
Programming = proving?
The Curry-Howard correspondence today

Eight lecture

Step carefully:
step-indexing techniques

Xavier Leroy

Collège de France

2019-01-09

I

Logical relations
in operational semantics

Reminder: logical relations
(Lecture of Dec 19th 2018)

A logical relation is a family of relations R(t), indexed by a type t,
between two (denotations of) programs,
such that

Two functions are related at type t→ s if and only if
they map arguments related at type t
to results related at type s.

Example:
the functions λn. n+ n and λn. n× 2 are related by R(int→ int),
assuming that R(int) is the identity relation.

3

An operational semantics framework

In the following, we will not use denotational semantics, but only
operational approaches.

Logical relations relate two expressions of the language a1, a2.

The semantics is given by a reduction relation a→ a′.

a→ a1 → · · · → an → · · · divergence
a→ a1 → · · · → v 6→ v ∈ Val normal termination
a→ a1 → · · · → an 6→ an /∈ Val termination on an error

To simplify even further, we �x a reduction strategy: call by value.

(λx. a) v → a[x← v] if v ∈ Val (βv reduction)

4

Operational logical relations

We de�ne two logical relations: V(t) over values

V(int) = { (n, n) | n integer }
V(t→ s) = { (λx1. a1, λx2. a2) |

∀(v1, v2) ∈ V(t), (a1[x1 ← v1], a2[x2 ← v2]) ∈ E(s) }

and E(t) over expressions (computations)

E(t) = { (a1, a2) | ∀b1, a1
∗→ b1 ∧ b1 irreducible⇒

∃b2, a2
∗→ b2 ∧ (b1, b2) ∈ V(t) }

The de�nition is well founded by induction over t:
if we expand the de�nition of E(s) in the de�nition of V(t→ s), we see that
the latter depends only on V(t) and on V(s).

5

Logical relations and contextual equivalence

Theorem (fundamental theorem of logical relations)
If x1 : t1, . . . , xn : tn ` a : t, the interpretations of a in two related
environments are related:

if (vi, v′i) ∈ V(ti) for i = 1, . . . , n, then (a[xi ← vi], a[xi ← v′i]) ∈ E(t)

Corollary (contextual equivalence)
If (a1, a2) ∈ E(t) and (a2, a1) ∈ E(t),
then for all contexts C[.] of type t→ int and all integers n,

C[a1]
∗→ n if and only if C[a2]

∗→ n

(Other corollaries: representation independence if we add abstract types;
“theorems for free” if we add polymorphism; see lecture of Dec 19th 2018.)

6

Unary logical relations

In this operational framework, unary logical relations provide us with an
interpretation of types t as sets of values V(t):

V(int) = { n | n integer }
V(t→ s) = { λx. a | ∀v ∈ V(t), a[x← v] ∈ E(s) }

and as sets of expressions E(t):

E(t) = { a | ∀b, a ∗→ b ∧ b irreducible⇒ b ∈ V(t) }

Note: an erroneous expression (irreducible but not a value, such as 1 2)
does not belong to any V(t). Hence, an expression that terminates on an
error (such as a ∗→ 1 2) does not belong to any E(t).

7

Logical relations and type soundness

Theorem (fundamental theorem of logical relations)
If x1 : t1, . . . , xn : tn ` a : t, and if vi ∈ V(ti) pour i = 1, . . . , n,
then a[x1 ← v1, . . . , xn ← vn] ∈ E(t)

Corollary (type soundness)
If ` a : t, then a does not terminate on an error:
either a terminates on a value, or a diverges.

Well-typed terms do not go wrong. (R. Milner)

8

II

Recursive types

Non-recursive data types

It is easy to extend the relation V to non-recursive data types such as
products t× s and sums t+ s:

V(t× s) = {(v,w) | v ∈ V(t) ∧ w ∈ V(s)}

V(t+ s) = {inj1(v) | v ∈ V(t)} ∪ {inj2(w) | w ∈ V(s)}

The de�nition of V(t) remains well founded by induction over t.

10

Inductive types

For inductive types such as lists

type ’a list = Nil | Cons of ’a * ’a list

we have an apparent circularity:
V(t list) = {Nil} ∪ { Cons(v,w) | v ∈ V(t) ∧ w ∈ V(t list) }

However, the de�nition of v ∈ V(t) remains well founded: in the case of
lists, we do a local induction on the structure of value v; then, a global
induction on the structure of type t. In other words:

V(t list) = µX. {Nil} ∪ { Cons(v,w) | v ∈ V(t) ∧ w ∈ X }

that is,

V(t list) = { Cons(v1, . . . , Cons(vn, Nil)) | vi ∈ V(t) }

11

General recursive types

Problem: recursive types that are not inductive
(non strictly positive occurrences in the types of constructors)

type lam = Lam of (lam -> lam)

The “de�nition” of V(lam) is obviously circular:
V(lam) = { Lam(f) | f ∈ V(lam→ lam) }

= { Lam(λx. a) | ∀v ∈ V(lam), a[x← v] ∈ E(lam) }

This “de�nition” is just a �xed point equation, which we cannot solve in set
theory, but we can solve in other categories such as Scott domains.
(Recall the domain D∞ ≈ D∞ →cont D∞.)

12

An indexed model of recursive types
(A. Appel and D. McAllester, TOPLAS(23), 2001)

Appel and McAllester imagined to base the de�nition of V(t) not by
induction on the structure of t, but by induction on another index
(a natural number):
the number of reduction steps we allow ourselves to perform on
expressions and (applications of) values.

The technique becomes known in the literature under the name of
step-indexing.

13

Intuitions for step indexing

What does it mean, semantically, that expression a has type int?

Usual answer:
if a ∗→ n (n integer) or a diverges: yes, a has type int;
if a reduces to an error or to a value that is not an integer:
no, a does not have type int.

“Step-indexed” answer: for a given number k,
if, in k steps at most, a reduces to an integer or does not reach a
normal form: yes, a seems to have type int for k steps;
if, in k steps at most, a reduces to an error or to a value that is not an
integer: no, a does not have type int.

In the end, a has type int if for all k ∈ N, a seems to have type int for
k steps.

14

An indexed model of recursive types
(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: a→k b means “a reduces to b in k steps”.

Vk(int) = { n | n integer }
Vk(t→ s) = { λx. a | ∀j < k, ∀v ∈ Vj(t), a[x← v] ∈ Ej(s) }

Ek(t) = { a | ∀j ≤ k, ∀b, a→j b ∧ b irreducible⇒ b ∈ Vk−j(t) }

Intuitions:

Expression a seems to have type t in k steps if, having spent j ≤ k steps to
reduce a to b, b seems to be a value of type t for k− j remaining steps.

An abstraction λx.a seems to be a value of type t→ s in k steps if the
application (λx.a) v seems to have type t for at most k steps. The
β-reduction spends one step, hence a[x← v] ∈ Ej(s) for j < k.

In j steps, expression a[x← v] cannot examine value v for more than j steps!
Hence, it su�ces that v seems to be of type t for j steps.

15

An indexed model of recursive types
(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: a→k b means “a reduces to b in k steps”.

Vk(int) = { n | n integer }
Vk(t→ s) = { λx. a | ∀j < k, ∀v ∈ Vj(t), a[x← v] ∈ Ej(s) }

Ek(t) = { a | ∀j ≤ k, ∀b, a→j b ∧ b irreducible⇒ b ∈ Vk−j(t) }

Intuitions:

Expression a seems to have type t in k steps if, having spent j ≤ k steps to
reduce a to b, b seems to be a value of type t for k− j remaining steps.

An abstraction λx.a seems to be a value of type t→ s in k steps if the
application (λx.a) v seems to have type t for at most k steps. The
β-reduction spends one step, hence a[x← v] ∈ Ej(s) for j < k.

In j steps, expression a[x← v] cannot examine value v for more than j steps!
Hence, it su�ces that v seems to be of type t for j steps.

15

An indexed model of recursive types
(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: a→k b means “a reduces to b in k steps”.

Vk(int) = { n | n integer }
Vk(t→ s) = { λx. a | ∀j < k, ∀v ∈ Vj(t), a[x← v] ∈ Ej(s) }

Ek(t) = { a | ∀j ≤ k, ∀b, a→j b ∧ b irreducible⇒ b ∈ Vk−j(t) }

Intuitions:

Expression a seems to have type t in k steps if, having spent j ≤ k steps to
reduce a to b, b seems to be a value of type t for k− j remaining steps.

An abstraction λx.a seems to be a value of type t→ s in k steps if the
application (λx.a) v seems to have type t for at most k steps. The
β-reduction spends one step, hence a[x← v] ∈ Ej(s) for j < k.

In j steps, expression a[x← v] cannot examine value v for more than j steps!
Hence, it su�ces that v seems to be of type t for j steps.

15

An indexed model of recursive types
(A. Appel and D. McAllester, TOPLAS(23), 2001)

Notation: a→k b means “a reduces to b in k steps”.

Vk(int) = { n | n integer }
Vk(t→ s) = { λx. a | ∀j < k, ∀v ∈ Vj(t), a[x← v] ∈ Ej(s) }

Ek(t) = { a | ∀j ≤ k, ∀b, a→j b ∧ b irreducible⇒ b ∈ Vk−j(t) }

Intuitions:

Expression a seems to have type t in k steps if, having spent j ≤ k steps to
reduce a to b, b seems to be a value of type t for k− j remaining steps.

An abstraction λx.a seems to be a value of type t→ s in k steps if the
application (λx.a) v seems to have type t for at most k steps. The
β-reduction spends one step, hence a[x← v] ∈ Ej(s) for j < k.

In j steps, expression a[x← v] cannot examine value v for more than j steps!
Hence, it su�ces that v seems to be of type t for j steps.

15

Adding recursive types to the logical relation

If F : Type→ Type, we write µF the algebraic type characterized by

roll : F(µF)→ µF unroll : µF → F(µF)

and the reduction rule unroll(roll(v))→ v.

It su�ces to de�ne

V0(µF) = { roll(v) | v value }
Vk+1(µF) = { roll(v) | v ∈ Vk(F(µF)) }

The de�nition of Vk(t) is no longer well founded by induction over t, but
remains well founded by induction over k. It is obvious for type µF, and it
is true as well for type t→ s, since the de�nition of Vk(t→ s) uses Vj(t)
and Vj(s) only for j < k.

16

Application: pure lambda-calculus

We can encode the pure lambda-calculus using the type D def
= µ(λt. t→ t).

Unsurprisingly, we have

V0(D) = { roll(v) | v value }
Vk+1(D) = { roll(λx.a) | ∀j < k,∀v ∈ Vj(D), a[x← v] ∈ Ej(D) }

17

Main properties

Monotonically decreasing: Vk(t) ⊆ Vj(t) and Ek(t) ⊆ Ej(t) if k ≥ j.

Compatibility with reductions:
if a→ b then a ∈ Ek+1(t) if and only if b ∈ Ek(t).

Fundamental theorem:
if x1 : t1, . . . , xn : tn ` a : t, and if vi ∈ Vk(ti) for i = 1, . . . , n,
then a[x1 ← v1, . . . , xn ← vn] ∈ Ek(t)

18

Accounting for every step

Lemma (the application case)
If a ∈ Ek(t→ s) and b ∈ Ek(t), then a b ∈ Ek(s).

Proof.
A reduction of a b to an irreducible term d has the shape

a b→n (λx. c) b→m (λx. c) v →1 c[x← v]→p d

with j = n+m+ 1 + p reduction steps and j ≤ k.
To conclude, we must show d ∈ Vq(s) where q = k− j.
By hyp on a, λx. c ∈ Vk−n(t→ s) hence λx. c ∈ Vp+q+1(t→ s) (1).
By hyp on b, v ∈ Vk−m(t) hence v ∈ Vp+q(t) (2).
By (1) and (2), c[x← v] ∈ Ep+q(s) (3).
By (3), d ∈ Vq(s), QED.

19

Extension to binary logical relations

Vk(int) = { (n, n) | n integer }
Vk(t→ s) = { (λx1. a1, λx2. a2) |

∀j < k, ∀(v1, v2) ∈ Vj(t), (a1[x1 ← v1], a2[x2 ← v2]) ∈ Ej(s) }
V0(µF) = { (roll(v1), roll(v2)) | v1, v2 values }

Vk+1(µF) = { (roll(v1), roll(v2)) | (v1, v2) ∈ Vk(F(µF)) }

Ek(t) = { (a1, a2) | ∀j ≤ k, ∀b1, a1 →j b1 ∧ b1 irreducible⇒

∃b2, a2
∗→ b2 ∧ (b1, b2) ∈ Vk−j(t) }

Note: we have a1 →j b1 (j steps) and a2
∗→ b2 (any number of steps),

making it possible to relate computations a1, a2 of di�erent durations.

20

III

A modal formulation of step-indexing

Reformulating the accounting of steps

Consider again the de�nition of Ek(t), the set of expressions a that seem to
have type t for k steps:

Ek(t) = { a | ∀j ≤ k, ∀b, a→j b ∧ b irreducible⇒ b ∈ Vk−j(t) }

Instead of considering j ≤ k reduction steps (a→j b),
we can consider two cases: 0 reductions (irreducible) and 1 reduction.

If a is irreducible, a ∈ Ek(t) i� a ∈ Vk(t).
If a→ b, a ∈ Ek(t) i� b ∈ Ek−1(t) or k = 0.

We get another de�nition, equivalent and still well-founded by induction
over k:

Ek(t) = { a | (a irreducible⇒ a ∈ Vk(t)) ∧ (∀b, a→ b⇒ b ∈ Ek−1(t)) }

with, conventionally, E−1(t) = all the terms.

22

The return of the “later” modality (�)

De�ne �E by (�E)k+1 = Ek and (�E)0 = all the terms. Then:

Ek(t) = { a | (a irreducible⇒ a ∈ Vk(t)) ∧ (∀b, a→ b⇒ b ∈ �Ek(t)) }

Likewise, de�ne (�V)k+1 = Vk and (�V)0 = all the values.
We can rewrite the two cases of the de�nition

V0(µF) = { roll(v) | v value }
Vk+1(µF) = { roll(v) | v ∈ Vk(F(µF)) }

into a single “modal” case

Vk(µF) = { roll(v) | v ∈ �Vk(F(µF)) }

23

The return of the “later” modality (�)

In the same spirit, we can rewrite the case Vk(t→ s) by using �V. We had

Vk(t→ s) = { λx. a | ∀j < k, ∀v ∈ Vj(t), a[x← v] ∈ Ej(s) }

and we can write instead

Vk(t→ s) = { λx. a | ∀v,∀j ≤ k, v ∈ �Vj(t)⇒ a[x← v] ∈ �Ej(s) }

This gives a quanti�cation ∀j ≤ k that has the shape of implication in
intuitionistic Kripke models: k A⇒ B i� ∀j ≤ k, j A⇒ j B.

24

A modal logical relation

Finally, we can make the k parameter (the step count) implicit by using the
logic of the topos of trees from the previous lecture, with its modality �.

E(t) and V(t) are, then, de�ned by the equations

V(int) = { n | n integer }
V(t→ s) = { λx. a | ∀v ∈ �V(t), a[x← v] ∈ �E(s) }

V(µF) = { roll(v) | v ∈ �V(F(µF)) }
E(t) = { a | (a irreducible⇒ a ∈ V(t)) ∧ (∀b, a→ b⇒ b ∈ �E(t)) }

Note that E and V are de�ned as functions of �E and �V.
Löb’s rule guarantees the existence of a unique �xed point for E and V.

25

Properties of the modality �

A⇒ �A

�(A ∧ B) i� � A ∧�B

�(A ∨ B) i� � A ∨�B

�(A⇒ B) i� � A⇒ �B

if � A⇒ A then A (Löb’s rule)

if A ∧ (�A⇒ �B)⇒ B then A⇒ B (“Löb induction”)

26

No more accounting for every step

Lemma (the application case)
If a ∈ E(t→ s) and b ∈ E(t), then a b ∈ E(s).

Proof.
By Löb induction. The induction hypothesis is
a′ ∈ �E(t→ s) ∧ b′ ∈ �E(t)⇒ a′ b′ ∈ �E(s) for all a′, b′.
We argue by case whether a or b reduces.

a and b are irreducible. Then, a ∈ V(t→ s) and therefore a has the shape
λx.c. Also, b ∈ V(t) is a value.
By de�nition of V(t→ s) and because b ∈ �V(t), we have c[x← v] ∈ �E(s).
Moreover, a b→ c[x← v]. Hence a b ∈ E(s).

a→ a′. Then, a′ ∈ �E(t→ s) and by induction hypothesis a′ b ∈ �E(s).
Since a b→ a′ b, it follows that a b ∈ E(s).

a is irreducible and b→ b′. Similar to the previous case.

27

Counting some reductions only

We can elect to count unroll(roll(v))→ v reductions but not
β-reductions, which amounts to using � for µF types but not for t→ s
types.

V(int) = { n | n integer }
V(t→ s) = { λx. a | ∀v ∈ V(t), a[x← v] ∈ E(s) }

V(µF) = { roll(v) | v ∈ �V(F(µF)) }

E(t) = { a | (∀b, a ∗→β b ∧ b irreducible⇒ b ∈ V(t))

∧ (∀b, a ∗→β→unroll b⇒ b ∈ �E(t)) }

The de�nition of V(t) and E(t) is well founded by induction on the
structure of the type t then by Löb induction.

28

Extension to binary logical relations

Nothing surprising.

V(int) = { (n, n) | n integer }
V(t→ s) = { (λx1. a1, λx2. a2) |

∀(v1, v2) ∈ �V(t), (a1[x1 ← v1], a2[x2 ← v2]) ∈ �E(s) }
V(µF) = { (roll(v1), roll(v2)) | (v1, v2) ∈ �V(F(µF)) }

E(t) = { (a1, a2) | (a1 irreducible⇒ ∃b2, a2
∗→ b2 ∧ (a1, b2) ∈ V(t))

∧ (∀b1, a1 → b1 ⇒ ∃b2, a2
∗→ b2 ∧ (b1, b2) ∈ �E(t)) }

29

IV

Mutable state

Mutable state

It’s the de�ning feature of imperative languages:
the ability to modify “in place” a data structure already built or a variable
already de�ned.

Example (In-place concatenation of two lists)
struct list { int head; struct list * tail; }

void concat (struct list * l, struct list * m)

{
while (l->tail != NULL) l = l->tail;

l->tail = m;

}

31

References

A presentation of mutable state used by the ML family of languages (typed
functional-imperative languages).

A reference ≈ a mutable indirection cell ≈ a 1-element array.

Example: an OCaml equivalent for C mutable lists

type ’a mlist = Nil | Cons of ’a ref * ’a mlist ref

Operations over references:

ref : t→ t ref create and initialize
! : t ref→ t dereference (get current value)

:= : t ref→ t→ unit assign (change the value)

32

Semantics of references

A simple semantics by β-reductions is wrong because it fails to account for
sharing of a reference between a read and a write:

let r = ref 1 in r := 2; !r 6= (ref 1 := 2); !(ref 1)

We need one level of indirection:
references evaluate to locations ` (≈ integers);
a store m : location→�n value records the current value of each
reference;
the operational semantics reduces con�gurations 〈a, m〉
(a term a in a store m).

33

Reduction rules for references

〈(λx. a) v, m〉 → 〈a[x← v], m〉 (usual βv reduction)

〈ref v, m〉 → 〈`, m+ {` 7→ v}〉 if ` /∈ Dom(m)

〈!`, m〉 → 〈m(`), m〉 if ` ∈ Dom(m)

〈` := v, m〉 → 〈(), m+ {` 7→ v}〉 if ` ∈ Dom(m)

34

Typing the store

A store is an “heterogeneous” object: two di�erent locations can contain
values of di�erent types.

A store typing M : location→�n type associates a type to each location.

Initially, we take that M(`) is a syntactic type (that is, a type expression),
not a semantic type (a set of values).

35

Evolution of store typings

On the one hand: the type M(`) of a valid location ` must remain the same
throughout execution. Otherwise, we could break type safety:

` := 1 → · · · → !` 2
(possible if M(`) = int) (possible if M(`) = int→ int)

On the other hand: when we allocate a new reference at location `,
we must update M(`) with the type t of its contents.

Hence an ordering between store typings: M′ w M
meaning “M can evolve into M′ during execution”.

M′ w M def
= Dom(M′) ⊇ Dom(M) ∧ ∀` ∈ Dom(M), M′(`) = M(`)

36

A syntactic model of reference types

We interpret pairs (type t, store typing M) by sets of values V(t)(M) or
expressions E(t)(M). A store typing M is interpreted by a set [M] of stores.

V(int)(M) = { n | n integer }
V(t ref)(M) = { ` | M(`) = t }
V(t→ s)(M) = { λx. a | ∀M′ w M, ∀v ∈ �V(t)(M′), a[x← v] ∈ �E(s)(M′) }

[M] = { m | Dom(m) = Dom(M)
∧ ∀` ∈ Dom(m), m(`) ∈ V(M(`))(M) }

E(t)(M) = { a | ∀m ∈ [M],
(〈a, m〉 irreducible⇒ a ∈ V(t)(M))
∧ (∀b, ∀m′, 〈a, m〉 → 〈b, m′〉 ⇒

∃M′ w M, m′ ∈ [M′] ∧ b ∈ �E(t)(M′)) }

37

A syntactic model of reference types

This typing of memory stores by syntactic types su�ces to prove type
soundness for references.

We would like a more “semantic” typing, where each location is associated
to a set of values possibly stored at this address.

For instance, this is useful to represent invariants about the value of the
reference that follow from its “encapsulation” within a function:

let gensym = let c = ref 0 in fun () -> c := !c + 1; !c

Assuming exact integer arithmetic (no over�ows), we have an
invariant !c >= 0 that we would like to re�ect in the model by taking
M(`) = {n | n ≥ 0} where ` is the value of c.

38

A semantic model of reference types

Let’s try to take StoreType def
= Loc→�n TypeSem.

Problem: a semantic type TypeSem is not just a set of values, it’s a set of
values parameterized by a store typing, as in V(t)(M) = {v | · · · }.

Therefore, we run into a circularity:

TypeSem = StoreType→ P(Val)
StoreType = Loc→�n TypeSem

or, in other words,

TypeSem = (Loc→�n TypeSem)→ P(Val)

39

A semantic model of reference types

TypeSem = (Loc→�n TypeSem)→ P(Val)

No solutions with sets; probably a solution with domains. But, once more,
step-indexing / the � modality provide an easy solution!

Reading the contents of a reference (!`) consumes one step of
computation.

Hence, the type TypeSem associated with a location ` can be “later” and
therefore “less precise” than the TypeSem associated with an expression
such as !`.

40

A semantic model of reference types

With explicit step-indexing, this leads to the family of types

TypeSemk = StoreTypek → P(Val)
StoreType0 = Loc→�n unit (arbitrary)

StoreTypek+1 = Loc→�n TypeSemk

This is the solution to the following equation expressed in the logic of the
topos of trees:

TypeSem = (Loc→�n �TypeSem)→ P(Val)

In this logic, we can do Löb inductions on all types, not just on logical
propositions.

41

The corresponding unary logical relation

V(int)(M) = { n | n integer }
V(t ref)(M) = { ` | M(`)(M) ⊆ �V(t)(M) }
V(t→ s)(M) = { λx. a | ∀M′ w M, ∀v ∈ �V(t)(M′), a[x← v] ∈ �E(s)(M′) }

[M] = { m | Dom(m) = Dom(M)
∧ ∀` ∈ Dom(m),m(`) ∈ M(`)(M) }

E(t)(M) = { a | ∀m ∈ [M],
(〈a, m〉 irreducible⇒ 〈a, m〉 ∈ V(t)(M))
∧ (∀b, ∀m′, 〈a, m〉 → 〈b, m′〉 ⇒

∃M′ w M, m′ ∈ [M′] ∧ b ∈ �E(t)(M′)) }

We write M the truncation next(M) with next : ∀A. A→ �A.

In M′ w M, M′ is “later” than M, hence M′ w M is de�ned as Dom(M′) w Dom(M)
and M′(`) = M(`) for all ` ∈ Dom(M).

42

Extension to binary logical relations

This approach based on semantic store typings extends — with much
e�ort! — to binary logical relations and to contextual equivalence
propertiexs. Refer to:

Ahmed, Dreyer, Rossberg. State-Dependent Representation Independence,
POPL 2009.
Dreyer, Neis, Rossberg, Birkedal. A Relational Modal Logic for Higher-Order
Stateful ADTs. POPL 2010.

An example of use (Pitts & Stark, 1998): show that the up and down

functions are contextually equivalent

let up = let c = ref 0 in fun () -> c := !c + 1; !c

let down = let c = ref 0 in fun () -> c := !c - 1; - !c

by interpreting the locations `1, `2 of the two c by the relation
{(n,−n) | n ≥ 0}.

43

Recent developments

An ongoing rapprochement between
Program logics for �rst-order imperative languages:
Hoare logic, separation logic, concurrent separation logic.
Logical relations for higher-order languages with mutable state.

A recent example of convergence: the Iris system, a general framework to
de�ne concurrent separation logics, which includes modalities � and � to
deal with higher-order aspects.
(https://iris-project.org/)

44

https://iris-project.org/

V

Further reading

Further reading
The seminal paper on unary step-indexed logical relations:

A. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS 23(5), 2001.

Extension to binary relations:

Amal Ahmed. Step-Indexed Syntactic Logical Relations for Recursive and
Quanti�ed Types. ESOP 2006.

Formulations based on modal logics:

A. Appel, P.-A. Melliès, C. Richards, J. Vouillon. A very modal model of a
modern, major, general type system. POPL 2007.

D. Dreyer, A. Ahmed, L. Birkedal. Logical Step-Indexed Logical Relations. LMCS
7, 2011.

The state of the art in program logics for imperative, concurrent, higher-order
languages:

Iris Project, Tutorial Material,
https://iris-project.org/tutorial-material.html

46

https://iris-project.org/tutorial-material.html

	Operational logical relations
	Recursive types
	Modal formulation
	Mutable state
	Further reading

