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The semantics of a programming language

Assigning meaning to programs. (Floyd, 1967)

Less ambitiously: giving an answer to the question
“What does this program do, exactly?”
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What does this program do, exactly?

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l ];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20 ) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, IOCCC 2001)

(It computes square roots in arbitrary precision.)
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What about this program?

#define _ F-->00 || F-OO--;

long F=00,OO=00;

main()F_OO();printf("%1.3f\n", 4.*-F/OO/OO);F_OO()

{
_-_-_-_

_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_ (Brian Westley, IOCCC 1988)
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_

_-_-_-_
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_-_-_-_-_-_-_-_-_-_-_-_ (It computes an approximation of π)
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What about this program?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,
author of PuTTY)

(It’s a decompressor for
run-length encoding, written
as a co-routine)
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Three degrees of semantics

Intuitive semantics:
a well-written program in an appropriate programming language
tells a good story and should read easily.

Precise semantics:
reference manuals, ISO standards, and other normative texts.

Formal semantics: (these lectures)
describe the behaviors of programs with absolute mathematical
precision.
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A brief history
of programming languages
and their semantics



Prehistory: machine language

“It’s all zeros and ones!”

10111000 00000001 00000000 00000000 00000000

10111010 00000010 00000000 00000000 00000000

00111001 11011010 01111111 00000110

00001111 10101111 11000010

01000010 11101011 11110110

11000011

(x86 machine code for the factorial function)
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Classical Antiquity (1949): assembly languages

A textual representation of machine language, with mnemonics
for instructions, labels for program points, and comments for
humans to read.

Example: the factorial function in x86 assembly
; On entry: argument N in EBX register

; On exit: factorial(N) in EAX register

factorial:

mov eax, 1 ; initial result = 1

mov edx, 2 ; index i = 2

L1: cmp edx, ebx ; while i <= N ...

jg L2

imul eax, edx ; multiply result by i

inc edx ; increment i

jmp L1 ; end while

L2: ret ; end function
8



A very precise semantics!

Expressed as the e�ect of every instruction on the processor
state. No or few ambiguities if the reader is familiar with
hardware architecture.

Instruction Set Architecture 
 

Synergistic Processor Unit  

Integer and Logical Instructions

Page 60 of 278

Version 1.2

January 27, 2007

Add Word Required v 1.0

For each of four word slots:

• The operand from register RA is added to the operand from register RB. 

• The 32-bit result is placed in register RT. 

• Overflows and carries are not detected.

a rt,ra,rb

0 0 0 1 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 + RB0:3

RT4:7 ← RA4:7 + RB4:7 

RT8:11 ← RA8:11 + RB8:11 

RT12:15 ← RA12:15 + RB12:15 
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The Renaissance (1957): Fortran

Arithmetic expressions that look like familiar mathematical
formulas:

D = SQRT(B*B - 4*A*C)

X1 = (-B + D) / (2*A)

X2 = (-B - D) / (2*A)

x1, x2 =
−b±

√
b2 − 4ac

2a

One command for structured control: the counted loop

DO 10 I=1,N

...

10 CONTINUE

(Plus GO TO and IF as in assembly.)
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Syntax and semantics are less clear

Lexical conventions are hard to read and prone to errors:

DO10I=1,20 loop for I from 1 to 20
DO10I=1.20 assigning 1.20 to the variable DO10I

Precedence and associativity of operators:

A + B * C means A + (B * C) but not (A + B) * C

A - B - C means (A - B) - C but not A - (B - C)

The compiler can “associate” A + B + C as (A + B) + C

or as A + (B + C) or as (A + C) + B. In floating-point, the
three interpretations compute di�erent values.
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The Enlightenment (1960): Algol

Arithmetic expressions + structured control (with keywords that
tell a story: begin. . .end, if. . .then. . .else, for. . .do, etc).

Procedures and functions to support code reuse:

procedure quadratic(x1, x2, a, b, c);

value a, b, c; real a, b, c, x1, x2;

begin

real d;

d := sqrt(b * b - 4 * a * c);

x1 := (-b + d) / (2 * a);

x2 := (-b - d) / (2 * a)

end;
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Which semantics for function calls?

Algol 60 o�ers two semantics for passing arguments to functions,
the two semantics that looked most natural at the time:

• call by value for parameters marked value

(≈ Lisp, C, C++, Java, Caml, . . . )
(≈ call-by-value λ-calculus)

• copy rule for parameters not marked value

(substituting the argument expression for the function
parameter)
(≈ Lisp macros)
(≈ call-by-name λ-calculus)

Copy rule + assignments = an explosive mix!
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Greatness of the copy rule

A very general function for summation:

real procedure Sum(k, l, u, ak)

value l, u; integer k, l, u; real ak;

begin

real s;

s := 0;

for k := l step 1 until u do

s := s + ak;

Sum := s

end;

Sum of squares: Sum(i, 1, n, i*i)

Sum of matrix A: Sum(i, 1, m, Sum(j, 1, n, A[i,j]))
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Misery of the copy rule

procedure swap(a, b)

integer a, b;

begin

integer temp;

temp := a;

a := b;

b := temp;

end;

This procedure can fail to swap its arguments!
For instance, swap(i, A[i]) expands to
temp := i; i := A[i]; A[i] := temp.
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The Enlightenment (1958): Lisp

The first of the functional programming languages:

• Structured around expressions and recursive functions.
• Minimalistic, unambiguous syntax (S-expressions).
• Semantics that is intended to be mathematical from day

one: explicit connections with recursive function theory.
(J. McCarthy, Towards a Mathematical Science of Computation, IFIP Congress 1962.)

The semantics of functions turns out to be delicate. . .
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Scope of a variable binding

(let ((x 1)) ; first binding of x
(flet ((f (y) (+ x y))) ; function f uses x
(let ((x "foo")) ; second binding of x

(f 0)))) ; call to f

What is the value of x in the body of f when we evaluate f 0?

• Static (“lexical”) scoping: the value of x when f was defined,
that is, 1. That’s what the λ-calculus predicts.

• Dynamic scoping: the value of x at the time of the call, that
is, "foo". This is what the first Lisp implementations did, but
is considered an historical mistake.
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Summary

Around 1965, several hundred programming languages already
exist. (P. J. Landin, The next 700 programming languages, 1966.)

It is known how to formalize their syntax, using grammatical
frameworks such as Backus-Naur form (BNF).

The need to formalize their semantics is growing:
the higher-level languages become, the more surprising their
(intuitive or precise) semantics become!
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A brief history
of formal semantics



Three styles of formal semantics

Operational semantics

Formally describe the steps of executing the program.

E.g. by successive reductions (rewrites) of (syntactic) terms.

Example: simplifying arithmetic expressions

(1 + 2)× (3 + 4) → 3× (3 + 4) → 3× 7 → 21

Example: the λ-calculus and its β-reduction

(λx. M) N → M{x← N}
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Three styles of formal semantics

Operational semantics

Denotational semantics

To each syntactic element of the program, associate a
mathematical object that captures its meaning — its denotation.

Examples of denotations:

Syntactic element Denotation
Expression without variables Its value (a number)
Expression with variables Function variable values

7→ expression value
Command without loops Function variable values “before”

7→ variable values “after”
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Three styles of formal semantics

Operational semantics

Denotational semantics

Axiomatic semantics

Describe the semantics of a program fragment by the logical
assertions (preconditions, postconditions, invariants) that it
satisfies.

21



First operational semantics

Peter J. Landin, The mechanical evaluation of expressions, The
Computer Journal 6(4), 1964.

An “applicative” language based on the λ-calculus
(≈ Lisp with static scoping)

Execution model: an abstract machine called SECD.

Peter J. Landin, Correspondence between ALGOL 60 and Church’s
Lambda-notation, Comm. ACM 8(2), 8(3), 1965.

Outline of a translation from Algol 60 to his applicative language
+ mutable data + continuations (≈ Scheme).

Failed to convince: too complex, not mathematical enough.
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Birth of axiomatic semantics

Robert Floyd, Assigning meaning to programs, 1967

Rediscovers an idea
by Turing (1949): to
prove a program, it
su�ces to annotate
its flowchart with
logical assertion,
and to check the
consistency of these
assertions.

programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 

- - - - - - - - n E J+ (J+ is the set of positive integers) 

- - - - - - - - n E J+ /\ i = 1/\ S = 0 
i-l 

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ 
j-l 

i-I n 
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l 

i-l 
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ 

j-1 

. 
I 

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ 
j-1 

i - i + 1 i-l 

- - - - - - - - n E J+ Ai € J+ 1\ 2 i n + 1/\ S = 1: OJ 
j-l 

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0) 
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Birth of axiomatic semantics

Robert Floyd, Assigning meaning to programs, 1967

Formalizes the logical rules that connect preconditions P and
postconditions Q of every node of a flowchart:

x := e
P

Q

P⇒ Q{x← e}

b ?
P

Q0 Q1

P ∧ ¬b⇒ Q0
P ∧ b⇒ Q1

P1 P2

Q

P1 ∨ P2 ⇒ Q

Observes that these rules su�ce to define the semantics of any
flowchart with mathematical precision.
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1969–1980: the golden age of axiomatic semantics

As a tool for program proof: Hoare logic (1969), weakest
preconditions calculus (Dijkstra, 1975).

As a development methodology by successive refinements
(Wirth, 1971), guarded commands (Dijkstra, 1975).

As a guide to design structured programming languages:

• single-exit commands; no break, no return (Pascal)
• pure functions vs. procedures with e�ects (preliminary Ada)
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Naive denotational semantics

Christopher Strachey, Towards a formal semantics, 1964, 1966.

This text and other notes by Strachey introduce the style of
semantics where functions associate a denotation to each
syntactic construct.

Expressions: E : expr → env → val

E x = λe. e(x)

E (a1 + a2) = λe. E a1 e + E a2 e

Commands: C : cmd→ env → env

C skip = λe. e

C (x := a) = λe. e{x← E a e}
C (c1; c2) = C c2 ◦ C c1
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Naive denotatnoial semantics

“The approach was deliberately informal and, as subsequent
events proved, gravely lacking in rigour.” (Strachey, as quoted by
Scott)

Circularity in the equations for loops and for recursive functions:

C (while b do c) = λe.

e if B b e = false

C (while b do c) (C c e) if B b e = true

Ill-defined sets of denotations:
if D is the set of denotations of pure lambda-terms,
we would like to interpret λx.M as a function D→ D,
but D ≈ D→ D is impossible (wrong cardinality).
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Domain theory

Dana Scott, Outline of a mathematical theory of computation, 1970

Dana Scott, Data types as lattices, 1975.

Partially-ordered sets, from the least defined element (⊥) to
more defined elements, equipped with a topological structure
(limits, continuous functions).

Fit the needs of denotational semantics:

• Semantics of general loops and general recursion as least
fixed points (smallest solutions to an equation).

• Precise reasoning about divergence (non-termination).
• Construction of “circular” domains such as

D∞ ≈ D∞ →cont D∞.
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1975–1990: the golden age of denotational semantics

Extending the “Scott-Strachey approach” to almost all features of
known programming languages.
(Including non-structured control, via continuations.)

The semantic formalism most widely used at the Principles of
Programming Languages conference until around 1990.

Formalization of a few real-world programming languages,
including sequential Ada (V. Donzeau-Gouge, J. Storbank
Petersen).
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The return of operational semantics

Gordon Plotkin, Call-by-name, call-by-value and the lambda-calculus, 1975
Robin Milner, A calculus of communicating systems, 1980
Gordon Plotkin, A structural approach to operational semantics, 1981
Gilles Kahn, Natural semantics, STACS, 1987
Matthias Felleisen, Daniel Friedman, Control operators, the SECD-machine, and
the λ-calculus, 1987

Generalizing the lambda-calculus approach (sequences of
reductions) to many other languages (Plotkin, Felleisen)

Using systems of inference rules for operational semantics
(Kahn).

Labeled Transition Systems as the first satisfactory semantics for
process calculi (Milner).
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1990-2010: the golden age of operational semantics

Widely used approach in programming languages research,
dominant among POPL papers.

Used to formalize real-world languages:

• On paper: The Definition of Standard ML (Milner, Tofte,
Harper, 1990, 1997).

• On machine: Java (Klein & Nipkow), C (Norrish, Leroy,
Krebbers), Javascript (Gardner et al), etc.
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Mechanized semantics



A vicious circle

“I have an idea!”

Simple formal system

Nice proofs

Happy reviewers

“Let’s make it more realistic!”

Complex formal system

Very long or very incomplete proofs

Exhausted reviewers
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When proofs become worthless

Proofs written by computer scientists are boring:
they read as if the author is programming the reader.

(John C. Mitchell)

The proofs of the remaining 18 cases are similar and
make extensive use of the hypothesis that [. . . ]

(anonymous author)
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Proof assistants

Computer implementations of mathematical logics.

Provide a specification language (a “mathematical vernacular”) to
write definitions and state theorems.

Provide means to build proofs, automatically or in interaction
with the user.

Check that the proofs are sound and exhaustive.

Examples: ACL2, Agda, Coq, HOL, Isabelle, Lean, PVS.
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A quick look at Coq

The definition of prime numbers:

Definition divides (n m: nat) : Prop :=

exists k, m = k * n.

Definition prime (n: nat) : Prop :=

n > 1 /\ forall i, divides i n -> i = 1 \/ i = n.

There is no largest prime number:

Theorem Euclid:

~ exists N, forall p, prime p -> p <= N.

Proof.

...

Qed.
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Mechanizing semantics with a proof assistant

Semantics for realistic languages are “big” formal systems (many
cases) but “shallow” formal systems (few base concepts).

Proof assistants are very e�ective at

• handling this “shallow” complexity;
• finding basic mistakes (missing cases, type errors);
• checking the correctness of proofs;
• analyzing the impact of language evolutions;
• making certain definitions executable (for testing).
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Course outline



Mechanized semantics

This course is an introduction to the formal semantics of
programming languages and to their uses for building and
validating programming tools and verification tools:

• type systems;
• program logics;
• static analyzers;
• compilers.

Unified presentation using two “toy” languages:
mostly IMP (imperative), a bit of STLC (functional).

All definitions, properties and proofs are mechanized using the
Coq proof assistant.
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Do I need to know Coq to take this course?

No, not required to understand the definitions and the main
results. (Often stated twice, first in usual mathematics, then in
Coq.)

Yes, if you wish to replay and modify the proofs, and to do the
exercises.
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Course material

Videos and slides on the Collège de France website.

Commented Coq sources on Github:
https://github.com/xavierleroy/cdf-mech-sem
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Course outline

28/11 Of expressions and commands: the semantics of an imperative
language

05/12 Lecture postponed to 06/02

12/12 Traduttore, traditore: formal verification of a compiler

19/12 Advanced compilation: optimizations, static analyses, and their
verification

09/01 Logics to reason about programs

16/01 Abstract art: static analysis by abstract interpretation

30/01 Eternity is long: divergence, domain theory, coinductive
approaches

06/02 Of functions and types: the semantics of a functional language

13/02 Coq in Coq? Mechanizing the logic of a proof assistant
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Seminar program

05/12 Seminar postponed to 13/02

12/12 Lambda, the ultimate teaching assistant (Agda version)
Philip Wadler (U. Edinburgh)

19/12 L’arithmétique des ordinateurs et sa formalisation
Sylvie Boldo (Inria)

09/01 Sémantique formelle de JavaScript
Alan Schmitt (Inria)

16/01 Logique de séparation en Coq : théorie et pratique
Arthur Charguéraud (Inria)

30/01 Interpréteurs abstraits mécanisés
David Pichardie (ENS Rennes)

06/02 Understanding and evolving the Rust language
Derek Dreyer (MPI SWS)

13/02 What’s in a name? Représenter les variables et leurs liaisons
Xavier Leroy 41
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