
Programming = proving?
The Curry-Howard correspondence today

Sixth lecture

Theorems for free:
parametricity and logical relations

Xavier Leroy

Collège de France

2018-12-19

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X

∀X. X → X

∀X. X → int

∀X. X → X → X

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X none (logical inconsistency otherwise!)

∀X. X → X

∀X. X → int

∀X. X → X → X

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X none (logical inconsistency otherwise!)

∀X. X → X identity ΛX.λx. x; others?

∀X. X → int

∀X. X → X → X

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X none (logical inconsistency otherwise!)

∀X. X → X identity ΛX.λx. x; others?

∀X. X → int constant functions ΛX.λx. n; others?

∀X. X → X → X

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X none (logical inconsistency otherwise!)

∀X. X → X identity ΛX.λx. x; others?

∀X. X → int constant functions ΛX.λx. n; others?

∀X. X → X → X Church’s Booleans,
ΛX.λx.λy. x and ΛX.λx.λy. y; others?

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Quiz

In the polymorphic lambda-calculus (system F), which terms have the
following types?

∀X. X none (logical inconsistency otherwise!)

∀X. X → X identity ΛX.λx. x; others?

∀X. X → int constant functions ΛX.λx. n; others?

∀X. X → X → X Church’s Booleans,
ΛX.λx.λy. x and ΛX.λx.λy. y; others?

How can we show that there are no other terms (closed and in normal
form) of these types?

2

Theorems about lists
(Phil Wadler, Theorems for free!, 1991)

In system F extended with the type t∗ of lists of t, the following equations
always hold:

map f (F x) = F (map f x) if F : ∀X. X∗ → X∗

map f (G x y) = G (map f x) (map f y) if G : ∀X. X∗ → X∗ → X∗

map f (H x) = H (map (map f) x) if H : ∀X. X∗∗ → X∗

map f (Φ (p ◦ f) x) = Φ p (map f x) if Φ : ∀X. (X → bool)→ X∗ → X∗

where f : A→ B, p : B→ bool, and map f [x1; . . . ; xn] = [f x1; . . . ; f xn].

We can prove these equations for F = rev or G = append or H = concat

or Φ = filter; but why do they hold for all functions having these
polymorphic types?

3

Teaching complex numbers
(A fable told by John C. Reynolds)

Two teachers, two sections. During the �rst lecture:

Prof. Descartes: “C = R× R”. (Cartesian representation)
De�nes the injection R→ C, then i, +, ×, −1, z, |z|.
Prof. Bessel: “C = R+ × R”. (polar representation)
De�nes the injection R→ C, then i, +, ×, −1, z, |z|.

At the next lecture, the two sections are interchanged.

Neither Descartes nor Bessel commit any mathematical error, even though
they are judged (by the students) based on the other’s de�nitions.

4

Abstract types

What prevents Descartes and Bessel from making mistakes is that, starting
from the second lecture, they treat complex numbers as an abstract type:
a type name C and operations over this type.

Both refrain from examining the concrete representation of complex
numbers, e.g. to project the �rst component of a number, which would lead
to contradictions:

proj1(i) = proj1((0, 1)) = 0 for Descartes
proj1(i) = proj1((1, π/2)) = 1 for Bessel

The moral of the fable:
Type structure is a syntactic discipline for enforcing levels of ab-
straction.

(John C. Reynolds, 1983)

5

Type abstraction and polymorphism

As observed by Reynolds (1974), one way to treat a type abstractly is to
make its users polymorphic over the name of the type.

In the example of complex numbers, the students are polymorphic
functions over the type C:

student : ∀C. { inj : R→ C; i : C;

conj : C→ C; module : C→ R+;

add : C→ C→ C; mul : C→ C→ C } → t

The type C being a type variable, the only way to build and use values of
type C is through the functions passed as argument.

6

Parametricity

An intuition: polymorphism is parametric, that is, two instantiations f [A]
and f [B] of a polymorphic function f : ∀X . . . over two di�erent types
implement the same algorithm.

A dual intuition: abstract types are independent of their representations,
that is, two implementations of an abstract type can be distinguished only
through the constants and operations provided over this type.

A proof technique: logical relations
(≈ interpreting types by relations between values).

Various applications: “theorems for free” (true for all functions having a
given type), non-inhabitation results, isomorphisms between functional
encodings and algebraic types, etc.

7

I

Logical relations

De�nability and logical relations (Plotkin)
G. Plotkin, λ-de�nability and Logical Relations, 1973;
G. Plotkin, λ-de�nability in the full type hierarchy, 1980.

Plotkin wanted to characterize the functions that can be de�ned in the
pure lambda-calculus (1973) or the simply-typed lambda calculus (1980)
possibly extended with constants.

For instance: in the simply-typed case, we assume given a base type o that
is interpreted by the set O = {T, F}.

[[o]] = O
[[t1 → t2]] = [[t1]]→ [[t2]] (sets of functions)

What are the set-theoretic functions O→ O de�nable by lambda-terms?
without constants: identity T 7→ T, F 7→ F
with T and F constants: all functions except negation T 7→ F, F 7→ T

9

Logical relations

Plotkin’s idea: de�nable functions satisfy some relations, those that are
compatible with function abstraction and application. Plotkin called them
logical relations.

De�nition: a n-place logical relation is a family of relations
Rt ⊆ [[t]]× · · · × [[t]] indexed by a type t, such that

Rt→s (f1, . . . , fn)⇐⇒ ∀x1, . . . , xn, Rt (x1, . . . , xn)⇒ Rs (f1 x1, . . . , fn xn)

In other words: functions are related if and only if they map related
arguments to related results.

Remark: the logical relation is entirely determined by the relations Ro over
the base types o.

10

Logical relations

The only cases used in practice are n = 1 and n = 2.

Unary logical relation: a predicate over O that “hereditarily” extends to
functions

Ro(x) chosen freely

Rt→s (f)
def
= ∀x, Rt (x)⇒ Rs (f x)

Binary logical relation: (or just “logical relation”)

Ro(x1, x2) chosen freely

Rt→s (f1, f2)
def
= ∀x1, x2, Rt (x1, x2)⇒ Rs (f1 x1, f2 x2)

11

The fundamental theorem of logical relations

An interpretation of terms:

[[x]] ρ = ρ(x)

[[λx.M]] ρ = v 7→ [[M]] (ρ+ (x 7→ v))

[[M N]] ρ = [[M]] ρ ([[N]] ρ)

If a term is well typed, its interpretations in related environments are
related.

Theorem
If Γ ` M : t and RΓ(x) (ρ1(x), ρ2(x)) for all x ∈ Dom(Γ), then
Rt ([[M]] ρ1, [[M]] ρ2).

Corollary
If ` M : t then Rt([[M]], [[M]]).

12

Back to the de�nability problem

Any de�nable function f : O→ O (that is, of the form [[M]] for some term M)
must therefore be related to itself at type o→ o:

Ro→o (f , f) that is, ∀x1, x2, Ro(x1, x2)⇒ Ro(f x1, f x2)

Taking Ro = {(T, F)}, we see that the following functions are not de�nable:
the constant function f(x) = T since (f(T), f(F)) = (T, T) /∈ Ro

the constant function f(x) = F since (f(T), f(F)) = (F, F) /∈ Ro

negation f(T) = F, f(F) = T since (f(T), f(F)) = (F, T) /∈ Ro

13

Syntactic logical relations
(R. Statman, Logical relations and the typed λ-calculus, Inf&Control 65, 1985)

Statman reformulated logical relations without using a set-theoretic model
of typed lambda-calculus, just as relations between (syntactic)
lambda-terms modulo β-equivalence:

Ro (M1, . . . ,Mn) = chosen as we wish

Rt→s (M1, . . . ,Mn)
def
= ∀N1, . . . ,Nn, Rt (N1, . . . ,Nn)⇒ Rs (M1 N1, . . . ,Mn Nn)

It is Statman who gave the name “fundamental theorems of logical
relations” to the following result:

Theorem
If ` M : t, then Rt(M, . . . ,M) for all logical relations R.

14

Connection with strong normalization

Statman remarked that Tait’s proof (1967) of strong normalization for
simply-typed lambda-calculus is an instance of unary logical relation.

De�ne the set RED(t) of reducible terms of type t by induction over t:

RED(o) = {M | M is strongly normalizing}
RED(t→ s) = {M | ∀N ∈ RED(t),M N ∈ RED(s)}

We then show:
1 If ` M : t then M ∈ RED(t).
2 If M ∈ RED(t) then M is strongly normalizing.

RED is a unary logical relation, and (1) follows from the fundamental
theorem of logical relations.

15

Extension to abstract types
(John C. Reynolds, Types, abstraction and parametric polymorphism, 1983)

Reynolds observed that logical relations enable us to reason about an
abstract type and its di�erent implementations, provided a type name can
be interpreted by di�erent sets.

Continuing the example of Cartesian and polar numbers:

[[R]]1 = R [[R]]2 = R
[[C]]1 = R× R [[C]]2 = R+ × R

[[t→ s]]1 = [[t]]1 → [[s]]1 [[t→ s]]2 = [[t]]2 → [[s]]2

A (binary) logical relation is, then, a family Rt ⊆ [[t]]1 × [[t]]2 such that

Rt→s (f1, f2)
def
= ∀x1 ∈ [[t]]1, x2 ∈ [[t]]2, Rt (x1, x2)⇒ Rs (f1 x1, f2 x2)

16

Extension to abstract types

The fundamental theorem (called the abstraction theorem by Reynolds)
still holds: the interpretations of a well-typed term in related
environments are related.

Theorem
If Γ ` M : t and RΓ(x) (ρ1(x), ρ2(x)) for all x ∈ Dom(Γ), then
Rt ([[M]] ρ1, [[M]] ρ2).

17

Representation independence

Application to complex numbers: take Γ to be the signature of complex
operations, ρ1 their implementation with Cartesian representation, ρ2 their
implementation with polar representation.

Γ = inj : R→ C; i : C; conj : C→ C; . . .

ρ1 = {inj 7→ λx. (x, 0); i 7→ (0, 1); conj 7→ λ(x, y). (x,−y); . . .}
ρ2 = {inj 7→ λx. (x, 0); i 7→ (1, π/2); conj 7→ λ(r, θ). (r,−θ); . . .}

Concerning logical relations at base types, we take

RR (x1, x2) = (x1 = x2)

RC ((x, y), (r, θ)) = (x = r cos θ ∧ y = r sin θ)

18

Representation independence

Then, it su�ces to show that the operations in the two implementations
are pairwise related:

RΓ(op) (ρ1(op), ρ2(op)) for all op ∈ Dom(Γ)

The fundamental theorem, then, guarantees that all computations of type R
give the same results with both implementations of complex numbers:

Γ ` M : R =⇒ [[M]] ρ1 = [[M]] ρ2

More generally: two implementations of an abstract type that are related
by a logical relation are observationally equivalent, even if their
representation types di�er.

19

Extension to polymorphism (system F)
(John C. Reynolds, Types, abstraction and parametric polymorphism, 1983)

At the end of his 1983 paper, Reynolds tries to extend logical relations to
the polymorphic lambda-calculus (system F).

Problem: impredicativity. A term with polymorphic type ∀X. t can be
instantiated as t{X ← t′} for any type t′, including t′ = ∀X. t. Example:

if id : ∀X. X → X then id [∀X. X → X] id : ∀X. X → X

It is therefore impossible to model ∀X. t as the intersection of all
instantiations:

8 [[∀X. t]] =
⋂

t′ type

[[t{X ← t′}]]

8 R∀X. t(x1, x2) = ∀t′, Rt{X←t′}(x1, x2)

20

Strong normalization of system F

Girard (1972) ran into a similar problem when proving strong normalization
for system F. A naive extension of the reducibility method leads to a
circular de�nition:

8 RED(∀X. t) = { M | ∀t′, M[t′] ∈ RED(t{X ← t′}) }

Girard’s idea is to interpret type variables X not just by the sets RED(t′) for
every type t′, but by a larger class of sets: the reducibility candidates
(candidats de réductibilité).

A set U of terms is a reducibility candidate if:
1 every M ∈ U is strongly normalizing;
2 U is closed under β-expansion: if M→β M′ and M′ ∈ U then M ∈ U
3 U is closed under some β-reductions.

(See Girard, Lafont, Taylor, Proofs and Types, ch. 14)

21

Strong normalization of system F

Reductibility: (Φ : type variable→ candidate)

RED(o,Φ) = {M | M is strongly normalizing}
RED(t→ s,Φ) = {M | ∀N ∈ RED(t,Φ),M N ∈ RED(s,Φ)}

RED(X,Φ) = Φ(X)

RED(∀X. t,Φ) = {M | ∀t′,∀R ∈ candidates(t′),M[t′] ∈ RED(t, Φ + X 7→ R}

We then show:
1 If M ∈ RED(t,Φ) then M is strongly normalizing.
2 RED(t,Φ) is a reducibility candidate.
3 If ` M : t then M ∈ RED(t,Φ).

22

Logical relations for system F

The same idea applies to logical relations: we must be able to interpret
type variables X by “semantic” relations taken from a larger set than the
set of “syntactic” relations, {Rt | t type}.

Ro
Φ(x1, x2) chosen as we wish

Rt→s
Φ (f1, f2)

def
= ∀x1, x2, Rt

Φ (x1, x2)⇒ Rs
Φ (f1 x1, f2 x2)

RX
Φ (x1, x2)

def
= Φ(X) (x1, x2)

R∀X. t
Φ (x1, x2)

def
= ∀U ∈ U , Rt

Φ+X 7→U (x1, x2)

It remains to (1) build a model for the types and the terms of system F,
and (2) de�ne the set U of “semantic” relations.

23

Models for system F

Set-theoretic models, for instance Reynolds (1983):
cannot exist for reasons of cardinality.
(Reynolds, Polymorphism is not set-theoretic, 1984).

Models using Scott domains:
for instance, Bruce, Meyer, Mitchell, 1990, used by Wadler, 1991.
The relations U must be admissible (closed under limits).

Categorical models:
for instance, Girard’s coherent spaces.

Purely syntactic approach in the style of Statman,
for instance Harper, Practical foundations for prog. lang. chap. 48.
The relations U must be closed under β-expansion and observational
equivalence.

Embedding system F and the relations in a type theory.
See part III.

24

II

Theorems for free
and other applications

The type ∀X. X is empty

Assume ` M : ∀X. X.

By the fundamental theorem, R∀X. X ([[M]], [[M]]).

Let’s interpret X by the empty relation ∅. We have:

RX
X 7→∅ ([[M]], [[M]]) that is, ([[M]], [[M]]) ∈ ∅

This is impossible. Hence, M does not exist.

26

Values of type ∀X. X → X

Assume ` M : ∀X. X → X.

Let t be a type and x ∈ [[t]]. We show that [[M]] x = x.

By the fundamental theorem: R∀X. X→X ([[M]], [[M]]).

Interpreting X by the relation X = {(x, x)}, we get:

∀y1, y2, (y1, y2) ∈ X ⇒ ([[M]] y1, [[M]] y2) ∈ X

We take y1 = y2 = x and obtain [[M]] x = x.

This holds for any x. Hence, [[M]] is the identity function.

In some models (but not all models) it follows that M =βη ΛX.λx : X. x.

27

Values of type ∀X. X → X → X

Assume given a base type bool with two elements T and F.

Assume ` M : ∀X. X → X → X. Let t be a type and x, y ∈ [[t]].

We interpret X by the relation X ⊆ [[t]]× [[bool]] = { (x, T); (y, F) }.

As a consequence of the fundamental theorem, we get:

∀u1, u2, v1, v2. (u1, u2) ∈ X ∧ (v1, v2) ∈ X ⇒ ([[M]] u1 v1, [[M]] u2 v2) ∈ X

We take u2 = T and v2 = F, thus forcing u1 = x and v1 = y, and therefore

([[M]] x y, [[M]] T F) ∈ X

If [[M]] T F = T then [[M]] x y = x, for any x and y.
If [[M]] T F = F then [[M]] x y = y, for any x and y.

28

Functional relations

If f : A→ B is a (set-theoretic) function, we can interpret a type variable X
by its graph f def

= {(a, b) | b = f(a)}.

Two elements x, y are related at type X i� y = f(x).

Two functions g, h are related at type X → X i� ∀x, h(f x) = f(g x).

Two functions g, h are related at type X → X → X i�
∀x, y, h (f x) (f y) = f(g x y).

29

Values of type ∀X. X → X → X (alternate approach)

Assume ` M : ∀X. X → X → X.

Interpreting X by the graph of a function f , we get

∀x, y, [[M]] (f x) (f y) = f ([[M]] x y)

Let t be a type, and x, y ∈ [[t]].

De�ne f : bool→ [[t]] as f(T) = x and f(F) = y.

It follows

[[M]] x y = f([[M]] T F) =

{
x if [[M]] T F = T
y if [[M]] T F = F

30

Extensions: products, sums, lists

It is easy to de�ne logical relations for product, sum, and list types:

Rt×s = {((x, y), (x′, y′)) | (x, x′) ∈ Rt ∧ (y, y′) ∈ Rs}

Rt+s = {(inj1(x), inj1(x′) | (x, x′) ∈ Rt}
∪ {(inj2(y), inj1(y′) | (y, y′) ∈ Rs}

Rt∗ = {([x1, . . . , xn], [x′1, . . . , x
′
n] | (xi, x′i) ∈ Rt for i = 1, . . . , n}

31

Theorems about lists
(Phil Wadler, Theorems for free!, 1991)

Wadler’s “theorems for free” about lists follow easily from the fundamental
theorem, with the help of functional relations.

map f ([[F]] x) = [[F]] (map f x) if F : ∀X. X∗ → X∗

map f ([[G]] x y) = [[G]] (map f x) (map f y) if G : ∀X. X∗ → X∗ → X∗

map f ([[H]] x) = [[H]] (map (map f) x) if H : ∀X. X∗∗ → X∗

map f ([[Φ]] (p ◦ f) x) = [[Φ]] p (map f x) if Φ : ∀X. (X → bool)→ X∗ → X∗

Note: if X is interpreted by the functional relation f ,
then the relation at type X∗ is map f ,
and the relation at type X∗∗ is map (map f).

32

Values of type ∀X. X → (X → X)→ X

Let M be a term such that ` M : ∀X. X → (X → X)→ X.

We assume given a base type nat interpreted by N.

Let t be a type, f : [[t]]→ [[t]] a function over t, and a ∈ [[t]].

We interpret type X by the relation

X = {(0, a); (1, f a); . . . ; (n, f n a); . . .}

Function succ and function f are related at type X → X:
if (n, x) ∈ X, then x = f n a, hence (succ n, f x) = (n + 1, f n+1 a) ∈ X.

Consequently, [[M]] 0 succ and [[M]] a f are related at type X.

Hence [[M]] a f = f n a where n is determined by n = [[M]] 0 succ.

M is therefore the n-th Church integer.

33

Functional encodings of inductive types

We saw earlier (lecture of Nov 28th) that any inductive type, not just
natural numbers, can be encoded in system F as polymorphic functions
∀X. . . .→ X.

The previous example shows that the functional encoding of natural
numbers is isomorphic to natural numbers, in the sense that all the values
of this type are images of numbers by the encoding.

This result extends to all functional encodings of all inductive types.
(Abadi, Plotkin, A logic for parametric polymorphism, 1993.)

Exercise: show that ∀X. (A→ B→ X)→ X is isomorphic to A× B.

34

Parametricity and higher-order abstract syntax

To represent terms containing variables and binders:
First-order abstract syntax:
explicit representation of variables.
Higher-order abstract syntax:
use the “lambda” of the host language.

Example: pure lambda-calculus.

type lam = type lam =

| Var of int

| Lam of lam | Lam of (lam -> lam)

| App of lam * lam | App of lam * lam

First order Higher order
(de Bruijn indices)

35

Parametricity and higher-order syntax

type lam = Lam of (lam -> lam) | App of lam * lam

Problem: in a language like OCaml, there are many expressions of type lam

that do not represent a lambda-term, such as

Lam (fun x -> Lam (fun y -> match x with Lam _ -> x | App _ -> y))

Washburn and Weirich (2008) conjectured that the functional encoding of
the algebraic type above,

∀X. ((X → X)→ X)→ (X → X → X)→ X

does not contain such “exotic” terms, because of parametricity with
respect to X.

36

Parametricity and higher-order syntax
R. Atkey, Syntax for free, TLCA 2009.

type lam =

| Var of int

| Lam of lam

| App of lam * lam

Atkey (2009) proved that the type

∀X. ((X → X)→ X)→ (X → X → X)→ X

is isomorphic to closed terms represented with de Bruijn indices, that is, to
the subset of the algebraic type lam above where there are no free
variables.

(The proof uses Kripke logical relations, an extension of logical relations
with worlds.)

37

III

Parametricity in type theory

Which logic to talk about parametricity?

Until now, we have described parametricity using standard mathematical
logic, via a model [[· · ·]] that interprets types and terms of the language
(system F) into this logic.

Another possibility: develop a “bespoke” logic to reason about terms and
logical relations of system F. The fundamental theorem of logical relations
is an axiom of this logic.
(Abadi and Plotkin, A logic for parametric polymorphism. TLCA 1993.)

Third possibility: use a uni�ed formalism (type theory, Pure Type System)
capable of describing simultaneously the polymorphic language and its
parametricity logic.
(Bernardy et al, 2010–2015; Lasson et al, 2011, 2012.)

39

Reminder: Pure Type Systems
(See the second lecture of Nov 21st, “Polymorphism all the way up”)

Universe: U ∈ U
Terms, types: A, B, C ::= x variables

| λx : A. B abstractions
| A B applications
| Πx : A. B dependent function type
| U universe name

Notations: A→ B def
= Πx : A. B if x not free in B. ∀x : A. B def

= Πx : A. B.

A given PTS is obtained by �xing the set U of universes, and two relations
over universes, A (which universe belongs to which universe?)
andR (which Π-types are well formed?).

40

Parametricity in a PTS
(Bernardy, Jansson, Paterson, Proofs for free, JFP 2012)

Notations:
For every variable x we assume given two new variables x1, x2.
Ai is the term A where every free variable x is replaced by xi.

Intuitions:

Every type A : U becomes a relation [[A]] : A1 → A2 → Ũ
having the general shape of a logical relation.
Every term A : B becomes a proof that
the relation [[B]] relates A1 with A2, i.e. [[A]] : [[B]] A1 A2.
In particular, when A and B are closed, we get [[A]] : [[B]] A A, which
proves the fundamental theorem of logical relations.

(Note: the paper deals with n-place relations. Here, we take n = 2.)

41

Function types

Special case #1: a non-dependent function type, A→ B.
The usual condition: two related functions map related arguments to
related results.

[[A→ B]] = λf1 : A1 → B1. λf2 : A2 → B2.

∀x1 : A1. ∀x2 : A2. [[A]] x1 x2 → [[B]] (f1 x1) (f2 x2)

Special case #2: the “for all” from system F, ∀X : ?. B.
X is interpreted by two types X1, X2 and a relation X : X1 → X2 → Prop.

[[∀X : ?. B]] = λf1 : ∀X : ?. B1. λf2 : ∀X : ?. B2.

∀X1 : ?. ∀X2 : ?. ∀X : X1 → X2 → Prop. [[B]] (f1 X1) (f2 X2)

42

Function types

The general case:

[[Πx : A. B]] = λf1 : Πx : A1. B1. λf2 : Πx : A2. B2.

∀x1 : A1. ∀x2 : A2. ∀x : [[A]] x1 x2. [[B]] (f1 x1) (f2 x2)

with, as a consequence:

[[x]] = x
[[U]] = λx1 : U. λx2 : U. x1 → x2 → Ũ

43

Abstractions, applications, contexts

Consistently with the translation of function types:

[[λx : A. B]] = λx1 : A1. λx2 : A2. λx : [[A]] x1 x2. [[B]]

[[A B]] = [[A]] B1 B2 [[B]]

Every free variable x is translated by 3 variables: two interpretations x1, x2
and a relation x. Hence the translation of typing contexts Γ:

[[∅]] = ∅
[[Γ, x : A]] = [[Γ]], x1 : A1, x2 : A2, x : [[A]] x1 x2

44

The fundamental theorem

Modulo technical hypotheses over universes U and their translations Ũ:

Theorem
If Γ ` A : B, then [[Γ]] ` [[A]] : [[B]] A1 A2.

As a corollary, for a closed term: if ` A : B, then [[B]] A A
(A is related to itself by the logical relation [[B]]).

We recover the results for system F by taking ?̃ = Prop:
a type A : ? becomes a relation [[A]] : A1 → A2 → Prop.

45

Extensions for free: type constructors (Fω)

A type constructor such as list : ?→ ? becomes a relation transformer:

[[?→ ?]] = λ(F1, F2 : ?→ ?). ∀(X1, X2 : ?).

(X1 → X2 → ?̃)→ (F1 X1 → F2 X2 → ?̃)

For instance, [[?→ ?]] list list takes a relation X1 → X2 → Prop between
any two types and returns a relation list(X1)→ list(X2)→ Prop.

46

Extensions for free: dependent types (LF)

A dependent type such as even : nat→ ? becomes:

[[nat→ ?]] = λ(F1, F2 : nat→ ?). ∀(n1, n2 : nat).

[[nat]] n1 n2 → (F1 n1 → F2 n2 → ?̃)

Assuming [[nat]] is the identity relation, [[nat→ ?]] even even takes an
integer n and returns a relation even(n)→ even(n)→ Prop.

Exercise: what happens to vec : ?→ nat→ ?, the constructor of the type
vec A n of lists of A of length n?

47

Translating the universes

In general we can translate universes identically: Ũ = U.

It’s the only possible choice for Agda and its hierarchy of universes
Seti : Seti+1.

In Coq, we have an impredicative Prop universe in addition to the
hierarchy Set = Type0 : Type1 : · · · : Typei : · · · .

It is pleasing to take P̃rop = S̃et = Prop in order to obtain “true” relations
(A1 → A2 → Prop instead of A1 → A2 → Type).

But we must take T̃ypei = Typei for i > 0
(otherwise the typing rule ` Typei : Typei+1 doesn’t translate).

48

Parametricity is anti-classical
(M. Lasson, 2012)

In other words: classical logic is not parametric.
Indeed, consider the types A corresponding to classical laws:

∀X. X + (X → ⊥) excluded middle
∀X.∀Y. ((X → Y)→ X)→ X Peirce’s law
∀X. ((X → ⊥)→ ⊥)→ X double negation elimination

Assume there exists a term a : [[A]] (a witness for the logical relation for A).
We then get a contradiction.

For instance, for double negation elimination:
we interpret X by any two types and the everywhere-false relation.
[[(X → ⊥)→ ⊥]] x1 x2 is true. [[X]] (f1 x1) (f2 x2) is false.
Hence [[(X → ⊥)→ ⊥)→ X]] f1 f2 is false.

49

IV

Advanced topics

Other work on parametricity

We have seen the basic principles of parametricity. It is an active research
area, with extensions in many directions. In particular:

General recursion, non-termination:
The theory still applies but “theorems for free” are weaker
(because ⊥ belongs to all types).
(A. M. Pitts, Parametric Polymorphism and Operational Equivalence, MSCS 2000.)

Recursive types, mutable state containing functions, etc:
in these cases, the de�nition of the relations Rt is not well founded by
induction over type t. We need other well-foundation principles, such as
step-indexing.
(Lecture of Jan 9th 2019).

51

Other work on parametricity

Dynamic typing, gradual typing:
a run-time type test such as instanceof in Java can “break” parametricity:

(λx. if x instanceof nat then 1 else 0) : ∀X. X → nat

Other forms of dynamic typing, such as gradual typing, preserve some of
the parametricity properties.
Neis, Dreyer, Rossberg. Non-parametric parametricity. JFP 2011.
Ahmed et al. Theorems for Free for Free: Parametricity, With and Without Types. ICFP 2017.

Connections with equality and with homotopy:
for closed terms, does Rt (M,N) implies M = N? Can we prove it? can we
postulate it as an axiom? Connections appear with homotopy type theory.
Nuyts, Vezzosi, Devriese, Parametric Quanti�ers for Dependent Type Theory, ICFP 2017.
Also: the lecture of Jan 23rd 2019.

52

Other work on parametricity

Parametricity and invariance, in other areas:
Reynolds’ parametricity is invariance by change of representation. Notions
of parametricity can be seen in other areas where invariance properties
play a crucial role, for instance Noether’s theorem in physics (existence of
a physical quantity that is conserved).
Atkey, From Parametricity to Conservation Laws, via Noether’s Theorem, POPL 2014.

Connections with symbolic program di�erentiation:
programs react to small changes in the input data more or less like they
react to a change of data representation. . .
Cai, Giarusso, Rendel, Ostermann, A theory of changes for higher-order languages –
incrementalizing λ-calculi by static di�erentiation, PLDI 2014.

53

V

Further reading

Further reading

Two seminal papers:

John C. Reynolds, Types, abstraction and parametric polymorphism, 1983.
http://www.cse.chalmers.se/edu/year/2010/course/DAT140_Types/

Reynolds_typesabpara.pdf

Phil Wadler, Theorems for free!, 1989.
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz

Logical relations:

Syntactic approach: Robert Harper, Practical Foundations for Programming
Languages, 2016, chapter 48.

Model-based approach: John C. Mitchell, Foundations for Programming
Languages , 1996, chapters 5 and 8.

Proofs of strong normalization:

J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, 2003,
http://www.paultaylor.eu/stable/Proofs+Types.html, chapters 6 and 14.

55

http://www.cse.chalmers.se/edu/year/2010/course/DAT140_Types/Reynolds_typesabpara.pdf
http://www.cse.chalmers.se/edu/year/2010/course/DAT140_Types/Reynolds_typesabpara.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://www.paultaylor.eu/stable/Proofs+Types.html

	Logical relations
	Theorems for free
	Parametricity in type theory
	Advanced topics
	Further reading

