
Program logics, first lecture

How can we reason about software?
The birth of program logics

Xavier Leroy
2021-03-04

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Course outline

A review of three articles that started it all:

• Alan Turing, Checking a large routine, 1949.
• Robert W. Floyd, Assigning meanings to programs, 1967.
• C. A. R. Hoare, An axiomatic basis for computer

programming, 1969.

2

The discovery:
Checking a large routine
Alan Turing, 1949

Alan Mathison Turing, 1912–1954

1931-36 Cambridge: studies mathematics
1936 Publishes the founding paper of computability theory

1936-38 Princeton: Ph.D. with A. Church
1939-44 Bletchley Park: breaking German ciphers
1945-47 Cambridge: design of the ACE programmable computer
1948-50 Manchester: the Mark 1 programmable computer (Ferranti);

“Turing’s test” in artificial intelligence.
1951-53 Manchester: mathematical biology; morphogenesis.

3

A pioneering article

Talk given at the inaugural conference of the EDSAC computer, Cambridge

University, june 1949. The manuscript was commented, and republished by F.L.

Morris and C.B. Jones in Annals of the History of Computing, 6, 1984. 4

How can one check a routine? That is the question!

5

Decomposing verification in elementary steps
F. L. Morris & C. B. Jones - Turing Proof

Consider the analogy of checking an addition. If it is given
as:

1374
5906
6719
4337
7768

26104
one must check the whole at one sitting, because of the
carries. But if the totals for the various columns are given,
as below:

1374
5906
6719
4337
7768
3974

2213
26104

the checker’s work is much easier being split up into the
checking of the various assertions 3 + 9 + 7 + 3 + 7 = 29
etc. and the small addition

3974
2213
26104

At a typical moment of the process we have recorded k
and $F for some F, s. We can change q to (s + l)k by addition
of F. When s = F + 1 we can change F to r + 1 by a transfer.
Unfortunately there is no coding system sufficiently gener-
ally known to justify giving the routine for this process in
full, but the flow diagram given in Fig. 1 will be sufficient
for illustration.

This principle can be applied to the process of checking a
large routine but we will illustrate the method by means of
a small routine uiz. one to obtain @ without the use of a
multiplier, multiplication being carried out by repeated ad-
dition.

F. L. Morris was graduated in mathematics from
Harvard College in 1964 and received the Ph.D. in
computer science from Stanford University in 1972.
He has been employed at the universities of Essex and
Edinburgh, and since 1975 has taught at Syracuse
University. The collaboration with C. B. Jones reported
here was done while visiting the Programming
Research Group, Oxford, during 1980- 198 1.

C. B. Jones began his career working on standard
commercial computing projects. A period in
operations research was followed by a change to
“systems programming. ” In IBM’s Product Test Group
the realization dawned that quality could only be
achieved in design. The first step toward “formal
methods” came with an assignment to the IBM Vienna
Laboratory in 1968. A sabbatical in Oxford from
1979-1981 led to the current position of professor of
computing science at Manchester University.

Each “box” of the flow diagram represents a straight
sequence of instructions without changes of control. The
following convention is used:
(i) a dashed letter indicates the value at the end of the

process represented by the box:
(ii) an undashed letter represents the initial value of a

quantity.
One cannot equate similar letters appearing in different

boxes, but it is intended that the following identifications
be valid throughout

s content of line 27 of store
F ” ” ‘I 28 ” ”
n ” ” ” 29 ” ”
u ” ” ” 30 ” ”
u ” ” ” 31 ” ”

It is also intended that u be .@ or something of the sort
e.g. it might be (s + l)F or s but not e.g. s2 + F2.

In order to assist the checker, the programmer should
make assertions about the various states that the machine
can reach. These assertions may be tabulated as in Fig. 2.
Assertions are only made for the states when certain partic-
ular quantities are in control, corresponding to the ringed
letters in the flow diagram. One column of the table is used
for each such situation of the control. Other quantities are
also needed to specify the condition of the machine com-
pletely: in our case it is sufficient to give F and s. The upper
part of the table gives the various contents of the store lines
in the various conditions of the machine, and restrictions
on the quantities s, r (which we may call inductive variables).
The lower part tells us which of the conditions will be the
next to occur.

The checker has to verify that the columns corresponding
to the initial condition and the stopped condition agree with
the claims that are made for the routine as a whole. In this
case the claim is that if we start with control in condition A
and with n in line 29 we shall find a quantity in line 31
when the machine stops which is b (provided this is less
than 240, but this condition has been ignored).

He has also to verify that each of the assertions in the
lower half of the table is correct. In doing this the columns
may be taken in any order and quite independently. Thus
for column B the checker would argue: “From the flow
diagram we see that after B the box u’ = u applies. From
the upper part of the column for B we have u = b. Hence
u’ = k i.e. the entry for u i.e. for line 31 in C should be Lr.
The other entries are the same as in B.”

Finally the checker has to verify that the process comes
to an end. Here again he should be assisted by the program-
mer giving a further definite assertion to be verified. This
may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops. To the pure
mathematician it is natural to*give an ordinal number. In
this problem the ordinal might be (n - r)u2 + (r - s)w + k.
A less highbrow form of the same thing would be to give the
integer 280(n - F) + Z4’(r - s) + k. Taking the latter case
and the step from B to C there would be a decrease from
2’“(n - F) + 240(r - s) + 5 to 280(n - r) + 240(r - s) + 4. In
the step from F to B there is a decrease from 2”(n - r) +
240(r - s) + 1 to 2’O(n - r - 1) + 240(r + 1 - s) + 5.

In the course of checking that the process comes to an
end the time involved may also be estimated by arranging
that the decreasing quantity represents an upper bound to
the time till the machine stops.

140 * Annals of the HIstory of Computing, Volume 6, Number 2, April 1984

6

Turing’s program: the factorial function

Compute n! using additions only.

Two nested loops.

int fac (int n)

{

int s, r, u, v;

u = 1;

for (r = 1; r < n; r++) {

v = u; s = 1;

do {

u = u + v;

} while (s++ < r);

}

return u;

}

7

The flowchart for the program

“Unfortunately there is no coding system su�ciently generally
known to justify giving the routine for this process.”

F. L. Morris & C. B. Jones * Turing Proof

0 D

I---+
STOP

0 A

0 E 0 G

-

, r’=l \ v’=u
u’ = 1

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l

\,
/.

A

0 F

-

+ TESTS-r
I .p r’=r+l-\

,

I

Figure 1 (Redrawn from Turing’s original)

Conference Discussion (from page 70 of the conference
report)

Prof. Hartree said that he thought that Dr Turing had
used the terms “induction” and “inductive variable” in a
misleading sense since to most mathematicians induction
would suggest “mathematical induction” whereas the pro-
cess so called by von Neumann and Turing often consisted
of repetition without logical connection. Prof. Newman sug-
gested that the term “recursive variable” should be used. Dr
Turing, however, still thought that his original terminology
could be justified.

Comments

The contributors to the conference discussion were

M. H. A. Newman, then professor of pure mathematics

STORAGE
(INITIAL) (STOP)

LOCATION @ @O@O
k=6 k=5 k=4 k=O k=3

0 0
k=l k=2

I 27 I S s+l S

r r r r
n n n

Sk (s Jl)Lr (s :1,Lf

28
::

31

r
n n

1L

TO @
WITH r’ = 1

TO @

u’ = 1

L’
II

TO @
IFr=n
TO @
IFr-cn

v WITHY = r + 1
IFsrr
TO @
WlTHs’=s+l
.-

at Manchester University, who had played a leading

part in setting up the Manchester computer project,

and D. R. Hartree, then professor of mathematical

physics at Cambridge University, who had been a

moving force both at the NPL and at Cambridge.
We now turn to a discussion of Turing’s proof

method. Present methods might combine Turing’s

Figures 1 and 2 into a flowchart that includes the

assertions. Figure A is an annotated flowchart in the

style of Floyd (1967). Two significant differences be-

tween Figure A and Turing’s presentation may be

observed.

1. In the Floyd style, assertions may be any propo-

sitions relating the values of the variables to each

Figure 2 (Redrawn from Turing’s original)

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141

(The notation u/u′ denotes the value of u before/after the block).

8

Logical assertions

“In order to assist the checker, the programmer should make
assertions about the various states that the machine can
reach.”

The assertions document not only which memory location
contains which abstract variable, but also relations between
these variables.

F. L. Morris & C. B. Jones * Turing Proof

0 D

I---+
STOP

0 A

0 E 0 G

-

, r’=l \ v’=u
u’ = 1

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l

\,
/.

A

0 F

-

+ TESTS-r
I .p r’=r+l-\

,

I

Figure 1 (Redrawn from Turing’s original)

Conference Discussion (from page 70 of the conference
report)

Prof. Hartree said that he thought that Dr Turing had
used the terms “induction” and “inductive variable” in a
misleading sense since to most mathematicians induction
would suggest “mathematical induction” whereas the pro-
cess so called by von Neumann and Turing often consisted
of repetition without logical connection. Prof. Newman sug-
gested that the term “recursive variable” should be used. Dr
Turing, however, still thought that his original terminology
could be justified.

Comments

The contributors to the conference discussion were

M. H. A. Newman, then professor of pure mathematics

STORAGE
(INITIAL) (STOP)

LOCATION @ @O@O
k=6 k=5 k=4 k=O k=3

0 0
k=l k=2

I 27 I S s+l S

r r r r
n n n

Sk (s Jl)Lr (s :1,Lf

28
::

31

r
n n

1L

TO @
WITH r’ = 1

TO @

u’ = 1

L’
II

TO @
IFr=n
TO @
IFr-cn

v WITHY = r + 1
IFsrr
TO @
WlTHs’=s+l
.-

at Manchester University, who had played a leading

part in setting up the Manchester computer project,

and D. R. Hartree, then professor of mathematical

physics at Cambridge University, who had been a

moving force both at the NPL and at Cambridge.
We now turn to a discussion of Turing’s proof

method. Present methods might combine Turing’s

Figures 1 and 2 into a flowchart that includes the

assertions. Figure A is an annotated flowchart in the

style of Floyd (1967). Two significant differences be-

tween Figure A and Turing’s presentation may be

observed.

1. In the Floyd style, assertions may be any propo-

sitions relating the values of the variables to each

Figure 2 (Redrawn from Turing’s original)

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141 (The notation |n means “n factorial”.) 9

Logical assertions on the flowchart

In the modern notation (introduced by Floyd in 1967), we write
the assertions directly on the edges of the flowchart.

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof

O<n O<n
I I

v = n! v = n!
I I
I I
I

r5n r5n 15 rcn ‘STOP scr<n slr<n
u = r! u = r! ll= ll = r! u = sr!

I 20
u=(s-tl)r!

I v = r! v = f! v = r!
I I I A I I I
I- I

’ s:=s+l

I
I
I

r-en

u=(r+l)r!

u = sr!
v = r!

Figure A

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con-
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s
ing is necessary for inferring the u = n! claim at D ingenuity.
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec-
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no
of as a directly executable statement; the level of coding system sufficiently generally known,” and that
necessary representation of quantities and implemen- what Turing had in mind to be passed between the
tation of operations lying below the atomic statements programmer and the checker was the actual code of a
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre-
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo-
current value. cation 27, and the behavior of the variable s, belonging

The most striking discrepancy between the two solely to the assertions, which increased-as might
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled.
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984

10

Verification

“The checker has to verify that the columns corresponding to
the initial condition and the stopped condition agree with the
claim that are made for the routine as a whole.”

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof

O<n O<n
I I

v = n! v = n!
I I
I I
I

r5n r5n 15 rcn ‘STOP scr<n slr<n
u = r! u = r! ll= ll = r! u = sr!

I 20
u=(s-tl)r!

I v = r! v = f! v = r!
I I I A I I I
I- I

’ s:=s+l

I
I
I

r-en

u=(r+l)r!

u = sr!
v = r!

Figure A

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con-
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s
ing is necessary for inferring the u = n! claim at D ingenuity.
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec-
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no
of as a directly executable statement; the level of coding system sufficiently generally known,” and that
necessary representation of quantities and implemen- what Turing had in mind to be passed between the
tation of operations lying below the atomic statements programmer and the checker was the actual code of a
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre-
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo-
current value. cation 27, and the behavior of the variable s, belonging

The most striking discrepancy between the two solely to the assertions, which increased-as might
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled.
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984

r ≤ n ∧ u = r! ∧ v = r! ∧ r − n ≥ 0 =⇒ v = n!

11

Verification

“[The checker] also has to verify that each of the assertions in
the lower half of the table is correct. In doing this the columns
may be taken in any order and quite independently.”

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof

O<n O<n
I I

v = n! v = n!
I I
I I
I

r5n r5n 15 rcn ‘STOP scr<n slr<n
u = r! u = r! ll= ll = r! u = sr!

I 20
u=(s-tl)r!

I v = r! v = f! v = r!
I I I A I I I
I- I

’ s:=s+l

I
I
I

r-en

u=(r+l)r!

u = sr!
v = r!

Figure A

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con-
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s
ing is necessary for inferring the u = n! claim at D ingenuity.
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because

(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec-
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no
of as a directly executable statement; the level of coding system sufficiently generally known,” and that
necessary representation of quantities and implemen- what Turing had in mind to be passed between the
tation of operations lying below the atomic statements programmer and the checker was the actual code of a
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre-
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo-
current value. cation 27, and the behavior of the variable s, belonging

The most striking discrepancy between the two solely to the assertions, which increased-as might
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled.
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984

s ≤ r < n ∧ u = sr! ∧ v = r!
⇓

s ≤ r < n ∧ u + v = (s + 1)r! ∧ v = r!

s− 1 ≤ r < n ∧ u = sr! ∧ v = r!
∧ (s− 1)− r < 0

⇓
s ≤ r < n ∧ u = sr! ∧ v = r!

12

Verifying termination

“Finally the checker has to verify that the process comes to an
end. Here again he should be assisted by the programmer [. . .].
This may take the form of a quantity which is asserted to de-
crease continually and vanish when the machine stops.”

Turing suggests taking the ordinal (n− r)ω2 + (r − s)ω + k,
which corresponds to lexicographic ordering on (n− r, r − s, k).

More pragmatically, he suggests 280(n− r) + 240(r − s) + k.

F. L. Morris & C. B. Jones * Turing Proof

0 D

I---+
STOP

0 A

0 E 0 G

-

, r’=l \ v’=u
u’ = 1

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l

\,
/.

A

0 F

-

+ TESTS-r
I .p r’=r+l-\

,

I

Figure 1 (Redrawn from Turing’s original)

Conference Discussion (from page 70 of the conference
report)

Prof. Hartree said that he thought that Dr Turing had
used the terms “induction” and “inductive variable” in a
misleading sense since to most mathematicians induction
would suggest “mathematical induction” whereas the pro-
cess so called by von Neumann and Turing often consisted
of repetition without logical connection. Prof. Newman sug-
gested that the term “recursive variable” should be used. Dr
Turing, however, still thought that his original terminology
could be justified.

Comments

The contributors to the conference discussion were

M. H. A. Newman, then professor of pure mathematics

STORAGE
(INITIAL) (STOP)

LOCATION @ @O@O
k=6 k=5 k=4 k=O k=3

0 0
k=l k=2

I 27 I S s+l S

r r r r
n n n

Sk (s Jl)Lr (s :1,Lf

28
::

31

r
n n

1L

TO @
WITH r’ = 1

TO @

u’ = 1

L’
II

TO @
IFr=n
TO @
IFr-cn

v WITHY = r + 1
IFsrr
TO @
WlTHs’=s+l
.-

at Manchester University, who had played a leading

part in setting up the Manchester computer project,

and D. R. Hartree, then professor of mathematical

physics at Cambridge University, who had been a

moving force both at the NPL and at Cambridge.
We now turn to a discussion of Turing’s proof

method. Present methods might combine Turing’s

Figures 1 and 2 into a flowchart that includes the

assertions. Figure A is an annotated flowchart in the

style of Floyd (1967). Two significant differences be-

tween Figure A and Turing’s presentation may be

observed.

1. In the Floyd style, assertions may be any propo-

sitions relating the values of the variables to each

Figure 2 (Redrawn from Turing’s original)

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141

13

Rediscovery and formalization:
Assigning meanings to programs
Robert W. Floyd, 1967

Robert W Floyd, 1936–2001

1953 B.A. in liberal arts, U. Chicago
1958 B.S. in physics, U. Chicago

195?-61 Computer programmer, Illinois I.T. (syntax analysis)
1962-64 Senior scientist, Computer Associates (compilers)
1965-67 Associate professor, Carnegie I.T. (algorithms, semantics)
1968-91 Professor, Stanford (algorithms)

1978 Turing award

14

A fundamental paper

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMSl

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: "If the initial values of the program variables satisfy the
relation Rit the final values on completion will satisfy the relation Rz."
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

1 This work was supported by the Advanced Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

Mathematical Aspects of Computer Science, 1967, 14 pages.
Proceedings of Symposium on Applied Mathematics, vol 19, AMS.

15

The return of logical assertions

18 years later, Floyd rediscovers Turing’s idea:
annotate a flowchart with logical assertions.

programs in the language, appear to be novel, although McCarthy ll, 2]
has done similar work for programming languages based on evaluation of
recursive functions.

A semantic definition of a programming language, in our approach, is
founded on a syntactic definition. It must specify which of the phrases
in a syntactically correct program represent commands, and what conditions
must be imposed on an interpretation in the neighborhood of each command.

We will demonstrate these notions, first on a flowchart language, then
on fragments of ALGOL.

DEFINITIONS. A flowchart will be loosely defined as a directed graph
with a command at each vertex, connected by edges (arrows) representing
the possible passages of control between the commands. An edge is said
to be an entrance to (or an exit from) the command c at vertex v if its
destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variables manipulated by the

- - - - - - - - n E J+ (J+ is the set of positive integers)

- - - - - - - - n E J+ /\ i = 1/\ S = 0
i-l

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ
j-l

i-I n
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l

i-l
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ

j-1

.
I

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ
j-1

i - i + 1 i-l

- - - - - - - - n E J+ Ai € J+ 1\ 2 i n + 1/\ S = 1: OJ
j-l

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0)

16

From verification conditions. . .

Floyd formalizes the verification conditions:
logical implications that guarantee the logical consistency of the
assertions annotating the program.

x > 0?

y := x y := −x

P

Q R

S T
U

P ∧ x > 0⇒ Q
P ∧ x ≤ 0⇒ R

∃y0,Q[y ← y0] ∧ y = x⇒ S
∃y0,R[y ← y0] ∧ y = −x⇒ T

S ∨ T ⇒ U

Annotated program −→ Verification conditions

17

. . . to the semantics of the programming language

annotated program formal
semantics

verification conditions

Floyd notices that the rules transforming an annotated program
into verification conditions constitute a semantics of the
programming language.

It’s the birth of formal semantics!
(See my 2019 lectures “Mechanized semantics”.)

“[T]he proposal that the semantics of a programming lan-
guage may be defined independently of all processors for that
language, by establishing standards of rigor for proofs about
programs in the language, appear to be novel”

18

Verification conditions for flowcharts

x := f (x,~y)

P(x,~y)

Q

(∃x0, x = f (x0,~y) ∧ P(x0,~y))⇒ Q

b ?
P

Q1 Q0

P ∧ b⇒ Q1
P ∧ ¬b⇒ Q0

P1 P2

Q

P1 ∨ P2 ⇒ Q

19

Floyd’s rule for assignment

x := 0

y ≤ 10

x = 0
∧ y ≤ 10

x := 0

y = 2x

x = 0
∧ ∃x0, y = 2x0

x := x + 1

0 ≤ x ≤ y

∃x0, x = x0 + 1
∧ 0 ≤ x0 ≤ y

x := e

P

Q

(∃x0, x = e[x← x0] ∧ P[x← x0])⇒ Q

Examples:

General case:

20

Generic rules

Notations: c command (fragment of a program)
~P preconditions (one per entry in c)
~Q postconditions (one per exit out of c)

Vc(~P; ~Q) verification conditions for ~P, c, ~Q

Consequence: if Vc(~P; ~Q) and ~P′ ⇒ ~P and ~Q⇒ ~Q′, then Vc(~P′; ~Q′).

Conjunction: if Vc(~P; ~Q) and Vc(~P′, ~Q′) then Vc(~P ∧ ~P′; ~Q ∧ ~Q′).

Disjunction: if Vc(~P; ~Q) and Vc(~P′, ~Q′) then Vc(~P ∨ ~P′; ~Q ∨ ~Q′).

Existential quantification: if Vc(~P; ~Q) then Vc(∃x. ~P; ∃x. ~Q).

21

Semantic soundness

If the verification condition Vc(P1 . . . Pn;Q1 . . .Qm) holds
c executes from initial state s to final state s′ (exit number j)
the initial state s satisfies one of the preconditions Pi

then
the final state s′ satisfies postcondition Qj.

Easy to prove for the flowchart rules.

Corollary: if the program starts in an initial state satisfying its
precondition P, and if it terminates, then the final state satisfies
its postcondition Q.

22

Strongest verifiable consequence

Floyd conjectures that the verification condition Vc(~P; ~Q) can
always be written as

Tc(P1 ∨ · · · ∨ Pn)⇒ ~Q

where Tc(P) is the strongest postcondition for command c with
precondition P.

For example, in the case of flowcharts, we have

Tx:=e(P) = ∃x0, x = e[x← x0] ∧ P[x← x0]

Ttest(b)(P) = (P ∧ b, P ∧ ¬b)

23

Towards automation

Using T, we can complete a partially-annotated flowchart.

A

F

A

B = T(A)

C = T(B ∨ F)

D = T(C)F

T(D)⇒ F

“ This fact o�ers the possibility of automatic verification of
programs, the programmer merely tagging entrances and one
edge in each innermost loop; the verifying program would ex-
tend the interpretation and verify it, if possible, by mechanical
theorem-proving techniques. ”

24

Other contributions of Floyd’s paper

A partial definition of Vc for structured commands in the style of
Algol (sequences, if/then/else, for loops).

A discussion of completeness for the definition of Vc

(see next lecture).

A method to verify termination:

• To each edge of the flowchart, associate a function
values of variables→ well-founded set W
(e.g. W = tuples of integers with lexicographic ordering)

• Check that these functions decrease at each transition.

25

Final example in the paper: Euclidean division

START

_____ {X 0, Y> 0, Q = °
r-----lI=----, (X - Q, 5)

R-X

(X-Q,4)
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY

(X - Q,3) __ _

---"'-- ,C HALT)

I_tO R < Y,X O,X = R + QY
No (X - Q,2)

_____ {R Y> 0, X 0, Q 0, X = R + QY
,_----'1""-_--, (X - Q, 2)

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY
(X - Q,4)

FIGURE 5. Algorithm to compute quotient Q and remainder R of
X.;- y, for integers X 0, Y > °

REFERENCES

1. J. McCarthy, "A basis for a mathematical theory of computation" in Computer pro-
gramming and formal systems, North-Holland, Amsterdam, 1963, pp. 33-70.

2. , Towards a mathematical science of computation, Proc. IFIP Congr. 62, North-
Holland, Amsterdam, 1962, pp. 21-28.

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA

26

The manifesto:
An axiomatic basis for computer
programming
C. A. R. Hoare, 1969

Sir Charles Antony Richard Hoare, 1934–

1952-55 B.A. in philosophy, Oxford
1956-57 Serves in the Royal Navy

1958 Master in statistics, Oxford
1959 Works with Kolmogorov at Lomonossov university, Moscow

1960–67 Works at Elliot Brothers: compiling Algol; Quicksort.
1968–76 Professor, University of Belfast.

1977– Professor, University of Oxford
1980 Turing award

1999– Principal researcher, Microsoft Research, Cambridge
2000 Knighthood

27

A seminal paper

An Axiomatic Bas is for
Computer Programming

C. A. R . HOARE
The Queen's Unive rs ity of Be lfas t,* Northe rn Ire land

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Intro duc tio n
C o m p u te r p ro g ra m m in g is a n e xa c t s c ie nce in th a t a ll

th e p ro p e rtie s of a p ro g ra m a n d a ll th e cons e que nce s of
e xe c u tin g it in a n y g ive n e n viro n m e n t ca n, in p rinc ip le ,
be fo u n d o u t fro m th e te xt of th e p ro g ra m its e lf b y m e a n s
of p u re ly d e d u c tive re a s on ing . De d u c tive re a s on ing in-
vo lve s th e a p p lic a tio n o f va lid ru le s o f in fe re nce to s e ts o f
va lid a xioms . It is th e re fo re de s ira b le a n d in te re s tin g to
e lu c id a te th e a xioms a n d ru le s of in fe re nce wh ich u n d e rlie
o u r re a s on ing a b o u t c o m p u te r p ro g ra m s . Th e e xa c t cho ice
of a xioms will to s ome e xte n t d e p e n d o n th e cho ice of
p ro g ra m m in g la ngua ge . F o r illu s tra tive pu rpos e s , th is
p a p e r is confine d to a ve ry s imple la ngua ge , wh ich is e ffe c-
tive ly a s ubs e t o f a ll e u rre n t p ro c e d u re -o rie n te d la ngua ge s .

2. Co mpute r Arithme tic
Th e firs t re q u ire m e n t in va lid re a s on ing a b o u t a p ro -

g ra m is to kn o w th e p ro p e rtie s of th e e le m e n ta ry o p e ra tio n s
wh ich it invoke s , fo r e xa mple , a d d itio n a n d m u ltip lic a tio n
of in te ge rs . Un fo rtu n a te ly, in s e ve ra l re s pe c ts c o m p u te r
a rith m e tic is n o t th e s a me a s th e a rith m e tic fa milia r to
m a th e m a tic ia n s , a n d it is n e c e s s a ry to e xe rc is e s ome ca re
in s e le c ting a n a p p ro p ria te s e t of a xioms . F o r e xa mple , th e
a xioms d is p la ye d in Ta b le I a re ra th e r a s ma ll s e le c tion
of a xioms re le va n t to in te ge rs . F ro m th is in c o m p le te s e t

* De purtme nt of Compute r Science

of a xioms it is pos s ib le to de duce s uch s imple th e o re m s a s :

x =x +y X O

y <r ~ r +y X q = (r- y) +y X (1 + q)

Th e p ro o f of th e s e cond of th e s e is :

A5 (r- - y) + y X (l+ q)

= (r- - y) + (y X l+y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r- - y) +y) +y X q

A6 = r + y X q p ro v id e d y < r

Th e a xioms A1 to A9 a re , of cours e , tru e o f th e tra d i-
tio n a l in fin ite s e t of in te ge rs in m a th e m a tic s . Ho we ve r,
th e y a re a ls o tru e of th e fin ite s e ts of "in te g e rs " wh ich a re
m a n ip u la te d b y c o m p u te rs p ro vid e d th a t th e y a re con-
fine d to nonnegative n u m b e rs . Th e ir t ru th is in d e p e n d e n t
o f th e s ize of th e s e t; fu rth e rm o re , it is la rge ly in d e p e n d e n t
of th e cho ice o f te c h n iq u e a pp lie d in th e e ve n t o f "o ve r-
flow"; fo r e xa mp le :

(1) S tric t in te rp re ta tio n : th e re s u lt of a n ove rflowing
o p e ra tio n doe s n o t e xis t; wh e n ove rflow occurs , th e o ffe nd-
ing p ro g ra m n e ve r comple te s its o p e ra tio n . No te th a t in
th is ca s e , th e e qua litie s of A1 to A9 a re s tric t, in th e s e ns e
th a t b o th s ide s e xis t o r fa il to e xis t to g e th e r.

(2) F irm b o u n d a ry: th e re s u lt of a n ove rflowing o p e ra -
tio n is ta ke n a s th e m a xim u m va lu e re p re s e n te d .

(3) Mo d u lo a rith m e tic : th e re s u lt o f a n ove rflowing
o p e ra tio n is c o m p u te d m o d u lo th e s ize o f th e s e t o f in te ge rs
re p re s e n te d .

Th e s e th re e te c h n iq u e s a re illu s tra te d in Ta b le II b y
a d d itio n a n d m u ltip lic a tio n ta b le s fo r a trivia lly s ma ll
mode l in wh ich 0, 1, 2, a n d 3 a re th e o n ly in te ge rs re p re -
s e n te d .

It is in te re s tin g to n o te th a t th e d iffe re n t s ys te m s s a tis fy-
ing a xioms A1 to A9 m a y b e rigo rous ly d is tingu is he d fro m
e a c h o th e r b y choos ing a p a rtic u la r one o f a s e t of m u tu a lly
e xc lus ive s u p p le m e n ta ry a xioms . F o r e xa mple , in fin ite
a rith m e tic s a tis fie s th e a xio m :

A10z ~ 3 x V y (y < x),

wh e re a ll fin ite a rith m e tic s s a tis fy:

A10~ Vx (x < m a x)

whe re "m ax" d e n o te s th e la rge s t in te g e r re p re s e n te d .
S imila rly, th e th re e tre a tm e n ts o f ove rflow m a y be

d is tingu is he d b y a cho ice o f one o f th e fo llowing a Moms
re la tin g to th e va lu e of m a x + 1:

Alls ~ 3 x (x = m a x + 1) (s tric t in te rp re ta tio n)

All, m a x + 1 = m a x (firm b o u n d a ry)

AllM m a x + 1 = 0 (modu lo a rith m e tic)

Ha vin g s e le c te d one o f th e s e a xioms , it is pos s ib le to
us e it in d e d u c in g th e p ro p e rtie s of p ro g ra m s ; h o we ve r,

576 C o m m u n ic a tio n s o f th e ACM Volume 12 / Nu m b e r 10 / O c to b e r, 1969

Communications of the ACM 12(10), 1969
28

A principled position: the axiomatic approach

An axiomatic approach makes it possible to specify programs and
define programming languages without specifying everything.

Hoare’s example: arithmetic overflows (in unsigned integer
arithmetic).

Error: MAX+ 1 halts the program
Saturation: MAX+ 1 = MAX

Modulo: MAX+ 1 = 0

29

Axiomatizing computer arithmetic

Hoare states 9 axioms that hold in N but also in the three kinds
of machine arithmetic:

TABLE I

A1 x +y =y +x
A2 x X y =y X x

A3 (x + y) + z = x + (y + z)
A4 (xX y) X z = x X (yX z)

A5 x X (y +z) = x X y +x X z

A6 y <x D (x - - y) +y = x

A7 x + 0 = x
A8 x X0 = 0
A9 x X l=x

a ddition is commuta tive
multiplica tion is commut-

a tive
a ddition is associa tive
multiplica tion is associa -

tive
multiplica tion dis trib-

ute s through a ddition
a ddition cance ls s ubtra c-

tion

TABLE II

1.
+ 0 1

0 0 1 2
1 1 2 3
2 2 3 *
3 3 * *
• nonexis tent

S tric tIn te rp re ta tion
2 3 x 0 1 2

3 0 0 0 0
* 1 0 1 2
* 2 0 2 *
* 3 0 3 *

+
2. F irmBounda ry

1 2 3 × 0 1 2 3

1 2 3 0 0 0 0 0
2 3 3 1 0 1 2 3
3 3 3 2 0 2 3 3
3 3 3 3 0 3 3 3

3.
+ 0 1 2

0 0 1 2
1 1 2 3
2 2 3 0
3 3 0 1

Modulo Arithme tic
3 X 0 1 2

3 0 0 0 0
0 1 0 1 2
1 2 0 2 0
2 3 0 3 2

the s e p rope rtie s will n o t ne ce s s a rily obtMn, unle s s th e
p ro g ra m is e xe cu te d o n a n im p le m e n ta tio n wh ich s a tis fie s
th e chos e n a xiom.

3 . P r o g r a m E xe c u t io n

As m e n tio n e d a bove , th e pu rpos e of th is s tu d y is to
p ro vid e a logica l ba s is fo r p roofs of th e p rope rtie s of a
p ro g ra m . One of th e m o s t im p o rta n t p rope rtie s of a p ro -
g ra m is wh e th e r o r n o t it ca rrie s o u t its in te n d e d func tion .
Th e in te n d e d fu n c tio n of a p ro g ra m , o r p a rt of a p ro g ra m ,
ca n be s pe cifie d b y m a kin g ge ne ra l a s s e rtions a b o u t th e
va lue s wh ich th e re le va n t va ria b le s will ta ke a fte r e xe cu tion
of th e p ro g ra m . The s e a s s e rtions will u s ua lly n o t a s cribe
p a rtic u la r va lue s to e a ch va ria b le , b u t will ra th e r s pe c ify
ce rta in ge ne ra l p rope rtie s of th e va lue s a n d th e re la tion -
s hips ho ld ing be twe e n th e m . We us e th e n o rm a l n o ta tio n s

of m a th e m a tic a l logic to e xpre s s the s e a s s e rtions , a n d th e
fa milia r rule s of o p e ra to r p re ce de nce h a ve be e n us e d
wh e re ve r pos s ible to im p ro ve le gibility.

In m a n y ca s e s , th e va lid ity of th e re s u lts of a p ro g ra m
(or p a rt of a p ro g ra m) will d e p e n d on th e va lue s ta ke n
b y th e va ria b le s be fore th a t p ro g ra m is in itia te d . Th e s e
in itia l p re cond itions of s ucce s s ful us e ca n be s pe cifie d b y
th e s a me typ e of ge ne ra l a s s e rtion a s is us e d to de s cribe
th e re s u lts o b ta in e d on te rm in a tio n . To s ta te th e re qu ire d
c o n n e c tio n b e twe e n a p re c o n d itio n (P), a p ro g ra m (Q)
a n d a de s c rip tion of th e re s u lt of its e xe cu tion (R), we
in tro d u c e a ne w n o ta tio n :

P {Q }R .

This m a y be in te rp re te d "If th e a s s e rtion P is tru e be fore
in itia tion of a p ro g ra m Q, th e n th e a s s e rtion R will be
tru e o n its c o m p le tio n ." If the re a re no p re cond itions im-
pos e d, we write t r u e {Q }R)

Th e tre a tm e n t g ive n be low is e s s e n tia lly due to F lo yd
[8] b u t is a pp lie d to te xts ra th e r th a n flowcha rts .

3.1. Axio m OF ASSIGNMENT
As s ig n m e n t is u n d o u b te d ly th e m o s t cha ra c te ris tic fe a -

tu re of p ro g ra m m in g a d ig ita l compu te r, a n d one th a t
m o s t c le a rly d is tinguis he s it fro m o th e r b ra nche s of m a th e -
ma tics . It is s u rpris ing the re fo re th a t th e a xiom g o ve rn in g
o u r re a s on ing a b o u t a s s ignme n t is q u ite a s s imple a s a n y
to be fo u n d in e le m e n ta ry logic.

Cons ide r th e a s s ignme n t s ta te m e n t:

x : = f

whe re
x is a n ide ntifie r fo r a s imple va ria b le ;
f is a n e xpre s s ion of a p ro g ra m m in g la n g u a g e with o u t

s ide e ffe cts , b u t pos s ib ly c o n ta in in g x.
No w a n y a s s e rtion P (x) which is to be tru e of (the va lu e

o f) x a fte r th e a s s ig n me n t is m a d e m u s t a ls o h a ve be e n
tru e of (the va lu e o f) th e e xpre s s ion f, ta ke n be fore th e
a s s ig n m e n t is ma de , i.e . with th e old va lu e of x. Th u s
if P (x) is to be tru e a fte r th e a s s ignme nt, th e n P (f) m u s t
be tru e be fore th e a s s ignme nt. Th is fa c t m a y be e xpre s s e d
more fo rm a lly:

DO Axio m of As s ig n m e n t
 -P0 {x := f} P

whe re
x is a va ria b le ide ntifie r;
f is a n e xpre s s ion;
P 0 is o b ta in e d fro m P b y s u b s titu tin g f fo r a ll occur-

re nce s of x.
It m a y be no tice d th a t DO is n o t re a lly a n a xiom a t a ll,

b u t ra th e r a n a xiom s che ma , de s crib ing a n infin ite s e t of
a xioms wh ich s ha re a c o m m o n p a tte rn . Th is p a tte rn is
de s c ribe d in p u re ly s yn ta c tic te rms , a n d it is e a s y to
che e k wh e th e r a n y finite te xt con fo rms to th e p a tte rn ,
th e re b y qua lifying a s a n a xiom, which m a y va lid ly a p p e a r
in a n y line of a proof.

1 If this ca n be prove d in our formal s ys te m, we use the fa milia r
logica l s ymbol for the ore mhood: [-P {Q} R

Volume 12 / Nu m b e r 10 / Oc tobe r, 1969 C o m m u n ic a tio n s o f th e ACM 577

He shows that these axioms su�ce to verify Euclidean division.

30

A notation: “Hoare triples”

To axiomatize programs, Hoare introduces the notation

P { Q } R
↗ ↑ ↖

precondition program postcondition

This may be interpreted “If the assertion P is true before initi-
ation of a program Q, then the assertion R will be true on its
completion”.

The notation universally used today:

{ P } c {Q }
↗ ↑ ↖

precondition command postcondition
31

A contribution: the rules for a structured language

Instead of flowcharts, Hoare considers control structures in the
style of Algol 60.

{Q[x← e] } x := e {Q } (assignment)

{ P } c {Q } Q⇒ Q′
(consequence 1)

{ P } c {Q′ }

P′ ⇒ P { P } c {Q }
(consequence 2)

{ P′ } c {Q }

{ P } c1 {Q } {Q } c2 {R }
(composition)

{ P } c1; c2 {R }

{ P ∧ b } c { P }
(iteration)

{ P } while b do c { P ∧ ¬b }

32

Hoare’s rule for assignment

{Q[x← e] } x := e {Q }

“Backward” reasoning style: the postcondition Q determines the
precondition.

Example

{ 0 = 0 ∧ y ≤ 10 } x := 0 { x = 0 ∧ y ≤ 10 }
{ 1 ≤ x + 1 ≤ 10 } x := x + 1 { 1 ≤ x ≤ 10 }

Contrast with the “forward” style of Floyd’s rule:

{ P } x := e { ∃x0, x = e[x← x0] ∧ P[x← x0] }

33

Hoare’s rule for iteration

{ P ∧ b } c { P }
(iteration)

{ P } while b do c { P ∧ ¬b }

The precondition P must be a loop invariant:
true at the beginning of the loop body c at every iteration;
re-established at the end of the body c for the next iteration.

Example (counted loop)
x := 0;
{ 0 ≤ x ≤ 10 }

while x < 10 do

{ 0 ≤ x ≤ 10 ∧ x < 10 } x := x + 1 { 0 ≤ x ≤ 10 }
done

{ 0 ≤ x ≤ 10 ∧ ¬(x < 10) } ⇒ { x = 10 }
34

Final example in the paper: Euclidean division

r := x;
q := 0;
while y ≤ r do

r := r − y;
q := q + 1

done

is th a t th e y g ive no ba s is fo r a p ro o f th a t a p ro g ra m s uc-
ce s s fu lly te rm in a te s . F a ilu re to te rm in a te m a y be d u e to a n
in fin ite loop ; o r it m a y be d u e to vio la tio n o f a n imp le -
m e n ta tio n -d e fin e d limit, fo r e xa mple , th e ra n g e of n u m e ric
ope ra nds , th e s ize of s to ra ge , o r a n o p e ra tin g s ys te m tim e
limit. Th u s th e n o ta tio n "PIQ}R" s h o u ld be in te rp re te d
"p ro vid e d th a t th e p ro g ra m s ucce s s fu lly te rm in a te s , th e
p rope rtie s of its re s u lts a re de s c ribe d b y R ." It is fa irly
e a s y to a d a p t th e a xioms s o th a t th e y c a n n o t be u s e d to
p re d ic t th e "re s u lts " of n o n te rm in a tin g p ro g ra m s ; b u t th e
a c tu a l us e o f th e a xioms wou ld n o w d e p e n d on kn o wle d g e
of m a n y im p le m e n ta tio n -d e p e n d e n t fe a tu re s , fo r e xa mple ,
th e s ize a n d s pe e d of th e c o m p u te r, th e ra n g e o f n u m b e rs ,
a n d th e cho ice of ove rflow te chn ique . Ap a rt fro m p roofs of
th e a vo id a n c e of in fin ite loops , it is p ro b a b ly b e tte r to
p ro ve th e "c o n d itio n a l" co rre c tne s s of a p ro g ra m a n d re ly
o n a n im p le m e n ta tio n to g ive a wa rn in g if it ha s h a d to

TABLE III

Line
number Formal proof Jus tifica tion

1 t r u e ~ x = x ~ y X 0 Le m m a l
2 x = x - {- y X O {r := x }x = r. - t - y X O DO
3 x = r~ y X O {q := O }x = r. - b y X q DO
4 tru e {r := x} x = r ~ y X 0 D1 (1, 2)

5 t r u e {r := x; q := 0} x = r -t- y X q D2 (4, 3)
6 x = r~ y X q A y ~ r ~ x =

(r- y) ~ y X (1-t-q) Le m m a 2
7 x = (r- - y) .-{- y X (1 -t-q){r := r- y }x =

r + y X (l+ q) DO
8 x = r + y X (l+ q) [q := 1 . -b q }x =

r- t - y X q DO
9 x = (r- - y) -~ y X (l+ q) {r := r- - y ;

q := 1 +q } x = r + y X q D2 (7, 8)
10 x = r + y X q A y ~ r {r := r- - y ;

, q := l+ q } x = r + y X q D1 (6 , 9)
11 x = r -b y X q [w h ile y ~ r d o

(r := r- - y ; q := 1--bq)}

~- -Ty < r /~ x = r ~ y X q D3 (10)
12 t r u e {((r := x; q := 0); w h ile y ~ r d o

(r := r- - y ; q := l+ q)) } -~y ~ r Ax =

r + y X q D2 (5 ,1 1)

NOTES
i. The left hand column is used to number the lines, and the

right hand column to justify each line, by appealing to an axiom,
a lemma or a rule of inference applied to one or two previous
line s , indica te d in bra cke ts . Ne ithe r of the s e columns is pa rt
of the forma l proof. For example , line 2 is a n ins ta nce of the
axiom of a s s ignme nt (DO); line 12 is obta ine d from line s 5 a nd 11
by a pplica tion of the rule of compos ition (D2).

2. Le mma 1 ma y be prove d from axioms A7 a nd AS.
3. Le mma 2 follows dire ctly from the the ore m prove d in S e e . 2.

a b a n d o n e xe c u tio n of th e p ro g ra m a s a re s u lt o f vio la tio n
of a n im p le m e n ta tio n limit.

F in a lly it is n e c e s s a ry to lis t s ome of th e a re a s wh ich h a ve
n o t b e e n c o ve re d : fo r e xa mple , re a l a rith m e tic , b it a n d
c h a ra c te r m a n ip u la tio n , c o m p le x a rith m e tic , fra c tio n a l
a rith m e tic , a rra ys , re cords , o ve rla y de fin ition , file s , in p u t /
o u tp u t, de c la ra tions , s ub rou tine s , p a ra m e te rs , re curs ion ,
a n d pa ra lle l e xe cu tion . E ve n th e c h a ra c te riz a tio n o f in te g e r
a rith m e tic is fa r fro m comple te . Th e re doe s n o t a p p e a r to
b e a n y g re a t d ifficu lty in de a ling with the s e po in ts , p ro -
vid e d th a t th e p ro g ra m m in g la ngua ge is ke p t s imple .
Are a s wh ich do p re s e n t re a l d ifficu lty a re la be ls a n d ju m p s ,
po in te rs , a n d n a m e p a ra m e te rs . P ro o fs of p ro g ra m s wh ich
m a d e us e o f the s e fe a tu re s a re like ly to b e e la b o ra te , a n d
it is n o t s u rp ris ing th a t th is s hou ld b e re fle c te d in th e
c o m p le xity o f th e u n d e rlyin g a xioms .

5 . P ro o fs o f P ro g ra m C o rre c tn e s s

Th e m o s t im p o rta n t p ro p e rty o f a p ro g ra m is wh e th e r it
a ccomplis he s th e in te n tio n s o f its us e r. If the s e in te n tio n s
c a n be d e s c rib e d rigo rous ly b y m a kin g a s s e rtions a b o u t th e
va lu e s of va ria b le s a t th e e n d (or a t in te rm e d ia te p o in ts) of
th e e xe c u tio n of th e p ro g ra m , th e n th e te c h n iq u e s de s c ribe d
in th is p a p e r m a y be u s e d to p ro ve th e co rre c tne s s o f th e
p ro g ra m , p ro vid e d th a t th e im p le m e n ta tio n of th e p ro -
g ra m m in g la n g u a g e con fo rms to th e a xioms a n d ru le s wh ich
h a ve b e e n u s e d in th e p roo f. Th is fa c t its e lf m ig h t a ls o be
e s ta b lis he d b y d e d u c tive re a s on ing , us ing a n a xio m s e t
wh ic h de s cribe s th e logica l p ro p e rtie s of th e h a rd wa re
c ircu its . Wh e n th e co rre c tne s s of a p ro g ra m , its compile r,
a n d th e h a rd wa re o f th e c o m p u te r h a ve a ll b e e n e s ta b lis he d
with m a th e m a tic a l c e rta in ty, it will be pos s ib le to p la ce
g re a t re lia nce o n th e re s u lts o f th e p ro g ra m , a n d p re d ic t
th e ir p ro p e rtie s with a confide nce limite d o n ly b y th e
re lia b ility o f th e e le c tron ics .

Th e p ra c tic e o f s u p p lyin g p roofs fo r n o n trivia l p ro g ra m s
will n o t b e c o m e wid e s p re a d u n til cons ide ra b ly m o re powe r-
fu l p ro o f te c h n iq u e s b e c o m e a va ila b le , a n d e ve n th e n will
n o t b e e a s y. Bu t th e p ra c tic a l a d va n ta g e s o f p ro g ra m p ro v-
ing will e ve n tu a lly o u twe ig h th e difficultie s , in vie w of th e
inc re a s ing cos ts o f p ro g ra m m in g e rro r. At p re s e n t, th e
m e th o d wh ic h a p ro g ra m m e r us e s to c o n vin c e h ims e lf o f
th e co rre c tne s s of h is p ro g ra m is to t ry it o u t in p a rtic u la r
ca s e s a n d to m o d ify it if th e re s u lts p ro d u c e d do n o t cor-
re s p o n d to his in te n tio n s . Afte r h e ha s fo u n d a re a s o n a b ly
wide va rie ty o f e xa m p le ca s e s on wh ich th e p ro g ra m s e e ms
to work, h e be lie ve s th a t it will a lwa ys work. Th e tim e
s p e n t in th is p ro g ra m te s tin g is o fte n m o re th a n h a lf th e
tim e s p e n t on th e e n tire p ro g ra m m in g p ro je c t; a n d with a
re a lis tic cos ting o f m a c h in e time , two th ird s (or m o re) of
th e cos t o f th e p ro je c t is in vo lve d in re m o vin g e rro rs d u rin g
th is pha s e .

Th e cos t o f re m o vin g e rro rs d is cove re d a fte r a p ro g ra m
ha s gone in to us e is o fte n g re a te r, p a rtic u la rly in th e ca s e
o f ite m s of c o m p u te r m a n u fa c tu re r 's s o ftwa re fo r wh ich a
la rge p a rt o f th e e xpe ns e is b o rn e b y th e us e r. An d fina lly,
th e cos t of e rro r in c e rta in typ e s of p ro g ra m m a y b e a lm o s t

Vo lu m e 12 / N u m b e r 10 / O c t o b e r , 1969 C o m m u n ic a t io n s o f th e AC M 579

35

The manifesto of deductive verification

A discussion of all that remains to be done:

• Verify termination and absence of run-time errors.
• More arithmetic (incl. floating point), arrays, records,

procedures, functions, recursion, goto, pointers.

An advocacy of program verification

• Testing is expensive.
• Error is very expensive.
• Documentation; portability.

36

Some quotes

When the correctness of a program, its compiler, and the
hardware of the computer have all been established with
mathematical certainty, it will be possible to place great
reliance on the results of the program, and predict their
properties with a confidence limited only by the reliability
of electronics.

37

Some quotes

The cost of error in certain types of program may be al-
most incalculable—a lost spacecraft, a collapsed build-
ing, a crashed aeroplane, or a world war. Thus, the prac-
tice of program proving is not only a theoretical pursuit,
followed in the interest of academic responsibility, but a
serious recommendation for the reduction of the costs
associated with programming error.

38

Some quotes

However, program proving, certainly at present, will be
di�cult even for programmers of high caliber; and may
be applicable only to quite simple program designs. As in
other areas, reliability can be purchased only at the price
of simplicity.

39

Summary

Summary so far

As early as 1969, the general principles of deductive verification
have already been set in the works of Floyd and Hoare.

Much work remains:

• 1970’s and 1980’s: deeper understanding of the foundations
for “Hoare logic”. (→ lecture #2)

• 1990’s and 2000’s: implementation within deductive
verification tools (→ seminars #1 and #2)

The next major turning point in the area takes place around year
2000. . .

40

	Turing, 1949
	Floyd, 1967
	Hoare, 1969
	Summary

