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Sequential consistency:
an idealized model
for concurrent programming



Sequential consistency

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of
all the processors were executed in some sequential or-
der, and the operations of each individual processor ap-
pear in this sequence in the order specified by its program

(L. Lamport, 1978)

For a shared-memory system: the state of the shared memory is
the result of an interleaving of the memory operations of the
processes.
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Two sequentially-consistent (SC) implementations

1. Time-sharing on a monoprocessor.

2. Multiprocessor system with a single “port” to access memory.
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A straightforward formal semantics

Reminder from lecture #4:

Semantics for the c1 ‖ c2 construct:
an interleaving of the reductions of c1 and c2.

(a1 ‖ a2)/h→ 0/h (or any combination of a1 and a2)

(c1 ‖ c2)/h→ (c′1 ‖ c2)/h′ if c1/h→ c′1/h′

(c1 ‖ c2)/h→ (c1 ‖ c′2)/h′ if c2/h→ c′2/h′

(c1 ‖ c2)/h→ err if c1/h→ err or c2/h→ err

Our semantics for parallelism in PTR was already SC!

4



Programming in an SC model

The SC model defines precisely the semantics of concurrent
programs even when they contain race conditions.

This opens the way to concurrent algorithms that use race
conditions in a well-controlled manner.

These algorithms are useful when the atomic instructions of the
processor or the critical sections of the language are lacking or
too expensive.
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Peterson’s mutual exclusion algorithm

flag : bool[2] = {false, false}; turn : {0, 1};

flag[0] := true;

turn := 1;

while flag[1] ∧ turn = 1
do skip done;

// enter critical section
. . .

// leave critical section
flag[0] := false

flag[1] := true;

turn := 0;

while flag[0] ∧ turn = 0
do skip done;

// enter critical section
. . .

// leave critical section
flag[1] := false

With an enumeration of SC interleavings, we can show that both
processes are simultaneously in their critical sections only if
flag[0] = flag[1] = true ∧ turn = 0 ∧ turn = 1,
which is impossible.
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The ticket lock algorithm

A process that tries to enter the critical section

• takes the next ticket (atomic increment)
• waits for the number on its ticket to be displayed.

When it leaves the critical section, it ensures the next number is
displayed.
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The ticket lock algorithm

Two global variables: next and now_serving, initially 0.

lock() {
int t = fetch_and_add(&next, 1); // atomic increment
while (now_serving != t) pause(); // nonatomic read

}

unlock() {
now_serving = now_serving + 1; // nonatomic increment

}

The increment of next must be atomic
(otherwise two processes could get the same ticket).

Accesses to now_serving need not be atomic.
8



The real world:
weakly-consistent
memory models



A litmus test

A fragment of Dekker’s algorithm for mutual exclusion:

set(X, 1);

let a = get(Y)

set(Y, 1);

let b = get(X)

Initially, X = Y = 0.

In the SC model:

• either set(X, 1) executes first, and then b = 1 at the end;
• either set(Y, 1) executes first, and then a = 1 at the end.

Therefore, the final state a = b = 0 is impossible.
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Experimental refutation

We write the test in x86 assembly (to get full control on the code):

X86_64 Dekker

{ want0=0; want1=0; }

P0 | P1 ;

movl $1,(want0) | movl $1,(want1) ;

movl (want1),%eax | movl (want0),%eax ;

exists (0:rax=0 /\ 1:rax=0)

We execute the test with the litmus7 tool:

Test Dekker Allowed

Histogram (4 states)

178 *>0:rax=0; 1:rax=0;

1999870:>0:rax=1; 1:rax=0;

1999881:>0:rax=0; 1:rax=1;

71 :>0:rax=1; 1:rax=1; 10



Harsh reality

The sequential consistency model is respected

• neither by the modern hardware architectures
(in order to provide faster memory subsystems).

• nor by optimizing compilers
(in order to increase performance of generated code).
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Hardware: write bu�ers, store bu�ers
12 • L. Higham et al.

Fig. 2. Write-Buffer Architecture (for 2 processors).

work of Adir et al. and does not seem to be facilitated by their framework. It is
a distinctive feature of CMF, which this article demonstrates.

3. WRITE-BUFFER ARCHITECTURES

One common multiprocessor architecture, such as the SPARC multiprocessor,
associates a write-buffer with each processor as shown in Figure 2. The main
memory is single ported with a nondeterministic switch providing one memory
access at a time. Each write-buffer operates in parallel with the processor.

We contend that even the most permissive variant of any write-buffer ma-
chine will execute as follows: When a processor performs a write, it need not wait
for it to be committed to main memory. Instead, it is stored in the write-buffer,
which is responsible for committing pending writes to main memory. When a
read is issued by a processor, the processor’s associated write-buffer is checked
for pending writes to the same location. If there is any such write, the value
“to be written” by some such write to that location is returned. In this case, the
read completes without accessing main memory. Otherwise, the read accesses
main memory and returns the value of the location in main memory. Notice
that this basic machine has quite weak operational constraints. A read action
by some processor applied to some location can return any value written by the
same processor for the same location that is not yet committed. Furthermore,
operations need not be blocking; once the buffer action is complete, a process
can invoke its next operation in program order. However, accesses to any indi-
vidual location in main memory by any one processor are via a FIFO channel,
which connects the buffer and main memory. Therefore, for each location and

ACM Transactions on Computer Systems, Vol. 25, No. 1, Article 1, Publication date: February 2007.

(Higham, Jackson, Kawash, 2007)

Each processor puts its writes
in a bu�er while they are
transmitted to the shared
main memory.

Writes performed by a
processor are immediately
visible by this processor, but
not immediately by the other
processors.
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A non-SC execution

set(X, 1);

let a = get(Y)

set(Y, 1);

let b = get(X)

Processor 1 Processor 2
Time t = 0 puts X ← 1 puts Y ← 1

in its bu�er in its bu�er
Time t = 1 reads Y = 0 from

main memory
Time t = 2 reads X = 0 from

main memory
Time t = 3 sends X ← 1 to

main memory
Time t = 4 sends Y ← 1 to

main memory
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Hardware: out-of-order, speculative execution

The processor can reorder instructions on the fly, so as to start
long-running instructions earlier (e.g. memory reads).

write X; . . . ; read Y → read Y; write X; . . .

This out-of-order execution is often speculative: if the processor
realizes that X = Y, it cancels the anticipated read from Y, or
satisfies it with the value written to X (forwarding).
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Another non-SC execution

Machine code:

set(X, 1);

let a = get(Y)

set(Y, 1);

let b = get(X)

Code actually executed by the processor after on-the-fly
reordering:

let a = get(Y) in

set(X, 1)

let b = get(X) in

set(Y, 1)

The reordered code can obviously terminate with a = b = 0.
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Hardware: split memory accesses

A misaligned datum can span two cache lines, requiring two
memory accesses per access to the datum.

set(X, 0x12345678) let a = get(X)

can be executed like

set(X1, 0x1234);

set(X2, 0x5678);

let a1 = get(X1) in

let a2 = get(X2) in

let a = a1 << 16 | a2
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A non-SC with values “out of thin air”

set(X, 0x12345678) let a = get(X)

Starting from X = 0, we have two SC executions:
a = 0 or a = 0x12345678.

set(X1, 0x1234);

set(X2, 0x5678);

let a1 = get(X1) in

let a2 = get(X2) in

let a = a1 << 16 | a2

After splitting the memory accesses, a third result is possible:
a = 0x12340000, coming from a1 = 0x1234 and a2 = 0.

Note: the value 0x12340000 appears nowhere in the initial code.
It appears out of thin air!
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Possible remedies

Use barrier instructions that prevent the processor from
reordering certain memory accesses:

• “Strong” barrier: preserves ordering between accesses
before the barrier and accesses after the barrier.

• “Weak” barrier: preserves ordering between reads before the
barrier and accesses after the barrier.

Other instructions with special memory behaviors:

• “locked” instructions (the x86 lock prefix);
• load-acquire and store-release (Itanium, ARM);
• etc.
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Compiler optimizations: instruction reordering

The compiler can reorder independent reads and writes (at
addresses X, Y that are guaranteed to be di�erent).

Typically, reads are anticipated while writes are delayed.

write X; . . . ; read Y → read Y; write X; . . .

→ same non-SC behaviors as dynamic reordering by the
processor.
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Compiler optimization: factoring redundant reads

A special case of common subexpression elimination (CSE).

let a = get(X) in let a = get(X) in

. . . . . .

(no writes to X)  . . .

. . . . . .

let b = get(X) in let b = a in

. . . . . .
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A non-SC execution

let a = get(X) in

let b = get(Y) in

let c = get(X)

set(X, 1);

set(Y, 1);

With X = Y = 0 initially, no SC execution terminates with
(a, b, c) = (0, 1, 0).

After factoring of get(X), we have let c = a and the result
(a, b, c) = (0, 1, 0) is possible.
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Compiler optimizations: loop-invariant code motion

A computation performed repeatedly at each loop iteration can
be performed once before the loop:

t := j× 10;

for i = 0 to 99 do  for i = 0 to 99 do

A[i] := i + j× 10 A[i] := i + t
done done

This can break codes based on busy waiting:

t := get(X);

do  do

t := get(X) skip

while t = 0 while t = 0
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Possible remedies

Turn optimizations o�? Never!

Inform the compiler of which memory accesses implement
inter-process communications, so as to compile them specially:

• the volatile modifier (C,C++, Java)
• a library of low-level atomic operations (C/C++ 2011)
• etc.
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The low-level atomics in C/C++ 2011

Various atomic operations: read, write, fetch-and-add,
compare-and-swap, . . . .

Each operation is annotated with the consistency model
expected by the programmer:

memory_order_seq_cst sequential consistency
memory_order_acq_rel

memory_order_acquire

 just enough for
memory_order_release

 message passing
memory_order_consume

memory_order_relaxed no guarantees beyond atomicity
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DRF+ CSL = ♥
Concurrent separation logic
and the DRF guarantee



The Data Race Free (DRF) guarantee

A property of a relaxed memory model:

If a program executes in the SC model without race con-
ditions,

then it executes in the relaxed model exactly like in the
SC model.

In other words: for a program free of race conditions, the
relaxations of the memory model do not add more behaviors
beyond those permitted by SC.

This “DRF guarantee” seems to hold / is claimed to hold for all the
known memory models (hardware models + language models).
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The extended DRF guarantee

If a program comprising critical sections, atomic opera-
tions, and other synchronization devices executes in the
SC model without race conditions,

then it executes in the relaxed model exactly like in the
SC model,

provided the synchronization devices are correctly imple-
mented.

“Correctly implemented” = with enough memory barriers and
special instructions to rule out non-SC behaviors.
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Examples: implementing locks

x86: lock unlock

movl $1, %edx movb $0, (%rdi)

.L2: movl %edx, %eax

xchgb (%rdi), %al

testb %al, %al

jne .L2

Power: lock unlock

.L2: lbarx 9,0,3 lwsync

stbcx. 10,0,3 li 9,0

bne 0,.L2 stb 9,0(3)

isync

andi. 9,9,0xff

bne 0,.L2
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A subtle point of the x86 implementation

Before 1999, the Linux kernel implemented unlock with an
atomic instruction

lock; btr $0, (...)

instead of a nonatomic write

movb $0, (...)

A long discussion concluded that a nonatomic write is enough,
because the x86 memory model is TSO.

The write of 0 in the lock is not immediately visible by other
processes waiting for the lock. But when it becomes visible, all
preceding writes are already visible, and all preceding reads have
been performed.
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Compatibility with compiler optimizations

A great many compiler optimizations are sound for programs that
contain no race conditions.

(Sound = all behaviors of the optimized program are possible
behaviors of the original program. Optimization did not introduce
additional behaviors.)
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Compatibility with compiler optimizations10 Chapter 1. Introduction

Table 1.1: Validity of transformations in the DRF guarantee and in the JMM.

Transformation SC DRF guarantee JMM

Trace-preserving transformations ! ! !
Reordering normal memory accesses × ! ×
Redundant read after read elimination ! ! ×
Redundant read after write elimination ! ! !
Irrelevant read elimination ! ! !
Irrelevant read introduction ! ? ×
Redundant write before write elimination ! ! !
Redundant write after read elimination ! ! ×
Roach-motel reordering ×(!for locks) ! ×
External action reordering × ! ×

introduction, in Chapters 2, 3 and 4. The third column summarises our results4

for the Java Memory Model. We give a counterexample for each negative case

and we prove safety of all the valid transformations in Chapter 5.

1.5.1 Overview

We give a brief synopsis of each chapter here:

In Chapter 2, we introduce the trace semantics of concurrent shared-memory

programs. We view multi-threaded programs as sets of traces, which are se-

quences of memory operations, i.e., reads and writes, synchronisation operations,

such as locks, unlocks, and observable operations, such as output. We define the

executions of such programs as interleavings of these traces such that each read

has the same value as the most recent write to the same variable. The observ-

able behaviour of an execution is the sequence of all observable operations in the

execution. The set of observable behaviours of a program is the set of observable

behaviours of its executions. We say that a program is data race free if it cannot

access one shared variable from two different threads concurrently, where at least

one of the threads performs a write.

In Chapter 3, we prove safety of semantic elimination and reordering trans-

formations for data race free programs. We define the semantic transformations to

be relations on semantic programs, i.e., on sets of traces. A transformation from

4We have reported on this work in Ševč́ık and Aspinall (2008).

J. Ševčik, Program Transformations in Weak Memory Models, PhD, 2008.
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How to prove the absence of race conditions?

The assumption “the program has no race conditions in the SC
model” is strong! How to establish it?

• Ad-hoc proof.
• Type system (≈ Rust).
• Static analysis (Infer, etc).
• Deductive verification in concurrent separation logic!

Reminder (lecture #4): if J ` { P } c {Q }, then c executes without
race conditions in an interleaving semantics that is equivalent to
the SC model.
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The CSL guarantee (Concurrent Separation Logic)

If a program is provable in concurrent separation logic
(including critical sections, atomic sections, etc),

then it executes correctly in a relaxed memory model that
respects the DRF guarantee,

provided that critical sections and atomic sections are
correctly implemented.
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A direct proof of the CSL guarantee for a TSO model

We now show semantic soundness for concurrent separation
logic in a variant of our PTR language extended with write bu�ers
(TSO model):

Write bu�ers: s ::= ε | (`, v) · s

We consider whole-program configurations

( (c1/s1) ‖ · · · ‖ (cn/sn) ) / h

composed of n processes c1 . . . cn, each with its own bu�er si,
plus a global heap h.

We also consider local, per-process configurations

c/s/h
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Local reductions

At any time a process can perform the oldest write from its bu�er:

c/s · (`, v)/h→ c/s/h[`← v]

The base language constructs have their usual semantics:

(let x = a in c)/s/h→ c[x← [[a]]]/s/h

(let x = c1 in c2)/s/h→ (let x = c′1 in c2)/s′/h′

if c1/s/h→ c′1/s′/h′

(let x = c1 in c2)/s/h→ err if c1/s/h→ err
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Local reductions: imperative constructs

Imperative constructs write to s (the bu�er) and read from sB h,
the heap h updated as described by s:

εB h = h ((`, v) · s)B h = (sB h)[`← v]

get(a)/s/h→ (sB h)([[a]])/s/h if [[a]] ∈ Dom(sB h)

set(a, a′)/s/h→ 0/([[a]], [[a′]]) · s/h if [[a]] ∈ Dom(sB h)

get(a)/s/h→ err if [[a]] /∈ Dom(sB h)

set(a, a′)/s/h→ err if [[a]] /∈ Dom(sB h)

35



Local reductions: atomic sections

As in PTR, atomic sections execute in a single “big step”:

atomic(c)/s/h→ a/ε/h′ if c/s/h ∗→ a/ε/h′

atomic(c)/s/h→ err if c/s/h ∗→ err

However, the bu�er must be empty at the end of the atomic
section (≈ there is a write barrier at the end).

When we create a resource invariant, the bu�er must also be
empty, hence the mkinv(c) construct:

mkinv(c)/ε/h→ c/ε/h
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Global reductions

At each step we locally reduce one of the processes ci/si from the
parallel composition; the other processes are unchanged.

ci/si/h→ c′/s′/h′

(· · · ‖ (ci/si) ‖ · · · ) / h→ (· · · ‖ (c′/s′) ‖ · · · ) / h′

ci/si/h→ err

(· · · ‖ (ci/si) ‖ · · · ) / h→ err
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Semantic soundness of concurrent separation logic

For PTR in the SC model, we decomposed the current heap h in
three disjoint parts:

h = h1 ] hj ] hf

h1 is the private memory for c.
hj is the shared memory accessible to atomic sections.
hf is the “frame” memory, including the private memories of the
processes that execute in parallel with c.
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Semantic soundness of concurrent separation logic

For PTR in the TSO model, we decompose the main heap h and
the bu�er s for the current process c as follows:

h = hu ] hj sB hu = h1 ] hf

The main heap h decomposes into shared memory hj and
unshared memory hu.

The unshared memory hu, updated according to the bu�er s,
decomposes into h1, the private memory for c, and hf , the frame.

Equivalent presentation:

sB h = h1 ] hj ] hf with Dom(s) ∩ Dom(hj) = ∅
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The semantic triple

We define the semantic triple J |= {{ P }} c {{Q }} as follows:

J |= {{ P }} c {{Q }} def
= ∀n, h, P h⇒ Safen c h Q J

As in lecture #4, we have:

Safe0 c h Q J
Q [[a]] h

Safen+1 a h Q J

(∀a, c 6= a) · · ·

Safen+1 c h Q J
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The semantic triple

The recursive case: one reduction step for c/s/h.

∀a, c 6= a

∀s, h, hj, hf , sB h = h1 ] hj ] hf ∧ Dom(s) ∩ Dom(hj) = ∅ ∧ J hj ⇒
c/s/h 6→ err

∀s, h, hj, hf , c′, s′, h′,
sB h = h1 ] hj ] hf ∧ Dom(s) ∩ Dom(hj) = ∅
∧ J hj ∧ c/s/h→ c′/s′/h′

⇒ ∃h′1, h′j, s′ B h′ = h′1 ] h′j ] hf ∧ Dom(s′) ∩ Dom(h′j) = ∅
∧ J h′j ∧ Safen c′ h′1 Q

Safen+1 c h1 Q
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Validating the rules of the logic

It remains to show that this semantic triple J |= {{ P }} c {{Q }}
validates the rules of concurrent separation logic. The two
interesting cases deal with atomic sections.

emp ` { P V J } c {λv. Q v V J }

J ` { P } atomic c {Q }

At the end of the execution of c we have a decomposition
εB h′ = (h′1 ] h′j) ] ∅ ] hf that we rewrite as εB h′ = h′1 ] h′j ] hf .
It is crucial that the final bu�er s′ is ε, otherwise the constraint
Dom(s′) ∩ Dom(h′j) = ∅ could not be satisfied.
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Validating the rules of the logic

Consider adding an invariant J′ to J:

J V J′ ` { P } c {Q }

J ` { P V J′ } mkinv c {λv. Q v V J′ }

At the beginning of the execution, we have a decomposition
sB h = (h1 ] h′j) ] hj ] hf that we rewrite as
sB h = h1 ] (hj ] h′j) ] hf .

Here too we must enforce s = ε to satisfy
Dom(s) ∩ Dom(hj ] h′j) = ∅.
The mkinv construct forces the bu�er to be empty.
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A limitation and a strength

A limitation: our formalization fails to justify the implementation
of unlock(`) = atomic(set(`, 0)) by a normal write, without
flushing the store bu�er.

This is an aspect of TSO that our formalization does not capture.

A strength: this makes our proof reusable for memory models
that are more relaxed than TSO, in particular PSO (Partial Store
Ordering), where this optimization of unlock is invalid.
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From TSO to PSO

In the PSO model, writes to di�erent locations can be reordered,
and therefore “leave” the write bu�er in a di�erent order than
execution order:

c/s1 · (`, v) · s2/h→ c/s1 · s2/h[`← v] if ` /∈ Dom(s2)

Here, the write to ` “overtakes” the writes in s2.

This makes no di�erence for the soundness proof of the logic,
since

(s1 · (`, v) · s2)B h = (s1 · s2)B (h[`← v]) if ` /∈ Dom(s2)
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A logic for release-acquire



The release-acquire model

A write marked “release” guarantees that all preceding reads and
writes have been performed.

(No reordering of X; Wrel into Wrel; X.)

A read marked “acquire” guarantees that all following reads and
writes have not started yet.

(No reordering of Racq; X into X; Racq.)
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Use for message passing

// preparing the message
// nonatomic (na) writes
setna(msg, . . .);

setna(msg + 1, . . .);

setna(msg + 2, . . .);

// sending the message
setrel(ready, 1)

// waiting for the message
// read ready until 6= 0
while getacq(ready) = 0 do skip;

// accessing the message
// nonatomic reads
let x = getna(msg) in

. . .

A lightweight form of synchronization and resource transfer,
without mutual exclusion.
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Use for implementing locks

Unlocking a lock is just one release write:

unlock(`) = setrel(`, 0)

Locking a lock requires an atomic instruction such as Compare
And Swap, marked “acquire”:

lock(`) = while (CASacq(`, 0, 1) 6= 0) do skip

We can improve performance with a busy-wait loop using relaxed
reads:

spin(`) = while (getrlx(`) 6= 0) do skip

lock(`) = do spin(`) while (CASacq(`, 0, 1) 6= 0)
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Implementing the release/acquire model

For TSO architectures like x86: nothing to do!

• Ordinary writes have release semantics.
• Ordinary loads have acquire semantics.

For more relaxed architectures like Power and ARM:

• Memory barriers that are less costly than the barriers
needed to guarantee SC.
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Relaxed Separation Logic (Vafeiadis & Narayan, 2013)

A concurrent separation logic for a fragment of the low-level
atomics from C/C++ 2011.

c ::= a pure expression
| let x = c in c′ sequencing and binding
| if a then c1 else c2 conditional
| repeat c repeat until not 0
| c1 ‖ c2 parallel execution
| alloc() allocation
| getX(a) memory read
| setY(a, a′) memory write
| CASZ,X(a, a′, a′′) Compare And Swap

X ::= sc | acq | rlx | na type of read
Y ::= sc | rel | rlx | na type of store
Z ::= sc | rel acq | acq | rel type of CAS 50



Assertions in RSL

Assertions, preconditions:
P ::= 〈A〉 | true | P V P′

| ` π7→ v location ` contains v with permission π
| Acq(`,Φ) | Rel(`,Φ) resource invariants
| RMWAcq(`,Φ) resource invariant
| Init(`) invariant was established
| Uninit(`) location ` is freshly allocated

Postconditions, resource invariants:
Q,Φ ::= λv. P
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Nonatomic accesses

Nonatomic reads and writes follow standard separation logic:

{ emp } alloc() {λ`. Uninit(`) }
{ ` π7→ v } getna(`) {λx. 〈x = v〉 V `

π7→ v }
{Uninit(`) ∨ ` 17→ } setna(`, v) {λ . ` 17→ v }

(The role of Uninit is to prevent us from reading from a freshly
allocated memory location that has not been initialized yet.)
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Release writes, acquire reads

Rel(`,Φ) grants permission to write to location ` a value v
provided we have the resource Φ v.

Acq(`,Φ), in conjunction with Init(`), grants permission to read
from location `, obtaining a value v and the resource Φ v.

{ emp } alloc() {λ`. Rel(`,Φ) V Acq(`,Φ) }
{Rel(`,Φ) V Φ v } setrel(`, v) {Rel(`,Φ) V Init(`) }

{ Acq(`,Φ) V Init(`) } getacq(`) {λv. Φ v V Acq(`,Φ[v ← emp]) }

We can read the same value multiple times, but the second and
subsequent reads transfer no resources:

Φ[v ← emp]
def
= λv′. if v′ = v then emp else Φ v′.
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Example of resource transfer

We have a (nonatomic) bu�er b and an (atomic) flag x.
We take Φ = λv. if v = 0 then emp else b 17→ 53.

let x = alloc() in let b = alloc() in setrel(x, 0);

{Uninit(b) V Rel(x,Φ) V Init(x) V Acq(x,Φ) }

{Uninit(b) V Rel(x,Φ) }
setna(b, 53);

{ b 17→ 53 V Rel(x,Φ) }
⇒ {Φ 1 V Rel(x,Φ) }
setrel(x, 1)

{ Init(x) V Acq(x,Φ) }
repeat getacq(x);

{ ∃v 6= 0, Φ v } ⇒ { b 17→ 53 }
let n = getna(b) in

{ b 17→ 53 V 〈n = 53〉 }
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Multiple readers, multiple writers

Write permissions can be duplicated:

Init(`) = Init(`) V Init(`) Rel(`,Φ) = Rel(`,Φ) V Rel(`,Φ)

Read permissions can be split:

Acq(`, λv. Φ1 v V Φ2 v) = Acq(`,Φ1) V Acq(`,Φ2)

Example: one writer, two readers.

setna(a, 13);

setna(b, 17);

setrel(x, 1);

repeat getacq(x);

{ a 17→ 13 }
repeat getacq(x);

{ b 17→ 17 }
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Compare And Swap

{ emp } alloc() {λ`. Rel(`,Φ) V RMWAcq(`,Φ) }

RMWAcq permissions can be duplicated:

RMWAcq(`,Φ) V RMWAcq(`,Φ) = RMWAcq(`,Φ)

The rule for CASX,rlx:

P⇒ Init(`) V RMWAcq(`,Φ) V true

P V Φ v ⇒ Rel(`,Ψ) V Ψ v′ V R 1
P⇒ R 0

X ∈ {rel, rlx} ⇒ Φ v = emp X ∈ {acq, rlx} ⇒ Ψ v′ = emp

{ P } CASX,rlx(`, v, v′) {R }
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A logic for relaxed accesses



Relaxed reads and writes

Intuition: like a release write or an acquire load, but without
resource transfer.

{ Acq(`,Φ) } getrlx(`) {λv. 〈Φ v 6= false〉 }

Φ v = emp (i.e. Φ v is pure and true)

{Rel(`,Φ) } setrlx(`, v) {Rel(`,Φ) }

A modest application: control the set of all possible values for
location `, for instance Φ = λv. 〈0 ≤ v ≤ 10〉.
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Relaxed accesses and values out of thin air

Vafeiadis & Narayan point out that these rules are incorrect for
C/C++ 2011, since relaxed accesses are allowed to produce values
out of thin air.

let a = getrlx(X) in

setrlx(Y, a)

let b = getrlx(Y) in

setrlx(X, b)

Starting with X = Y = 0, we can (according to the C/C++ 2011
standard) end with X = Y = 1.

According to Vafeiadis & Narayan’s rules, Φ = λv. 〈v = 0〉 is a
correct invariant for X and for Y.
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The problem with values out of thin air

A major risk: they break type safety and open security holes.

A theoretical risk: no known architecture or compiler exhibits
“out of thin air” behaviors.

A specification problem: axiomatic definitions (using event
structures) of C11-style memory models have a hard time
distinguishing between

• behaviors involving values out of thin air;
• speculative behaviors (of the “load bu�ering” kind) that are

correct.
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A promising semantics

Kang et al (2017) describe an operational semantics for C/C++ 2011
atomics, of the (simplified) shape below.

1- Shared memory M = a set of write messages
A message is 〈` : v @ t〉, representing the write of value v at
location ` at timestamp t.
There is at most one message 〈` : v @ t〉 for a given ` and a given
t.
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A promising semantics

Kang et al (2017) describe an operational semantics for C/C++ 2011
atomics, of the (simplified) shape below.

1- Shared memory M = a set of write messages

2- A process = a view V of the shared memory . . .
A view = a function location→ time at which the contents of this
location was observed most recently.
Reading from location ` = observing a message 〈` : v @ t〉 with
t ≥ V(`).
Writing v to location ` = sending a message 〈` : v @ t〉 with
t > V(`) a fresh timestamp.
In both cases, V is updated to V[`← t].
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A promising semantics

Kang et al (2017) describe an operational semantics for C/C++ 2011
atomics, of the (simplified) shape below.

1- Shared memory M = a set of write messages

2- A process = a view V of the shared memory . . .

3- . . . plus a set P of promises.
A promise = a speculative write = a message already in the shared
memory, but which still needs to be realized by an actual write
later in the process execution.
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A promising semantics

Kang et al (2017) describe an operational semantics for C/C++ 2011
atomics, of the (simplified) shape below.

1- Shared memory M = a set of write messages

2- A process = a view V of the shared memory . . .

3- . . . plus a set P of promises.
Invariant enforced at each reduction step: it is always possible to
reduce so as to realize all promises. This prevents out-of-thin-air
behaviors.

(c1, V1, P1)/M1 (c2, V2, P2)/M2 · · ·

*
( , , ∅)/

*
( , , ∅)/
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SLR: a separation logic for the promising semantics

(Svendsen et al, 2018.)

An extension of RSL with extra assertions:

O(`, v, t) (generalizes Init(`))
I observed value v in location ` at time t.

Wπ(`, X) (generalizes ` π7→ v)
I have permission π on location `.
X = {(v1, t1), . . . , (vn, tn)} is a set of timestamped writes
to this location.
If π = 1 (exclusive permission), X contains all the writes
to ` ever performed.
If π < 1, X is a subset of these writes.
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Some properties of assertion W

The assertion can be split:

Wπ1+π2(`, X1 ∪ X2) = Wπ1(`, X1) V Wπ2(`, X2)

Writes are consistent (unique value for a given timestamp):

Wπ(`, X) V 〈(v, t) ∈ X ∧ (v′, t′) ∈ X ∧ v 6= v′〉 ⇒ Wπ(`, X) V 〈t 6= t′〉

All writes are observed:

Wπ(`, X) V 〈(v, t) ∈ X〉 ⇒ Wπ(`, X) V O(`, v, t)

The converse is true if the permission is exclusive:

W1(`, X) V O(`, v, t)⇒ W1(`, X) V O(`, v, t) V 〈(v, t) ∈ X〉
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Reasoning about relaxed atomic accesses

Φ v = emp (i.e. Φ v is pure and true)
Wπ(`, X)

V Rel(`,Φ)

V O(`, , t)

 setrlx(`, v)

{
λ . ∃t′ > t,

Wπ(`, {(v, t′)} ∪ X)

}

As in RSL, a relaxed write transfers no resources (Φ v = emp).

The write is reflected in assertion Wπ(`, X), which does not need
to be exclusive. (π < 1 is allowed!)

O(`, , t) proves that ` is initialized and gives a lower bound for
the new timestamp t′.
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Reasoning about relaxed atomic accesses

{
Acq(`,Φ)

V O(`, , t)

}
getrlx(`)

{
λv. ∃t′ ≥ t,

Acq(`,Φ) V O(`, v, t′) V ∇(Φ v)

}

A relaxed read of value v gives access to the pure part ∇(Φ v) of
the resource invariant Φ v, and to a new observation O(`, v, t′).

If we own the full permission on `, the value read is determined
by the most recent write.{

Acq(`,Φ)

V W1(`, X)

}
getrlx(`)

{
λv. ∃t, 〈(v, t) = max(X)〉

V Acq(`,Φ) V W1(`, X) V ∇(Φ v)

}
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Summary

A realization: relaxed memory models such as those of Java or
C/C++ are complicated and not fully understood yet.

There are two ways of constructing a software design.
One way is to make it so simple that there are obviously
no deficiencies. And the other way is to make it so
complicated that there are no obvious deficiencies

(C. A. R. Hoare)
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Summary

A realization: relaxed memory models such as those of Java or
C/C++ are complicated and not fully understood yet.

A hope: it a�ects a handful of libraries only;
the bulk of parallel computation codes are still written using
conventional synchronization primitives.
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Summary

A realization: relaxed memory models such as those of Java or
C/C++ are complicated and not fully understood yet.

A hope: it a�ects a handful of libraries only;
the bulk of parallel computation codes are still written using
conventional synchronization primitives.

A most necessary tool: program logics!

• To abstract over some of the complexity of the memory
model (cf. RSL, SLR).

• To combine reasoning in standard separation logic with
reasoning specific to a given memory model.
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