
Program logics, seventh lecture

Logics for functional, higher-order languages

Xavier Leroy
2021-04-15

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Which program logics
for functional languages?

Do we need a program logic for a functional language?

No, if the functions that can be defined in the language are also
functions of the ambient logic:

• total functions (no divergence, no errors)
• without e�ects (no imperative features).

Example: functions definable in Coq or in Agda are objects of the
ambient logic (type theory).

In this case, propositions and proofs from the ambient logic work
just as well as Hoare triples:

∀x, P x⇒ Q x (f x) instead of { P } f x {Q }

2

Do we need a program logic for a functional language?

Probably yes, if the functional language has e�ects:

• divergence;
• run-time errors;
• mutable state, input/output;
• exceptions, continuations, algebraic e�ects, . . .

We can reason “manually” on e�ectful functional programs,
typically via a monadic translation back to a pure functional
language.

However, an appropriate program logic provides higher-level,
more convenient tools for specification and verification.

3

Example: reasoning about mutable state

We can represent an imperative computation in Coq as a state
transformer: a pure function

state “before”→ value× state “after”

Stating and proving properties of these computations is painful:

forall x s, valid x s ->

let (y, s’) := f x s in

~valid y s /\ valid y s’ /\ s’ x = 0 /\ s’ y = s x /\

(forall l, l <> x -> l <> y -> s’ l = s l).

In separation logic, it su�ces to write

∀x, { x 7→ n } f x {λy. x 7→ 0 V y 7→ n }

4

Example: reasoning about non-termination

Several possible representations for computations that may not
terminate (e.g. with general recursion) (lecture of 2020-01-30).

For example: Capretta’s partiality monad (2005)

CoInductive delay (A: Type) : Type :=

| now: A -> delay A

| later: delay A -> delay A.

The weak triple { P } c {Q } becomes P→ safe c Q, where safe is
the following coinductive predicate:

CoInductive safe {A: Type}: delay A -> (A -> Prop) -> Prop :=

| safe_now: forall a Q, Q a -> safe (now a) Q

| safe_later: forall c Q, safe c Q -> safe (later c) Q

5

Outline

Two courses of action in this lecture:

• How can we extend Hoare logic and separation logic to deal
with functions, including higher-order functions and
functions as first-class values?
Example: Iris.

• How can we use higher-order functions and dependent
types to express program logics?
Examples: F*, CFML.

6

First-order procedures and functions
in Hoare logic and in separation logic

Procedures in Hoare logic

An early extension of Hoare’s original logic.

A practical motivation: verifying Quicksort. (Foley and Hoare, 1971)

A principle of modular reasoning:
Procedures support reusing code in several call contexts.
Can we reuse the verification of this code? (instead of re-
verifying it at each call context)

Clarifying the semantics of procedures: variable bindings,
parameter passing mechanisms, etc.

7

A reverse chronological presentation

Hoare logic rules for procedures are complicated, because they
must control mutations over variables.

We follow Parkinson, Bornat and Calcagno (2006):

• First, we add procedures and functions to the PTR language
(where variables are immutable but can be references to
mutable memory cells), and give them separation logic rules.

• Second, for reference, we extend IMP with procedures and
outline the corresponding rules in Hoare logic.

8

Functions in PTR

Commands: c ::= . . .

| let f (~x) = c in c′ function definition
| f (~a) function call

These are imperative functions, in the style of C or ML:
they can modify the state before returning a value.

Example: the minmaxplus function.

let minmaxplus (x, y,m,M) =

if x < y then (set(m, x); set(M, y))

else (set(m, y); set(M, x));

x + y

9

Specifying a function

Specification of the form { P } f (~x) {Q } where P and Q are
separation logic assertions.

Example: the minmaxplus function.

{m 7→ V M 7→ }
minmaxplus (x, y,m,M)

{λv.〈v = x + y〉 V m 7→ min(x, y) V M 7→ max(x, y) }

Example: a function incr(d) that adds d to a global counter c and
return the previous value of c.

∀α, { c 7→ α } incr (d) {λv. 〈v = α〉 V c 7→ α + d }

10

Rules for functions

A context Γ = a set of function specifications.

Function calls:

({ P } f (~x) {Q }) ∈ Γ

Γ ` { P[~x← [[~a]]] } f (~a) {Q[~x← [[~a]]] }

Function definitions:

Γ′ = Γ, { P } f (~x) {Q }
∀~x, Γ′ ` { P } c {Q }
Γ′ ` { P′ } c′ {Q′ }

Γ ` { P′ } let f (~x) = c in c′ {Q′ }

11

Hoare’s rule for recursion

Γ, { P } f () {Q } ` { P } c {Q }

Γ ` { P } f () {Q }

Coinductive viewpoint: we can use the conclusion as an
hypothesis, provided it is guarded by at least one rule.

Step-indexing viewpoint: to prove that the triple { P } f () {Q } is
valid for n steps of computation, we can assume it is valid for
j < n steps.

Modal viewpoint: this is Löb’s rule for the B modality

Q ∧BP ` P

Q ` P
12

An example of verification

Using the specification { x 7→ } slowset (x, n) { x 7→ n }

let slowset (x, n) = { x 7→ }
if n = 0 then

set(x, 0) { x 7→ 0 }
else

slowset (x, n− 1); { x 7→ n− 1 }
let v = get(x) in set(v, x + 1) { x 7→ n }

in

{ a 7→ V b 7→ }
slowset(a, 2); { a 7→ 2 V b 7→ }
slowset(b, 3) { a 7→ 2 V b 7→ 3 }

13

Back to IMP and Hoare logic

Commands:
c ::= . . .

| local x in c local variable
| let f (var ~x; val ~y) = c in c′ procedure definition
| f (~x,~a) procedure call

Parameters ~x are passed by reference.
The corresponding arguments are variables.

Parameters ~y are passed by value.
The corresponding arguments are expressions.

Example: minimum and maximum.

let minmax (var m,M; val x, y) =

if x < y then (m := x;M := y) else (m := y;M := x)
14

Rules for procedures with parameters

The specification of a procedure is a triple with additional
information on the variables used:

{ P } f (var ~x, val ~y) [uses ū, modifies v̄] {Q }

ū is the set of non-local variables mentioned (free) in f .

v̄ is the set of non-local variables modified by f .

Procedure calls:

({ P } f (var ~x, val ~y) [uses ū, modifies v̄] {Q }) ∈ Γ

~w ∩ (ū ∪ v̄) = ∅

Γ ` { ~α = ~a ∧ P[~x← ~w,~y ← ~α] } f (~w,~a) {Q[~x← ~w,~y ← ~α] }

15

Rules for procedures with parameters

Procedure definitions:

Γ′ = Γ, { P } f (var ~x, val ~y) [uses ū, modifies v̄] {Q }
ū = freeΓ(c) \ (~x ∪~y) v̄ = modsΓ(c) \ (~x ∪~y)

~z ∩ free(P,Q, c,~x,~y) = ∅

Γ′ ` { P } local~z in~z := ~y; c[~y ← ~z] {Q }
Γ′ ` { P′ } c′ {Q′ }

Γ ` { P′ } let f (var ~x; val ~y) = c in c′ {Q′ }

16

Rules for local variables

The correct rule (= static scoping discipline):

{ P } c[x← y] {Q } y /∈ free(c, P,Q)

{ P } local x in c {Q }

An appealing but wrong rule (= dynamic scoping):

{ P[x← y] } c {Q[x← y] } y /∈ free(c, P,Q)

{ P } local x in c {Q }

17

Functions as first-class values in
separation logic

PTR with first-class functions

Expressions: a ::= . . .

| rec f x = c function abstraction
Commands: c ::= a | . . .

| a1 a2 function application

A nonrecursive function λx. c is handled as a recursive function
rec f x = c with f not free in c.

Semantics: the familiar β-reduction rule.

(rec f x = c) a/h → c[x← [[a]], f ← rec f x = c]/h

18

Hoare triples as assertions

Assertions, preconditions:
P ::= 〈A〉 | emp | ` 7→ v | P1 V P2 | . . .
| { P } c {Q } Hoare triple

Postconditions:
Q ::= λv. P

Triple assertions can be duplicated:

{ P } c {Q } = { P } c {Q } V { P } c {Q }

19

Rules for functions

Recursive abstraction:
∀v, { P } (rec f x = c) v {Q } ⇒

∀v, { P } c[x← v, f ← rec f x = c] {Q }

∀v, { P } (rec f x = c) v {Q }

Nonrecursive abstraction (derived rule):
{ P } c[x← v] {Q }

{ P } (λx.c) v {Q }

Moving the triple in / out of the precondition:

(∀~v, { P1 } c1 {Q1 })⇒ { P2 } c2 {Q2 }

{ (∀~v, { P1 } c1 {Q1 }) V P2 } c2 {Q2 }
20

Specifying a higher-order function

Consider the function app = λf . f 0.

We would like to give it the following specification:
“if f is positive valued, app f returns a positive number”.

Writing Q = λx. 〈x > 0〉 the postcondition “returns a positive
number”, we can derive

(∀v, { emp } f v {Q })⇒ { emp } f 0 {Q }

{ ∀v, { emp } f v {Q } } app f {Q }

21

Representing an object with an internal state

class Counter {

private int val;

Counter() { val = 0 }

int curr() { return val; }

void incr() { val += 1; }

}

An implementation in PTR:

let mkpair = λx. λy.
let p = alloc(2) in set(p, x); set(p + 1, y); p in

let counter = λ .

let val = alloc(1) in

mkpair (λ . get(val))

(λ . let n = get(val) in set(val, n + 1))

22

Representation predicate

We define the predicate Counter(p, n), “at location p there is a
counter whose current value is n”, as follows:

∃curr, incr, val, p 7→ curr V p + 1 7→ incr V val 7→ n
V { val 7→ n } curr () {λv. 〈v = n〉 V val 7→ n }
V { val 7→ n } incr () {λ . val 7→ n + 1 }

We can then prove

{ emp } counter () {λp. Counter(p, 0) }
{ Counter(p, n) } get(p) () {λv. 〈v = n〉 V Counter(p, n) }
{ Counter(p, n) } get(p + 1) () {λ . Counter(p, n + 1) }

23

Semantic soundness of the rule for recursion

∀v, { P } (rec f x = c) v {Q } ⇒
∀v, { P } c[x← v, f ← rec f x = c] {Q }

∀v, { P } (rec f x = c) v {Q }

Following our usual semantic approach, to prove the conclusion,
we study the reductions of the command:

(rec f x = c) v/h→ c[x← v, f ← rec f x = c]

The premise gives us a semantic triple for
c[x← v, f ← rec f x = c], but only if we have already proved

∀v, { P } (rec f x = c) v {Q }

that is, the desired result! This is circular reasoning!

24

Step-indexing to the rescue

Idea: in the definition of the semantic Hoare triple

{{ P }} c {{Q }} = ∀n, h, P h⇒ Safen c h Q

a function call within c consumes one reduction step. Therefore,
the function being called needs to be safe for n− 1 steps at most.

Consequently, Hoare triples appearing in precondition P only
need to be true “at depth n− 1”, not absolutely true.

25

Step-indexing to the rescue

An implementation of this idea: we index assertions by a step
count n. For the usual assertions, this count is ignored:

〈A〉 h n = Dom(h) = ∅ ∧ A
(` 7→ v) h n = Dom(h) = {`} ∧ h ` = v

but it is taken into account for “triple” assertions

({ P } c {Q }) h 0 = Dom(h) = ∅
({ P } c {Q }) h (n + 1) = Dom(h) = ∅ ∧ ∀h′, P h′ n⇒ Safen+1 c h′ Q

The semantic triple, then, becomes

{{ P }} c {{Q }} = ∀n > 0,∀h, P h (n− 1)⇒ Safen c h Q

26

The B modality to the rescue

An alternative to step-indexing is to use a modal logic with the B

modality (“later”).

This modality supports proofs by Löb induction:

Q ∧BP ` P

Q ` P

It also supports the definition of recursive predicates of the form

P x = . . .B P y . . .B P z . . .

27

The B modality to the rescue

In particular, we can define the predicate Safe c h Q
(“if c/h terminates, the final state satisfies Q”)
without step-indexing, simply as

Safe c h Q = (c = a⇒ Q [[a]] h)

∧ (c/h 6→ err)

∧ (∀c′, h′, c/h→ c′/h′ ⇒ BSafe c′ h′ Q)

This definition of Safe and of the semantic triple validates the
rule for recursive functions rec f x = c, by Löb induction.

28

More powerful rules

In the rules that correspond to an actual computation step, we
can weaken the precondition from P to BP.
(This lets us prove more results by Löb induction.)

∀v, { P } (rec f x = c) v {Q } ⇒
∀v, { P } c[x← v, f ← rec f x = c] {Q }

∀v, {BP } (rec f x = c) v {Q }

{ P } c[x← v] {Q }

{BP } (λx.c) v {Q }

{B` 7→ v } get(`) {λv′. 〈v′ = v〉 V ` 7→ v }

{B` 7→ } set(`, v) {λ . ` 7→ v }
29

CFML: reasoning about ML programs
using characteristic formulas

Characteristic formulas for pure programs

The characteristic formula [[t]] of a term t is its weakest
precondition calculus: [[t]] Q = wp(t,Q).

[[t]] : (dτe → Prop)︸ ︷︷ ︸
postcondition

→ Prop︸ ︷︷ ︸
precondition

if t : τ

Some representative cases:

[[v]] = λQ. Q dve
[[fail]] = λQ. ⊥

[[let x = t in t′]] = λQ. ∃R. [[t]] R ∧ (∀x,R x⇒ [[t′]] Q)

[[if v then t1 else t2]] = λQ. (dve ⇒ [[t1]] Q) ∧ (¬dve ⇒ [[t2]] Q)

30

Characteristic formulas for pure programs

The actual definition uses combinators to reflect the program
structure in the characteristic formula:

[[v]] = Ret dve [[f v]] = App dfe dve [[fail]] = Fail

[[let x = t in t′]] = Let x = [[t]] In [[t′]]

[[if v then t1 else t2]] = If dve Then [[t1]] Else [[t2]]

where the combinators are defined as

Ret V = λQ. Q V App F V = AppReturns F V Fail = λQ. ⊥
Let x = F In F′ = λQ. ∃R, F R ∧ (∀x, R x⇒ F′ Q)

If V Then F Else F′ = λQ. (V ⇒ F Q) ∧ (¬V ⇒ F′ Q)

31

Example of characteristic formula

let rec half x =

if x = 0 then 0 else if x = 1 then fail

else let y = half (x - 2) in y + 1

The body of function half becomes

If x = 0 Then Ret 0 Else If x = 1 Then Fail
Else Let y = App half (x − 2) In Ret (y + 1)

that is,

λQ. (x = 0⇒ Q 0) ∧ (x 6= 0⇒
(((x = 1)⇒ ⊥) ∧ (x 6= 1⇒
∃R, AppReturns half (x − 2) R ∧ (∀y,R y ⇒ Q(y + 1))))

32

Representing functions

A function is represented by a value of the abstract type Func.
The AppReturns operator associates a characteristic formula to
each function:

AppReturns : ∀A,B, Func→ A→ (B→ Prop)→ Prop

In other words, AppReturns f v Q is the precondition of
application f v with postcondition Q.

Each global function definition let rec f x = t introduces a fresh
constant f : Func and an axiom

∀x,Q, [[t]] Q⇒ AppReturns f x Q

33

Specifying functions

A function specification of the form { P } f x {Q } is expressed as
a lemma about AppReturns f :

∀x, P x⇒ AppReturns f x Q

In the previous example:

let rec half x =

if x = 0 then 0 else if x = 1 then fail

else let y = half (x - 2) in y + 1

Here are two plausible specifications:

∀n, n ≥ 0⇒ AppReturns f (2× n) (λv. v = n)

∀n, n ≥ 0 ∧ even(n)⇒ AppReturns f n (λv. v = n/2)

34

Specifying higher-order functions

A parameter f that is a function is specified via hypotheses on
AppReturns f .

let app f = f 0

A specification: “if f is positive valued, then app f returns a
positive number”.

∀f , (∀x, AppReturns f x (λv. v ≥ 0))⇒ AppReturns app f (λv. v ≥ 0)

A more precise specification: “app f satisfies all the
postconditions that f 0 satisfies”.

∀f ,Q, AppReturns f 0 Q⇒ AppReturns app f Q

35

Characteristic formulas for imperative programs

The full CFML system also handles imperative ML programs (with
references to mutable state).

Preconditions and posconditions use separation logic assertions
heap→ Prop instead of propositions Prop.

Characteristic formulas are no longer a weakest precondition
calculus (functions postcondition→ precondition), but relations
between preconditions and postconditions:

[[t]] : (heap→ Prop)︸ ︷︷ ︸
precondition

→ (dτe → heap→ Prop)︸ ︷︷ ︸
postcondition

→ Prop if t : τ

36

F*: dependent types
and monads for verification

Dependent types, preconditions, postconditions

In a dependently-typed functional language (such as Agda, Coq,
F*), we can write types that express both value types and logical
propositions:

∀x : A. P(x)→ B functions taking an x : A
and a proof of P(x)

{ y : A | Q(y) } pairs of a y : A and a proof of Q(y)

Example (a precise type for the “square root” function)

∀n : Z, n ≥ 0→ { r : Z | r ≥ 0 ∧ r2 ≤ n < (r + 1)2}

37

A type of Hoare triples

Idea: use dependent types to define a type M P A Q of
computations c of type A that satisfy the triple { P } c {Q }.

For pure computations, we take

M (P : Prop) (A : Type) (Q : A→ Prop) : Type := P→ { a : A | Qa }

This type is a monad, with the monadic operations

ret v = λp. 〈v, p〉
bind m f = λp. let 〈v, q〉 = m p in f x q

38

Hoare monads

The interesting aspect of these monadic operations is their types:

ret : ∀(A : Type) (a : A)(Q : A→ Prop), M (Q v) A Q

bind : ∀(A B C : Type) (P : Prop) (Q : A→ Prop) (R : B→ Prop),

M P A Q→ (∀x : A,M (Q x) B R)→ M P A R

These types correspond exactly to rules of Hoare logic
(in the style of the PTR language):

{Q [[a]] } a {Q }
{ P } c {Q } ∀x, {Q x } c′ {R }

{ P } let x = c in c′ {R }

39

“The” Hoare monad: mutable state

(Nanevski et al, Hoare Type Theory (2006); Ynot (2008))

If State is the type of states, the usual state monad is

ST A = State→ A× State (state “before”→ value, state “after”)

The corresponding Hoare monad is

ST P A Q = ∀s : State, P s→ { (a, s′) | Q a s′ }

with P : State→ Prop and Q : A→ State→ Prop

(assertions about the state).

ret and bind have their usual types.

40

Imperative operations

We can give types to mutable state operations that correspond to
the “large rules” of separation logic:

get ` : ∀v,R, ST (` 7→ v V R) Z (λr. 〈r = v〉 V ` 7→ v V R)

set ` v : ∀R, ST (` 7→ V R) unit (λ . ` 7→ v V R)

alloc : ∀R, ST R addr (λ`. ` 7→ V R)

free ` : ∀R, ST (` 7→ V R) unit (λ . R)

41

A separation monad

We can recover the “small rules” and gain the frame rule by
quantifying over all frames:

STsep P A Q = ∀R, ST (P V R) A (λv. Q v V R)

The frame rule corresponds to a retyping function:

frame R : STsep P A Q→ STsep (P V R) A (λv. Q v V R)

The “small rules” are here:

ret v : STsep emp A (λr. 〈r = v〉)
get ` : ∀v, STsep (` 7→ v) Z (λr. 〈r = v〉 V ` 7→ v)

set ` v : STsep (` 7→) unit (λ . ` 7→ v)

alloc : STsep emp addr (λ`. ` 7→)

free ` : STsep (` 7→) unit emp

42

Relational Hoare monad

For reference: the Ynot system of Nanevsky et al encodes an
relational Hoare logic, where the postcondition relates the initial
state and the final state:

STrel P A Q = ∀s, P s→ { (a, s′) | Q a s s′ }

with Q : A→ State→ State→ Prop.

This avoids using auxiliary variables in some rules, but
complicates the type of bind:

bind : ∀A,B, P1,Q1, P2,Q2,

STrel P1 A Q1 → (∀(a : A), STrel (P2 a) B (Q2 a))→ STrel P B Q

with P = λs1. P1 s1 ∧ ∀a, s2. Q1 a s1 s2 ⇒ P2 s2

and Q = λb, s1, s3. ∃a, s2. Q1 a s1 s2 ∧ Q2 a b s2 s3.

43

Summary on Hoare monads

It’s the “program and verify at the same time” approach
promoted by dependent types, implemented so that

• we can use e�ects;
• programming is done in a monadic style;
• verification is done in a Hoare logic style.

The embedding in Coq (the Ynot system) is hard to use:

• little inference of intermediate assertions;
• need retyping functions to materialize purely logical rules

(consequence, frame):

cons pre : (P′ → P)→ ST P A Q→ ST P′ A Q

44

The F* approach

The F* language also uses dependent types to program and to
verify in the presence of e�ects, but with a slightly di�erent
approach:

• Dijkstra monads instead of Hoare monads
(≈ weakest precondition calculus instead of triples).

• A custom type-checker that infers verification conditions
and solves them automatically if possible.

• A hierarchy of e�ects and monads, making it possible to
handle each part of the program with the minimum amount
of e�ects.

45

Dijkstra monads

Idea: for a computation c, instead of triples { P } c {Q }, consider
the predicate transformers W : POST → PRE
and the triples {W Q } c {Q } for all postconditions Q.

Example: the state monad.

PRE = State→ Prop

POST A = A→ State→ Prop

TRANSF A = POST A→ PRE

ST A (W : TRANSF A) = ∀Q, s, W Q s→ { (a, s′) | Q a s′ }

The type ST A W is the type of monadic computations producing a
value of type A and validating the “contract” W.

46

The operations of the Dijkstra state monad

RET (v : A) : TRANSF A = λQ. Q v

ret (v : A) : ST A (RET v) = λQ, s, p, 〈(v, s), p〉

For bind, with W1 : TRANSF A and W2 : A→ TRANSF B and
m : ST A W1 and f : ∀a : A, ST B (W2 a),

BIND W1 W2 : TRANSF B = λQ. W1 (λa. W2 a Q)

bind m f : ST A (BIND W1 W2) = . . .

Remark: the types of ret and bind always have the form above for all
Dijkstra monads; only the operators RET, BIND change.

Remark: RET and BIND also form a (continuation) monad!

47

The operations of the Dijkstra state monad

Operations on memory follow the same pattern:

GET ` : TRANSF Z = λQ, s, ` ∈ Dom(s) ∧ Q (s `) s

get ` : ST Z (GET `)

SET ` v : TRANSF unit = λQ, s, ` ∈ Dom(s) ∧ Q () s[`← v]

set ` v : ST unit (SET `)

ALLOC : TRANSF addr = λQ, s, ∀` /∈ Dom(s),Q ` s[`← 0]

alloc : ST addr ALLOC

FREE ` : TRANSF unit = λQ, s, ` ∈ Dom(s) ∧ Q () (s \ `)
free ` : ST unit (FREE `)

Remark: we can define get, set, . . . , in accordance with our definition of
ST; but we can also leave these operations abstract, which leads to an
axiomatization of a built-in “mutable state” e�ect.

48

The Dijkstra monad for exceptions

Postconditions describe both kinds of results: normal results and
exceptional results.

PRE = Prop

POST A = (A + exn)→ Prop

TRANSF A = POST A→ PRE

EXN A W = ∀Q : POST A, , W Q→ { r | Q r }
RET v = λQ. Q (left v)

BIND W1 W2 = λQ. W1 (λr. match r with

| left v ⇒ W2 v Q

| right e⇒ Q (right e))

49

A hierarchy of monads

PURE

DIV

ST EXN

ALL

GHOST

Each arrow corresponds to a monad transformer, for example

EXN A W → ALL A (EXN to ALL W)

50

Inferring the smallest monad = e�ect inference

Computations are automatically placed in the smallest monad
they need.

Example: the let rule for sequencing and binding.

Γ ` e1 : M1 τ1 W1 Γ, x : τ1 ` e2 : M2 τ2 W2

M = M1 t M2 W′
1 = M1 to M W1 W′

2 = M2 to M W2

Γ ` let x = e1 in e2 : M τ2 (M.BIND W′
1 (λx. W′

2))

51

Summary

Summary

A nice example of program logic for a functional language: F* and
its applications to the verification of cryptographic libraries.

Other approaches are possible, such as CFML and Iris.
No consensus.

Higher-order functions (map, iter, fold, . . .) are di�cult to
specify, especially in conjunction with mutable state.

52

A puzzle

The “awkward example” of Pitts and Stark:

let awkward =

let r = ref 0 in

fun f -> assert (!r mod 2 = 0); incr r; f(); incr r

The assertion fails if awkward is applied to itself. . .

What specifications can we give to awkward?

53

References

References

The F* language: https://www.fstar-lang.org/

The CFML system: https://www.chargueraud.org/softs/cfml/

Functions as first-class values in separation logic:

• L. Birkedal, A. Bizjak, Lecture Notes on Iris: Higher-Order
Concurrent Separation Logic, chapters 4 to 6.

54

https://www.fstar-lang.org/
https://www.chargueraud.org/softs/cfml/

THE END

55

	Which program logics for functional languages?
	First-order procedures and functions in Hoare logic and in separation logic
	Functions as first-class values in separation logic
	CFML
	F*
	Summary
	References

