⊑ ℓ for every variable xℓ′ free in b

⊢ b : ℓ

23

Typing rules for information flow in IMP

pc ⊢ skip : ∗
⊢ a : ℓ′ ℓ′ ⊑ ℓ pc ⊑ ℓ

pc ⊢ xℓ := a : ∗

pc ⊢ c1 : ∗ pc ⊢ c2 : ∗

pc ⊢ c1; c2 : ∗

⊢ b : ℓ pc ⊔ ℓ ⊢ c1 : ∗ pc ⊔ ℓ ⊢ c2 : ∗

pc ⊢ if b then c1 else c2 : ∗

⊢ b : ℓ pc ⊔ ℓ ⊢ c : ∗

pc ⊢ while b do c

(Explicit flow control) (Implicit flow control)
24

Example of typing: controlling an implicit flow

(if xH = 0 then yℓ := 0 else skip); zL := 1

Typing derivation:

⊢ xH = 0 : H

⊢ 0 : L L ⊑ ℓ H ⊑ ℓ

H ⊢ yℓ := 0 : ∗ H ⊢ skip : ∗

L ⊢ if xH = 0 then yℓ := 0 else skip : ∗

⊢ 1 : L
L ⊑ L
L ⊑ L

L ⊢ zL := 1 : ∗

L ⊢ (if xH = 0 then yℓ := 0 else skip); zL := 1 : ∗

The program is accepted if ℓ = H, rejected if ℓ = L.

No label creep because we check both branches of the if

(unlike dynamic verification, which checks only one branch).

25

The non-interference property

A semantic characterization of correct information flow control.

The values of outputs of level ℓ must not depend on the
values of inputs of level ℓ′ ⊐ ℓ.

26

The non-interference property

Non-interference is not a property of a single run of the program.

Example: in the execution below, is there interference between
the output yL and the input xH ?

. . . zL := 12 . . .
xH

12
yL

12

27

The non-interference property

Non-interference is a hyperproperty that relates two runs of the
program.

initial state 1 initial state 2

final state 1 final state 2

same values
for the xL

same values
for the xL

program
execution

program
execution

28

Natural semantics for IMP

A predicate c/s ⇓ s′ meaning
command c, started in state s, terminates in state s′.

skip/s ⇓ s x := a/s ⇓ s[x← [[a]] s]

c1/s ⇓ s′ c2/s′ ⇓ s′′

c1; c2/s ⇓ s′′

c1/s ⇓ s′ if [[b]] s = true

c2/s ⇓ s′ if [[b]] s = false

if b then c1 else c2/s ⇓ s′

[[b]] s = false

while b do c/s ⇓ s

[[b]] s = true c/s ⇓ s′ while b do c/s′ ⇓ s′′

while b do c/s ⇓ s′′

29

Formalizing non-interference

(We restrict ourselves to two levels, L and H.)

Define equality at level L between two states:

s1
L
≈ s2

def
= ∀xL, s1(xL) = s2(xL)

A L expression has the same value in two states that are L
≈:

[[a]] s1 = [[a]] s2 if ⊢ a : L and s1
L
≈ s2

[[b]] s1 = [[b]] s2 if ⊢ b : L and s1
L
≈ s2

A H command does not modify L variables:

if H ⊢ c : ∗ and c/s ⇓ s′ then s
L
≈ s′

30

Proof of non-interference

Theorem

If pc ⊢ c : ∗ and s1
L
≈ s2 and c/s1 ⇓ s′1 et c/s2 ⇓ s′2, then s′1

L
≈ s′2.

s1 s2

s′1 s′2

L
≈

L
≈

execution of c execution of c

Proof.
By induction on the derivation of c/s1 ⇓ s′1 and case over c.

31

Proof of non-interference

Assignment case xℓ := a:

s1 s2

s1[xℓ ← [[a]] s1] s2[xℓ ← [[a]] s2]

L
≈

L
≈

execution of xℓ := a execution of xℓ := a

If ℓ = L, by typing hypothesis ⊢ a : L, hence [[a]] s1 = [[a]] s2

and L
≈ holds for the modified states.

If ℓ = H, no L variable is modified,
therefore L

≈ holds for the modified states.

32

Proving non-interference

Conditional case if b then c′ else c′′:

s1 s2

s′1 s′2

L
≈

L
≈

execution of c′

or of c′′
execution of c′

or of c′′

If ⊢ b : L, we have [[b]] s1 = [[b]] s2, hence both executions take the
same branch c′ or c′′. By induction hypothesis we have s′1

L
≈ s′2.

If ⊢ b : H, both executions can take different branches. But by
typing hypothesis we have H ⊢ c′ : ∗ and H ⊢ c′′ : ∗ .
Hence s1

L
≈ s′1 and s2

L
≈ s′2, and finally s′1

L
≈ s′2.

33

Termination as an information flow

The preceding type system and non-interference criterion are
termination insensitive: we consider only the case where both
program runs terminate.

However, a program can terminate or diverge depending on the
value of a secret:

if sH < 0 then skip else diverge

where diverge is the infinite loop while true do skip done.

This program “leaks” the sign bit of sH.

Generally, we consider that observing termination or divergence
transmits at most one bit of information to an attacker.

34

Termination as an information flow

(Askarov, Hunt, Sabelfeld et Sands, Termination-Insensitive Noninterference
Leaks More Than Just a Bit, ESORICS 2008.)

This is no longer true if the program can communicate over a
public channel:

iL := 0;

while true do

output iL;

if iL = sH then diverge else skip;

iL := iL + 1

done

The secret value of sH is the last integer sent by the program
before diverging and going silent.

This kind of attack leaks k bits of information in time O(2k).
35

Concurrency and termination

If the language supports concurrent executions, we can easily
leak k bits in time O(k):

if sH land 1 = 0 if sH land 2k−1 = 0
then diverge . . . then diverge

else skip; else skip;

output 0 output (k− 1)

36

Enforcing equitermination by typing

We can strengthen the typing rule for while loops:

⊢ b : L L ⊢ c : ∗

L ⊢ while b do c

This guarantees that

• The loop condition does not depend on H variables.
(No while xH = 0 do skip done.)

• A conditional at level H contains no loops.
(No if xH = 0 then diverge else skip.)

37

Termination-sensitive non-interference

Two runs of a program c from two states related by L
≈ either both

terminate or both diverge.

Theorem

If pc ⊢ c : ∗ and s1
L
≈ s2 and c/s1 ⇓ s′1,

there exists s′2 such that c/s2 ⇓ s′2 and s′1
L
≈ s′2.

initial state 1 initial state 2

final state 1 final state 2

same values
for the xL

same values
for the xL

program
execution

program
execution

38

Higher order languages: functions as values

Starting with a standard type system, we add levels on types:

τ ::= intℓ | boolℓ base types
| (σ → τ)ℓ functions
| list(τ)ℓ lists

The ⊑ order over levels induces a subtyping relation:

ℓ ⊑ ℓ′

intℓ <: intℓ
′

σ′ <: σ τ <: τ ′ ℓ ⊑ ℓ′

(σ → τ)ℓ <: (σ′ → τ ′)ℓ
′

39

Typing rules for a purely functional language

Γ ⊢ n : intℓ
Γ ⊢ e : σ σ <: τ

Γ ⊢ e : τ

Γ, x : σ ⊢ e : τ

Γ ⊢ λx.e : (σ → τ)ℓ

Γ ⊢ e1 : (σ → τ)ℓ Γ ⊢ e2 : σ ℓ ⊑ Label(τ)

Γ ⊢ e1 e2 : τ

Γ ⊢ e1 : bool
ℓ Γ ⊢ e2 : τ Γ ⊢ e3 : τ ℓ ⊑ Label(τ)

Γ ⊢ if e1 then e2 else e3 : τ

Where Label(intℓ) = ℓ, Label((σ → τ)ℓ) = ℓ, etc.

40

Adding mutable state

(F. Pottier, V. Simonet, Information flow inference for ML, 2002, 2003.)

Types: τ ::= intℓ | boolℓ base types
| (σ pc−→ τ)ℓ functions
| list(τ)ℓ lists
| ref(τ)ℓ mutable references

We now need to track implicit flows by adding a level pc both to
the typing judgment

pc, Γ ⊢ e : τ

and to function types as a latent effect

(σ
pc−→ τ)ℓ

41

Typing rules for functions + mutable state

pc, Γ ⊢ e1 : ref(τ)
ℓ pc, Γ ⊢ e2 : τ ℓ ⊔ pc ⊑ Label(τ)

pc, Γ ⊢ e1 := e2 : unit

pc, Γ ⊢ e1 : bool
ℓ pc ⊔ ℓ, Γ ⊢ e2 : τ pc ⊔ ℓ, Γ ⊢ e3 : τ ℓ ⊑ Label(τ)

pc, Γ ⊢ if e1 then e2 else e3 : τ

pc′, Γ, x : σ ⊢ e : τ

pc, Γ ⊢ λx.e : (σ
pc′−→ τ)ℓ

Γ ⊢ e1 : (σ
pc′−→ τ)ℓ Γ ⊢ e2 : σ ℓ ⊑ Label(τ) pc ⊑ pc′

pc, Γ ⊢ e1 e2 : τ

42

Program logics and self-composition

Limitations of type systems for information flow

Type systems for information flow are sometimes too strict and
reject programs that contain no dangerous flows and satisfy the
non-interference property.

Examples: (s is at level H and x at level L)

x := s; x := 0

x := x + s; ...; x := x - s

assert (s >= 0);

x := s;

while x > 0 do ... ; x := x - 1 done

In all three programs, the final value of x doesn’t depend on the
initial value of s.

43

Verifying non-interference with a program logic

For a given program c, we would like to verify directly the
non-interference property

s1
L
≈ s2 ∧ c/s1 ⇓ s′1 ∧ c/s2 ⇓ s′2 =⇒ s′1

L
≈ s′2

using an appropriate program logic.

(See also: my 2020–2021 lectures on program logics.)

44

Hoare logic (recap)

A set of deduction rules for the predicate

{ P } c {Q }

which means
∀s, s′, P(s) ∧ c/s ⇓ s′ ⇒ Q(s′)

Preconditions P and postconditions Q are predicates over
memory states s.

45

Relational Hoare logic

A set of deduction rules for the predicate

{ P } c1 | c2 {Q }

which means

∀s1, s2, s′1, s′2, P(s1, s2) ∧ c1/s1 ⇓ s′1 ∧ c2/s2 ⇓ s′2 ⇒ Q(s′1, s′2)

Preconditions P and postconditions Q are relations between two
memory states s1, s2.

Application to non-interference: a program c satisfies the
non-interference condition if and only if

{
L
≈} c | c {

L
≈}

46

Selected “diagonal” rules

(D. A. Naumann, 37 years of relational Hoare logic, 2020)

{Q[x1 ← a1, x2 ← a2] } x1 := a1 | x2 := a2 {Q }

{ P } c1 | c2 {Q } {Q } c′1 | c′2 {R }

{ P } c1; c′1 | c2; c′2 {R }

{ P ∧ b1 ∧ b2 } c1 | c2 {Q } { P ∧ ¬b1 ∧ ¬b2 } c′1 | c′2 {Q }
{ P ∧ b1 ∧ ¬b2 } c1 | c′2 {Q } { P ∧ ¬b1 ∧ b2 } c′1 | c2 {Q }

{ P } if b1 then c1 else c′1 | if b2 then c2 else c′2 {Q }

Q⇒ b1 = b2 ∨ (b1 ∧ L) ∨ (b2 ∧ R)
{Q ∧ b1 ∧ b2 ∧ ¬L ∧ ¬R } c1 | c2 { P }

{Q ∧ b1 ∧ L } c1 | skip {Q } {Q ∧ b2 ∧ R } skip | c2 {Q }

{Q } while b1 do c1 done | while b2 do c2 done {Q ∧ ¬b1 ∧ ¬b2 }

47

Selected “left” rules (+ “right” rules by symmetry)

{Q[x1 ← a1] } x1 := a1 | skip {Q }

{ P } c1 | skip {Q } {Q } c′1 | c′2 {R }

{ P } c1; c′1 | c′2 {R }

{ P ∧ b1 } c1 | c2 {Q } { P ∧ ¬b1 } c′1 | c2 {Q }

{ P } if b1 then c1 else c′1 | c2 {Q }

{ P } while b1 do c1 done | c2 {Q }
{Q } while b1 do c1 done | c′2 {R } Q ∧ ¬b1 ⇒ R

{ P } while b1 do c1 done | c2; c′2 {R }

48

Reduction to usual Hoare logic

(N. Francez, Product properties and their verification, 1983)

If the variables V1 used by c1 are distinct from the variables V2

used by c2, then

{ P̄ } c1; c2 { Q̄ } implies { P } c1 | c2 {Q }

where P̄ is the predicate obtained from the relation P by

P̄(s) def
= P(s|V1 , s|V2)

Proof sketch: if c1/s1 ⇓ s′1 and c2/s2 ⇓ s′2, we can assume Dom(si) ⊆ Vi

and Dom(s′i) ⊆ Vi. Then, we can derive

c1/(s1 ⊎ s2) ⇓ (s′1 ⊎ s2) c2/(s′1 ⊎ s2) ⇓ (s′1 ⊎ s′2)

c1; c2/(s1 ⊎ s2) ⇓ (s′1 ⊎ s′2)

49

Self-composition

(G. Barthe, P. D’Argenio, T. Rezk, Secure information flow by self-composition,
2004)

To show non-interference for a program c, it therefore suffices to
take two copies of c where variables are renamed:

c1 = c{x← x1 | x ∈ Vars(c)} c2 = c{x← x2 | x ∈ Vars(c)}

then show, in usual Hoare logic, that

{ L } c1; c2 { L }

where L is the assertion “renamed L variables are equal”:

L =
∧
{x1 = x2 | x ∈ Vars(c), x at level L}

50

Example of verification by self-composition

Consider the program x := x + s; x := x − s

{ x1 = x2 } ⇒
{ (x1 + s1)− s1 = (x2 + s2)− s2 }

x1 := x1 + s1;

{ x1 − s1 = (x2 + s2)− s2 }
x1 := x1 − s1;

{ x1 = (x2 + s2)− s2 }
x2 := x2 + s2;

{ x1 = x2 − s2 }
x2 := x2 − s2;

{ x1 = x2 }

51

Example of verification by self-composition

Consider assert(s ≥ 0); x := s; while x > 0 do x := x−1 done

{ x1 = x2 } ⇒
{ T }

assert(s1 ≥ 0); { s1 ≥ 0 }
x1 := s1; { x1 ≥ 0 }
while x1 > 0 do { x1 > 0 }

x1 := x1 − 1 { x1 ≥ 0 }
done; { x1 = 0 }
assert(s2 ≥ 0); { x1 = 0 ∧ s2 ≥ 0 }
x2 := s2; { x1 = 0 ∧ x2 ≥ 0 }
while x2 > 0 do { x1 = 0 ∧ x2 > 0 }

x2 := x2 − 1 { x1 = 0 ∧ x2 ≥ 0 }
done; { x1 = 0 ∧ x2 = 0 }

⇒ { x1 = x2 }

52

Declassification and endorsement

A declassified document

53

Declassification

Voluntary downgrading of the confidentiality level for some
results.

Example: checking a password.

let checkpwd (input: stringH) (hashed_password: stringH)

: boolL =

let res : boolH = (hash(input) = hashed_password) in

declassify(res)

Some declassification technique:

• Manual redaction + stamp of approval / crypto signature
• Reveal a very small part of the secret (as in checkpwd)
• Encrypt or hash the secret

54

Endorsement

Voluntary upgrading of the integrity level for some inputs.

Example: validating a ZIP code entered on a Web page.

let checkzip (input: stringL) : stringH =

if DB.search zip_database input = Found

then endorse(input)

else raise "bad ZIP code"

Some endorsemet techniques:

• Manual checks + stamp of approval / crypto signature
• Cross-checking against reliable databases (as in checkzip).

55

Declassification as a function?

It is dangerous to offer declassification as a function H→ L
that can be used arbitrarily many times.

Example: assuming checkpwd : stringH → stringH → boolL,
we can leak all the bits of a secret sH.

for bH in bits(sH) do

let cH = if bH then "1" else "0" in

let zL = checkpwd cH (hash("1")) in

output(zL)

done

56

Declassification as a function?

It is dangerous to offer declassification as a function H→ L
that can be used arbitrarily many times.

Example: with an encryption function
encrypt : keyH → stringH → stringL.

for bH in bits(sH) do

let cH = if bH then "X" else "" in

let zL = enc kH cH in

output(zL)

done

All the bits leak if encryption preserves the length of the
cleartext, or if encryption is deterministic.

56

Global declassification policies

(Li & Zdancewicz, Downgrading Policies and Relaxed Noninterference, 2015.)

A set of functions Fi that can be applied to the secret inputs of
the program (but not to other arguments) to produce declassified
data.

Consider the following program:

let checkpwd (input: stringH) (hashed: stringH) =

hash(input) = hashed

Take the declassification function F(i, h) = (hash(i) = h).

The value F(input, hashed) = (hash(input) = hashed)

is declassified and usable at level L.

Any other comparison of hashes is not declassified.
57

Declassification and non-interference

Relaxed non-interference criterion: the outputs of level L depend
only on inputs of level L and on declassified values, that is, the
values of the Fi applied to H inputs.

In relational Hoare logic:

{
L
≈ ∧ D } c | c {

L
≈}

where D expresses equality of declassified values in both states:

D(s1, s2)
def
=

∧
i

Fi(sH
1) = Fi(sH

2)

58

Summary

Summary on multi-level security and information flow

“Military-style” multi-level security systems, as studied by Bell
and LaPadula, are not very common . . .

. . . but many systems (Android, iOS, Windows) include integrity
policies in the style of Biba . . .

. . . and similar confidentiality and integrity problems appear in
many other contexts, notably Web pages.

The notion of information flow is crucial to ensure confidentiality
and integrity of data.

59

Summary on information flow analysis

The analysis of information flow (by typing or by program logics)
is very strict. . .

. . . but very effective to identify the points in the code where
declassification or endorsement takes place

. . . and has other uses,
for instance to ensure “constant time” execution (→ 4th lecture).

60

Going further

Typing information flow for “real” languages:
functions, objects, exceptions, concurrency, nondeterminism, . . .

(See for instance JIF, “Java + Information Flow” by Myers et al,
https://www.cs.cornell.edu/jif/.)

Accounting for other information channels:
execution time (→ 4th lecture), power usage, electromagnetic
emissions, . . .

Reasoning over the quantity of information that leaks:
information theory, Bayesian models.

(See Alvim et al, The Science of Quantitative Information Flow, Springer,
2020.)

61

https://www.cs.cornell.edu/jif/

	Multi-level security and information flow
	Information flow in a program
	Static typing of information flow
	Program logics and self-composition
	Declassification and endorsement
	Summary

