Program logics, first lecture

How can we reason about software?
The birth of program logics

Xavier Leroy
2021-03-04

College de France, chair of software sciences
xavier.leroy@college-de-france.fr

A review of three articles that started it all:

+ Alan Turing, Checking a large routine, 1949.
- Robert W. Floyd, Assigning meanings to programs, 1967.

« C. A. R. Hoare, An axiomatic basis for computer
programming, 1969.

The discovery:
Checking a large routine
Alan Turing, 1949

Alan Mathison Turing, 1912-1954

1931-36 Cambridge: studies mathematics

1936 Publishes the founding paper of computability theory
1936-38 Princeton: Ph.D. with A. Church
1939-44 Bletchley Park: breaking German ciphers
1945-47 Cambridge: design of the ACE programmable computer
1948-50 Manchester: the Mark 1 programmable computer (Ferranti);

“Turing's test” in artificial intelligence.

1951-53 Manchester: mathematical biology; morphogenesis.

A pioneering article

e AR

Talk given at the inaugural conference of the EDSAC computer, Cambridge

University, june 1949. The manuscript was commented, and republished by F.L.

Morris and C.B. Jones in Annals of the History of Computing, 6, 1984.

How can one check a routine? That is the question!

Friday, 2Lth June,
Checking a large routine, by Dr, A, Turing.

How can one chack a routine in the sense of making sure that it is right?

In order that the man wiw checks may not have too dirfficult a task the
prograsmaer should make a number of definite massertions which cun be checked
j_ndividunlu, and from which the correctnecss of the whole programse easily
follows,

Decomposing verification in elementary steps

Consider the analogy of checking an addition. If it is given
as:
1374
5906
6719
4337
7768

26104
one must check the whole at one sitting, because of the
carries. But if the totals for the various columns are given,
as below:
1374
5906
6719
4337
7768

3974
2213

26104
the checker’s work is much easier being split up into the
checking of the various assertions 3+ 9+ 7+ 3+ 7 =29
etc. and the small addition
3974
2213

26104 6

Turing’s program: the factorial function

Compute n! using additions only.
Two nested loops.

int fac (int n)
{
int s, r, u, v;
u=1;
for (r = 1; r < n; r++) {

u=u+ v;
} while (s++ < r);

3

return u;

The flowchart for the program

“Unfortunately there is no coding system sufficiently generally
known to justify giving the routine for this process.”

&

c~
onon
5 S
N

+| TESTs—r
rr=r+1 ~——

Figure 1 (Redrawn from Turing’s original)

(The notation u/u’ denotes the value of u before/after the block).

Logical assertions

“In order to assist the checker, the programmer should make
assertions about the various states that the machine can
reach.”

The assertions document not only which memory location
contains which abstract variable, but also relations between

these variables.

STORAGE (INITIAL) ® (STOP) ® ®
LOGATION k=6 k=5 | k=4 k=0 | k=3 k=1 k=2
27 s s+1 s
28 r r r r r
29 n n n n n n n
30 Ir lr sl (s +Nlr (s+ e
31 Ir In 14 I r
T0 ® T0 ©|1T0 ©® 10 ©®|10 ® T0 ®
WITHr =1 IFr=n WITHr =r+1
u' =1 T0 ® IFs=>r
IFr<n 10 ®
WITHS =5 +1
IFs<r

Figure 2 (Redrawn from Turing’s original)

(The notation |[n means “n factorial”.)

Logical assertions on the flowchart

In the modern notation (introduced by Floyd in 1967), we write
the assertions directly on the edges of the flowchart.

S~
[}
ok

i ¢
I.—I+1l\ : u=srl

i v=r!
r<n

u=(r+1r!

10

“The checker has to verify that the columns corresponding to

the initial condition and the stopped condition agree with the
claim that are made for the routine as a whole.”

£ %
Nl
—

r<nAu=r'Av=rlAr—n>0—v=nl!

1

“[The checker] also has to verify that each of the assertions in
the lower half of the table is correct. In doing this the columns
may be taken in any order and quite independently.”

s=<r<n s<r<n
u=sr! u=(s+ 1)
v=rl v=r!

s<r<nAu=sr'Av=r!

¢

s<r<nAu+v=(s+NrlAv=r!

s—1<r<nAu=srlAv=r!
As—1)—-r<o

¢

u=sr! s<r<nAu=srlAv=r!
v=r!

12

Verifying termination

“Finally the checker has to verify that the process comes to an
end. Here again he should be assisted by the programmer]...].
This may take the form of a quantity which is asserted to de-
crease continually and vanish when the machine stops.”

Turing suggests taking the ordinal (n — r)w? + (r — s)w + k,
which corresponds to lexicographic ordering on (n — r,r — s, R).

More pragmatically, he suggests 28°(n — r) 4+ 2“°(r —s) + k.

STORAGE (INITIAL) (STOP)
LOCATION

,v
1®

k=6

r =

13

Rediscovery and formalization:
Assigning meanings to programs
Robert W. Floyd, 1967

Robert W Floyd, 1936-2001

1953 B.A. in liberal arts, U. Chicago
1958 B.S. in physics, U. Chicago

195?-61 Computer programmer, Illinois I.T. (syntax analysis)
1962-64 Senior scientist, Computer Associates (compilers)
1965-67 Associate professor, Carnegie I.T. (algorithms, semantics)
1968-91 Professor, Stanford (algorithms)

1978 Turing award

14

A fundamental paper

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of

Mathematical Aspects of Computer Science, 1967, 14 pages.
Proceedings of Symposium on Applied Mathematics, vol 19, AMS.

15

The return of logical assertions

18 years later, Floyd rediscovers Turing’s idea:
annotate a flowchart with logical assertions.

nEJTAI=1AS=0

i-1

nedtAni€cdtAisn+1IAS= »Z;a'
=

i-1 n
———nE€J Ai=n+1AS= Y aj;ie,S=3 a
j=1 j=

i-1

________ nedtAi€edtAisnAS=Ta
j=1

i
________ nedtAI€EITAISIAS= Lg
J=1

-1
________ nedTAi€dtAZSisn+1IAS=T g 16
je1

From verification conditions...

Floyd formalizes the verification conditions:
logical implications that guarantee the logical consistency of the
assertions annotating the program.

PAXx>0=Q
PAXx<0=R
Wo, Ay < Vo] ANy =x=S
Ayo,Rly < Yo] N\y = —x=T
SvTi=U

Annotated program — Verification conditions

17

... to the semantics of the programming language

formal
annotated program ————= verification conditions
semantics

Floyd notices that the rules transforming an annotated program
into verification conditions constitute a semantics of the
programming language.

It's the birth of formal semantics!
(See my 2019 lectures “Mechanized semantics”.)

“[TIhe proposal that the semantics of a programming lan-
guage may be defined independently of all processors for that
language, by establishing standards of rigor for proofs about
programs in the language, appear to be novel”

18

Verification conditions for flowcharts

(3xo0, X = f(x0,¥) A P(x0,¥)) = Q

Floyd's rule for assignment

Examples:

0<x<y

Ixg, X = Xo + 1
NO<Xo <Yy

General case:

(3x0,x = e[x < xo] A P[x < Xo]) = Q

20

Generic rules

command (fragment of a program)

Notations: c
P preconditions (one per entry in c)
Q postconditions (one per exit out of ¢)
VC(I3; 5) verification conditions for P, ¢, Q

Consequence: if V(P; @) and P = Pand Q@ = @/, then V.(P; Q).
Conjunction: if V(P; Q) and V.(P', Q') then V. (P A P;Q A Q).
Disjunction: if V¢(P; Q) and V¢(P', Q) then V(P Vv P’;Q v Q).

Existential quantification: if V(P; Q) then V(3x. P; 3x. Q).

21

If the verification condition V¢(P;...Pp;Qq...Qny) holds
¢ executes from initial state s to final state s’ (exit number j)

the initial state s satisfies one of the preconditions P;
then
the final state s’ satisfies postcondition Q;.

Easy to prove for the flowchart rules.

Corollary: if the program starts in an initial state satisfying its
precondition P, and if it terminates, then the final state satisfies
its postcondition Q.

22

Strongest verifiable consequence

Floyd conjectures that the verification condition V.(P; Q) can
always be written as

T(P1V---VP,)=Q

where T¢(P) is the strongest postcondition for command c with
precondition P.

For example, in the case of flowcharts, we have

Tx:—e(P) = 3Xo, X = e[x < Xo| A P[x < Xo]
Ttest(b)(P) = (P/\ b,PA _‘b)

23

Towards automation

Using T, we can complete a partially-annotated flowchart.

A
B = T(A)
C=T(BVF)
F F D=T(C)

T(D) = F

“ This fact offers the possibility of automatic verification of
programs, the programmer merely tagging entrances and one
edge in each innermost loop; the verifying program would ex-
tend the interpretation and verify it, if possible, by mechanical
theorem-proving techniques. ”

24

Other contributions of Floyd’s paper

A partial definition of V. for structured commands in the style of
Algol (sequences, if/then/else, for loops).

A discussion of completeness for the definition of V,
(see next lecture).

A method to verify termination:

+ To each edge of the flowchart, associate a function
values of variables — well-founded set W
(e.g. W = tuples of integers with lexicographic ordering)

» Check that these functions decrease at each transition.

23]

Final example in the paper: Euclidean division

{XéO,Y>0
(X, 6)

{X;O, Y>0,Q=0

(X - Q,%)

{Xgo, Y>0,Q=0,R=X

(X — Q49

Rz0,X20 Y>0,Q20, X=R+QY
_____ (X - Q3

| (0SR<Y,X20,X=R+QY
X -q2

_____ {R§Y>QX§QQ§QX=R+QY
(X -Q,2

R20,Y>0,X20,Q20,X=R+@Q+1DY
(X-Q1

Q—Q+1
_____ R20,Y>0,X20,Q@>0,X=R+QY
{(X—Q,4)

26

The manifesto:

An axiomatic basis for computer
programming

C. A.R. Hoare, 1969

Sir Charles Antony Richard Hoare, 1934~

1952-55 B.A. in philosophy, Oxford
1956-57 Serves in the Royal Navy
1958 Master in statistics, Oxford
1959 Works with Kolmogorov at Lomonossov university, Moscow
1960-67 Works at Elliot Brothers: compiling Algol; Quicksort.
1968-76 Professor, University of Belfast.
1977- Professor, University of Oxford
1980 Turing award
1999- Principal researcher, Microsoft Research, Cambridge
2000 Knighthood

27

A seminal paper

An Axiomatic Basis for
Computer Programming

C. A. R. Hoarge
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

Communications of the ACM 12(10), 1969
28

A principled position: the axiomatic approach

An axiomatic approach makes it possible to specify programs and
define programming languages without specifying everything.

Hoare's example: arithmetic overflows (in unsigned integer
arithmetic).

Error: MAX + 1 halts the program

Saturation: MAX + 1= MAX
Modulo: MAX+1=0

29

Axiomatizing computer arithmetic

Hoare states 9 axioms that hold in N but also in the three kinds
of machine arithmetic:

Al z4+y=y+=2 addition is commutative

A2 2 Xy=yXz multiplication is commut-
ative

A3 @+y)+z=z+ @+ 2 addition is associative

Ad @Xy)Xz=aX (yXz2) multiplication is associa-
tive

A5 zX (y+2) =zXy+ 22Xz multiplication distrib-
utes through addition

A6 y<zD@—y)+y=12 addition cancels subtrac-
tion

A7 24 0=1=z

A8 zX0=0

A zX1=2z

He shows that these axioms suffice to verify Euclidean division.

30

A notation: “Hoare triples”

To axiomatize programs, Hoare introduces the notation

P{Q} R
e T N
precondition program postcondition

This may be interpreted “If the assertion P is true before initi-
ation of a program Q, then the assertion R will be true on its
completion”.

The notation universally used today:
{P}c{Q}
/! T N

precondition command postcondition
31

A contribution: the rules for a structured language

Instead of flowcharts, Hoare considers control structures in the
style of Algol 60.

{Q[x+e]}x:=e{Q} (assignment)
iPjetley e=e PP {P}c{a)
(consequence 1) (consequence 2)
{Pre{a) (P)c(a)
{P}a{Q} {Q}Cz{R}(
{P}c;co{R}
{PAb}c{P}

composition)

(iteration)

{P}whilebdoc{PA—-b}

32

Hoare's rule for assignment

{Q[x<+e]} x:=e{Q}

“Backward” reasoning style: the postcondition Q determines the
precondition.

Example

{0=0Ay <10} x:=0 {x=0Ay <10}
{1<x4+1<10} x:=x+1 {1<x<10}

Contrast with the “forward” style of Floyd’s rule:

{P} x:=e{3xo,x = e[x + Xo] A P[Xx < Xo] }

38)

Hoare’s rule for iteration

{PAb}c{P}

(iteration)

{P}whilebdoc{PA-b}

The precondition P must be a loop invariant:
true at the beginning of the loop body c at every iteration;
re-established at the end of the body c for the next iteration.

Example (counted loop)
X:=0;
{fo<x<10}
while x < 10 do
{0<x<10AXx<10}x:=x+1{0<x<10}
done

{0<x<10A=(x<10)}={x=10} "

Final example in the paper: Euclidean division

r:=x;
q:=0;
whiley < rdo
r=r—y,
qg:=q+1
done

Line
number

1

[I BT U N}

10

11

12

Formal proof
true Dz =24+ y X0
z=z4+yXO0fr:=zjz=r+yX0
z=r+yX0{g:=0z=r+yXgqg
true {r:=zjz=r+yX0
true {r:=2; ¢g:=0jz=r4+yXgqg
z=r+yXgAy<rdDz=
=) +y X (1+9)
z=(—y)+yX +(r:=r—ylz =
r+y X (1+q)
z=r1+yX 1+glq := 14glz =
r+yXg
z = (r—y) +y X (+@)fr := r—y;
g:=l+ge=r+yXgqg
=r+yXgAy<rir=r—y;
gi=1l4glz=r+yXg
z =14+ y X ¢ {while y<r do
(ri=r—y; q:=149)}
Ay<rAz=r+yXg
true {((r := z; ¢ :=0); whiley < r do
(ri=r—y; ¢:=1+)} ~y<rAz=
r+yXg

T

Justification
Lemma 1
Do
Do
D1 (,2)
D2 (4, 3)
Lemma 2
Do
Do
D2 (,8)

D1 6, 9)

D3 (10)

D2 (5, 11)

85

The manifesto of deductive verification

A discussion of all that remains to be done:

- Verify termination and absence of run-time errors.

+ More arithmetic (incl. floating point), arrays, records,
procedures, functions, recursion, goto, pointers.

An advocacy of program verification

- Testing is expensive.
- Error is very expensive.

- Documentation; portability.

36

When the correctness of a program, its compiler, and the
hardware of the computer have all been established with
mathematical certainty, it will be possible to place great
reliance on the results of the program, and predict their
properties with a confidence limited only by the reliability
of electronics.

37

The cost of error in certain types of program may be al-
most incalculable—a lost spacecraft, a collapsed build-
ing, a crashed aeroplane, or a world war. Thus, the prac-
tice of program proving is not only a theoretical pursuit,
followed in the interest of academic responsibility, but a
serious recommendation for the reduction of the costs
associated with programming error.

38

However, program proving, certainly at present, will be
difficult even for programmers of high caliber; and may
be applicable only to quite simple program designs. As in
other areas, reliability can be purchased only at the price
of simplicity.

39

Summary

As early as 1969, the general principles of deductive verification
have already been set in the works of Floyd and Hoare.

Much work remains:

+ 1970’s and 1980’s: deeper understanding of the foundations
for “Hoare logic”. (— lecture #2)

+ 1990’s and 2000’s: implementation within deductive
verification tools (— seminars #1 and #2)

The next major turning point in the area takes place around year
2000...

40

	Turing, 1949
	Floyd, 1967
	Hoare, 1969
	Summary

