OLLEGE
E FRANCE
1530

g C
, D

Mechanized semantics, eight lecture

Coq in Coq:
Mechanizing the logic of a proof assistant

Xavier Leroy
2020-02-13

College de France, chair of software sciences

The approach followed in the “Mechanized semantics” course

“This course is an introduction to the formal semantics of
programming languages and to their uses for building and
validating programming tools and verification tools:

* type systems;
 program logics;
- static analyzers;

- compilers.

All definitions, properties and proofs are mechanized using the
Coq proof assistant.

The approach followed in the “Mechanized semantics” course

“This course is an introduction to the formal semantics of
programming languages and to their uses for building and
validating programming tools and verification tools:

* type systems;
 program logics;
- static analyzers;

- compilers.

All definitions, properties and proofs are mechanized using the
Coq proof assistant.

Coq: a tool like any other

Throughout the course, we used Coq as a programming tool and a
verification tool.

Can we trust this tool?

Which formalisms could help validate this tool?

How a mechanized proof could be wrong?

(R. Pollack, How to Believe a Machine-Checked Proof, 1997)

Inadequacy: what is proved is not what you think.

How a mechanized proof could be wrong?

(R. Pollack, How to Believe a Machine-Checked Proof, 1997)
Inadequacy: what is proved is not what you think.

Require Import Arith. (Chris Casinghino, 2009-04-01)
(* BEGIN PROOF OF FERMAT"S LAST THEOREM *)
Theorem fermat : forall n x y z,
n> 2 ->
x>0->y>0->2z>0 >
X "n+y " n<>z " n.
Proof.
intros n x y z. trivial.
Qed.

(*x END PROOF OF FERMAT"S LAST THEOREM *)

How a mechanized proof could be wrong?

(R. Pollack, How to Believe a Machine-Checked Proof, 1997)
Inadequacy: what is proved is not what you think.

Admitted proofs; axioms that are false or inconsistent.

Example: some classical logic axioms are inconsistent with the
-impredicative-set option of Coq.

How a mechanized proof could be wrong?

(R. Pollack, How to Believe a Machine-Checked Proof, 1997)
Inadequacy: what is proved is not what you think.
Admitted proofs; axioms that are false or inconsistent.

A bug in a critical part of Coq’s implementation

The implementation follows the de Bruijn architecture:

+ a kernel that re-checks proof terms (critical);

« tactics that build these proof terms (not critical).

How a mechanized proof could be wrong?

(R. Pollack, How to Believe a Machine-Checked Proof, 1997)
Inadequacy: what is proved is not what you think.
Admitted proofs; axioms that are false or inconsistent.
A bug in a critical part of Coq’s implementation

An inconsistency in the logic implemented by Coq.

Logical consistency

Logical consistency

A logic is consistent if it cannot deduce a paradox or an obvious
absurdity, such as

P A =P for some paradox P (classical logic)

1 (written False in Coq) (intuitionistic logic)
0=1 (Peano arithmetic)

VP. P (higher-order logic)

Equivalently: a logic is consistent if there exists at least one
proposition that cannot be deduced.

(The ex falso quod libet principle: from absurdity, all propositions
follow.)

Example: an intuitionnistic logic

F1, P, rz P (Ax)

rPFQ [FP=>Q TFP
. (=) (=-E, modus ponens)
r-p=q e
I o) rEPAQ r-PAQ
E—) - (AR) VN Y|
r-pPaQ M-p o)
M1
_ (LE, quod libet)
r-p

Consistency = there exists one P such that we cannot derive - P.

Godel's second incompleteness theorem

Theorem (Godel, 1931)

Let L be a consistent logic containing Peano arithmetic. The
proposition “L is consistent” can be expressed in L but cannot be
proved in L.

Corollary: a proof of consistency for a logic must be conducted in
a “more powerful” logic.

PAT: Propositions As Types, Proofs As Terms

The Curry-Howard correspondence connects several logics
(including that of Coq) with typed functional languages:

Langage typé | Logique

type proposition

term proof, “construction”
reduction cut elimination

(See my 2018-2019 course.)

Propositions = types

Typed language | Logic

functions o0 — 7 | P = Q implication
products o x 7 | P A Q conjunction
sums o + 7 | PV Qdisjunction
type unit (1 constructor) | T triviality
type empty (0 constructors) | L absurdity

polymorphism Va. 7 | VX.P for all

type abstraction Ja. 7 | 3X..P there exists

Deduction rules = typing rules

Simply-typed lambda-calculus

r1,XiA,r2}_XiA

Nx:AFM:B ITEM:A—B THFEN:A
NMN-Xx.M:A—B FrN-MN:B
N-=mMm:A TFN:B FN-M:AxB N-M:AxB
M= (M,N):AxB FrEmM:A Mr-mM:B
[M: empty

FmatchMwithend:A

10

Deduction rules = typing rules

Intuitionistic logic

M, ALF A

r, A- B r- A=B TF A
T+ A=B - B
r- A T+ B r- AAB T AAB
Tk ANB TF A (s B
r- 41
TF A

[is I without variable names, e.g. x:A,y: A=A A.

10

Logical consistency = uninhabitated type

Typed language Logic

Inhabitated typer (GM.0FM: 1) Provable proposition P

There exists one non-inhabitated type | The logic is consistent

n

A proof sketch that a type is not inhabited

(Extends the proof of soundness from lecture #7.)
Theorem (Canonical forms)

Letv be avalue. If) v : o0 — 7, then v is an abstraction Ax.M.
If0Fv:oxT,thenvisapair (vq,Vv;).

It is impossible that () - v : empty.

Theorem (Preservation)

IfTEM:7and M — N, thenT =N : 7.

Theorem (Progress)
If) = M : 7, either M is a value or M reduces.

Theorem (Normalization)

Every typable term has a normal form:

if T+ M : 7, there exists N such that M = N /4
12

A proof sketch that a type is not inhabited

Corollary (Logical consistency)

The empty type is not inhabited.

Proof.

Assume there exists M such that) - M : empty.
By normalization we have N such that M 5 N 4.
By preservation we have () = N : empty.

By progress we have that N is a value.

By canonical forms, we have a contradiction. O

13

Divergence and inconsistency

Most language features that make a programming language
Turing-complete make logics inconsistent.

Example: general recursion

let rec £ x = £ x in £ () hastype 7 forany 7.
As a proof principle, itis (P = P) = P...

Example: algebraic types with negative occurrences

Inductive t : Type := Lam: (t -> t) -> t
encodes pure lambda-calculus, including divergence.

Inductive P : Prop := Hyp: (P -> False) -> P
issuch thatP <-> (P -> False), from which False follows.

14

Proving normalization

Proving the normalization property

An approach introduced by Tait (1967) for simple types, extended
to system F by Girard (1972). A special case of logical relation
(Plotkin, 1973; Statman, 1985).

Define the sets RED(7) by induction on type 7:

RED(1) = {M | M terminates, i.e. IN,M = N 4}
RED(c — 7) = {M | VN € RED(c'), M N € RED(r)}

(We write ¢ for any base type: bool, nat, etc)

15

Normalization for simple types

RED(:) = {M | M terminates, i.e. IN,M 5 N 4}
RED(c — 7) = {M | ¥N € RED(c), M N € RED(7)}

We then show:

1. If M € RED(7) then M terminates.
2. If 0= M : 7 then M € RED(7), or, more generally:

IfX1:71,...,X, : 7o = M : 7 and M; € RED(7;) for every i, then
M{X1 <= My, ..., Xn < My} € RED(T).

16

Extension to polymorphism

In a predicative type system such as ML, or Martin Lof type
theory, ou Agda, we can take

RED(Va.7) = {M | Vo, M[o] € RED(7{c <+ c})}

This definition remains well founded because « can only be
instantiated by types o that are “smaller” than Va.r.

In an impredicative system such as system F or Coq, « can be
instantiated by any type, including Vo.7. Example:

if id:Va.aa— «a then id[Va.a — a]id:Voa.a — «
The definition of RED is therefore incorrect.

17

Reducibility candidates

Girard’s idea: interpret type variables « not just by the sets
RED(o) for some types o, but by a larger class of sets:
the reducibility candidates (candidats de réductibilité).

A set U of terms is a reducibility candidate if

1. every M € U terminates;

2. Uis closed under expansion: if M — M’ and M’ € U then
MeU

3. Uis closed under certain reductions.
(See Girard, The blind spot, vol. 1 ch. 6)

18

Reducibility candidates, visually

normalizing terms

candidates
RED(7)

Normalization for system F

Reducibility: (¢ : type variable — candidate)
RED(¢, ®) = {M | M terminates}
RED(c — 7, ®) = {M | VN € RED(c, ®),M N € RED(r, d)}
RED(cv, ®) = ®(av)
RED(Va. 7,®) = {M | Vo,VU € CAND(c),M[c] € RED(7, ® + v > U)}

We then prove:

1. RED(, ®) is a reducibility candidate.
2. If) - M: 7then M € RED(r, ®).

20

Formalizing and mechanizing Coq

From simple types to the Calculus of Constructions

Simple types neg : bool — bool term — term
+ polymorphism id:Va.a — « type — term
+ type operators list : Type — Type type — type
+ dependent types vec : nat — Type term — type

= Calculus of Constructions

F,——— CC

F% "
(S
/ /Qe:o (\;d \)C&o

simple types ———»F U

polymorphism

dependent types 2

From the Calculus of Constructions to Coq

Calculus of Constructions

+ universe hierarchy 0 : nat : Type, : Type,
+ inductive types nat,list,A,V,d
+ coinductive types stream,delay

+ universe cumulativity
+ universe polymorphism

~ Coq

22

A formalization of the Calculus of Constructions with universes

In the style of Pure Type Systems:

- No syntactic distinction between terms and types.

- Asingle X for all the kinds of functions
(term — term, type — term, type — type, etc)

- Asingle I representing function types and V types.

« Universes to stratify into terms, types, kinds, etc.

23

Abstract syntax

Universe: U ::= Prop | Type;
Terms, types: A,B::=Xx variables
| A :A.B abstractions
|AB applications
| U universe name
|MNx:A.B dependent function type
def

Notation: A — B = [x : A. B if x not free in B.

24

Typing rules

(U,U)e A r-A:U rFA:B TIkHC:U

(ax) . (var) (wk)

DFU:U Mx:AFx:A x:CHA:B

Mr=A: U, r,X:Al_BZUZ (U1,U2,U3)ER(.)
pI

METx:AB:U;s

MNx:AFB:C T HFIMx:AC:U
(abstr)

XA B:TIx:A.C

M=f:Mx:AB TFa:A
(app)

NEfa:B{x+«+ a}

r’A:B THB:U B3&LpB

(conv)

r-A:pB

25

The conversion rule: typing modulo reductions

r’FA:B THB:U BSEW

Fr-A:B

Types are identified up to reductions (computations).

Example 1: the type dtype (Fun Bool Bool) contains the same
values as the type bool — bool, because these two types are
equal modulo computation of the dtype function.

Example 2: the trivial proof for the proposition 4 = 4isalso a
proof for the proposition 2 + 2 = 4, because these two
propositions are equal modulo computation of the + function.

26

The conversion rule: typing modulo reductions

r'HA:B THB:U B« B

Fr-A:B
Types are identified up to reductions (computations).

- Enables new ways for programming and proving, such as
“proofs by reflection”, where computation replaces logical
deduction.
« A challenge for the metatheory: typing depends on
computation.
« A challenge for the implementation of the type-checker:
need an efficient evaluation mechanism during
type-checking.
26

Universe management

(U.,U/)QA AU, x:AFB: U (U1.U2,U3)€R .
(ax) (pi)

PHU:U M-TNx:AB:U;

The A relation determines which universe belong to which
universe. In Coq:

A = {(Prop, Type,), (Type;, Type; 1)}
The R relation determines the universe for x : A.B. In Coq:
R = {(U,Prop, Prop), (Type;, TyPe;; TYPemax(ij)) }

Crucial for logical consistency! For instance, Type : Type or
Girard’s system U can encode the Burali-Forti paradox...

27

Towards a Coq mechanization of the logic of Coq

B. Barras, Coq en Coq, 1996.

B. Barras et B. Werner, Coq in Coq, 1997.

A complete formalization of CC in Coq version 6.
Includes normalization, logical consistency, and proof +
extraction of a type checker.

B. Barras, Auto-validation d’un systeme de preuves avec familles
inductives, PhD, 1999.

Extension to CC + inductive types.

Normalization is not proved.

28

Towards a Coq mechanization of the logic of Coq

A. Charguéraud, Locally nameless tutorial, vers 2010.
https://www.chargueraud.org/softs/1ln/

A simple formalization of CC + universes in Coq.
Stops just after the preservation theorem.

M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, Th. Winterhalter,
Coq Cogq Correct! Verification of type checking and erasure for
Cogq, in Cogq, 2020.

A formalization of PCUIC (Polymorphic Cumulative Calculus of
Inductive Constructions). Normalization is admitted. Verifies all
other parts of the metatheory, an efficient type-checker, and an
extraction algorithm.

29

https://www.chargueraud.org/softs/ln/

Towards an Agda mechanization of the logic of Agda

J. Chapman, Type theory should eat itself, 2008
Towards a normalization algorithm for MLTT, using
intrinsically-typed syntax.

T. Altenkirch, A. Kaposi, Type theory in type theory using quotient
inductive types, 2016

A specification of MLTT in intrinsically-typed syntax, using the
quotient types from HoTT.

A. Abel,). Ohman, A. Vezzosi, Decidability of conversion for type
theory in type theory, 2018

An algorithm to test convertibility in the presence of dependent
types (one universe), in Agda (MLTT + induction-recursion).

30

Proof assistants should eat themselves?

Can we mechanize a good fragment of the logic of a proof
assistant in a barely bigger fragment?

31

References

References

Proofs of normalization:

« Simple types, in Coq: B. Pierce et al, Software Foundations, volume
2, chapter “Norm”.

« System F:).-Y. Girard, The blind spot: Lectures on logic. European
Mathematical Society, 2011, chapter 6.

« Calculus of Constructions: H. Geuvers, A short and flexible proof of
Strong Normalization for the Calculus of Constructions, 1995.

Cut elimination and logical consistency:
* J.-Y. Girard, The blind spot: Lectures on logic. European

Mathematical Society, 2011, chapters 4 and 5.

32

	Logical consistency
	Proving normalization
	Formalizing and mechanizing Coq
	References

