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Foundations of Hoare logic



Hoare triples

“Weak” triples:

{ P } c {Q }
↗ ↑ ↖

precondition command postcondition

Intuitive meaning:

“If command c, started in an initial state satisfying P, terminates,
then the final state satisfies Q.”

Later we’ll see “strong” triples [ P ] c [Q ] that guarantee
termination: “command c, started in an initial state satisfying P,
always terminates, and the final state satisfies Q.”
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IMP: a small imperative language with structured control

Arithmetic expressions:
a ::= x program variables
| 0 | 1 | . . . constants
| a1 + a2 | a1 × a2 | . . . operations

Boolean expressions:
b ::= a1 ≤ a2 | . . . comparisons
| b1 and b2 | not b | . . . connectives

Commands:
c ::= skip empty command
| x := a assignment
| c1; c2 sequence
| if b then c1 else c2 conditional
| while b do c loop
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The rules of weak Hoare logic for IMP

One rule for each kind of command.

{ P } skip { P } {Q[x← a] } x := a {Q }

{ P } c1 {Q } {Q } c2 {R }

{ P } c1; c2 {R }

{ P ∧ b } c1 {Q } { P ∧ ¬b } c2 {Q }

{ P } if b then c1 else c2 {Q }

{ P ∧ b } c { P }

{ P } while b do c { P ∧ ¬b }
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Generic rules

The consequence rule:

P⇒ P′ { P′ } c {Q′ } Q′ ⇒ Q

{ P } c {Q }

Can also be presented as two rules: one that strengthens the
precondition, another that weakens the postcondition.

P⇒ P′ { P′ } c {Q }

{ P } c {Q }

{ P } c {Q′ } Q′ ⇒ Q

{ P } c {Q }

Note: the top rule is derivable from the bottom two rules, and
conversely.
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An example of a derivation

> ⇒ 0 = 0 ∧ 1 = 1

{ 0 = 0 ∧ 1 = 1 } x := 0 { x = 0 ∧ 1 = 1 }
{ x = 0 ∧ 1 = 1 } y := 1 { x = 0 ∧ y = 1 }

{ 0 = 0 ∧ 1 = 1 } x := 0; y := 1 { x = 0 ∧ y = 1 }

{>} x := 0; y := 1 { x = 0 ∧ y = 1 }
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An example of a derivation

A more compact notation, as an IMP program annotated with
assertions:

{>} ⇒
{ 0 = 0 ∧ 1 = 1 }

x := 0;
{ x = 0 ∧ 1 = 1 }

y := 1
{ x = 0 ∧ y = 1 }
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Verifying a “real” program: Euclidean division

{ 0 ≤ a } ⇒ { a = b · 0 + a ∧ 0 ≤ a }
r := a;

{ a = b · 0 + r ∧ 0 ≤ r }
q := 0;

{ a = b · q+ r ∧ 0 ≤ r }
while r ≥ b do

{ a = b · q+ r ∧ 0 ≤ r ∧ r ≥ b } ⇒
{ a = b · (q+ 1) + (r− b) ∧ 0 ≤ r− b }

r := r− b;

{ a = b · (q+ 1) + r ∧ 0 ≤ r }
q := q+ 1

{ a = b · q+ r ∧ 0 ≤ r }
done

{ a = b · q+ r ∧ 0 ≤ r ∧ r < b } ⇒
{ q = a/b ∧ r = a mod b }
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Exercise: computing the maximum of two values (Mike Gordon)

1. Write an IMP program that sets x to the maximum of the values
of x and of y.

if x < y then x := y else skip

2. Specify this program in Hoare logic.

{>} if x < y then x := y else skip { x = max(x, y) }

3. Verify the program against this specification.

{ x < y ∧ >} ⇒ { y = max(y, y) } x := y { x = max(x, y) }

{ x ≥ y ∧ >} ⇒ { x = max(x, y) } skip { x = max(x, y) }

We conclude using the rule for conditional.
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Is this the correct specification?

Many programs satisfy this specification. . .

{>} x := y { x = max(x, y) }
{>} y := x { x = max(x, y) }
{>} x := 1; y := 0 { x = max(x, y) }

This is the wrong specification! We wanted to say

The value of x at the end of the program is the maximum
of the values of x and y at the beginning of the program.
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Auxiliary variables

One solution is to use mathematical variables α, β, . . ., distinct
from program variables x, y, . . . :

{ x = α ∧ y = β } c { x = max(α, β) }

These auxiliary variables are universally quantified implicitly
before the triple:

∀α, β, { x = α ∧ y = β } c { x = max(α, β) }
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Ghost variables

Alternative: in the specification, use variables from the
programming language that do not occur in the program being
specified:

{ x = z } c { x = max(z, y) } where z not free in c

These ghost variables z preserve their values during execution
of c, enabling the postcondition to talk about the state “before”.
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“Strong” Hoare logic (total correctness)

“Strong” triples:

[ P ] c [Q ]
↗ ↑ ↖

precondition command postcondition

Intuitive meaning:

“Command c, started in an initial state satisfying P, terminates in
a final state satisfying Q.”
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The rules of strong Hoare logic for IMP

Only loops can cause non-termination
⇒ for all other IMP constructors, the “strong” rules

are similar to the “weak” rules.

[ P ] skip [ P ] [Q[x← a] ] x := a [Q ]

[ P ] c1 [Q ] [Q ] c2 [R ]

[ P ] c1; c2 [R ]

[ P ∧ b ] c1 [Q ] [ P ∧ ¬b ] c2 [Q ]

[ P ] if b then c1 else c2 [Q ]

P⇒ P′ [ P′ ] c [Q′ ] Q′ ⇒ Q

[ P ] c [Q ]
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Verifying termination of a loop

Using a variant: an expression a, with nonnegative values, that
decreases at every loop iteration.

∀α, [ P ∧ b ∧ a = α ] c [ P ∧ 0 ≤ a < α ]

[ P ] while b do c [ P ∧ ¬b ]

The loop must terminate after at most N iterations, where N is
the initial value of variant a.

Note: with nested loops, the termination of each loop is verified
independently of the other loops.
(Unlike in Turing 1949 and Floyd 1967.)
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Verifying termination of Euclidean division

The variant is the variable r.
{ 0 ≤ a ∧ 0 < b } ⇒ { a = b · 0 + a ∧ 0 ≤ a ∧ 0 < b }

r := a;

{ a = b · 0 + r ∧ 0 ≤ r ∧ 0 < b }
q := 0;

{ a = b · q+ r ∧ 0 ≤ r ∧ 0 < b }
while r ≥ b do

{ a = b · q+ r ∧ 0 ≤ r ∧ 0 < b ∧ r ≥ b ∧ r = α } ⇒
{ a = b · (q+ 1) + (r− b) ∧ 0 ≤ r− b ∧ 0 < b

r := r− b; ∧ 0 ≤ r− b < α }
{ a = b · (q+ 1) + r ∧ 0 ≤ r ∧ 0 < b ∧ 0 ≤ r < α }

q := q+ 1
{ a = b · q+ r ∧ 0 ≤ r ∧ 0 < b ∧ 0 ≤ r < α }

done

{ a = b · q+ r ∧ 0 ≤ r ∧ r < b } ⇒
{ q = a/b ∧ r = a mod b }
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Extension to several variants

We can use several variants a1, . . . , an

and a well-founded order ≺ over n-tuples of integers.

(Typically, lexicographic order.)

∀α1, . . . , αn, [ P ∧ b ∧ (a1, . . . , an) = (α1, . . . αn) ]

c
[ P ∧ (a1, . . . , an) ≺ (α1, . . . αn) ]

[ P ] while b do c [ P ∧ ¬b ]
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Adding rules to the logic



A derived rule: conditional without else

Notation: if b then c def
= if b then c else skip

{ P ∧ b } c {Q } P ∧ ¬b⇒ Q

{ P } if b then c {Q }

Proof.
Here is the derivation:

{ P ∧ b } c {Q }

P ∧ ¬b⇒ Q {Q } skip {Q }

{ P ∧ ¬b } skip {Q }

{ P } if b then c else skip {Q }
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A derived rule: the do. . .while loop

Notation: do c while b def
= c; while b do c

{ P } c {Q } Q ∧ b⇒ P

{ P } do c while b {Q ∧ ¬b }

Proof.

{ P } c {Q }

Q ∧ b⇒ P { P } c {Q }

{Q ∧ b } c {Q }

{Q } while b do c {Q ∧ ¬b }

{ P } c; while b do c {Q ∧ ¬b }
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A derived rule: the for counted loop

Notation: if h, i are two distinct variables,

for i = ` to h do c def
= i := `; while i ≤ h do (c; i := i + 1)

We can derive a strong triple that guarantees loop termination,
provided the loop body c contains no assignments to i nor to h.

[ P ∧ i ≤ h ] c [ P[i← i + 1] ] i, h not assigned to in c

[ P[i← `] ] for i = ` to h do c [ P ∧ i > h ]

The variant is the expression h− i + 1, which decreases by 1 at
each iteration.
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A derived rule: Floyd-style assignment

{ P } x := a { ∃x0, x = a[x← x0] ∧ P[x← x0] }

Proof.

Write Q def
= ∃x0, x = a[x← x0] ∧ P[x← x0].

P⇒ Q[x← a] {Q[x← a] } x := a {Q }

{ P } x := a {Q }

Indeed, Q[x← a] = ∃x0, a = a[x← x0] ∧ P[x← x0][x← a]
= ∃x0, a = a[x← x0] ∧ P[x← x0]

and it su�ces to take x0 = x.
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Some admissible rules

Conjunction, disjunction, quantification:

{ P1 } c {Q1 } { P2 } c {Q2 }

{ P1 ∧ P2 } c {Q1 ∧ Q2 }

{ P1 } c {Q1 } { P2 } c {Q2 }

{ P1 ∨ P2 } c {Q1 ∨ Q2 }

∀x ∈ X, { P(x) } c {Q(x) } X 6= ∅

{ ∀x ∈ X. P(x) } c { ∀x ∈ X. Q(x) }

∀x ∈ X, { P(x) } c {Q(x) }

{ ∃x ∈ X. P(x) } c { ∃x ∈ X. Q(x) }

Proof.
Induction on c and inversion on the derivations of { P1 } c {Q1 },
{ P2 } c {Q2 }, etc.
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Growing the programming language



Unstructured control (goto)

Goto considered harmful . . . or not?

Commands: c ::= . . . | goto ` | ` : c

We need to associate an invariant L(`) to each label `.

The triples become L ` { P } c {Q }.

L ` { L(`) } goto ` {⊥}
L ` { L(`) } c {Q }

L ` { L(`) } ` : c {Q }
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Nondeterminism

Enable programs to have several di�erent behaviors.

c ::= . . .

| c1 8 c2 execute either c1 or c2

| x := choose(N) set x to a number between 0 and N− 1
| havoc x set x to an arbitrary number

The other constructions can be derived from havoc:

x := choose(N) ≈ havoc x; x := x mod N

c1 8 c2 ≈ x := choose(2); if x = 0 then c1 else c2

x := choose(N) ≈ x := 0 8 x := 1 8 · · · 8 x := N− 1
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Rules for nondeterminism

The rule for choice:

{ P } c1 {Q } { P } c2 {Q }

{ P } c1 8 c2 {Q }

The axiom for choose:

{Q[x← 0] ∧ · · · ∧ Q[x← N− 1] } x := choose(N) {Q }
or { ∀α, 0 ≤ α < N⇒ Q[x← α] } x := choose(N) {Q }

The axiom for havoc:

{ ∀α,Q[x← α] } havoc x {Q }
or {Q[x← y] } havoc x {Q } if y does not occur in Q
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Run-time assertions

Run-time assertions introduce the possibility of run-time failure.

c ::= . . .

| assert b (b is a Boolean expression;
appropriate for run-time checking)

| assert A (A is a logical assertion;
appropriate for static verification)

Verification must guarantee the absence of run-time failures.

Hence the rule:

{ P ∧ A } assert A { P ∧ A }
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Errors in arithmetic computations

Evaluating an arithmetic expression a or Boolean expression b
can also fail at run-time: integer division by zero, arithmetic
overflow, etc.

We can characterize absence of failures as a predicate Def:

Def(cst) = Def(x) = >
Def(a1 + a2) = Def(a1) ∧ Def(a2) ∧ MIN ≤ a1 + a2 ≤ MAX

Def(a1/a2) = Def(a1) ∧ Def(a2) ∧ a2 6= 0 ∧ MIN ≤ a1/a2 ≤ MAX

Def(a1 ≤ a2) = Def(a1) ∧ Def(a2)

(etc.)
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Errors in arithmetic computations

In the rules of the logic, we add preconditions to guarantee that
all expressions evaluate without errors.

{Q[x← a] ∧ Def(a) } x := a {Q }

{ P ∧ b } c1 {Q } { P ∧ ¬b } c2 {Q }

{ P ∧ Def(b) } if b then c1 else c2 {Q }

{ P ∧ b } c { P ∧ Def(b) }

{ P ∧ Def(b) } while b do c { P ∧ ¬b }
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Connections with semantics:
soundness of Hoare logic



Which logic to state and work with assertions?

Hoare’s viewpoint:

• A “bespoke” logic
• that “talks” about program variables (x, . . . ) and

programming language operators (+, and, . . . )
• An assertion = a proposition of this bespoke logic.

A more practical viewpoint:

• An “o� the shelf” logic,
typically first-order logic + arithmetic.

• “Talks” about program variables and programming language
operators via a translation.

• An assertion = a predicate on the memory store.
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The meaning of assertions

A store s associates a value to each program variable.

Store s ::= variable→ value

An assertion P (mentioning program variables x, y, . . . )
is interpreted as a predicate on the store s:

[[P]] s = P[x← s(x), y← s(y), . . .]

Example
The assertion 0 ≤ x < y denotes the predicate
λs. 0 ≤ s(x) < s(y).
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Semantics of expressions

We assume given a denotational semantics for expressions of the
language: each expression a is interpreted as a function
[[a]] : store→ value. Typically:

[[x]] s = s(x) [[a1 + a2]] = [[a1]]⊕ [[a2]]

[[cst]] s = cst [[a1 ∗ a2]] = [[a1]]⊗ [[a2]]

Operators ⊕,⊗ denote addition and multiplication of the
programming language. For example, for arithmetic modulo 232:

n1 ⊕ n2 = norm(n1 + n2) n1 ⊗ n2 = norm(n1 × n2)

norm(n) = n mod 232 (unsigned integers)
norm(n) = (n + 231) mod 232 − 231 (signed integers)
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Substitution in assertions

{Q[x← a] } x := a {Q }

In the assignment rule, what does Q[x← a] mean?

It is the predicate [[Q]] s where [[x]] s (that is, s(x)) is replaced by
[[a]] s.

Example:

[[ (x < 10) [x← x + 1] ]] s = (s(x) < 10) [s(x)← [[x + 1]] s]

= [[x + 1]] s < 10 = (s(x)⊕ 1) < 10

By construction, we have

[[ Q[x← a] ]] s = [[Q]] (s[x← [[a]] s])

This provides semantic justification for Hoare’s assignment rule.
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Errors in arithmetic expressions

To model arithmetic errors (e.g. division by zero), we can add a
special denotation err:

[[a]] s ∈ Z+ {err}

The substituted assertion Q[x← a] requires [[a]] s 6= err:

[[Q[x← a]]] s = [[a]] s 6= err ∧ [[Q]] (s[x← [[a]] s])

The Def(a) assertion must guarantee [[a]] s 6= err.

This provides semantic justification for the modified assignment
rule

{Q[x← a] ∧ Def(a) } x := a {Q }
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Semantics of commands

A semantics for commands must account for

• divergence (non-termination) (while loops, . . . )
• run-time errors (1/0, run-time assertions)
• nondeterminism (choose, havoc, c1 8 c2)

We take an operational semantics based on a reduction relation:

c/s → c′/s′

c/s → err

c: command one step c′: residual command
s: store “before” of execution s′: store “after”

err: run-time error
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Reduction rules for IMP (see my lecture of 2019-11-28)

(x := a)/s→ skip/s[x← [[a]] s]

(skip; c2)/s→ c2/s

(c1; c2)/s→ (c′1; c2)/s′ if c1/s→ c′1/s′

(c1; c2)/s→ err if c1/s→ err

(if b then c1 else c2)/s→ c1/s if [[b]] s is true
(if b then c1 else c2)/s→ c2/s if [[b]] s is false

(while b do c)/s→ skip/s if [[b]] s is false
(while b do c)/s→ (c; while b do c)/s if [[s]] b is true

(havoc x)/s→ skip/s[x← n] for any n

(assert A)/s→ skip/s if [[A]] s is true
(assert A)/s→ err if [[A]] s is false
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Reduction sequences

The possible behaviors of a command c correspond to sequences
of reductions for c/s.

• Termination with final store s′: reductions to skip/s′

c/s→ c1/s1 → · · · → skip/s′

• Termination on an error: reductions to err

c/s→ c1/s1 → · · · → err

• Divergence: infinite reduction sequence

c/s→ · · · → cn/sn → · · ·

• Going wrong: (cannot happen if relation → is complete)

c/s→ c1/s1 → · · · → c′/s′ 6→ with c′ 6= skip
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Soundness of the logic w.r.t. reduction semantics

Intuitive interpretation of triples:

{ P } c {Q } “command c, started in an initial store
s satisfying P, executes without
run-time errors, and if it terminates,
the final store satisfies Q ”

[ P ] c [Q ] “command c, started in an initial store
s satisfying P, always terminates
without run-time errors, and the final
store satisfies Q ”

Is this true of all the possible executions of c/s according to the
reduction semantics?
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Semantic soundness of the weak logic

Theorem (Semantic soundness of the weak logic)

Assume { P } c {Q }. Let s be a store such that [[P]] s.

1. Safety: it is impossible that c/s ∗→ err

2. Partial correctness: if c/s ∗→ skip/s′, then [[Q]] s′.

We now outline several proofs. The first proof is inspired by
soundness proofs for type systems.
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Semantic soundness of the weak logic

Lemma (Immediate safety and preservation)

Assume { P } c {Q } and [[P]] s.

1. Immediate safety: c/s 6→ err

2. Preservation: if c/s→ c′/s′, there exists a precondition P′

such that { P′ } c′ {Q } and [[P′]] s′.

Proof.
By case analysis on reduction rules c/s→ . . . and inversion on the
derivation of { P } c {Q }.
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Semantic soundness of the weak logic

Semantic soundness follows easily:

1. Safety: assume by way of contradiction that
c/s ∗→ c′/s′ → err.
By preservation, there exists P′ s.t. { P′ } c′ {Q } and [[P′]] s′.
By immediate safety, c′/s′ 6→ err. Contradiction.

2. Partial correctness: assume c/s ∗→ skip/s′.
By preservation, there exists P′ such that { P′ } skip {Q }
and [[P′]] s′.
By inversion on { P′ } skip {Q }, we have P′ ⇒ Q.
Therefore, [[Q]] s′, as expected.
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The tree of reductions

c/s

c1/s1

...

err

skip/s′

One run of the program = one branch of the tree.

The program always terminates
= all branches are finite
= the tree can be described by an inductive predicate
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Termination as an inductive predicate

Term c s Q: “command c, started in store s, always terminates,
and the final store satisfies Q”.

[[Q]] s

Term skip s Q

c 6= skip c/s 6→ err (∀c′, s′, c/s→ c′/s′ ⇒ Term c′ s′ Q)

Term c s Q

This is an inductive predicate. Therefore, it does not hold if an
infinite sequence of reductions exist.
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Semantic soundness of the strong logic

The semantic triple: “if the initial store satisfies P, command c
terminates in a store satisfying Q”

[[ P ]] c [[Q ]]
def
= ∀s, [[P]] s⇒ Term c s Q

We show that this definition satisfies the axioms and the
inference rules of Hoare logic:

• [[ P ]] skip [[ P ]]

• If [[ P ]] c1 [[Q ]] and [[Q ]] c2 [[R ]] then [[ P ]] c1; c2 [[R ]]

• etc.

Theorem (Semantic soundness of the strong logic)

If [ P ] c [Q ] is derivable, then [[ P ]] c [[Q ]] holds.
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Semantic triples instead of axiomatic triples

Many authors no longer provide an axiomatization of the triples
[ P ] c [Q ]. Instead, they take the semantic definition directly:

[ P ] c [Q ]
def
= [[ P ]] c [[Q ]]

def
= ∀s, [[P]] s⇒ Term c s Q

Then, they show the axioms and the inference rules of the logic
as lemmas that hold for this definition.

This makes it possible to reason over programs like in Hoare
logic, but with semantic soundness being guaranteed by
construction.

This is not in the “axiomatic” spirit of Hoare (1969),
but simplifies the formalization and the addition of new rules a
posteriori.

44



Semantic triples for weak logic

Can we follow the same approach for a weak program logic?

Yes, if we replace the predicate Term c s Q by a predicate
Safe c s Q stating that executions of c/s do not terminate on an
error, and that if they terminate, the final state satisfies Q.

{{ P }} c {{Q }} def
= ∀s, [[P]] s⇒ Safe c s Q
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A coinductive definition of Safe

Just like the Term predicate is naturally inductive, the Safe

predicate is naturally coinductive:

[[Q]] s

Safe skip s Q

c 6= skip c/s 6→ err (∀c′, s′, c/s→ c′/s′ ⇒ Safe c′ s′ Q)

Safe c s Q

A coinductive predicate supports derivations that are infinitely
deep. Hence, Safe c s Q holds if c/s diverges without errors

(by infinitely many applications of the second rule).
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A step-indexed definition of Safe

Instead of coinduction, we can use step-indexing:

Safe c s Q def
= ∀n, Safen c s Q

The inductive predicate Safen c s Q means that executions of c/s
do not cause errors during the first n execution steps, and satisfy
Q if they terminate in n steps or less.

Safe0 c s Q
[[Q]] s

Safen+1 skip s Q

c 6= skip c/s 6→ err (∀c′, s′, c/s→ c′/s′ ⇒ Safen c′ s′ Q)

Safen+1 c s Q
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Semantic triples for the weak logic

Either with the coinductive definition of Safe or with the
step-indexed definition, the weak semantic triple

{{ P }} c {{Q }} def
= ∀s, [[P]] s⇒ Safe c s Q

satisfies the axioms and the inference rules of weak Hoare logic:

• {{ P }} skip {{ P }}
• If {{ P }} c1 {{Q }} and {{Q }} c2 {{R }} then {{ P }} c1; c2 {{R }}
• If {{ P ∧ b }} c {{ P }} then {{ P }} while b do c {{ P ∧ ¬b }}
• etc.
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Semantic soundness of the weak logic

As a corollary, we obtain another proof of semantic soundness
for the weak logic:

Theorem (Semantic soundness of the weak logic)

If { P } c {Q } is derivable, then {{ P }} c {{Q }} holds.

Proof.
By induction on the derivation of { P } c {Q }.
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Connections with semantics:
completeness of Hoare logic



Completeness of Hoare logic

The converse of semantic soundness:

Can any property of the executions of a program c be
expressed as a triple { P } c {Q } and derived in Hoare
logic?

Using semantic triples, we can make the question more precise:

If {{ P }} c {{Q }} holds, can we derive { P } c {Q } ?
If [[ P ]] c [[Q ]] holds, can we derive [ P ] c [Q ] ?
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Hoare logic and computability

The completeness issue was the topic of many studies in the
1970’s because of the following connection between Hoare logic
and computability:

Corollary (of semantic soundness)

If {>} c {⊥} is derivable, then c does not terminate.

If Hoare logic was complete, we would have an equivalence:
{>} c {⊥} is derivable if and only if c does not terminate.
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Incompleteness of the logic for a Turing-complete language

Reminder: the set of propositions that can be derived in a system
of axioms and inference rules is recursively enumerable (r.e.).

The set of derivable triples { P } c {Q } is r.e.

The set of derivable triples {>} c {⊥} is r.e.
(by “filtering” the enumeration of all derivable triples).

If the logic is complete, the set of programs that do not terminate
is r.e.

Consequently, if the logic is complete, the halting problem is
decidable!
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An analysis of the issue

P⇒ P′ { P′ } c {Q′ } Q′ ⇒ Q

{ P } c {Q }

What is the meaning of the premises P⇒ P′ and Q′ ⇒ Q?

• “Implications that can be derived in a formal logic.”
The set of these implications is r.e., hence { P } c {Q } is r.e.,
and the logic is incomplete.

• “Implications that are true in a standard model.”
Then { P } c {Q } is not r.e. and the logic is complete
(next slides).
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Relative completeness

(Stephen A. Cook, Soundness and completeness of an axiom system for program

verification, SIAM J. Comput., 1978)

We can show that Hoare logic is complete, provided the same
“ambient” logic is used

• to interpret the implications P⇒ P′, Q′ ⇒ Q in the
consequence rule;

• to define semantic triples
{{ P }} c {{Q }} def

= ∀s, [[P]] s⇒ Safe c s Q.
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Weakest semantic precondition

We define the weakest (liberal) semantic precondition of
command c with postcondition Q:

wpsem c Q def
= λs. Safe c s Q

By definition of semantic triples, we have

{{ P }} c {{Q }} if and only if P⇒ wpsem c Q

Lemma (the weakest semantic precondition is derivable)

{ wpsem c Q } c {Q } is derivable in Hoare logic.

Proof.
Induction over c and “inversion” lemmas on the Safe predicate,
such as Safe (c1; c2) s Q implies Safe c1 s (wpsem c2 Q).
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Relative completeness

Theorem (relative completeness)

If {{ P }} c {{Q }} is provable in logic L,
then { P } c {Q } can be derived in Hoare logic,
using L for the implications in the consequence rule.

Proof.
By hypothesis {{ P }} c {{Q }}, we have P⇒ wpsem c Q.

By the previous lemma, we can derive { wpsem c Q } c {Q }.

We conclude { P } c {Q } with the consequence rule.
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Towards automation:
weakest precondition calculus



Deductive verification (reminder)

Program Assertions

program
logic

Verification
conditions

proofs: pencil-and-paper,
automated, or interactive

OK / alarm

How to generate the verification conditions?
How to minimize the amount of assertions to provide?

57



Fully-annotated programs

{ 0 ≤ a } ⇒ { a = b · 0 + a ∧ 0 ≤ a }
r := a;

{ a = b · 0 + r ∧ 0 ≤ r }
q := 0;

{ a = b · q+ r ∧ 0 ≤ r }
while r ≥ b do

{ a = b · q+ r ∧ 0 ≤ r ∧ r ≥ b } ⇒
{ a = b · (q+ 1) + (r− b) ∧ 0 ≤ r− b }

r := r− b;

{ a = b · (q+ 1) + r ∧ 0 ≤ r }
q := q+ 1

{ a = b · q+ r ∧ 0 ≤ r }
done

{ a = b · q+ r ∧ 0 ≤ r ∧ r < b } ⇒
{ q = a/b ∧ r = a mod b }

Verification conditions: the “⇒” steps where we apply the
consequence rule.
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Reducing the amount of annotations

To verify a program fragment c, it is enough to provide

• the precondition P

• the postcondition Q

• a loop invariant Inv for each loop in c.

The other logical assertions and the verification conditions can
then be obtained by computing weakest preconditions or
strongest postconditions.
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Weakest precondition

The weakest precondition of a command c with postcondition Q
is an assertion wp c Q such that

• it is a precondition: [ wp c Q ] c [Q ];
• it is the weakest: if [ P ] c [Q ] then P⇒ wp c Q.

Consequently:

[ P ] c [Q ] if and only if P⇒ wp c Q

Intuition: wp c Q are the necessary hypotheses for program c to
compute a result that satisfies the postcondition Q.

Original intuition (Dijkstra, 1975): synthesizing the program c by
refinement from its postcondition Q.
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Other “predicate transformers”

Weakest liberal precondition wlp c Q

Like wp but does not guarantee termination:

{ P } c {Q } if and only if P⇒ wlp c Q

Strongest (liberal) postcondition sp P c slp P c

[ P ] c [Q ] if and only if sp P c⇒ Q

{ P } c {Q } if and only if slp P c⇒ Q

Intuition: symbolic execution of c from a state satisfying P.
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Computing weakest preconditions

A non-e�ective characterization: wlp c Q =
∨
{P | { P } c {Q }}

For programs without loops, a definition by induction over c:

wlp skip Q = Q

wlp (x := a) Q = Q[x← a]

wlp (c1; c2) Q = wlp c1 (wlp c2 Q)

wlp (if b then c1 else c2) Q = (b ∧ wlp c1 Q) ∨ (¬b ∧ wlp c2 Q)

wlp (havoc x) Q = ∀n, Q[x← n]

wlp (assert A) Q = A ∧ Q

(These equations are valid for wp as well.)
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Weakest liberal precondition for a loop

Not computable in general: wlp (while b do c) Q =
∨

i Pi

with P0 = ¬b ∧ Q and Pi+1 = b ∧ wlp c Pi.

We ask the programmer to annotate each loop by its invariant
Inv. In this case,

wlp (whileInv b do c) Q = Inv

provided that

b ∧ Inv ⇒ wlp c Inv and ¬b ∧ Inv ⇒ Q

To compute wp, the programmer should also annotate the loop
by the variant that guarantees termination.
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A semi-algorithm for deductive verification

To verify { P } c {Q }, assuming all loops in c are annotated:

1. Compute wlp c Q and the following verification conditions
vc c Q

vc (whileInv b do c) Q = (b ∧ Inv ⇒ wlp c Inv)

∧ (¬b ∧ Inv ⇒ Q)

∧ vc c Inv

vc skip Q = >
vc (c1; c2) Q = vc c1 (wlp c2 Q) ∧ vc c2 Q

and likewise for the other language constructs.

2. Prove (P⇒ wlp c Q) ∧ vc c Q, which is a proposition in
ordinary logic, using an automated theorem prover.
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Computing and verifying the strongest liberal postcondition

For reference, the equations defining slp:

slp P skip = P

slp P (x := a) = ∃x0, x = a[x← x0] ∧ P[x← x0]

slp P (c1; c2) = slp (slp P c1) c2

slp P (if b then c1 else c2) = slp (b ∧ P) c1 ∨ slp (¬b ∧ P) c2

slp P (whileInv b do c) = ¬b ∧ Inv

slp P (havoc x) = ∃x0, P[x← x0]

slp P (assert A) = A ∧ P

and the nontrivial verification conditions:

vc P (whileInv b do c) = (P⇒ Inv) ∧ (sp (b ∧ Inv) c⇒ Inv)

∧ vc (b ∧ Inv) c

vc P (assert A) = P⇒ A
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Summary



Summary so far

Hoare logics are a rich formalism.

Two complementary viewpoints:

• The axiomatic viewpoint: the rules of the logic define the
language.

• The operational viewpoint: the rules are theorems that
simplify reasoning about program executions.

Extends rather easily to a great many control structures
(goto, break, return, exceptions, procedures, . . . ).

What about data structures? (→ next lecture)
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Two presentations of Hoare logic:

• H. R. Nielson and F. Nielson, Semantics with Applications: an
appetizer, Springer, 2007, ch. 9 and 10.
(Follows the operational approach.)

• G. Winskel, The Formal Semantics of Programming Languages, MIT
Press, 1993, ch. 6 and 7.
(Follows Hoare’s axiomatic approach. Comprehensive discussion of
completeness issues.)

Mechanizing Hoare logic:

• The companion Coq development for this lecture:
https://github.com/xavierleroy/cdf-program-logics

• T. Nipkow and G. Klein, Concrete Semantics, ch. 12.
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