Programming = proving?

The Curry-Howard correspondence today

Eight lecture

Step carefully: step-indexing techniques

Xavier Leroy

Collège de France
2019-01-09

I

Logical relations

 in operational semantics
Reminder: logical relations

(Lecture of Dec 19th 2018)

A logical relation is a family of relations $R(t)$, indexed by a type t, between two (denotations of) programs, such that

Two functions are related at type $t \rightarrow s$ if and only if
they map arguments related at type t to results related at type s.

Example:
the functions $\lambda n . n+n$ and $\lambda n . n \times 2$ are related by $R($ int \rightarrow int $)$, assuming that R (int) is the identity relation.

An operational semantics framework

In the following, we will not use denotational semantics, but only operational approaches.

Logical relations relate two expressions of the language a_{1}, a_{2}.
The semantics is given by a reduction relation $a \rightarrow a^{\prime}$.

$$
\begin{array}{ll}
a \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n} \rightarrow \cdots & \text { divergence } \\
a \rightarrow a_{1} \rightarrow \cdots \rightarrow v \nrightarrow \quad v \in \mathrm{Val} & \text { normal termination } \\
a \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n} \nrightarrow & a_{n} \notin \mathrm{Val} \\
& \text { termination on an error }
\end{array}
$$

To simplify even further, we fix a reduction strategy: call by value.

$$
(\lambda x . a) v \rightarrow a[x \leftarrow v] \quad \text { if } v \in \operatorname{Val} \quad \text { (} \beta_{v} \text { reduction) }
$$

Operational logical relations

We define two logical relations: $V(t)$ over values

$$
\begin{aligned}
V(\text { int })= & \{(n, n) \mid n \text { integer }\} \\
V(t \rightarrow s)=\{ & \left(\lambda x_{1} \cdot a_{1}, \lambda x_{2} \cdot a_{2}\right) \mid \\
& \left.\forall\left(v_{1}, v_{2}\right) \in V(t),\left(a_{1}\left[x_{1} \leftarrow v_{1}\right], a_{2}\left[x_{2} \leftarrow v_{2}\right]\right) \in E(s)\right\}
\end{aligned}
$$

and $E(t)$ over expressions (computations)

$$
\begin{array}{r}
E(t)=\left\{\left(a_{1}, a_{2}\right) \mid \forall b_{1}, a_{1} \xrightarrow{*} b_{1} \wedge b_{1} \text { irreducible } \Rightarrow\right. \\
\left.\exists b_{2}, a_{2} \xrightarrow{*} b_{2} \wedge\left(b_{1}, b_{2}\right) \in V(t)\right\}
\end{array}
$$

The definition is well founded by induction over t : if we expand the definition of $E(s)$ in the definition of $V(t \rightarrow s)$, we see that the latter depends only on $V(t)$ and on $V(s)$.

Logical relations and contextual equivalence

Theorem (fundamental theorem of logical relations)

If $x_{1}: t_{1}, \ldots, x_{n}: t_{n} \vdash a: t$, the interpretations of a in two related environments are related:

$$
\text { if }\left(v_{i}, v_{i}^{\prime}\right) \in V\left(t_{i}\right) \text { for } i=1, \ldots, n \text {, then }\left(a\left[x_{i} \leftarrow v_{i}\right], a\left[x_{i} \leftarrow v_{i}^{\prime}\right]\right) \in E(t)
$$

Corollary (contextual equivalence)

If $\left(a_{1}, a_{2}\right) \in E(t)$ and $\left(a_{2}, a_{1}\right) \in E(t)$, then for all contexts $C[$.] of type $t \rightarrow$ int and all integers n, $C\left[a_{1}\right] \xrightarrow{*} n$ if and only if $C\left[a_{2}\right] \xrightarrow{*} n$
(Other corollaries: representation independence if we add abstract types; "theorems for free" if we add polymorphism; see lecture of Dec 19th 2018.)

Unary logical relations

In this operational framework, unary logical relations provide us with an interpretation of types t as sets of values $V(t)$:

$$
\begin{aligned}
V(\text { int }) & =\{n \mid n \text { integer }\} \\
v(t \rightarrow s) & =\{\lambda x \cdot a \mid \forall v \in V(t), a[x \leftarrow v] \in E(s)\}
\end{aligned}
$$

and as sets of expressions $E(t)$:

$$
E(t)=\{a \mid \forall b, a \xrightarrow{*} b \wedge b \text { irreducible } \Rightarrow b \in V(t)\}
$$

Note: an erroneous expression (irreducible but not a value, such as 12) does not belong to any $V(t)$. Hence, an expression that terminates on an error (such as $a \xrightarrow{*} 12$) does not belong to any $E(t)$.

Logical relations and type soundness

```
Theorem (fundamental theorem of logical relations)
If \(x_{1}: t_{1}, \ldots, x_{n}: t_{n} \vdash a: t\), and if \(v_{i} \in V\left(t_{i}\right)\) pour \(i=1, \ldots, n\), then \(a\left[x_{1} \leftarrow v_{1}, \ldots, x_{n} \leftarrow v_{n}\right] \in E(t)\)
```


Corollary (type soundness)

If $\vdash a: t$, then a does not terminate on an error: either a terminates on a value, or a diverges.

Well-typed terms do not go wrong.
(R. Milner)

II

Recursive types

Non-recursive data types

It is easy to extend the relation V to non-recursive data types such as products $t \times s$ and sums $t+s$:

$$
\begin{aligned}
& V(t \times s)=\{(v, w) \mid v \in V(t) \wedge w \in V(s)\} \\
& V(t+s)=\left\{\operatorname{inj}_{1}(v) \mid v \in V(t)\right\} \cup\left\{\operatorname{inj}_{2}(w) \mid w \in V(s)\right\}
\end{aligned}
$$

The definition of $V(t)$ remains well founded by induction over t.

Inductive types

For inductive types such as lists

$$
\text { type 'a list }=\text { Nil | Cons of 'a * 'a list }
$$

we have an apparent circularity:

$$
V(t \text { list })=\{\operatorname{Nil}\} \cup\{\operatorname{Cons}(v, w) \mid v \in V(t) \wedge w \in V(t \text { list })\}
$$

However, the definition of $v \in V(t)$ remains well founded: in the case of lists, we do a local induction on the structure of value v; then, a global induction on the structure of type t. In other words:

$$
V(t \text { list })=\mu X .\{N i l\} \cup\{\operatorname{Cons}(v, w) \mid v \in V(t) \wedge w \in X\}
$$

that is,

$$
V(t \text { list })=\left\{\operatorname{Cons}\left(v_{1}, \ldots, \operatorname{Cons}\left(v_{n}, \operatorname{Nil}\right)\right) \mid v_{i} \in V(t)\right\}
$$

General recursive types

Problem: recursive types that are not inductive (non strictly positive occurrences in the types of constructors)
type lam = Lam of (lam -> lam)

The "definition" of $V(l a m)$ is obviously circular:

$$
\begin{aligned}
V(\operatorname{lam}) & =\{\operatorname{Lam}(f) \mid f \in V(\operatorname{lam} \rightarrow \operatorname{lam})\} \\
& =\{\operatorname{Lam}(\lambda x \cdot a) \mid \forall v \in V(\operatorname{lam}), a[x \leftarrow v] \in E(\operatorname{lam})\}
\end{aligned}
$$

This "definition" is just a fixed point equation, which we cannot solve in set theory, but we can solve in other categories such as Scott domains.
(Recall the domain $D_{\infty} \approx D_{\infty} \rightarrow_{\text {cont }} D_{\infty}$.)

An indexed model of recursive types

(A. Appel and D. McAllester, TOPLAS(23), 2001)

Appel and McAllester imagined to base the definition of $V(t)$ not by induction on the structure of t, but by induction on another index (a natural number):
the number of reduction steps we allow ourselves to perform on expressions and (applications of) values.

The technique becomes known in the literature under the name of step-indexing.

Intuitions for step indexing

What does it mean, semantically, that expression a has type int?
Usual answer:

- if $a \xrightarrow{*} n$ (n integer) or a diverges: yes, a has type int;
- if a reduces to an error or to a value that is not an integer: no, a does not have type int.
"Step-indexed" answer: for a given number k,
- if, in k steps at most, a reduces to an integer or does not reach a normal form: yes, a seems to have type int for k steps;
- if, in k steps at most, a reduces to an error or to a value that is not an integer: no, a does not have type int.

In the end, a has type int if for all $k \in \mathbb{N}$, a seems to have type int for k steps.

An indexed model of recursive types

(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: $a \rightarrow_{k} b$ means " a reduces to b in k steps".

$$
\begin{aligned}
V_{k}(\text { int }) & =\{n \mid n \text { integer }\} \\
V_{k}(t \rightarrow s) & =\left\{\lambda x . a \mid \forall j<k, \forall v \in V_{j}(t), a[x \leftarrow v] \in E_{j}(s)\right\} \\
E_{k}(t) & =\left\{a \mid \forall j \leq k, \forall b, a \rightarrow_{j} b \wedge b \text { irreducible } \Rightarrow b \in V_{k-j}(t)\right\}
\end{aligned}
$$

Intuitions:

- Expression a seems to have type t in k steps if, having spent $j \leq k$ steps to reduce a to b, b seems to be a value of type t for $k-j$ remaining steps.
- An abstraction λx.a seems to be a value of type $t \rightarrow s$ in k steps if the application ($\lambda x . a$) v seems to have type t for at most k steps. The β-reduction spends one step, hence $a[x \leftarrow v] \in E_{j}(s)$ for $j<k$.
- In j steps, expression $a[x \leftarrow v]$ cannot examine value v for more than j steps! Hence, it suffices that v seems to be of type t for j steps.

An indexed model of recursive types

(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: $a \rightarrow_{k} b$ means " a reduces to b in k steps".

$$
\begin{aligned}
V_{k}(\text { int }) & =\{n \mid n \text { integer }\} \\
V_{k}(t \rightarrow s) & =\left\{\lambda x . a \mid \forall j<k, \forall v \in V_{j}(t), a[x \leftarrow v] \in E_{j}(s)\right\} \\
E_{k}(t) & =\left\{a \mid \forall j \leq k, \forall b, a \rightarrow_{j} b \wedge b \text { irreducible } \Rightarrow b \in V_{k-j}(t)\right\}
\end{aligned}
$$

Intuitions:

- Expression a seems to have type t in k steps if, having spent $j \leq k$ steps to reduce a to b, b seems to be a value of type t for k - j remaining steps.
- An abstraction λx.a seems to be a value of type $t \rightarrow s$ in k steps if the application ($\lambda x . a) v$ seems to have type t for at most k steps. The β-reduction spends one step, hence $a[x \leftarrow v] \in E_{j}(s)$ for $j<k$.
- In j steps, expression $a[x \leftarrow v]$ cannot examine value v for more than j steps! Hence, it suffices that v seems to be of type t for j steps.

An indexed model of recursive types

(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: $a \rightarrow_{k} b$ means " a reduces to b in k steps".

$$
\begin{aligned}
V_{k}(\text { int }) & =\{n \mid n \text { integer }\} \\
V_{k}(t \rightarrow s) & =\left\{\lambda x . a \mid \forall j<k, \forall v \in V_{j}(t), a[x \leftarrow v] \in E_{j}(s)\right\} \\
E_{k}(t) & =\left\{a \mid \forall j \leq k, \forall b, a \rightarrow_{j} b \wedge b \text { irreducible } \Rightarrow b \in V_{k-j}(t)\right\}
\end{aligned}
$$

Intuitions:

- Expression a seems to have type t in k steps if, having spent $j \leq k$ steps to reduce a to b, b seems to be a value of type t for k - j remaining steps.
- An abstraction λx.a seems to be a value of type $t \rightarrow s$ in k steps if the application $(\lambda x . a) v$ seems to have type t for at most k steps. The β-reduction spends one step, hence $a[x \leftarrow v] \in E_{j}(s)$ for $j<k$.
- In j steps, expression $a[x \leftarrow v]$ cannot examine value v for more than j steps! Hence, it suffices that v seems to be of type t for j steps.

An indexed model of recursive types

(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: $a \rightarrow_{k} b$ means " a reduces to b in k steps".

$$
\begin{aligned}
V_{k}(\text { int }) & =\{n \mid n \text { integer }\} \\
V_{k}(t \rightarrow s) & =\left\{\lambda x \cdot a \mid \forall j<k, \forall v \in V_{j}(t), a[x \leftarrow v] \in E_{j}(s)\right\} \\
E_{k}(t) & =\left\{a \mid \forall j \leq k, \forall b, a \rightarrow_{j} b \wedge b \text { irreducible } \Rightarrow b \in V_{k-j}(t)\right\}
\end{aligned}
$$

Intuitions:

- Expression a seems to have type t in k steps if, having spent $j \leq k$ steps to reduce a to b, b seems to be a value of type t for k - j remaining steps.
- An abstraction λx.a seems to be a value of type $t \rightarrow s$ in k steps if the application ($\lambda x . a$) v seems to have type t for at most k steps. The β-reduction spends one step, hence $a[x \leftarrow v] \in E_{j}(s)$ for $j<k$.
- In j steps, expression $a[x \leftarrow v]$ cannot examine value v for more than j steps! Hence, it suffices that v seems to be of type t for j steps.

Adding recursive types to the logical relation

If $F:$ Type \rightarrow Type, we write μF the algebraic type characterized by

$$
\text { roll }: F(\mu F) \rightarrow \mu F \quad \text { unroll }: \mu F \rightarrow F(\mu F)
$$

and the reduction rule unroll $(\operatorname{roll}(v)) \rightarrow v$.
It suffices to define

$$
\begin{aligned}
V_{0}(\mu F) & =\{\operatorname{roll}(v) \mid v \text { value }\} \\
V_{k+1}(\mu F) & =\left\{\operatorname{roll}(v) \mid v \in V_{k}(F(\mu F))\right\}
\end{aligned}
$$

The definition of $V_{k}(t)$ is no longer well founded by induction over t, but remains well founded by induction over k. It is obvious for type $\mu \mathrm{F}$, and it is true as well for type $t \rightarrow s$, since the definition of $V_{k}(t \rightarrow s)$ uses $V_{j}(t)$ and $V_{j}(s)$ only for $j<k$.

Application: pure lambda-calculus

We can encode the pure lambda-calculus using the type $D \stackrel{\text { def }}{=} \mu(\lambda t . t \rightarrow t)$.
Unsurprisingly, we have

$$
\begin{aligned}
V_{0}(D) & =\{\operatorname{roll}(v) \mid v \text { value }\} \\
V_{k+1}(D) & =\left\{\operatorname{roll}(\lambda x \cdot a) \mid \forall j<k, \forall v \in V_{j}(D), a[x \leftarrow v] \in E_{j}(D)\right\}
\end{aligned}
$$

Main properties

Monotonically decreasing: $V_{k}(t) \subseteq V_{j}(t)$ and $E_{k}(t) \subseteq E_{j}(t)$ if $k \geq j$.
Compatibility with reductions:
if $a \rightarrow b$ then $a \in E_{k+1}(t)$ if and only if $b \in E_{k}(t)$.
Fundamental theorem:
if $x_{1}: t_{1}, \ldots, x_{n}: t_{n} \vdash a: t$, and if $v_{i} \in V_{k}\left(t_{i}\right)$ for $i=1, \ldots, n$, then $a\left[x_{1} \leftarrow v_{1}, \ldots, x_{n} \leftarrow v_{n}\right] \in E_{k}(t)$

Accounting for every step

Lemma (the application case)

If $a \in E_{k}(t \rightarrow s)$ and $b \in E_{k}(t)$, then $a b \in E_{k}(s)$.

Proof.

A reduction of $a b$ to an irreducible term d has the shape

$$
a b \rightarrow_{n}(\lambda x . c) b \rightarrow_{m}(\lambda x . c) v \rightarrow_{1} c[x \leftarrow v] \rightarrow_{p} d
$$

with $j=n+m+1+p$ reduction steps and $j \leq k$.
To conclude, we must show $d \in V_{q}(s)$ where $q=k-j$.
By hyp on $a, \lambda x . c \in V_{k-n}(t \rightarrow s)$ hence $\lambda x . c \in V_{p+q+1}(t \rightarrow s)$
By hyp on $b, v \in V_{k-m}(t)$ hence $v \in V_{p+q}(t) \quad$ (2).
By (1) and (2), $c[x \leftarrow v] \in E_{p+q}(s)$
(3).
$B y(3), d \in V_{q}(s)$, QED.

Extension to binary logical relations

$$
\begin{aligned}
& V_{k}(\text { int })=\{(n, n) \mid n \text { integer }\} \\
& V_{k}(t \rightarrow s)=\left\{\left(\lambda x_{1} \cdot a_{1}, \lambda x_{2} \cdot a_{2}\right) \mid\right. \\
&\left.\forall j<k, \forall\left(v_{1}, v_{2}\right) \in v_{j}(t),\left(a_{1}\left[x_{1} \leftarrow v_{1}\right], a_{2}\left[x_{2} \leftarrow v_{2}\right]\right) \in E_{j}(s)\right\} \\
& V_{0}(\mu F)=\left\{\left(\operatorname{roll}\left(v_{1}\right), \operatorname{roll}\left(v_{2}\right)\right) \mid v_{1}, v_{2} \text { values }\right\} \\
& V_{k+1}(\mu F)=\left\{\left(\operatorname{roll}\left(v_{1}\right), \operatorname{roll}\left(v_{2}\right)\right) \mid\left(v_{1}, v_{2}\right) \in V_{k}(F(\mu F))\right\} \\
& E_{k}(t)=\left\{\left(a_{1}, a_{2}\right) \mid \forall j \leq k, \forall b_{1}, a_{1} \rightarrow j b_{1} \wedge b_{1} \text { irreducible } \Rightarrow\right. \\
&\left.\exists b_{2}, a_{2} \xrightarrow{*} b_{2} \wedge\left(b_{1}, b_{2}\right) \in V_{k-j}(t)\right\}
\end{aligned}
$$

Note: we have $a_{1} \rightarrow_{j} b_{1}$ (j steps) and $a_{2} \xrightarrow{*} b_{2}$ (any number of steps), making it possible to relate computations a_{1}, a_{2} of different durations.

III

A modal formulation of step-indexing

Reformulating the accounting of steps

Consider again the definition of $E_{k}(t)$, the set of expressions a that seem to have type t for k steps:

$$
E_{k}(t)=\left\{a \mid \forall j \leq k, \forall b, a \rightarrow_{j} b \wedge b \text { irreducible } \Rightarrow b \in V_{k-j}(t)\right\}
$$

Instead of considering $j \leq k$ reduction steps ($a \rightarrow_{j} b$), we can consider two cases: 0 reductions (irreducible) and 1 reduction.

- If a is irreducible, $a \in E_{k}(t)$ iff $a \in V_{k}(t)$.
- If $a \rightarrow b, a \in E_{k}(t)$ iff $b \in E_{k-1}(t)$ or $k=0$.

We get another definition, equivalent and still well-founded by induction over k :

$$
E_{k}(t)=\left\{a \mid\left(a \text { irreducible } \Rightarrow a \in V_{k}(t)\right) \wedge\left(\forall b, a \rightarrow b \Rightarrow b \in E_{k-1}(t)\right)\right\}
$$

with, conventionally, $E_{-1}(t)=$ all the terms.

The return of the "later" modality (\triangleright)

Define $\triangleright E$ by $(\triangleright E)_{k+1}=E_{k}$ and $(\triangleright E)_{0}=$ all the terms. Then:

$$
E_{k}(t)=\left\{a \mid\left(a \text { irreducible } \Rightarrow a \in V_{k}(t)\right) \wedge\left(\forall b, a \rightarrow b \Rightarrow b \in \triangleright E_{k}(t)\right)\right\}
$$

Likewise, define $(\triangleright V)_{k+1}=V_{k}$ and $(\triangleright V)_{0}=$ all the values. We can rewrite the two cases of the definition

$$
\begin{aligned}
V_{0}(\mu F) & =\{\operatorname{roll}(v) \mid v \text { value }\} \\
V_{k+1}(\mu F) & =\left\{\operatorname{roll}(v) \mid v \in V_{k}(F(\mu F))\right\}
\end{aligned}
$$

into a single "modal" case

$$
V_{k}(\mu F)=\left\{\operatorname{roll}(v) \mid v \in \triangleright V_{k}(F(\mu F))\right\}
$$

The return of the "later" modality (\triangleright)

In the same spirit, we can rewrite the case $V_{k}(t \rightarrow s)$ by using $\triangleright V$. We had

$$
V_{k}(t \rightarrow s)=\left\{\lambda x \cdot a \mid \forall j<k, \forall v \in V_{j}(t), a[x \leftarrow v] \in E_{j}(s)\right\}
$$

and we can write instead

$$
V_{k}(t \rightarrow s)=\left\{\lambda x \cdot a \mid \forall v, \forall j \leq k, v \in \triangleright V_{j}(t) \Rightarrow a[x \leftarrow v] \in \triangleright E_{j}(s)\right\}
$$

This gives a quantification $\forall j \leq k$ that has the shape of implication in intuitionistic Kripke models: $\quad k \Vdash A \Rightarrow B$ iff $\forall j \leq k, j \Vdash A \Rightarrow j \Vdash B$.

A modal logical relation

Finally, we can make the k parameter (the step count) implicit by using the logic of the topos of trees from the previous lecture, with its modality \triangleright.
$E(t)$ and $V(t)$ are, then, defined by the equations

$$
\begin{aligned}
V(\text { int }) & =\{n \mid n \text { integer }\} \\
V(t \rightarrow s) & =\{\lambda x \cdot a \mid \forall v \in \triangleright V(t), a[x \leftarrow v] \in \triangleright E(s)\} \\
V(\mu F) & =\{\operatorname{roll}(v) \mid v \in \triangleright V(F(\mu F))\} \\
E(t) & =\{a \mid(a \text { irreducible } \Rightarrow a \in V(t)) \wedge(\forall b, a \rightarrow b \Rightarrow b \in \triangleright E(t))\}
\end{aligned}
$$

Note that E and V are defined as functions of $\triangleright E$ and $\triangleright V$. Löb's rule guarantees the existence of a unique fixed point for E and V.

Properties of the modality \triangleright

$$
\begin{gathered}
A \Rightarrow \triangleright A \\
\triangleright(A \wedge B) \text { iff } \triangleright A \wedge \triangleright B \\
\triangleright(A \vee B) \text { iff } \triangleright A \vee \triangleright B \\
\triangleright(A \Rightarrow B) \text { iff } \triangleright A \Rightarrow \triangleright B \\
\text { if } \triangleright A \Rightarrow A \text { then } A \\
\text { if } A \wedge(\triangleright A \Rightarrow \triangleright B) \Rightarrow B \text { then } A \Rightarrow B
\end{gathered} \quad \text { ("Löb induction") }
$$

No more accounting for every step

Lemma (the application case)

If $a \in E(t \rightarrow s)$ and $b \in E(t)$, then $a b \in E(s)$.

Proof.

By Löb induction. The induction hypothesis is
$a^{\prime} \in \triangleright E(t \rightarrow s) \wedge b^{\prime} \in \triangleright E(t) \Rightarrow a^{\prime} b^{\prime} \in \triangleright E(s)$ for all a^{\prime}, b^{\prime}.
We argue by case whether a or b reduces.

- a and b are irreducible. Then, $a \in V(t \rightarrow s)$ and therefore a has the shape $\lambda x . c$. Also, $b \in V(t)$ is a value.
By definition of $V(t \rightarrow s)$ and because $b \in \triangleright V(t)$, we have $c[x \leftarrow v] \in \triangleright E(s)$. Moreover, $a b \rightarrow c[x \leftarrow v]$. Hence $a b \in E(s)$.
- $a \rightarrow a^{\prime}$. Then, $a^{\prime} \in \triangleright E(t \rightarrow s)$ and by induction hypothesis $a^{\prime} b \in \triangleright E(s)$. Since $a b \rightarrow a^{\prime} b$, it follows that $a b \in E(s)$.
- a is irreducible and $b \rightarrow b^{\prime}$. Similar to the previous case.

Counting some reductions only

We can elect to count unroll(roll $(v)) \rightarrow v$ reductions but not β-reductions, which amounts to using \triangleright for $\mu \mathrm{F}$ types but not for $t \rightarrow \mathbf{s}$ types.

$$
\begin{aligned}
V(\text { int })= & \{n \mid n \text { integer }\} \\
V(t \rightarrow s)= & \{\lambda x \cdot a \mid \forall v \in V(t), a[x \leftarrow v] \in E(s)\} \\
V(\mu F)= & \{\operatorname{roll}(v) \mid v \in \triangleright V(F(\mu F))\} \\
E(t)= & \left\{a \mid\left(\forall b, a \rightarrow_{\beta} b \wedge b \text { irreducible } \Rightarrow b \in V(t)\right)\right. \\
& \left.\wedge\left(\forall b, a \xrightarrow{*}_{\beta} \rightarrow_{\text {unroll }} b \Rightarrow b \in \triangleright E(t)\right)\right\}
\end{aligned}
$$

The definition of $V(t)$ and $E(t)$ is well founded by induction on the structure of the type t then by Löb induction.

Extension to binary logical relations

Nothing surprising.

$$
\begin{aligned}
& V(\text { int })=\{(n, n) \mid n \text { integer }\} \\
& V(t \rightarrow s)=\left\{\left(\lambda x_{1} \cdot a_{1}, \lambda x_{2} \cdot a_{2}\right) \mid\right. \\
&\left.\forall\left(v_{1}, v_{2}\right) \in \triangleright V(t),\left(a_{1}\left[x_{1} \leftarrow v_{1}\right], a_{2}\left[x_{2} \leftarrow v_{2}\right]\right) \in \triangleright E(s)\right\} \\
& V(\mu F)=\left\{\left(\operatorname{roll}\left(v_{1}\right), \text { roll }\left(v_{2}\right)\right) \mid\left(v_{1}, v_{2}\right) \in \triangleright V(F(\mu F))\right\} \\
& E(t)=\{ \left(a_{1}, a_{2}\right) \mid\left(a_{1} \text { irreducible } \Rightarrow \exists b_{2}, a_{2} \xrightarrow{*} b_{2} \wedge\left(a_{1}, b_{2}\right) \in V(t)\right) \\
&\left.\wedge\left(\forall b_{1}, a_{1} \rightarrow b_{1} \Rightarrow \exists b_{2}, a_{2} \xrightarrow{*} b_{2} \wedge\left(b_{1}, b_{2}\right) \in \triangleright E(t)\right)\right\}
\end{aligned}
$$

IV

Mutable state

Mutable state

It's the defining feature of imperative languages:
the ability to modify "in place" a data structure already built or a variable already defined.

```
Example (In-place concatenation of two lists)
struct list { int head; struct list * tail; }
void concat (struct list * l, struct list * m)
{
    while (l->tail != NULL) l = l->tail;
    l->tail = m;
}
```


References

A presentation of mutable state used by the ML family of languages (typed functional-imperative languages).

A reference \approx a mutable indirection cell \approx a 1-element array.
Example: an OCaml equivalent for C mutable lists

$$
\text { type 'a mlist }=\text { Nil | Cons of 'a ref * 'a mlist ref }
$$

Operations over references:

$$
\begin{aligned}
\text { ref }: t \rightarrow t \text { ref } & & \text { create and initialize } \\
!: t \text { ref } \rightarrow t & & \text { dereference (get current value) } \\
:=: t \text { ref } \rightarrow t \rightarrow \text { unit } & & \text { assign (change the value) }
\end{aligned}
$$

Semantics of references

A simple semantics by β-reductions is wrong because it fails to account for sharing of a reference between a read and a write:

$$
\text { let } r=\operatorname{ref} 1 \text { in } r:=2 ;!r \neq(\text { ref } 1:=2) ;!(\text { ref } 1)
$$

We need one level of indirection:

- references evaluate to locations ℓ (\approx integers);
- a store m : location $\rightarrow_{\text {fin }}$ value records the current value of each reference;
- the operational semantics reduces configurations $\langle a, m\rangle$
(a term a in a store m).

Reduction rules for references

$$
\begin{array}{rlrl}
\langle(\lambda x . a) v, m\rangle & \rightarrow\langle a[x \leftarrow v], m\rangle & \text { (usual } \beta_{v} \text { reduction) } \\
\langle\text { ref } v, m\rangle & \rightarrow\langle\ell, m+\{\ell \mapsto v\}\rangle & \text { if } \ell \notin \operatorname{Dom}(m) \\
\langle!\ell, m\rangle & \rightarrow\langle m(\ell), m\rangle & \text { if } \ell \in \operatorname{Dom}(m) \\
\langle\ell:=v, m\rangle & \rightarrow\langle(), m+\{\ell \mapsto v\}\rangle & & \text { if } \ell \in \operatorname{Dom}(m)
\end{array}
$$

Typing the store

A store is an "heterogeneous" object: two different locations can contain values of different types.

A store typing M : location $\rightarrow_{\text {fin }}$ type associates a type to each location.
Initially, we take that $M(\ell)$ is a syntactic type (that is, a type expression), not a semantic type (a set of values).

Evolution of store typings

On the one hand: the type $M(\ell)$ of a valid location ℓ must remain the same throughout execution. Otherwise, we could break type safety:

$$
\begin{array}{rll}
\ell:=1 & \rightarrow \cdots \rightarrow & !\ell 2 \\
\text { (possible if } M(\ell)=\text { int }) & & \text { (possible if } M(\ell)=\text { int } \rightarrow \text { int })
\end{array}
$$

On the other hand: when we allocate a new reference at location ℓ, we must update $M(\ell)$ with the type t of its contents.

Hence an ordering between store typings: $M^{\prime} \sqsupseteq M$ meaning " M can evolve into M^{\prime} during execution".

$$
M^{\prime} \sqsupseteq M \stackrel{\text { def }}{=} \operatorname{Dom}\left(M^{\prime}\right) \supseteq \operatorname{Dom}(M) \wedge \forall \ell \in \operatorname{Dom}(M), M^{\prime}(\ell)=M(\ell)
$$

A syntactic model of reference types

We interpret pairs (type t, store typing M) by sets of values $V(t)(M)$ or expressions $E(t)(M)$. A store typing M is interpreted by a set $[M]$ of stores.

$$
\begin{aligned}
& V(\text { int })(M)=\{n \mid n \text { integer }\} \\
& V(t \text { ref })(M)=\{\ell \mid M(\ell)=t\} \\
& V(t \rightarrow s)(M)=\left\{\lambda x \cdot a \mid \forall M^{\prime} \sqsupseteq M, \forall v \in \Delta V(t)\left(M^{\prime}\right), a[x \leftarrow v] \in \triangleright E(s)\left(M^{\prime}\right)\right\} \\
& {[M]=}\{m \mid \operatorname{Dom}(m)=\operatorname{Dom}(M) \\
&\wedge \forall \ell \in \operatorname{Dom}(m), m(\ell) \in V(M(\ell))(M)\} \\
& E(t)(M)=\{a \mid \forall m \in[M], \\
&(\langle a, m\rangle \text { irreducible } \Rightarrow a \in V(t)(M)) \\
& \wedge\left(\forall b, \forall m^{\prime},\langle a, m\rangle \rightarrow\left\langle b, m^{\prime}\right\rangle \Rightarrow\right. \\
&\left.\left.\exists M^{\prime} \sqsupseteq M, m^{\prime} \in\left[M^{\prime}\right] \wedge b \in \triangleright E(t)\left(M^{\prime}\right)\right)\right\}
\end{aligned}
$$

A syntactic model of reference types

This typing of memory stores by syntactic types suffices to prove type soundness for references.

We would like a more "semantic" typing, where each location is associated to a set of values possibly stored at this address.

For instance, this is useful to represent invariants about the value of the reference that follow from its "encapsulation" within a function:

$$
\text { let gensym }=\text { let } c=\text { ref } 0 \text { in fun () }->c:=!c+1 ;!c
$$

Assuming exact integer arithmetic (no overflows), we have an invariant !c >= 0 that we would like to reflect in the model by taking $M(\ell)=\{n \mid n \geq 0\}$ where ℓ is the value of c.

A semantic model of reference types

Let's try to take StoreType $\stackrel{\text { def }}{=}$ Loc $\rightarrow_{\text {fin }}$ TypeSem.
Problem: a semantic type TypeSem is not just a set of values, it's a set of values parameterized by a store typing, as in $V(t)(M)=\{v \mid \cdots\}$.

Therefore, we run into a circularity:

$$
\begin{aligned}
\text { TypeSem } & =\text { StoreType } \rightarrow \mathcal{P}(\text { Val }) \\
\text { StoreType } & =\text { Loc } \rightarrow_{\text {fin }} \text { TypeSem }
\end{aligned}
$$

or, in other words,

$$
\text { TypeSem }=\left(\text { Loc } \rightarrow_{\text {fin }} \text { TypeSem }\right) \rightarrow \mathcal{P}(\text { Val })
$$

A semantic model of reference types

$$
\text { TypeSem }=\left(\text { Loc } \rightarrow_{\text {fin }} \text { TypeSem }\right) \rightarrow \mathcal{P}(\text { Val })
$$

No solutions with sets; probably a solution with domains. But, once more, step-indexing / the \triangleright modality provide an easy solution!

Reading the contents of a reference (! ℓ) consumes one step of computation.

Hence, the type TypeSem associated with a location ℓ can be "later" and therefore "less precise" than the TypeSem associated with an expression such as! ℓ.

A semantic model of reference types

With explicit step-indexing, this leads to the family of types

$$
\begin{aligned}
\text { TypeSem }_{k} & =\text { StoreType }_{k} \rightarrow \mathcal{P}(\text { Val }) \\
\text { StoreType }_{0} & =\text { Loc }_{\text {fin }} \text { unit } \\
\text { StoreType }_{k+1} & =\text { Loc } \rightarrow_{\text {fin }} \text { TypeSem }_{k}
\end{aligned}
$$

(arbitrary)

This is the solution to the following equation expressed in the logic of the topos of trees:

$$
\text { TypeSem }=\left(\text { Loc } \rightarrow_{\text {fin }} \triangleright \text { TypeSem }\right) \rightarrow \mathcal{P}(\text { Val })
$$

In this logic, we can do Löb inductions on all types, not just on logical propositions.

The corresponding unary logical relation

$$
\begin{aligned}
V(\text { int })(M)= & \{n \mid n \text { integer }\} \\
V(t \text { ref })(M)= & \{\ell \mid M(\ell)(\bar{M}) \subseteq \triangleright V(t)(\bar{M})\} \\
V(t \rightarrow s)(M)= & \left\{\lambda x \cdot a \mid \forall M^{\prime} \sqsupseteq M, \forall v \in \triangleright V(t)\left(M^{\prime}\right), a[x \leftarrow v] \in \triangleright E(s)\left(M^{\prime}\right)\right\} \\
{[M]=} & \{m \mid \operatorname{Dom}(m)=\operatorname{Dom}(M) \\
& \wedge \forall \ell \in \operatorname{Dom}(m), m(\ell) \in M(\ell)(M)\} \\
E(t)(M)= & \{a \mid \forall m \in[M], \\
& \quad(\langle a, m\rangle \text { irreducible } \Rightarrow\langle a, m\rangle \in V(t)(M)) \\
& \wedge\left(\forall b, \forall m^{\prime},\langle a, m\rangle \rightarrow\left\langle b, m^{\prime}\right\rangle \Rightarrow\right. \\
& \left.\left.\exists M^{\prime} \sqsupseteq M, m^{\prime} \in\left[M^{\prime}\right] \wedge b \in \triangleright E(t)\left(M^{\prime}\right)\right)\right\}
\end{aligned}
$$

We write \bar{M} the truncation next (M) with next : $\forall A . A \rightarrow \triangleright A$.
$\ln M^{\prime} \sqsupseteq M, M^{\prime}$ is "later" than M, hence $M^{\prime} \sqsupseteq M$ is defined as $\operatorname{Dom}\left(M^{\prime}\right) \sqsupseteq \operatorname{Dom}(M)$ and $M^{\prime}(\ell)=\bar{M}(\ell)$ for all $\ell \in \operatorname{Dom}(M)$.

Extension to binary logical relations

This approach based on semantic store typings extends - with much effort! - to binary logical relations and to contextual equivalence propertiexs. Refer to:

- Ahmed, Dreyer, Rossberg. State-Dependent Representation Independence, POPL 2009.
- Dreyer, Neis, Rossberg, Birkedal. A Relational Modal Logic for Higher-Order Stateful ADTs. POPL 2010.

An example of use (Pitts \& Stark, 1998): show that the up and down functions are contextually equivalent
let $u p=$ let $c=r e f 0$ in fun () -> $c:=1 c+1 ;$! c
let down = let $c=r e f \quad 0$ in fun () -> c := !c - 1; - !c
by interpreting the locations ℓ_{1}, ℓ_{2} of the two c by the relation $\{(n,-n) \mid n \geq 0\}$.

Recent developments

An ongoing rapprochement between

- Program logics for first-order imperative languages: Hoare logic, separation logic, concurrent separation logic.
- Logical relations for higher-order languages with mutable state.

A recent example of convergence: the Iris system, a general framework to define concurrent separation logics, which includes modalities \triangleright and \square to deal with higher-order aspects. (https://iris-project.org/)

V

Further reading

Further reading

The seminal paper on unary step-indexed logical relations:

- A. Appel and D. McAllester. An indexed model of recursive types for foundational proof-carrying code. TOPLAS 23(5), 2001.

Extension to binary relations:

- Amal Ahmed. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. ESOP 2006.

Formulations based on modal logics:

- A. Appel, P.-A. Melliès, C. Richards, J. Vouillon. A very modal model of a modern, major, general type system. POPL 2007.
- D. Dreyer, A. Ahmed, L. Birkedal. Logical Step-Indexed Logical Relations. LMCS 7, 2011.

The state of the art in program logics for imperative, concurrent, higher-order languages:

- Iris Project, Tutorial Material, https://iris-project.org/tutorial-material.html

