
Mechanized semantics:
when machines reason about their languages
Concluding remarks

Xavier Leroy
2020-02-13

Collège de France, chaire de sciences du logiciel



Summary of the course

We studied how

1. To formalize the semantics of a programming languages
• Operational semantics

(by reduction, natural, using a bounded interpreter, . . . ).
• Denotational semantics.

2. To verify and to transform programs
• Type systems.
• Program logics.
• Static analyses.
• Basic compilation (translation to machine code).
• Optimizing compilation.

3. To use the semantics for proving the soundness of
verifications and the correctness of transformations.

2



Benefits of the Coq mechanization

Definitions are precise (no ambiguities, no omissions) and clear
(except when bound variables are involved. . . )

Proofs are often cumbersome, but it is not necessary to read
them.

It su�ces to read (and publish) the intermediate statements
(lemmas).

Shared interfaces (the semantics of IMP)
⇒ all the pieces fit together.

Enables us to safely explore advanced approaches:
intrinsically-typed syntax, semantic typing, coinductive
approaches, . . .

3



A challenge: scaling up

A few examples of large-scale formalizations were described or
mentioned in the seminar: JSCert, CompCert and Verasco,
RustBelt, CakeML, etc.

The e�ort required to formalize a real-world language remains
high, bordering on unreasonable.

Specialized formalisms exist to describe programming languages
(PLT Redex, Ott, K, . . . ). E�ective for some uses, not very helpful to
build specifications appropriate for formal proof.

4



A challenge: reusing formalized components

A few libraries are highly reusable:

• Variables and binders: de Bruijn (autosubst), locally
nameless.

• Program logics: IRIS
• Scott domains.
• Abstract domains for static analysis.

The description of a language (syntax, semantics, typing) remains
monolithic and not reusable other than by copy-and-paste.

A lot of “let’s restart from scratch!”.

A lot of fragmentation between the various proof assistants.

5



Mechanization is one of the best things that happened to
programming language research in the last 20 years.

Let’s make the best out of it!

6


