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Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr



Course outline

A review of three articles that started it all:

• Alan Turing, Checking a large routine, 1949.
• Robert W. Floyd, Assigning meanings to programs, 1967.
• C. A. R. Hoare, An axiomatic basis for computer

programming, 1969.
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The discovery:
Checking a large routine
Alan Turing, 1949



Alan Mathison Turing, 1912–1954

1931-36 Cambridge: studies mathematics
1936 Publishes the founding paper of computability theory

1936-38 Princeton: Ph.D. with A. Church
1939-44 Bletchley Park: breaking German ciphers
1945-47 Cambridge: design of the ACE programmable computer
1948-50 Manchester: the Mark 1 programmable computer (Ferranti);

“Turing’s test” in artificial intelligence.
1951-53 Manchester: mathematical biology; morphogenesis.
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A pioneering article

Talk given at the inaugural conference of the EDSAC computer, Cambridge

University, june 1949. The manuscript was commented, and republished by F.L.

Morris and C.B. Jones in Annals of the History of Computing, 6, 1984. 4



How can one check a routine? That is the question!
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Decomposing verification in elementary steps
F. L. Morris & C. B. Jones - Turing Proof 

Consider the analogy of checking an addition. If it is given 
as: 

1374 
5906 
6719 
4337 
7768 

26104 
one must check the whole at one sitting, because of the 
carries. But if the totals for the various columns are given, 
as below: 

1374 
5906 
6719 
4337 
7768 
3974 

2213 
26104 

the checker’s work is much easier being split up into the 
checking of the various assertions 3 + 9 + 7 + 3 + 7 = 29 
etc. and the small addition 

3974 
2213 
26104 

At a typical moment of the process we have recorded k 
and $F for some F, s. We can change q to (s + l)k by addition 
of F. When s = F + 1 we can change F to r + 1 by a transfer. 
Unfortunately there is no coding system sufficiently gener- 
ally known to justify giving the routine for this process in 
full, but the flow diagram given in Fig. 1 will be sufficient 
for illustration. 

This principle can be applied to the process of checking a 
large routine but we will illustrate the method by means of 
a small routine uiz. one to obtain @ without the use of a 
multiplier, multiplication being carried out by repeated ad- 
dition. 

F. L. Morris was graduated in mathematics from 
Harvard College in 1964 and received the Ph.D. in 
computer science from Stanford University in 1972. 
He has been employed at the universities of Essex and 
Edinburgh, and since 1975 has taught at Syracuse 
University. The collaboration with C. B. Jones reported 
here was done while visiting the Programming 
Research Group, Oxford, during 1980- 198 1. 

C. B. Jones began his career working on standard 
commercial computing projects. A period in 
operations research was followed by a change to 
“systems programming. ” In IBM’s Product Test Group 
the realization dawned that quality could only be 
achieved in design. The first step toward “formal 
methods” came with an assignment to the IBM Vienna 
Laboratory in 1968. A sabbatical in Oxford from 
1979-1981 led to the current position of professor of 
computing science at Manchester University. 

Each “box” of the flow diagram represents a straight 
sequence of instructions without changes of control. The 
following convention is used: 
(i) a dashed letter indicates the value at the end of the 

process represented by the box: 
(ii) an undashed letter represents the initial value of a 

quantity. 
One cannot equate similar letters appearing in different 

boxes, but it is intended that the following identifications 
be valid throughout 

s content of line 27 of store 
F ” ” ‘I 28 ” ” 
n ” ” ” 29 ” ” 
u ” ” ” 30 ” ” 
u ” ” ” 31 ” ” 

It is also intended that u be .@ or something of the sort 
e.g. it might be (s + l)F or s but not e.g. s2 + F2. 

In order to assist the checker, the programmer should 
make assertions about the various states that the machine 
can reach. These assertions may be tabulated as in Fig. 2. 
Assertions are only made for the states when certain partic- 
ular quantities are in control, corresponding to the ringed 
letters in the flow diagram. One column of the table is used 
for each such situation of the control. Other quantities are 
also needed to specify the condition of the machine com- 
pletely: in our case it is sufficient to give F and s. The upper 
part of the table gives the various contents of the store lines 
in the various conditions of the machine, and restrictions 
on the quantities s, r (which we may call inductive variables). 
The lower part tells us which of the conditions will be the 
next to occur. 

The checker has to verify that the columns corresponding 
to the initial condition and the stopped condition agree with 
the claims that are made for the routine as a whole. In this 
case the claim is that if we start with control in condition A 
and with n in line 29 we shall find a quantity in line 31 
when the machine stops which is b (provided this is less 
than 240, but this condition has been ignored). 

He has also to verify that each of the assertions in the 
lower half of the table is correct. In doing this the columns 
may be taken in any order and quite independently. Thus 
for column B the checker would argue: “From the flow 
diagram we see that after B the box u’ = u applies. From 
the upper part of the column for B we have u = b. Hence 
u’ = k i.e. the entry for u i.e. for line 31 in C should be Lr. 
The other entries are the same as in B.” 

Finally the checker has to verify that the process comes 
to an end. Here again he should be assisted by the program- 
mer giving a further definite assertion to be verified. This 
may take the form of a quantity which is asserted to decrease 
continually and vanish when the machine stops. To the pure 
mathematician it is natural to*give an ordinal number. In 
this problem the ordinal might be (n - r)u2 + (r - s)w + k. 
A less highbrow form of the same thing would be to give the 
integer 280(n - F) + Z4’(r - s) + k. Taking the latter case 
and the step from B to C there would be a decrease from 
2’“(n - F) + 240(r - s) + 5 to 280(n - r) + 240(r - s) + 4. In 
the step from F to B there is a decrease from 2”(n - r) + 
240(r - s) + 1 to 2’O(n - r - 1) + 240(r + 1 - s) + 5. 

In the course of checking that the process comes to an 
end the time involved may also be estimated by arranging 
that the decreasing quantity represents an upper bound to 
the time till the machine stops. 

140 * Annals of the HIstory of Computing, Volume 6, Number 2, April 1984 
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Turing’s program: the factorial function

Compute n! using additions only.

Two nested loops.

int fac (int n)

{

int s, r, u, v;

u = 1;

for (r = 1; r < n; r++) {

v = u; s = 1;

do {

u = u + v;

} while (s++ < r);

}

return u;

}
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The flowchart for the program

“Unfortunately there is no coding system su�ciently generally
known to justify giving the routine for this process.”

F. L. Morris & C. B. Jones * Turing Proof 

0 D 

I---+ 
STOP 

0 A 

0 E 0 G 

- 

, r’=l \ v’=u 
u’ = 1 

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l 

\, 
/. 

A 

0 F 

- 

+ TESTS-r 
I .p r’=r+l-\ 

, 

I 

Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 

M. H. A. Newman, then professor of pure mathematics 

STORAGE 
(INITIAL) (STOP) 

LOCATION @ @O@O 
k=6 k=5 k=4 k=O k=3 

0 0 
k=l k=2 

I 27 I S s+l S 

r r r r 
n n n 

Sk (s Jl)Lr (s :1,Lf 

28 
:: 

31 

r 
n n 

1L 

TO @ 
WITH r’ = 1 

TO @ 

u’ = 1 

L’ 
II 

TO @ 
IFr=n 
TO @ 
IFr-cn 

v  WITHY = r + 1 
IFsrr 
TO @ 
WlTHs’=s+l 
.- 

at Manchester University, who had played a leading 

part in setting up the Manchester computer project, 

and D. R. Hartree, then professor of mathematical 

physics at Cambridge University, who had been a 

moving force both at the NPL and at Cambridge. 
We now turn to a discussion of Turing’s proof 

method. Present methods might combine Turing’s 

Figures 1 and 2 into a flowchart that includes the 

assertions. Figure A is an annotated flowchart in the 

style of Floyd (1967). Two significant differences be- 

tween Figure A and Turing’s presentation may be 

observed. 

1. In the Floyd style, assertions may be any propo- 

sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141 

(The notation u/u′ denotes the value of u before/after the block).
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Logical assertions

“In order to assist the checker, the programmer should make
assertions about the various states that the machine can
reach.”

The assertions document not only which memory location
contains which abstract variable, but also relations between
these variables.

F. L. Morris & C. B. Jones * Turing Proof 
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Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 

M. H. A. Newman, then professor of pure mathematics 
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at Manchester University, who had played a leading 

part in setting up the Manchester computer project, 

and D. R. Hartree, then professor of mathematical 

physics at Cambridge University, who had been a 

moving force both at the NPL and at Cambridge. 
We now turn to a discussion of Turing’s proof 

method. Present methods might combine Turing’s 

Figures 1 and 2 into a flowchart that includes the 

assertions. Figure A is an annotated flowchart in the 

style of Floyd (1967). Two significant differences be- 

tween Figure A and Turing’s presentation may be 

observed. 

1. In the Floyd style, assertions may be any propo- 

sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141 (The notation |n means “n factorial”.) 9



Logical assertions on the flowchart

In the modern notation (introduced by Floyd in 1967), we write
the assertions directly on the edges of the flowchart.

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof 

O<n O<n 
I I 

v  = n! v  = n! 
I I 
I I 
I 

r5n r5n 15 rcn ‘STOP scr<n slr<n 
u = r! u = r! ll= ll = r! u = sr! 

I 20 
u=(s-tl)r! 

I v  = r! v  = f! v  = r! 
I I I A I I I 
I- I 

’ s:=s+l 

I 
I 
I 

r-en 

u=(r+l)r! 

u = sr! 
v  = r! 

Figure A 

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare 
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this 
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con- 
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s 
ing is necessary for inferring the u = n! claim at D ingenuity. 
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s 
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’ 
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the 
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as 

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because 

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition 
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec- 
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was 
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no 
of as a directly executable statement; the level of coding system sufficiently generally known,” and that 
necessary representation of quantities and implemen- what Turing had in mind to be passed between the 
tation of operations lying below the atomic statements programmer and the checker was the actual code of a 
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with 
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no 
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre- 
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo- 
current value. cation 27, and the behavior of the variable s, belonging 

The most striking discrepancy between the two solely to the assertions, which increased-as might 
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point 
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled. 
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns 
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear 
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions 
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary 

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984 
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Verification

“The checker has to verify that the columns corresponding to
the initial condition and the stopped condition agree with the
claim that are made for the routine as a whole.”

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof 

O<n O<n 
I I 

v  = n! v  = n! 
I I 
I I 
I 

r5n r5n 15 rcn ‘STOP scr<n slr<n 
u = r! u = r! ll= ll = r! u = sr! 

I 20 
u=(s-tl)r! 

I v  = r! v  = f! v  = r! 
I I I A I I I 
I- I 

’ s:=s+l 

I 
I 
I 

r-en 

u=(r+l)r! 

u = sr! 
v  = r! 

Figure A 

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare 
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this 
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con- 
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s 
ing is necessary for inferring the u = n! claim at D ingenuity. 
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s 
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’ 
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the 
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as 

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because 

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition 
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec- 
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was 
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no 
of as a directly executable statement; the level of coding system sufficiently generally known,” and that 
necessary representation of quantities and implemen- what Turing had in mind to be passed between the 
tation of operations lying below the atomic statements programmer and the checker was the actual code of a 
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with 
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no 
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre- 
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo- 
current value. cation 27, and the behavior of the variable s, belonging 

The most striking discrepancy between the two solely to the assertions, which increased-as might 
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point 
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled. 
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns 
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear 
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions 
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary 

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984 

r ≤ n ∧ u = r! ∧ v = r! ∧ r − n ≥ 0 =⇒ v = n!
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Verification

“[The checker] also has to verify that each of the assertions in
the lower half of the table is correct. In doing this the columns
may be taken in any order and quite independently.”

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof 

O<n O<n 
I I 

v  = n! v  = n! 
I I 
I I 
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r5n r5n 15 rcn ‘STOP scr<n slr<n 
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I 20 
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I I I A I I I 
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v  = r! 

Figure A 

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare 
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this 
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con- 
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s 
ing is necessary for inferring the u = n! claim at D ingenuity. 
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s 
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’ 
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the 
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as 

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because 

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition 
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec- 
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was 
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no 
of as a directly executable statement; the level of coding system sufficiently generally known,” and that 
necessary representation of quantities and implemen- what Turing had in mind to be passed between the 
tation of operations lying below the atomic statements programmer and the checker was the actual code of a 
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with 
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no 
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre- 
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo- 
current value. cation 27, and the behavior of the variable s, belonging 

The most striking discrepancy between the two solely to the assertions, which increased-as might 
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point 
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled. 
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns 
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear 
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions 
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary 

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984 

s ≤ r < n ∧ u = sr! ∧ v = r!
⇓

s ≤ r < n ∧ u + v = (s + 1)r! ∧ v = r!

s− 1 ≤ r < n ∧ u = sr! ∧ v = r!
∧ (s− 1)− r < 0

⇓
s ≤ r < n ∧ u = sr! ∧ v = r!
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Verifying termination

“Finally the checker has to verify that the process comes to an
end. Here again he should be assisted by the programmer [. . . ].
This may take the form of a quantity which is asserted to de-
crease continually and vanish when the machine stops.”

Turing suggests taking the ordinal (n− r)ω2 + (r − s)ω + k,
which corresponds to lexicographic ordering on (n− r, r − s, k).

More pragmatically, he suggests 280(n− r) + 240(r − s) + k.

F. L. Morris & C. B. Jones * Turing Proof 
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Figure 1 (Redrawn from Turing’s original) 

Conference Discussion (from page 70 of the conference 
report) 

Prof. Hartree said that he thought that Dr Turing had 
used the terms “induction” and “inductive variable” in a 
misleading sense since to most mathematicians induction 
would suggest “mathematical induction” whereas the pro- 
cess so called by von Neumann and Turing often consisted 
of repetition without logical connection. Prof. Newman sug- 
gested that the term “recursive variable” should be used. Dr 
Turing, however, still thought that his original terminology 
could be justified. 

Comments 

The contributors to the conference discussion were 

M. H. A. Newman, then professor of pure mathematics 
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at Manchester University, who had played a leading 

part in setting up the Manchester computer project, 

and D. R. Hartree, then professor of mathematical 

physics at Cambridge University, who had been a 

moving force both at the NPL and at Cambridge. 
We now turn to a discussion of Turing’s proof 

method. Present methods might combine Turing’s 

Figures 1 and 2 into a flowchart that includes the 

assertions. Figure A is an annotated flowchart in the 

style of Floyd (1967). Two significant differences be- 

tween Figure A and Turing’s presentation may be 

observed. 

1. In the Floyd style, assertions may be any propo- 

sitions relating the values of the variables to each 

Figure 2 (Redrawn from Turing’s original) 
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Rediscovery and formalization:
Assigning meanings to programs
Robert W. Floyd, 1967



Robert W Floyd, 1936–2001

1953 B.A. in liberal arts, U. Chicago
1958 B.S. in physics, U. Chicago

195?-61 Computer programmer, Illinois I.T. (syntax analysis)
1962-64 Senior scientist, Computer Associates (compilers)
1965-67 Associate professor, Carnegie I.T. (algorithms, semantics)
1968-91 Professor, Stanford (algorithms)

1978 Turing award
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A fundamental paper

Robert W. Floyd 

ASSIGNING MEANINGS TO PROGRAMSl 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at all) by a connection whose associated 
proposition will be true at that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if at all) by a 
connection whose associated proposition will be true at that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Rit the final values on completion will satisfy the relation Rz." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

1 This work was supported by the Advanced Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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The return of logical assertions

18 years later, Floyd rediscovers Turing’s idea:
annotate a flowchart with logical assertions.

programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 

- - - - - - - - n E J+ (J+ is the set of positive integers) 

- - - - - - - - n E J+ /\ i = 1/\ S = 0 
i-l 

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ 
j-l 

i-I n 
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l 

i-l 
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ 

j-1 

. 
I 

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ 
j-1 

i - i + 1 i-l 

- - - - - - - - n E J+ Ai € J+ 1\ 2 i n + 1/\ S = 1: OJ 
j-l 

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0) 
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From verification conditions. . .

Floyd formalizes the verification conditions:
logical implications that guarantee the logical consistency of the
assertions annotating the program.

x > 0?

y := x y := −x

P

Q R

S T
U

P ∧ x > 0⇒ Q
P ∧ x ≤ 0⇒ R

∃y0,Q[y ← y0] ∧ y = x⇒ S
∃y0,R[y ← y0] ∧ y = −x⇒ T

S ∨ T ⇒ U

Annotated program −→ Verification conditions

17



. . . to the semantics of the programming language

annotated program formal
semantics

verification conditions

Floyd notices that the rules transforming an annotated program
into verification conditions constitute a semantics of the
programming language.

It’s the birth of formal semantics!
(See my 2019 lectures “Mechanized semantics”.)

“[T]he proposal that the semantics of a programming lan-
guage may be defined independently of all processors for that
language, by establishing standards of rigor for proofs about
programs in the language, appear to be novel”

18



Verification conditions for flowcharts

x := f (x,~y)

P(x,~y)

Q

(∃x0, x = f (x0,~y) ∧ P(x0,~y))⇒ Q

b ?
P

Q1 Q0

P ∧ b⇒ Q1
P ∧ ¬b⇒ Q0

P1 P2

Q

P1 ∨ P2 ⇒ Q

19



Floyd’s rule for assignment

x := 0

y ≤ 10

x = 0
∧ y ≤ 10

x := 0

y = 2x

x = 0
∧ ∃x0, y = 2x0

x := x + 1

0 ≤ x ≤ y

∃x0, x = x0 + 1
∧ 0 ≤ x0 ≤ y

x := e

P

Q

(∃x0, x = e[x← x0] ∧ P[x← x0])⇒ Q

Examples:

General case:

20



Generic rules

Notations: c command (fragment of a program)
~P preconditions (one per entry in c)
~Q postconditions (one per exit out of c)

Vc(~P; ~Q) verification conditions for ~P, c, ~Q

Consequence: if Vc(~P; ~Q) and ~P′ ⇒ ~P and ~Q⇒ ~Q′, then Vc(~P′; ~Q′).

Conjunction: if Vc(~P; ~Q) and Vc(~P′, ~Q′) then Vc(~P ∧ ~P′; ~Q ∧ ~Q′).

Disjunction: if Vc(~P; ~Q) and Vc(~P′, ~Q′) then Vc(~P ∨ ~P′; ~Q ∨ ~Q′).

Existential quantification: if Vc(~P; ~Q) then Vc(∃x. ~P; ∃x. ~Q).

21



Semantic soundness

If the verification condition Vc(P1 . . . Pn;Q1 . . .Qm) holds
c executes from initial state s to final state s′ (exit number j)
the initial state s satisfies one of the preconditions Pi

then
the final state s′ satisfies postcondition Qj.

Easy to prove for the flowchart rules.

Corollary: if the program starts in an initial state satisfying its
precondition P, and if it terminates, then the final state satisfies
its postcondition Q.

22



Strongest verifiable consequence

Floyd conjectures that the verification condition Vc(~P; ~Q) can
always be written as

Tc(P1 ∨ · · · ∨ Pn)⇒ ~Q

where Tc(P) is the strongest postcondition for command c with
precondition P.

For example, in the case of flowcharts, we have

Tx:=e(P) = ∃x0, x = e[x← x0] ∧ P[x← x0]

Ttest(b)(P) = (P ∧ b, P ∧ ¬b)

23



Towards automation

Using T, we can complete a partially-annotated flowchart.

A

F

A

B = T(A)

C = T(B ∨ F)

D = T(C)F

T(D)⇒ F

“ This fact o�ers the possibility of automatic verification of
programs, the programmer merely tagging entrances and one
edge in each innermost loop; the verifying program would ex-
tend the interpretation and verify it, if possible, by mechanical
theorem-proving techniques. ”

24



Other contributions of Floyd’s paper

A partial definition of Vc for structured commands in the style of
Algol (sequences, if/then/else, for loops).

A discussion of completeness for the definition of Vc

(see next lecture).

A method to verify termination:

• To each edge of the flowchart, associate a function
values of variables→ well-founded set W
(e.g. W = tuples of integers with lexicographic ordering)

• Check that these functions decrease at each transition.

25



Final example in the paper: Euclidean division

START 

_____ {X 0, Y> 0, Q = ° 
r-----lI=----, (X - Q, 5) 

R-X 
_____ 

(X-Q,4) 
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY 

(X - Q,3) __ _ 

---"'-- ,C HALT) 

I_tO R < Y,X O,X = R + QY 
No (X - Q,2) 

_____ {R Y> 0, X 0, Q 0, X = R + QY 
,_----'1""-_--, (X - Q, 2) 

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY 
(X - Q,4) 

FIGURE 5. Algorithm to compute quotient Q and remainder R of 
X.;- y, for integers X 0, Y > ° 
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The manifesto:
An axiomatic basis for computer
programming
C. A. R. Hoare, 1969
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A seminal paper

An Axiomatic Bas is  for 
Computer Programming 

C. A. R . HOARE 
The  Queen's  Unive rs ity of Be lfas t,* Northe rn Ire land 

In this paper an attempt is made to explore the logical founda- 
tions of computer programming by use of techniques which 
were first applied in the study of geometry and have later 
been extended to other branches of mathematics. This in- 
volves the elucidation of sets of axioms and rules of inference 
which can be used in proofs of the properties of computer 
programs. Examples are given of such axioms and rules, and 
a formal proof of  a simple theorem is displayed. Finally, it is 
argued that important advantages, both theoretical and prac- 
tical, may follow f rom a pursuance of  these topics. 

KEY WORDS AND PHRASES: axiomatic method, theory of programming' 
proofs of programs, formal language definition, programming language 
design, machine-independent programming, program documentation 
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24 

1. Intro duc tio n 
C o m p u te r  p ro g ra m m in g  is  a n  e xa c t s c ie nce  in  th a t  a ll 

th e  p ro p e rtie s  of a  p ro g ra m  a n d  a ll th e  cons e que nce s  of 
e xe c u tin g  it  in  a n y g ive n  e n viro n m e n t ca n, in  p rinc ip le ,  
be  fo u n d  o u t fro m  th e  te xt of th e  p ro g ra m  its e lf b y m e a n s  
of p u re ly d e d u c tive  re a s on ing . De d u c tive  re a s on ing  in- 
vo lve s  th e  a p p lic a tio n  o f va lid  ru le s  o f in fe re nce  to  s e ts  o f 
va lid  a xioms . It  is  th e re fo re  de s ira b le  a n d  in te re s tin g  to  
e lu c id a te  th e  a xioms  a n d  ru le s  of in fe re nce  wh ich  u n d e rlie  
o u r re a s on ing  a b o u t c o m p u te r p ro g ra m s .  Th e  e xa c t cho ice  
of a xioms  will to  s ome  e xte n t d e p e n d  o n  th e  cho ice  of 
p ro g ra m m in g  la ngua ge . F o r illu s tra tive  pu rpos e s ,  th is  
p a p e r is  confine d  to  a  ve ry s imple  la ngua ge , wh ich  is  e ffe c- 
tive ly a  s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d  la ngua ge s .  

2. Co mpute r Arithme tic  
Th e  firs t re q u ire m e n t in  va lid  re a s on ing  a b o u t a  p ro - 

g ra m  is  to  kn o w th e  p ro p e rtie s  of th e  e le m e n ta ry o p e ra tio n s  
wh ich  it  invoke s ,  fo r e xa mple ,  a d d itio n  a n d  m u ltip lic a tio n  
of in te ge rs .  Un fo rtu n a te ly,  in  s e ve ra l re s pe c ts  c o m p u te r 
a rith m e tic  is  n o t th e  s a me  a s  th e  a rith m e tic  fa milia r to  
m a th e m a tic ia n s ,  a n d  it  is  n e c e s s a ry to  e xe rc is e  s ome  ca re  
in  s e le c ting  a n  a p p ro p ria te  s e t of a xioms . F o r e xa mple ,  th e  
a xioms  d is p la ye d  in  Ta b le  I a re  ra th e r a  s ma ll s e le c tion  
of a xioms  re le va n t to  in te ge rs .  F ro m  th is  in c o m p le te  s e t 

* De purtme nt of Compute r Science  

of a xioms  it is  pos s ib le  to  de duce  s uch  s imple  th e o re m s  a s : 

x =x +y X O  

y <r ~ r +y  X q = ( r-  y ) +y  X (1 + q )  

Th e  p ro o f of th e  s e cond  of th e s e  is : 

A5 ( r- - y )  + y X ( l+ q )  

= ( r- - y ) + ( y X l+y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r- - y ) +y ) +y X q  

A6 = r + y X q p ro v id e d y  < r 

Th e  a xioms  A1 to  A9 a re , of cours e , tru e  o f th e  tra d i- 
tio n a l in fin ite  s e t of in te ge rs  in  m a th e m a tic s .  Ho we ve r,  
th e y a re  a ls o tru e  of th e  fin ite  s e ts  of "in te g e rs " wh ich  a re  
m a n ip u la te d  b y c o m p u te rs  p ro vid e d  th a t  th e y a re  con- 
fine d  to  nonnegative  n u m b e rs .  Th e ir  t ru th  is  in d e p e n d e n t 
o f th e  s ize  of th e  s e t; fu rth e rm o re ,  it is  la rge ly in d e p e n d e n t 
of th e  cho ice  o f te c h n iq u e  a pp lie d  in  th e  e ve n t o f "o ve r- 
flow"; fo r e xa mp le : 

(1 ) S tric t in te rp re ta tio n : th e  re s u lt of a n  ove rflowing  
o p e ra tio n  doe s  n o t e xis t; wh e n  ove rflow occurs , th e  o ffe nd- 
ing  p ro g ra m  n e ve r comple te s  its  o p e ra tio n .  No te  th a t  in  
th is  ca s e , th e  e qua litie s  of A1 to  A9 a re  s tric t,  in  th e  s e ns e  
th a t  b o th  s ide s  e xis t o r fa il to  e xis t to g e th e r.  

(2 ) F irm  b o u n d a ry:  th e  re s u lt of a n  ove rflowing  o p e ra - 
tio n  is  ta ke n  a s  th e  m a xim u m  va lu e  re p re s e n te d .  

(3 ) Mo d u lo  a rith m e tic : th e  re s u lt o f a n  ove rflowing  
o p e ra tio n  is  c o m p u te d  m o d u lo  th e  s ize  o f th e  s e t o f in te ge rs  
re p re s e n te d .  

Th e s e  th re e  te c h n iq u e s  a re  illu s tra te d  in  Ta b le  II b y 
a d d itio n  a n d  m u ltip lic a tio n  ta b le s  fo r a  trivia lly s ma ll 
mode l in  wh ich  0, 1, 2, a n d  3 a re  th e  o n ly in te ge rs  re p re - 
s e n te d .  

It  is  in te re s tin g  to  n o te  th a t  th e  d iffe re n t s ys te m s  s a tis fy- 
ing  a xioms  A1 to  A9 m a y b e  rigo rous ly d is tingu is he d  fro m  
e a c h  o th e r b y choos ing  a  p a rtic u la r one  o f a  s e t of m u tu a lly 
e xc lus ive  s u p p le m e n ta ry a xioms . F o r  e xa mple ,  in fin ite  
a rith m e tic  s a tis fie s  th e  a xio m : 

A10z ~ 3 x V y  (y < x ),  

wh e re  a ll fin ite  a rith m e tic s  s a tis fy: 

A10~ Vx (x < m a x) 

whe re  "m ax" d e n o te s  th e  la rge s t in te g e r re p re s e n te d .  
S imila rly,  th e  th re e  tre a tm e n ts  o f ove rflow m a y be  

d is tingu is he d  b y a  cho ice  o f one  o f th e  fo llowing  a Moms  
re la tin g  to  th e  va lu e  of m a x + 1: 

Alls  ~ 3 x  (x = m a x + 1) (s tric t in te rp re ta tio n ) 

All,  m a x + 1 = m a x (firm b o u n d a ry)  

AllM m a x + 1 = 0 (modu lo  a rith m e tic ) 

Ha vin g  s e le c te d  one  o f th e s e  a xioms , it  is  pos s ib le  to  
us e  it  in  d e d u c in g  th e  p ro p e rtie s  of p ro g ra m s ; h o we ve r,  

576 C o m m u n ic a tio n s  o f th e  ACM Volume  12 / Nu m b e r 10 / O c to b e r,  1969 

Communications of the ACM 12(10), 1969
28



A principled position: the axiomatic approach

An axiomatic approach makes it possible to specify programs and
define programming languages without specifying everything.

Hoare’s example: arithmetic overflows (in unsigned integer
arithmetic).

Error: MAX+ 1 halts the program
Saturation: MAX+ 1 = MAX

Modulo: MAX+ 1 = 0

29



Axiomatizing computer arithmetic

Hoare states 9 axioms that hold in N but also in the three kinds
of machine arithmetic:

TABLE I 

A1 x +y =y +x  
A2 x X y =y X x  

A3 (x + y) + z  = x + (y + z ) 
A4 (xX y) X z = x X (yX z) 

A5 x X  ( y +z )  = x X  y +x X  z  

A6 y <x D  ( x - -  y ) +y  = x 

A7 x + 0  = x 
A8 x X0 = 0  
A9 x X l=x  

a ddition is  commuta tive  
multiplica tion is  commut- 

a tive  
a ddition is  associa tive  
multiplica tion is  associa - 

tive  
multiplica tion dis trib- 

ute s  through a ddition 
a ddition cance ls  s ubtra c- 

tion 

TABLE II 

1. 
+ 0 1  

0 0 1 2 
1 1 2 3  
2 2 3 * 
3 3 * * 
• nonexis tent 

S tric tIn te rp re ta tion  
2 3  x 0 1 2  

3 0 0 0 0  
* 1 0 1 2  
* 2 0 2 *  
* 3 0 3 *  

+ 
2. F irmBounda ry 

1 2 3  × 0 1 2 3  

1 2 3  0 0 0 0 0  
2 3 3  1 0 1 2 3  
3 3 3  2 0 2 3 3  
3 3 3  3 0 3 3 3  

3. 
+ 0 1 2  

0 0 1 2 
1 1 2 3  
2 2 3 0  
3 3 0 1 

Modulo Arithme tic 
3 X 0 1 2 

3 0 0 0 0  
0 1 0 1 2 
1 2 0 2 0  
2 3 0 3 2 

the s e  p rope rtie s  will n o t ne ce s s a rily obtMn, unle s s  th e  
p ro g ra m  is  e xe cu te d  o n  a n  im p le m e n ta tio n  wh ich  s a tis fie s  
th e  chos e n  a xiom. 

3 . P r o g r a m  E xe c u t io n  

As  m e n tio n e d  a bove , th e  pu rpos e  of th is  s tu d y is  to  
p ro vid e  a  logica l ba s is  fo r p roofs  of th e  p rope rtie s  of a  
p ro g ra m .  One  of th e  m o s t im p o rta n t  p rope rtie s  of a  p ro - 
g ra m  is  wh e th e r o r n o t it ca rrie s  o u t its  in te n d e d  func tion .  
Th e  in te n d e d  fu n c tio n  of a  p ro g ra m , o r p a rt  of a  p ro g ra m , 
ca n  be  s pe cifie d b y m a kin g  ge ne ra l a s s e rtions  a b o u t th e  
va lue s  wh ich  th e  re le va n t va ria b le s  will ta ke  a fte r e xe cu tion  
of th e  p ro g ra m . The s e  a s s e rtions  will u s ua lly n o t a s cribe  
p a rtic u la r va lue s  to  e a ch  va ria b le , b u t  will ra th e r s pe c ify 
ce rta in  ge ne ra l p rope rtie s  of th e  va lue s  a n d  th e  re la tion - 
s hips  ho ld ing  be twe e n  th e m . We  us e  th e  n o rm a l n o ta tio n s  

of m a th e m a tic a l logic to  e xpre s s  the s e  a s s e rtions , a n d  th e  
fa milia r rule s  of o p e ra to r p re ce de nce  h a ve  be e n  us e d  
wh e re ve r pos s ible  to  im p ro ve  le gibility. 

In  m a n y ca s e s , th e  va lid ity of th e  re s u lts  of a  p ro g ra m  
(or p a rt  of a  p ro g ra m ) will d e p e n d  on  th e  va lue s  ta ke n  
b y th e  va ria b le s  be fore  th a t  p ro g ra m  is  in itia te d . Th e s e  
in itia l p re cond itions  of s ucce s s ful us e  ca n  be  s pe cifie d b y 
th e  s a me  typ e  of ge ne ra l a s s e rtion  a s  is  us e d  to  de s cribe  
th e  re s u lts  o b ta in e d  on  te rm in a tio n .  To  s ta te  th e  re qu ire d  
c o n n e c tio n  b e twe e n  a  p re c o n d itio n  (P ),  a  p ro g ra m  (Q) 
a n d  a  de s c rip tion  of th e  re s u lt of its  e xe cu tion  (R),  we  
in tro d u c e  a  ne w n o ta tio n : 

P {Q }R .  

This  m a y be  in te rp re te d  "If  th e  a s s e rtion  P  is  tru e  be fore  
in itia tion  of a  p ro g ra m  Q, th e n  th e  a s s e rtion  R will be  
tru e  o n  its  c o m p le tio n ." If the re  a re  no  p re cond itions  im- 
pos e d, we  write  t r u e  {Q }R )  

Th e  tre a tm e n t g ive n  be low is  e s s e n tia lly due  to  F lo yd  
[8] b u t is  a pp lie d  to  te xts  ra th e r th a n  flowcha rts . 

3.1. Axio m  OF ASSIGNMENT 
As s ig n m e n t is  u n d o u b te d ly th e  m o s t cha ra c te ris tic  fe a - 

tu re  of p ro g ra m m in g  a  d ig ita l compu te r,  a n d  one  th a t  
m o s t c le a rly d is tinguis he s  it fro m  o th e r b ra nche s  of m a th e - 
ma tics . It  is  s u rpris ing  the re fo re  th a t  th e  a xiom g o ve rn in g  
o u r re a s on ing  a b o u t a s s ignme n t is  q u ite  a s  s imple  a s  a n y 
to  be  fo u n d  in  e le m e n ta ry logic. 

Cons ide r th e  a s s ignme n t s ta te m e n t: 

x : = f 

whe re  
x is  a n  ide ntifie r fo r a  s imple  va ria b le ; 
f is  a n  e xpre s s ion  of a  p ro g ra m m in g  la n g u a g e  with o u t 

s ide  e ffe cts , b u t  pos s ib ly c o n ta in in g  x. 
No w a n y a s s e rtion  P  (x) which  is  to  be  tru e  of (the  va lu e  

o f) x a fte r th e  a s s ig n me n t is  m a d e  m u s t a ls o h a ve  be e n  
tru e  of (the  va lu e  o f) th e  e xpre s s ion f, ta ke n  be fore  th e  
a s s ig n m e n t is  ma de , i.e . with  th e  old  va lu e  of x. Th u s  
if P  (x) is  to  be  tru e  a fte r th e  a s s ignme nt,  th e n  P  (f) m u s t 
be  tru e  be fore  th e  a s s ignme nt.  Th is  fa c t m a y be  e xpre s s e d 
more  fo rm a lly: 

DO Axio m  of As s ig n m e n t 
 -P0 {x :=  f} P  

whe re  
x is  a  va ria b le  ide ntifie r; 
f is  a n  e xpre s s ion; 
P 0 is  o b ta in e d  fro m  P b y s u b s titu tin g  f fo r a ll occur- 

re nce s  of x. 
It  m a y be  no tice d  th a t  DO is  n o t re a lly a n  a xiom a t a ll, 

b u t  ra th e r a n  a xiom s che ma , de s crib ing  a n  infin ite  s e t of 
a xioms  wh ich  s ha re  a  c o m m o n  p a tte rn .  Th is  p a tte rn  is  
de s c ribe d  in  p u re ly s yn ta c tic  te rms , a n d  it is  e a s y to  
che e k wh e th e r a n y finite  te xt con fo rms  to  th e  p a tte rn ,  
th e re b y qua lifying  a s  a n  a xiom, which  m a y va lid ly a p p e a r 
in  a n y line  of a  proof. 

1 If this  ca n be  prove d in our formal s ys te m, we use  the  fa milia r 
logica l s ymbol for the ore mhood: [-P {Q} R 
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He shows that these axioms su�ce to verify Euclidean division.
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A notation: “Hoare triples”

To axiomatize programs, Hoare introduces the notation

P { Q } R
↗ ↑ ↖

precondition program postcondition

This may be interpreted “If the assertion P is true before initi-
ation of a program Q, then the assertion R will be true on its
completion”.

The notation universally used today:

{ P } c {Q }
↗ ↑ ↖

precondition command postcondition
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A contribution: the rules for a structured language

Instead of flowcharts, Hoare considers control structures in the
style of Algol 60.

{Q[x← e] } x := e {Q } (assignment)

{ P } c {Q } Q⇒ Q′
(consequence 1)

{ P } c {Q′ }

P′ ⇒ P { P } c {Q }
(consequence 2)

{ P′ } c {Q }

{ P } c1 {Q } {Q } c2 {R }
(composition)

{ P } c1; c2 {R }

{ P ∧ b } c { P }
(iteration)

{ P } while b do c { P ∧ ¬b }
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Hoare’s rule for assignment

{Q[x← e] } x := e {Q }

“Backward” reasoning style: the postcondition Q determines the
precondition.

Example

{ 0 = 0 ∧ y ≤ 10 } x := 0 { x = 0 ∧ y ≤ 10 }
{ 1 ≤ x + 1 ≤ 10 } x := x + 1 { 1 ≤ x ≤ 10 }

Contrast with the “forward” style of Floyd’s rule:

{ P } x := e { ∃x0, x = e[x← x0] ∧ P[x← x0] }
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Hoare’s rule for iteration

{ P ∧ b } c { P }
(iteration)

{ P } while b do c { P ∧ ¬b }

The precondition P must be a loop invariant:
true at the beginning of the loop body c at every iteration;
re-established at the end of the body c for the next iteration.

Example (counted loop)
x := 0;
{ 0 ≤ x ≤ 10 }

while x < 10 do

{ 0 ≤ x ≤ 10 ∧ x < 10 } x := x + 1 { 0 ≤ x ≤ 10 }
done

{ 0 ≤ x ≤ 10 ∧ ¬(x < 10) } ⇒ { x = 10 }
34



Final example in the paper: Euclidean division

r := x;
q := 0;
while y ≤ r do

r := r − y;
q := q + 1

done

is  th a t  th e y g ive  no  ba s is  fo r a  p ro o f th a t  a  p ro g ra m  s uc- 
ce s s fu lly te rm in a te s .  F a ilu re  to  te rm in a te  m a y be  d u e  to  a n  
in fin ite  loop ; o r it  m a y be  d u e  to  vio la tio n  o f a n  imp le - 
m e n ta tio n -d e fin e d  limit,  fo r e xa mple ,  th e  ra n g e  of n u m e ric  
ope ra nds ,  th e  s ize  of s to ra ge ,  o r a n  o p e ra tin g  s ys te m  tim e  
limit. Th u s  th e  n o ta tio n  "PIQ}R" s h o u ld  be  in te rp re te d  
"p ro vid e d  th a t  th e  p ro g ra m  s ucce s s fu lly te rm in a te s ,  th e  
p rope rtie s  of its  re s u lts  a re  de s c ribe d  b y R ." It  is  fa irly 
e a s y to  a d a p t th e  a xioms  s o th a t  th e y c a n n o t be  u s e d  to  
p re d ic t th e  "re s u lts " of n o n te rm in a tin g  p ro g ra m s ; b u t  th e  
a c tu a l us e  o f th e  a xioms  wou ld  n o w d e p e n d  on  kn o wle d g e  
of m a n y im p le m e n ta tio n -d e p e n d e n t fe a tu re s ,  fo r e xa mple ,  
th e  s ize  a n d  s pe e d  of th e  c o m p u te r,  th e  ra n g e  o f n u m b e rs ,  
a n d  th e  cho ice  of ove rflow te chn ique .  Ap a rt  fro m  p roofs  of 
th e  a vo id a n c e  of in fin ite  loops , it is  p ro b a b ly b e tte r  to  
p ro ve  th e  "c o n d itio n a l" co rre c tne s s  of a  p ro g ra m  a n d  re ly 
o n  a n  im p le m e n ta tio n  to  g ive  a  wa rn in g  if it ha s  h a d  to  

TABLE III 

Line 
number Formal proof Jus tifica tion 

1 t r u e  ~ x  = x ~ y X 0 Le m m a l 
2 x = x - {- y X  O {r := x }x = r. - t - y X O  DO 
3 x = r~ y X O {q := O }x = r. - b y X  q DO 
4 tru e  {r :=  x} x = r ~ y X 0 D1  (1, 2) 

5 t r u e  {r :=  x; q :=  0} x = r -t- y X q D2  (4, 3) 
6 x = r~ y X  q A y ~ r ~ x  = 

( r- y )  ~ y X (1-t-q) Le m m a  2 
7 x = ( r- - y )  .-{- y X (1 -t-q ){r :=  r- y }x  = 

r + y X ( l+ q )  DO 
8 x = r + y X ( l+ q ) [q  :=  1 . -b q }x  = 

r- t - y  X q DO 
9 x = ( r- - y )  -~ y X ( l+ q ) {r  :=  r- - y ; 

q :=  1 +q } x = r + y X q D2  (7, 8) 
10 x = r + y X q A y ~ r {r := r- - y ; 

, q :=  l+ q } x = r + y X q D1  (6 , 9 ) 
11 x = r -b  y X q [w h ile  y ~ r d o  

(r := r- - y ; q :=  1--bq)} 

~- -Ty < r /~  x = r ~ y X q D3  (10) 
12 t r u e  {((r :=  x; q :=  0 ); w h ile  y ~ r d o  

(r := r- - y ; q :=  l+ q ) ) } -~y ~ r Ax  = 

r + y X q D2  (5 ,1 1 ) 

NOTES 
i. The left hand column is used to number the lines, and the 

right hand column to justify each line, by appealing to an axiom, 
a lemma or a rule of inference applied to one or two previous 
line s , indica te d in bra cke ts . Ne ithe r of the s e  columns  is  pa rt 
of the  forma l proof. For example , line  2 is  a n ins ta nce  of the  
axiom of a s s ignme nt (DO); line  12 is  obta ine d from line s  5 a nd 11 
by a pplica tion of the  rule  of compos ition (D2). 

2. Le mma  1 ma y be  prove d from axioms A7 a nd AS. 
3. Le mma  2 follows  dire ctly from the  the ore m prove d in S e e . 2. 

a b a n d o n  e xe c u tio n  of th e  p ro g ra m  a s  a  re s u lt o f vio la tio n  
of a n  im p le m e n ta tio n  limit.  

F in a lly it is  n e c e s s a ry to  lis t s ome  of th e  a re a s  wh ich  h a ve  
n o t b e e n  c o ve re d : fo r e xa mple ,  re a l a rith m e tic ,  b it a n d  
c h a ra c te r m a n ip u la tio n ,  c o m p le x a rith m e tic ,  fra c tio n a l 
a rith m e tic ,  a rra ys ,  re cords , o ve rla y de fin ition , file s , in p u t /  
o u tp u t,  de c la ra tions ,  s ub rou tine s ,  p a ra m e te rs ,  re curs ion , 
a n d  pa ra lle l e xe cu tion .  E ve n  th e  c h a ra c te riz a tio n  o f in te g e r 
a rith m e tic  is  fa r fro m  comple te .  Th e re  doe s  n o t a p p e a r to  
b e  a n y g re a t d ifficu lty in  de a ling  with  the s e  po in ts ,  p ro - 
vid e d  th a t  th e  p ro g ra m m in g  la ngua ge  is  ke p t s imple . 
Are a s  wh ich  do  p re s e n t re a l d ifficu lty a re  la be ls  a n d  ju m p s ,  
po in te rs ,  a n d  n a m e  p a ra m e te rs .  P ro o fs  of p ro g ra m s  wh ich  
m a d e  us e  o f the s e  fe a tu re s  a re  like ly to  b e  e la b o ra te ,  a n d  
it  is  n o t s u rp ris ing  th a t  th is  s hou ld  b e  re fle c te d  in  th e  
c o m p le xity o f th e  u n d e rlyin g  a xioms . 

5 .  P ro o fs  o f P ro g ra m  C o rre c tn e s s  

Th e  m o s t im p o rta n t  p ro p e rty o f a  p ro g ra m  is  wh e th e r it  
a ccomplis he s  th e  in te n tio n s  o f its  us e r. If the s e  in te n tio n s  
c a n  be  d e s c rib e d  rigo rous ly b y m a kin g  a s s e rtions  a b o u t th e  
va lu e s  of va ria b le s  a t  th e  e n d  (or a t  in te rm e d ia te  p o in ts ) of 
th e  e xe c u tio n  of th e  p ro g ra m ,  th e n  th e  te c h n iq u e s  de s c ribe d  
in  th is  p a p e r m a y be  u s e d  to  p ro ve  th e  co rre c tne s s  o f th e  
p ro g ra m ,  p ro vid e d  th a t  th e  im p le m e n ta tio n  of th e  p ro - 
g ra m m in g  la n g u a g e  con fo rms  to  th e  a xioms  a n d  ru le s  wh ich  
h a ve  b e e n  u s e d  in  th e  p roo f.  Th is  fa c t its e lf m ig h t a ls o be  
e s ta b lis he d  b y d e d u c tive  re a s on ing , us ing  a n  a xio m  s e t 
wh ic h  de s cribe s  th e  logica l p ro p e rtie s  of th e  h a rd wa re  
c ircu its .  Wh e n  th e  co rre c tne s s  of a  p ro g ra m ,  its  compile r,  
a n d  th e  h a rd wa re  o f th e  c o m p u te r h a ve  a ll b e e n  e s ta b lis he d  
with  m a th e m a tic a l c e rta in ty,  it  will be  pos s ib le  to  p la ce  
g re a t re lia nce  o n  th e  re s u lts  o f th e  p ro g ra m , a n d  p re d ic t 
th e ir p ro p e rtie s  with  a  confide nce  limite d  o n ly b y th e  
re lia b ility o f th e  e le c tron ics . 

Th e  p ra c tic e  o f s u p p lyin g  p roofs  fo r n o n trivia l p ro g ra m s  
will n o t b e c o m e  wid e s p re a d  u n til cons ide ra b ly m o re  powe r- 
fu l p ro o f te c h n iq u e s  b e c o m e  a va ila b le ,  a n d  e ve n  th e n  will 
n o t b e  e a s y. Bu t  th e  p ra c tic a l a d va n ta g e s  o f p ro g ra m  p ro v- 
ing  will e ve n tu a lly o u twe ig h  th e  difficultie s , in  vie w of th e  
inc re a s ing  cos ts  o f p ro g ra m m in g  e rro r.  At p re s e n t,  th e  
m e th o d  wh ic h  a  p ro g ra m m e r us e s  to  c o n vin c e  h ims e lf o f 
th e  co rre c tne s s  of h is  p ro g ra m  is  to  t ry  it  o u t in  p a rtic u la r 
ca s e s  a n d  to  m o d ify it  if th e  re s u lts  p ro d u c e d  do  n o t cor- 
re s p o n d  to  his  in te n tio n s .  Afte r h e  ha s  fo u n d  a  re a s o n a b ly 
wide  va rie ty o f e xa m p le  ca s e s  on  wh ich  th e  p ro g ra m  s e e ms  
to  work, h e  be lie ve s  th a t  it  will a lwa ys  work. Th e  tim e  
s p e n t in  th is  p ro g ra m  te s tin g  is  o fte n  m o re  th a n  h a lf th e  
tim e  s p e n t on  th e  e n tire  p ro g ra m m in g  p ro je c t; a n d  with  a  
re a lis tic  cos ting  o f m a c h in e  time , two  th ird s  (or m o re ) of 
th e  cos t o f th e  p ro je c t is  in vo lve d  in  re m o vin g  e rro rs  d u rin g  
th is  pha s e .  

Th e  cos t o f re m o vin g  e rro rs  d is cove re d  a fte r a  p ro g ra m  
ha s  gone  in to  us e  is  o fte n  g re a te r,  p a rtic u la rly in  th e  ca s e  
o f ite m s  of c o m p u te r m a n u fa c tu re r 's  s o ftwa re  fo r wh ich  a  
la rge  p a rt  o f th e  e xpe ns e  is  b o rn e  b y th e  us e r. An d  fina lly, 
th e  cos t of e rro r in  c e rta in  typ e s  of p ro g ra m  m a y b e  a lm o s t 
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The manifesto of deductive verification

A discussion of all that remains to be done:

• Verify termination and absence of run-time errors.
• More arithmetic (incl. floating point), arrays, records,

procedures, functions, recursion, goto, pointers.

An advocacy of program verification

• Testing is expensive.
• Error is very expensive.
• Documentation; portability.
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Some quotes

When the correctness of a program, its compiler, and the
hardware of the computer have all been established with
mathematical certainty, it will be possible to place great
reliance on the results of the program, and predict their
properties with a confidence limited only by the reliability
of electronics.
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Some quotes

The cost of error in certain types of program may be al-
most incalculable—a lost spacecraft, a collapsed build-
ing, a crashed aeroplane, or a world war. Thus, the prac-
tice of program proving is not only a theoretical pursuit,
followed in the interest of academic responsibility, but a
serious recommendation for the reduction of the costs
associated with programming error.
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Some quotes

However, program proving, certainly at present, will be
di�cult even for programmers of high caliber; and may
be applicable only to quite simple program designs. As in
other areas, reliability can be purchased only at the price
of simplicity.
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Summary



Summary so far

As early as 1969, the general principles of deductive verification
have already been set in the works of Floyd and Hoare.

Much work remains:

• 1970’s and 1980’s: deeper understanding of the foundations
for “Hoare logic”. (→ lecture #2)

• 1990’s and 2000’s: implementation within deductive
verification tools (→ seminars #1 and #2)

The next major turning point in the area takes place around year
2000. . .
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