

Mechanized semantics, seventh lecture

Of functions and types: the semantics of a functional language

Xavier Leroy

2020-02-06

Collège de France, chair of software sciences

A change of paradigm

IMP, a toy imperative language

- Running a program = modifying the state
- Basic operation: assignment
- Control structures: conditional, loops
- Data types: first order (e.g. numbers).

FUN, a toy functional language

- Running a program = computing its value.
- Basic operations: function abstraction, function application.
- Control structures: conditional, recursion.
- Data types: higher order (functions as first-class values).

The FUN functional language

the lambda-calculus

- + a reduction strategy
- + primitive data types
- + a type system
- = a functional language

Terms: M, N ::= xvariables $| \lambda x. M$ function abstraction ($x \mapsto M$)| M Nfunction application

One structural rule: α -conversion (renaming of bound variables)

 $\lambda x. M =_{\alpha} \lambda y. M\{x \leftarrow y\}$ if y not free in M

One computation rule: β -reduction

 $(\lambda x. M) N \rightarrow_{\beta} M\{x \leftarrow N\}$

Theorem (Church and Rosser, 1935)

The β -reduction is confluent: if $M \xrightarrow{*} M_1$ and $M \xrightarrow{*} M_2$, there exists M'such that $M_1 \xrightarrow{*} M'$ and $M_2 \xrightarrow{*} M'$.

We say that N is a normal form of M if $M \xrightarrow{*} N \not\rightarrow$

Corollary

The normal form of a term, if it exists, is unique.

Lambda-calculus is Turing-complete.

In particular, via functional encodings, it can express

• All the usual data types: integers, pairs, lists, ... Example: Church's encoding of natural numbers

$$n \equiv \lambda f. \underbrace{f \circ \cdots \circ f}_{n \text{ times}} \equiv \lambda f. \lambda x. \underbrace{f (f (\cdots (f x)))}_{n \text{ times}}$$

• General recursion via fixed-point combinators. Example: the combinator $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$ is such that $Y F \xrightarrow{*} F(Y F)$.

Little control over termination and complexity

Non-determinism caused by β -reductions that can apply in several places and in any order. Depending on the way β -reductions are performed,

- a computation can diverge or terminate;
- it can terminate quickly or slowly.

Functional encodings of data structures are limited

- Unnatural.
- Generally inefficient.
- Not typable in several standard type systems.

Make β -reduction deterministic by restricting where and when it can be performed. Two main choices:

• Strong vs weak reduction: can we reduce "under a λ "? Weak reduction: a function body is evaluated only after the function is applied.

Strong reduction: we can simplify the function body before application.

• Call-by-name vs call-by-value:

By value: the argument must be evaluated before being passed to the function.

By name: the argument is passed as is, not necessarily evaluated.

(G. Plotkin, A structural approach to operational semantics, 1981, 2004.)

Axioms and inference rules for a relation $M \rightarrow M'$ (read: the whole term M reduces into the term M').

Weak call-by-name	Weak call-by-value	
		left to right
$(\lambda x.M) N \to M\{x \leftarrow N\}$	$(\lambda x. M) v \to M\{x \leftarrow v\}$	
M ightarrow M'	M ightarrow M'	N ightarrow N'
$\overline{M \ N \to M' \ N}$	$\overline{M N o M' N}$	$v \ N \rightarrow v \ N'$

(Here, values, written v, are just the lambdas: $v ::= \lambda x. M$)

(A. Wright, M. Felleisen, A Syntactic Approach to Type Soundness, 1994).

One general reduction rule under a context E:

 $E[M] \to E[M']$

For each strategy, axioms for head reductions $\rightarrow_{\varepsilon}$ and a grammar defining the valid contexts *E*:

Weak call-by-name

Weak call-by-value

 $(\lambda x. M) N \to_{\varepsilon} M\{x \leftarrow N\}$ $E ::= [] \mid E N$

 $(\lambda x. M) v \rightarrow_{\varepsilon} M\{x \leftarrow v\}$

Left to right: E ::= [] | E N | v ERight to left: E ::= [] | E v | M E

Specifying a strategy: via a natural semantics

Like we already did for IMP, we can summarize finite reduction sequences to a value $M \xrightarrow{*} v \not\rightarrow$ by a predicate $M \Downarrow v$, "term M evaluates to value v".

Weak call-by-name:

 $\lambda x. M \Downarrow \lambda x. M \qquad \frac{M \Downarrow \lambda x. P \quad P\{x \leftarrow N\} \Downarrow v}{M N \Downarrow v}$

Weak call-by-value:

 $M \Downarrow \lambda x. P \qquad N \Downarrow v' \qquad P\{x \leftarrow v'\} \Downarrow v$

 $\lambda x. M \Downarrow \lambda x. M$

 $M N \Downarrow v$

A systematic process: add

- new syntactic forms to the grammar of terms;
- new head reduction rules;
- new cases to the grammars of values and of contexts.

Starting point: weak call-by-value.

Terms: $M, N ::= x \mid \lambda x. M \mid M N$

Values: $v ::= \lambda x. M$

Contexts: E ::= [] | E M | v E

Head reduction: $(\lambda x. M) v \rightarrow_{\varepsilon} M\{x \leftarrow v\}$

Terms: $M ::= ... | true | false | if <math>M_1 M_2 M_3$ Values: v ::= ... | true | falseContexts: $E ::= ... | if E M_2 M_3$

 $\begin{array}{l} \text{ if true } M_2 \; M_3 \rightarrow_{\varepsilon} M_2 \\ \\ \text{ if false } M_2 \; M_3 \rightarrow_{\varepsilon} M_3 \end{array}$

Terms: $M ::= ... | 0 | S M | if 0 M_1 M_2 M_3$ Values: v ::= ... | 0 | S vContexts: $E ::= ... | S E | if 0 E M_2 M_3$

 $\begin{array}{c} \text{if0 0 } M_2 \ M_3 \rightarrow_{\varepsilon} M_2 \\ \\ \text{if0 (S v) } M_2 \ M_3 \rightarrow_{\varepsilon} M_3 \ v \end{array}$

Terms: $M ::= \dots | (M_1, M_2) | \text{fst } M | \text{snd } M |$ | left $M | \text{right } M | \text{case } M M_1 M_2$ Values: $v ::= \dots | (v_1, v_2) | \text{left } v | \text{right } v$ Contexts: $E ::= \dots | (E, M) | (v, E) | \text{fst } E | \text{snd } E |$ | left $E | \text{right } E | \text{case } E M_2 M_3$

 $\begin{array}{ll} \text{fst} (\mathsf{v}_1,\mathsf{v}_2) \to_{\varepsilon} \mathsf{v}_1 & \quad \text{case} \left(\texttt{left } \mathsf{v} \right) \mathsf{M}_2 \, \mathsf{M}_3 \to_{\varepsilon} \mathsf{M}_2 \, \mathsf{v} \\ \text{snd} \left(\mathsf{v}_1,\mathsf{v}_2 \right) \to_{\varepsilon} \mathsf{v}_2 & \quad \text{case} \left(\texttt{right } \mathsf{v} \right) \mathsf{M}_2 \, \mathsf{M}_3 \to_{\varepsilon} \mathsf{M}_3 \, \mathsf{v} \end{array}$

Terms:M ::= ... | fix MValues:v ::= ... | fix vContexts:E ::= ... | fix E

 $\texttt{fix} \mathsf{V}_f \mathsf{V} \to_{\varepsilon} \mathsf{V}_f (\texttt{fix} \mathsf{V}_f) \mathsf{V}$

See the Coq development FUN.v.

The basic tools are the same as for IMP:

- Inductive types for abstract syntax.
- Inductive predicates for reduction and evaluation relations.

A delicate issue: α -conversion

 $\lambda x. M =_{\alpha} \lambda y. M\{x \leftarrow y\}$ if y not free in M

It is not obvious how to consider terms modulo $\alpha\text{-conversion},$ that is, equal up to a renaming of bound variables.

The development FUN.v represents terms without implicit renaming of bound variables:

Abs("x", Var "x")
$$\neq$$
 Abs("y", Var "y")

This is a problem to define substitution $M\{x \leftarrow N\}$: the naive definition

$$(\lambda y. M)\{x \leftarrow N\} = \lambda y. (M\{x \leftarrow N\})$$

is vulnerable to variable capture.

For example $(\lambda y. x) \{ x \leftarrow y \}$ is computed as $\lambda y. y \times$

The naive definition of substitution

$$(\lambda y. M)\{x \leftarrow N\} = \lambda y. (M\{x \leftarrow N\})$$

is correct if the term N is closed, i.e. without free variables. (If N is closed, $\lambda y \dots N \dots$ cannot capture a y free in N.)

Fortunately, reducing a closed term (a complete program) produces only closed terms:

$$\underbrace{\underset{\mathsf{closed}}{\mathsf{Prog}} \rightarrow \cdots \rightarrow \underbrace{(\lambda x. M)}_{\mathsf{closed}} \underbrace{\underset{\mathsf{N}}{\mathsf{N}}}_{\mathsf{closed}} \rightarrow \underbrace{\underset{\mathsf{M}\{x \leftarrow N\}}{\mathsf{M}\{x \leftarrow N\}}}_{\mathsf{closed}} \rightarrow \cdots$$

Hence, the semantics we obtain is valid only for complete programs.

A type system with simple types

"Don't compare apples with oranges."

"On n'additionne pas des choux et des carottes."

When we enrich lambda-calculus with data types such as Booleans, absurd terms appear:

true $(\lambda x. x)$ (a Boolean used as if it were a function) if $(\lambda x. x) M M'$ (a function used as if it were a Boolean)

Dynamic typing:

detect and report these absurdities during execution

 $(\lambda b. \text{ if } b \mathrel{\sc M} M') (\lambda x. x)
ightarrow ext{if} (\lambda x. x) \mathrel{\sc M} M'
ightarrow ext{ERROR}$

Static typing:

analyze terms before execution to "statically" reject the terms that are not well typed.

- ✓ λb : bool. if b false true : bool o bool
- **X** $(\lambda b : \text{bool. if } b \text{ false true}) (\lambda x. x)$
- 🗶 λb : bool ightarrow bool. if b false true

A type algebra, for example Church's simple types

Types: $au, \sigma ::= bool$ base type $| \ \sigma \to \tau$ type of functions from σ to τ

Typing rules that define a relation $\Gamma \vdash M : \tau$

read: "in context Γ term M is well typed and has type τ ".

The context Γ is a list of assumptions $x_1 : \tau_1, \ldots, x_n : \tau_n$ associating each free variable x_i with its type τ_i .

The simply-typed lambda-calculus:

$$\frac{\Gamma = \dots, x : \tau, \dots}{\Gamma \vdash x : \tau} \text{ (Var)} \qquad \frac{x \notin Dom(\Gamma) \quad \Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x. M : \sigma \to \tau} \text{ (Abs)}$$
$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau} \text{ (App)}$$

Extension with Booleans:

 $\Gamma \vdash \text{true: bool (Cst)} \qquad \Gamma \vdash \text{false: bool (Cst)}$ $\frac{\Gamma \vdash M : \text{bool} \quad \Gamma \vdash N : \tau \quad \Gamma \vdash P : \tau}{\Gamma \vdash \text{if } M N P : \tau} \quad \text{(if)}$

Well-typed programs do not go wrong. (R. Milner)

A type system is sound if no program that is well typed in the empty context can "go wrong", i.e. produce a run-time error such as true $(\lambda x.x)$.

Formulated in terms of reduction sequences:

Normal termination: $M \rightarrow \cdots \rightarrow v \in Val$ Abnormal termination (going wrong): $M \rightarrow \cdots \rightarrow N \not\rightarrow, N \notin Val$ Divergence: $M \rightarrow \cdots \rightarrow M' \rightarrow \cdots$

Type soundness = if $\emptyset \vdash M : \tau$, the "going wrong" case is impossible.

(Normalization = if $\emptyset \vdash M : \tau$, the "divergence" case is impossible.)

Using a denotational semantics: (1975–1985)

(D. MacQueen, G. Plotkin, R. Sethi, An ideal model for recursive polymorphic types, 1986)

- Write a denotational semantics $\llbracket M \rrbracket$ where the domain of denotations contains a special element err. For example: $D \simeq Bool_{\perp} + [D \rightarrow D] + \{err\}_{\perp}$.
- Interpret types τ as sets $\llbracket \tau \rrbracket$ not containing err.
- Show that if $\emptyset \vdash M : \tau$, then $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$

Using a denotational semantics: (1975–1985)

Using a natural semantics: (1980–1995)

(M. Tofte, Operational semantics and polymorphic type inference, PhD Edinburgh, 1988)

- Write two natural semantics: $M \Downarrow v$ for normal termination, $M \Downarrow err$ for abnormal termination (going wrong).
- Show that if $\emptyset \vdash M : \tau$, then $M \not\Downarrow err$, and $M \Downarrow v \Rightarrow v \in \tau$.

Using a denotational semantics: (1975–1985)

Using a natural semantics: (1980–1995)

Using a reduction semantics: (since 1995)

(A. Wright et M. Felleisen, A syntactic approach to type soundness, 1994)

• Show two properties of reductions: progress and preservation.

Show that a well-typed program does not go wrong immediately.

Theorem (Progress)

If $\emptyset \vdash M : \tau$, either M is a value or M can reduce (M \rightarrow N for some N).

Uses a lemma that determines the shapes of values according to their types.

Lemma (Canonical forms)

Let v be a value.

If $\emptyset \vdash \mathbf{v} : \sigma \to \tau$ then \mathbf{v} is of the shape $\lambda \mathbf{x}$. M.

If $\emptyset \vdash v$: bool then v is true or false.

Well-typedness is preserved by reduction steps.

Theorem (Preservation)

If $\Gamma \vdash M : \tau$ and $M \rightarrow N$ then $\Gamma \vdash N : \tau$.

Uses a substitution lemma and a weakening lemma.

Lemma (Typing is stable by substitution)

If $\Gamma, x : \sigma, \Gamma' \vdash M : \tau$ and $\Gamma \vdash N : \sigma$ then $\Gamma, \Gamma' \vdash M\{x \leftarrow N\} : \tau$.

Lemma (Weakening)

If $\Gamma \vdash M : \tau$ then $\Gamma, \Gamma' \vdash M : \tau$.

Well-typed programs do not go wrong.

Let *M* be a closed, well-typed program: $\emptyset \vdash M : \tau$.

Assume that *M* goes wrong:

$$M \rightarrow \cdots \rightarrow N \not\rightarrow, N \notin Val$$

By (iterated) preservation, $\emptyset dash extsf{N} : au$.

By progress, either N is a value or N reduces.

Contradiction!

Intrinsically-typed terms

The "extrinsic" view, in the style of Curry:

- Abstract syntax and semantics are defined independently of the type system.
- The type system is a "filter" (a static analysis) that eliminates problematic terms.

Then "intrinsic" view, in the style of Church:

• The type system participates in the definition of the terms of the language. E.g. Church's simply-typed lambda-calculus:

$$M_{\tau} ::= \mathbf{x}_{\tau} \mid (\lambda \mathbf{x}_{\sigma}. M_{\tau})_{\sigma \to \tau} \mid (M_{\sigma \to \tau} N_{\sigma})_{\tau}$$

• Semantics is defined on well-typed terms only.

Church's intrinsic view can be expressed using dependent types (Coq, Agda, ...) or generalized algebraic data types (GADTs) (Haskell, OCaml).

The type of terms term $\Gamma \tau$ is parameterized by a typing context Γ and a type expression τ .

Const : bool $\rightarrow \text{term }\Gamma$ Bool Cond : term Γ Bool $\rightarrow \text{term }\Gamma \tau \rightarrow \text{term }\Gamma \tau \rightarrow \text{term }\Gamma \tau$ App : term Γ (Fun $\sigma \tau$) $\rightarrow \text{term }\Gamma \sigma \rightarrow \text{term }\Gamma \tau$ Abs : term ($\sigma :: \Gamma$) $\tau \rightarrow \text{term }\Gamma$ (Fun $\sigma \tau$) (?) Var : var $\Gamma \tau \rightarrow \text{term }\Gamma \tau$ (?) In the intrinsic approach, a variable designates one of the typing assumptions in the context. This assumption determines the type of the variable. There should be no way to mention a variable that is not described in the context!

Designating variables by names:

feasible, but can raise problems with renaming.

Designating variables by positions:

quite natural: context \approx list, assumption \approx position in the list. It is de Bruijn's notation (1972)!

de Bruijn's notation

(N. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, 1972.)

Instead of identifying variables by names, de Bruijn's notation identifies them by their positions relative to the λ -abstractions that bind them.

 $\begin{array}{cccc} \lambda \mathbf{x}. & (\lambda \mathbf{y}. \ \mathbf{y} \ \mathbf{x}) \ \mathbf{x} \\ & | & | & | \\ \lambda . & (\lambda . & \underline{1} \ \underline{2}) \ \underline{1} \end{array}$

<u>*n*</u> is the variable bound by the *n*-th enclosing λ .

Two α -convertible terms are equal in de Bruijn's notation: $\lambda x. x$ and $\lambda y. y$ are both représented as $\lambda. \underline{1}$ A context Γ is a list of types $\tau_1 :: \cdots :: \tau_n :: nil$ where τ_i is the type of the variable having de Bruijn index *i*.

The type var $\Gamma \tau$ of variables of type τ in context Γ is isomorphic to the integers between 1 and the size *n* of Γ .

This type is generated by two constructors:

V1 :
$$var(\tau :: \Gamma) \tau$$
 (one)
VS : $var\Gamma \tau \rightarrow var(\sigma :: \Gamma) \tau$ (successor)

Derived definitions:

$$V2 = VS V1 : var(\tau_1 :: \tau_2 :: \Gamma) \tau_2 V3 = VS V2 : var(\tau_1 :: \tau_2 :: \tau_3 :: \Gamma) \tau_3$$

A denotational semantics for intrinsically-typed terms

We can define an interpretation of FUN type expressions as Coq types:

$$\llbracket \texttt{Bool} \rrbracket = \texttt{bool} \qquad \llbracket \texttt{Fun } \sigma \ \tau \rrbracket = \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$$

Typing contexts become the Coq types for evaluation environments that associate a value to each variable of the context:

$$\llbracket nil \rrbracket = \texttt{unit} \qquad \llbracket \tau :: \Gamma \rrbracket = \llbracket \tau \rrbracket * \llbracket \Gamma \rrbracket$$

We can, then, interpret a term $a : term \Gamma \tau$ as a Coq function environment \mapsto value:

$$\llbracket a \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

```
[Var V1] e = fst(e)
[Var (VS v)] e = [Var v] (snd e)
[Abs a] e = fun x \Rightarrow [a] (x, e)
[App a_1 a_2] e = ([a_1] e) ([a_2] e)
[Const b] e = b
[Cond a_1 a_2 a_3] e = if [a_1] e then [a_2] e else [a_3] e
```

This defines a Coq function that is well-typed and total \Rightarrow type soundness and normalization hold "by construction". The equations of denotational semantics are satisfied. Compatible with reductions: if $a \rightarrow a'$ then $[\![a]\!] = [\![a']\!]$. The features of the object language (FUN) must be available or encodable in the host language (Coq).

- Effects (including divergence) \Rightarrow monadic encoding.
- Subtyping \Rightarrow coercions [[subtype]] \rightarrow [[supertype]].
- Impredicative polymorphism (system F) \Rightarrow Coq's option -impredicative-set.

The host language must have inductive families (GADTs) and preferably full dependent types \Rightarrow excludes HOL, PVS, ...

We explain simple languages (such as FUN) in terms of a more complex language (OCaml, Haskell, Agda, Coq).

Summary

Summary

Functional languages (syntax, semantics, typing) mechanize very well, generally speaking...

... modulo a few difficulties to account for bound variables and alpha-conversion (equivalence up to renaming of bound variables).

Many type systems have been mechanized, including advanced features such as

- Subtype polymorphism (e.g. bool <: int)
- Parametric polymorphism
- Dependent types

 $\begin{array}{l} (\text{e.g. bool} <: \text{int}) \\ (\text{e.g. } \forall \alpha. \ \alpha \rightarrow \alpha) \\ (\text{e.g. term } \Gamma \ \tau) \end{array}$

The next lecture reconsiders the latter two from a logical perspective (that of type theory).

References

References

Two textbooks on typed functional languages:

- Benjamin Pierce. *Types and Programming Languages*. MIT Press, 2002.
- Robert Harper. *Practical Foundations for Programming Languages*. Cambridge University Press, 2016.

Mechanizations of typed functional languages:

- Extrinsic approach, in Coq: Benjamin Pierce et al, Software Foundations, volume 2: Programming Languages Foundations, https://softwarefoundations.cis.upenn.edu/.
- Intrinsic approach, in Agda: Philip Wadler, *Programming Language Foundations in Agda*, https://plfa.github.io/