
Programming = proving?
The Curry-Howard correspondence today

Fi�h lecture

Can we change the world?
Imperative programming,

monadic e�ects, algebraic e�ects

Xavier Leroy

Collège de France

2018-12-12

I

E�ects in programming
and in semantics

Pure functional programming

Executing a program is computing its �nal result, also called normal form
or value.

We can also observe that the program does not terminate (divergence).
(Except if the type system guarantees termination.)

3

Programming “in the real world”

Executing a program has an e�ect on the outside world:
displaying things on the screen, writing �les, . . .
communicating over the network
reading sensors, controlling actuators.

An imperative, “cooking recipe” view of programming:
Executing a program has an e�ect on the computer:

assigning variables or array elements;
allocating, modifying, freeing data structures;
jumping to another control point (exceptions, continuations,
backtracking).

4

Semantics for e�ects

What formal semantics can we give to languages with e�ects?

In particular, which denotational semantics?

syntactic element
(expression, command, function)

denotational semantics

mathematical object:
pure lambda-term,

Scott domain,
2-player game, etc.

5

Semantics for mutable state

A command x = x+1 is viewed as a state transformer:

state where x is n x = x+1−−−−−−−→ state where x is n+ 1

The denotation of a command c is therefore a function S→ S
from the state s1 : S at the beginning of c’s execution
to the state s2 : S at the end of c’s execution.

Ex: a sequence c1; c2 is the composition of denotations [[c2]] ◦ [[c1]].

Likewise, the denotation of an expression with e�ects e : T is a function
S→ T × S, state “before” 7→ (value, state “a�er).

Note: this technique of passing the current state as extra argument and
extra result allows us to program imperative algorithms in pure functional
languages (Haskell, Agda, Coq).

6

Semantics for other e�ects

We can change the shape of results: for an expression e : T,
[[e]] is a set of T =⇒ non-determinism
[[e]] is a value of type T or an exception =⇒ exceptions.

We can add one or several continuations:
[[e]] = λk . . . : control operators, non-local goto;
[[e]] = λksuccess.λkfailure . . .: exceptions, backtracking.

This is all ad hoc and not modular: adding one e�ect changes the whole
semantics. Can we be more abstract and more modular?

7

II

Monads

Monads

A metaphysical concept
(Plato, Leibniz, . . .)

A structure in category theory
(Godement’s “standard construction”; Mac Lane)

A semantic tool to describe languages with e�ects
(Moggi, 1989)

A technique to program with e�ects in a pure language
(Wadler, 1991; the Haskell community)

A tool to write programs with e�ects and reason over them.

9

The computational lambda-calculus
(Eugenio Moggi, Computational lambda-calculus and monads, LICS 1989; Notions of
computations and monads, Inf. Comput. 93(1), 1991.)

To model e�ectful programming, Moggi was looking for a “computational”
lambda-calculus and its program equivalence principles.

He chose to separate clearly
values (results of computations) from
computations (which eventually produce values).

A computation that produces a value of type A has type T A.

10

The computational lambda-calculus

Various choices for T correspond to known denotational semantics for
various e�ects:

Non-determinism: T A = P(A)

Exceptions: T A = A+ E (E type of exceptions)

Mutable state: T A = S→ A× S (S type of states)

Continuations T A = (A→ R)→ R (R type of results)

11

The monad structure

To give semantics to e�ectful languages, we need two base operations on
computations:

ret : A→ T A (injection)
ret v is the trivial computation that produces value v, without e�ects.

bind : T A→ (A→ T B)→ T B (sequential composition)
bind a (λx.b) performs computation a, binds its result value to x,
then performs computation b, and returns its result.

(The name “monad” is a bit of a misnomer: modulo notations, (T, ret, bind) is a
Kleisli triple, equivalent to a monad in category theory.)

12

Monad laws

bind (ret v) f = f v (le� neutral)

bind a ret = a (right neutral)

bind (bind a f) g = bind a (λx. bind (f x) g) (associative)

13

Alternate presentation of monads

In category theory, a monad is a triple (T, η, µ) where

η : A→ T A µ : T (T A)→ T A T(f) : T A→ T B if f : A→ B

Both presentations are related by taking ret = η and

bind a f = µ(T(f) a)
µ a = bind a (λy. y)
T(f) = λa. bind a (λx. ret(f x))

14

An example of monad: non-determinism

T A = P(A)

ret v = {v}

bind a f =
⋃
x∈a

f x

Speci�c operations for non-determinism:

fail = ∅
choose a b = a ∪ b

15

An example of monad: exceptions

T A = A+ E (E = type of exception values)

ret v = inj1(v)
bind (inj1(v)) f = f v
bind (inj2(e)) f = inj2(e) (exception propagation)

Speci�c operations for exceptions:

raise e = inj2(e)
try a with x→ b = match a with inj1(x)→ inj1(x) | inj2(x)→ b

16

An example of monad: mutable state

T A = S→ A× S (S = type of states)

ret v = λs. (v, s)
bind a f = λs1. let (x, s2) = a s1 in f x s2

Speci�c operations: (` = memory locations)

get ` = λs. (s(`), s)
set ` v = λs. ((), s{`← v})

17

An example of monad: continuations

T A = (A→ R)→ R (R = type of the �nal result)

ret v = λk. k v
bind a f = λk. a (λx. f x k)

Control operators:

callcc f = λk. f (λv.λk′. k v) k
C f = λk. f (λv.λk′. k v) (λx.x)

18

Monads that combine several e�ects

State + exceptions: T A = S→ (A+ E)× S

Stat + continuations: T A = S→ (A→ S→ R)→ R

Continuations + exceptions: T A = ((A+ E)→ R)→ R
or T A = (A→ R)→ (E→ R)→ R

Exercise: write ret and bind for these 4 monads.

See also: the monad transformers, a more systematic approach to
combining e�ects.

19

Even more monads

Environment (reader monad): T A = Env → A
ret v = λe. v
bind a f = λe. f (a e) e

Logging (writer monad): T A = A× string

ret v = (v, "")
bind a f = let (x, s1) = a in let (y, s2) = f x in (y, s1.s2)

Distributions: T A = P(A× I) (= non-determinism + probabilities)
ret v = {(v, 1)}
bind a f = {(y, p1 × p2) | (x, p1) ∈ a, (y, p2) ∈ f x}
choose p a b = {(a, p); (b, 1− p)}

Expectations: T A = (A→ I)→ I (= continuations + probabilities)
ret v = λµ. µ v
bind a f = λµ. a (λx. f x µ)
choose p a b = λµ. p× (a µ) + (1− p)× (b µ)

20

The computational lambda-calculus

M,N ::= x | λx.M | M N lambda-calculus
| . . . products, sums, inductive types
| val M trivial computation
| let x⇐ M in N sequence of 2 computations
| . . . speci�c operations of the monad

For a given monad (T, ret, bind), the semantics is obtained by
interpreting val M by ret M and let x⇐ M in N by bind M (λx.N).
Equivalences:

(λx.M) N = M{x← N} (β)
λx.M x = M (η)

let x⇐ val M in N = N{x← M}
let x⇐ M in val x = M

let x⇐ (let y ⇐ M in N) in P = let y ⇐ M in let x⇐ N in P

21

Example program

In the non-determinism monad.

All the ways to insert an element x in a list l:

let rec insert x l =

choose (val (x :: l))

(match l with

| [] -> fail

| h :: t -> let t’ ⇐ insert x t in val (h :: t’))

All the permutations of a list l:

let rec permut l =

match l with

| [] -> val []

| h :: t -> let t’ ⇐ permut t in insert h t’

22

The monadic transformation

Transforms an impure functional language with implicit e�ects (Caml,
Scheme, etc) to computational lambda-calculus with monadic e�ects.
Makes explicit monadic e�ects and evaluation strategy.

Call by value

Call by name

[[cst]]v = val cst

[[cst]]n = val cst

[[λx.M]]v = val(λx. [[M]]v)

[[λx.M]]n = val(λx. [[M]]n)

[[x]]v = val x

[[x]]n = x

[[M N]]v = let f ⇐ [[M]]v in

[[M N]]n = let f ⇐ [[M]]n in

let a⇐ [[N]]v in f a

f [[N]]n

Note: CPS transformation = monadic transformation + continuation monad.

23

The monadic transformation

Transforms an impure functional language with implicit e�ects (Caml,
Scheme, etc) to computational lambda-calculus with monadic e�ects.
Makes explicit monadic e�ects and evaluation strategy.

Call by value Call by name

[[cst]]v = val cst [[cst]]n = val cst
[[λx.M]]v = val(λx. [[M]]v) [[λx.M]]n = val(λx. [[M]]n)

[[x]]v = val x [[x]]n = x

[[M N]]v = let f ⇐ [[M]]v in [[M N]]n = let f ⇐ [[M]]n in
let a⇐ [[N]]v in f a f [[N]]n

Note: CPS transformation = monadic transformation + continuation monad.

23

The monadic transformation

E�ect on types:

[[A]] = T A∗

ι∗ = ι

(A→ B)∗ =

{
A∗ → [[B]] (call by value)
[[A]]→ [[B]] (call by name)

24

III

The logic behind monads

Curry-Howard for monads

In the spirit of Curry-Howard: what do monads and monadic
transformations mean when viewed as propositions and transformations
of propositions and proofs?

For speci�c monads (continuations, exceptions):
interesting “logical” interpretations.

In general: a connection with modal logics.

26

Continuation monad and classical logic

As seen in the previous lecture:

Call-by-name monadic translation
for the continuation monad T A = (A→ R)→ R = ¬R ¬R A
⇒ relative negative translation

from classical logic to minimal logic.

[[A]]R = ¬R ¬R A [[P⇒ Q]]R = ¬R ¬R ([[P]]R ⇒ [[Q]]R)
[[P ∧ Q]]R = ¬R ¬R ([[P]]R ∧ [[Q]]R) [[P ∨ Q]]R = ¬R ¬R ([[P]]R ∨ [[Q]]R)
[[∀x. P]]R = ¬R ¬R ∀x. [[P]]R [[∃x. P]]R = ¬R ¬R ∃x. [[P]]R

The callcc operation of the monad corresponds to Clavius’s law, and the
C operation to double negation elimination.

27

Exception monad and ex falso quodlibet

Call-by-name monadic translation
for the exception monad T A = A+ E
⇒ a translation from intuitionistic logic to minimal logic.

[[⊥]] = E [[A]] = A ∨ E if A atomic
[[P⇒ Q]] = ([[P]]⇒ [[Q]]) ∨ E
[[P ∧ Q]] = ([[P]] ∧ [[Q]]) ∨ E [[P ∨ Q]] = ([[P]] ∨ [[Q]]) ∨ E
[[∀x. P]] = (∀x. [[P]]) ∨ E [[∃x. P]] = (∃x. [[P]]) ∨ E

The rule ⊥ ⇒ P, ex falso quod libet, becomes derivable a�er translation:
E⇒ · · · ∨ E.
It corresponds to the raise operation of the monad.

28

Monad = modality?

ret : A→ T A
bind : T A→ (A→ T B)→ T B

The types for the ret and bind monad operations are reminiscent of rules
of modal logic, viewing the type constructor T as a modality.

29

Modal logics

Qualify logical propositions by modalities that describe aspects of truth.

For example, following Aristotle, we can distinguish necessary truths �P,
contingent truths A, and possible truths ♦P.

The � and ♦ modalities are connected in classical logic:

�¬P⇐⇒ ¬♦P ♦¬P⇐⇒ ¬�P

They can be interpreted in various ways:
Alethic: � = necessarily, ♦ = possibly.
Temporal: � = forever, ♦ = eventually.
Geographic: � = everywhere, ♦ = somewhere.

Other modalities can be considered, for instance “known by agent i” in
epistemic logics.

30

Modal logics

Many di�erent axiomatizations, depending on the intended meaning of
modalities.

Example: in modal logic S4, the rules for � are:

�P if P is a classical tautology (N)
�(P⇒ Q)⇒ (�P⇒ �Q) (K)
�P⇒ P (T)
�P⇒ ��P (4)

The rules for ♦ follow from the de�nition ♦P def
= ¬�¬P.

31

Monad = modality?

ret : A→ T A
bind : T A→ (A→ T B)→ T B

The type of ret can be read as A⇒ ♦A, suggesting that T is the ♦
modality, “possibly”.

However, the type of bind is logically false: 8 ♦A⇒ (A⇒ ♦B)⇒ ♦B.

Symmetrically, if T is read as the � modality, “necessarily”, the type of
bind is valid, but not that of ret: 8 A⇒ �A.

32

The lax modality #
(Mendler, 1991; Fairtlough and Mendler, 1997, 2003)

Introduced by Mendler in the context of formal veri�cation of hardware
circuits, the #P modality can be read as “P is true under some conditions”,
or as C⇒ P for an implicit condition C.

It is characterized by the axioms

P⇒ #P (I)
#P⇒ #P (M)
(P⇒ Q)⇒ (#P⇒ #Q) (Ext)
P ∧#Q⇒ #(P ∧ Q) (S)

33

Monad = lax modality
(Benton, Bierman, de Paiva, JFP(8), 1998)

The type constructor T of a monad corresponds to the lax modality #. The
axioms of the modality are realized by terms of the computational
lambda-calculus.

val : P⇒ #P
λx. let y ⇐ x in y : # #P⇒ #P

λf .λx. let v ⇐ x in val(f v) : (P⇒ Q)⇒ (#P⇒ #Q)

λx. let v1 ⇐ π1(x) in
let v2 ⇐ π2(x) in
val(v1, v2)

: # P ∧#Q⇒ #(P ∧ Q)

34

Another modal encoding
(Pfenning and Davies, MSCS(11), 2001)

We can also encode the types of a monadic language using the standard �
and ♦ modalities:

[[ι]] = ι for base types ι
[[A→ B]] = �[[A]]⇒ [[B]]

[[T A]] = ♦�[[A]]

Temporal logic intuitions:
a value of type A is stable against future e�ects
=⇒ �[[A]], “forever A”;
a computation of type A, a�er performing e�ects, will eventually
produce a value of type A
=⇒ ♦�[[A]], “eventually, forever A”.

35

IV

Monads that support logic

Dependent types, preconditions, postconditions

In a dependently-typed language (like Agda, Coq, or F*), we can write very
precise types, such as

∀x : A. P(x)→ B function taking an x : A
and a proof of P(x)

{y : B | Q(y)} pair of a y : B and
a proof of Q(y)

∀x : A. P(x)→ {y : B | Q(x, y)} function A→ B respecting
the precondition P
and the postcondition Q

Example: Euclidean division.

div: ∀(a b: nat), b > 0 -> { q | ∃r, a = b * q + r ∧ 0 <= r < b }

37

State monad: invariants, monotonic evolution

T A = S→ A× S

We can enforce an invariant Inv : S→ Prop over states by replacing S by a
subset type SInv:

T A = SInv → A× SInv with SInv = {s : S | Inv s}

We can also enforce monotonic evolution of states w.r.t. an order
Ord : S→ S→ Prop:

T A = ∀(s : S), A× {s′ : S | Ord s s′}

38

A monotonic state: time

Assume the state is just a timestamp. We can guarantee that computations
do not “go back in time” using the monad

T A = ∀(t : Z), A× {t′ : Z | t ≤ t′}

A computation c : T A in this monad automatically guarantees that
c t1 = (v, t2)⇒ t2 ≥ t1.

This greatly helps establishing uniqueness properties of timestamps:

let t1 ⇐ timestamp in

let x ⇐ f ... in

let t2 ⇐ timestamp in

(t1, x, t2)

Regardless of f’s e�ects, we know that t1 < t2 and therefore t1 6= t2.

39

A monotonic state: time

Monad operations are more complex and contain proof terms:

Definition T(A: Type) := forall (t: Z), A * t’ : Z | t <= t’ .

Definition ret (A: Type) (a: A) : T A :=

fun (t: Z) => (a, exist _ t (Z.le_refl t)).

Definition bind (A B: Type) (a: T A) (f: A -> T B) : T B :=

fun (t1: Z) =>

let ’(x, exist _ t2 p12) := a t1 in

let ’(y, exist _ t3 p23) := f x t2 in

(y, exist _ t3 (Z.le_trans t1 t2 t3 p12 p23)).

Definition timestamp : T Z :=

fun (t: Z) => (t, exist _ (Z.succ t) (Z.le_succ_diag_r t)).

40

Hoare Type Theory (HTT)
(Nanevski et al, ICFP 2008, POPL 2010.)

Instead of �xing in advance expected properties of one state (Inv) or two
states (Ord), we can also parameterize the state monad by any
precondition P and any postcondition Q.

pre def
= S→ Prop

post A def
= A→ S→ S→ Prop

ST : pre→ ∀(A : Type), post A→ Type

ST P A Q def
= ∀(s1 : S), P s1 → {(a, s2) : A× S | Q a s1 s2}

A computation c : ST P A Q is the functional, monadic equivalent of a
command c satisfying the Hoare triple {P} c {Q}:
evaluated in an initial state s1 satisfying P, the computation c produces a
value a and a �nal state s2 satisfying Q.

41

Typing the operations

We can give frighteningly precise types to the operations of the state
monad:

ret : ∀(A : Type)(v : A), ST (λs1.>) A (λx, s1, s2. s2 = s1 ∧ x = v)

get : ∀(A : Type)(l : loc A),
ST (λs1. valid l s1) A (λx, s1, s2. s2 = s1 ∧ x = get l s1)

set : ∀(A : Type)(l : loc A)(v : A),
ST (λs1. valid l s1) unit (λx, s1, s2. s2 = set l v s1 ∧ x = tt)

bind : ∀(A B : Type)(P1 : pre)(Q1 : post A)(P2 : A→ pre)(Q2 : A→ post B),
ST P1 A Q1 → (∀(a : A), ST (P2 a) B (Q2 a))→ ST P B Q

where P = λs1. P1 s1 ∧ ∀a, s2. Q1 a s1 s2 ⇒ P2 s2
and Q = λb, s1, s3. ∃a, s2. Q1 a s1 s2 ∧ Q2 a b s2 s3.

42

Weakest preconditions and predicate transformers

Since Dijkstra (1975), we know that for any command c and postcondition Q,
there exists a weakest precondition P such that {P} c {Q}.

It can be de�ned as a function of c and Q: P = wp(c,Q).

In other words: the behavior of command c is entirely characterized by the
predicate transformer Q 7→ wp(c,Q), that is, a function
W : postcondition 7→ weakest precondition.

43

The Dijkstra monad
(Swamy et al, PLDI 2013, POPL 2016)

A state monad ST A W that describes computations producing values of
type A and satisfying the predicate transformer W.

pre def
= S→ Prop

post A def
= A→ S→ Prop

wptransf A def
= post A→ pre

ST : ∀(A : Type),wptransf A→ Type

ST A W def
= ∀(Q : post A)(s1 : S), W Q s1 → {(a, s2) : A× S | Q a s1 s2}

44

Typing operations of the Dijkstra monad

The types for the operations of the Dijkstra monad are slightly simpler
than those of the HTT monad, and better support inference by uni�cation.

ret : ∀(A : Type)(x : A), ST A (λQ. Q x)

get : ∀(A : Type)(l : loc A),
ST A (λQ.λs. valid l s ∧ Q (get l s) s)

set : ∀(A : Type)(l : loc A)(v : A),
ST unit (λQ.λs. valid l s ∧ Q tt (set l v s))

bind : ∀(A B : Type)(W1 : wptransf A)(W2 : A→ wptransf B),
ST A W1 → (∀(a : A), ST B (W2 a))→ ST B (λQ. W1 (λa. W2 a Q))

Moreover, the “Dijkstra monad” approach extends to other e�ects
(partiality, exceptions) and to their combinations =⇒ the F* language.

45

V

Algebraic e�ects
and e�ect handlers

Where do e�ects come from?

Moggi’s computational lambda-calculus, and more generally the monadic
approach, accounts for propagation and sequencing of e�ects in a generic
manner (independently of the kind of e�ects considered).

Can we account (in a generic manner too) for the base operations that
create e�ects? For example,

Input/output: print, read
Exceptions: raise
Mutable state: set, get
Non-determinism: choose, fail.

Plotkin and Power (2003) introduce an algebraic presentation of these
operations that create e�ects.

47

Algebraic structures

In mathematics, an algebraic structure is a set equipped with operations
that satisfy identities (equations).

Example: a group is a set G with three operations:
a constant 1, a binary operation ·, a unary operation −1,
satisfying the identities

(x · y) · z = x · (y · z)
1 · x = x = x · 1

x · x−1 = 1 = x−1 · x

48

Algebraic abstract types

In computing, an algebraic abstract type is an abstract type
(= a type name + operations) speci�ed by equations over the operations.

Example: functional arrays (operations get, set)

get i (set i v t) = v
get i (set j v t) = get i t if i 6= j

Example: stacks (operations empty, push, pop, top)

top (push v s) = v
pop (push v s) = s

49

Algebraic e�ects
(Plotkin, Power, Pretnar, et al; 2003–)

Values: v ::= x | cst | λx. M
Computations: M,N ::= val v trivial computation

| let x⇐ M in N sequence of 2 computations
| v v′ application
| op(~v; y.M) e�ectful operation

The term op(v1 . . . vn; y.M) stands for an operation that produces an e�ect.
The values vi are the parameters. The operation produces a result value
that is bound to y in continuation M.

Notation: op(~v) def= op(~v; y. val(y)) (trivial continuation).

Semantically, we have the equivalence op(~v, y.M) = let y ⇐ op(~v) in M.

50

Example: input/output
(Pretnar, An introduction to algebraic e�ects and handlers, MFPS 2015)

Operations: print that takes a string and readint that returns an integer.

let _ ⇐ print("A") in

let n ⇐ readint() in

if n <= 0 then

(let _ ⇐ print("B")

in val (-n))

else

val (n+1)

print("A")

readint()

0

print("B")

0

2 3print("B")

1

1 2-1
· · · · · ·

Intuitive semantics: a tree of actions, with operations at the nodes and
values (or ⊥) at the leaves.

51

Equations over e�ects

The I/O e�ects are “free”: a�er an output, all inputs remain possible. This
is not the case for other e�ects. For mutable state (operations get and set

over locations `), we have at least the following equations:

set(`, v; . get(`; z.M)) = set(`, v; .M{z← v})
set(`, v; . get(`′; z.M)) = get(`′; z. set(`, v; .M)) if `′ 6= `

For completeness we can add

get(`; y. get(`; z.M)) = get(`; y.M{z← y}) (double read)
get(`; y. set(`, y; .M)) = M (read then rewrite)

set(`, v1; . set(`, v2; .M)) = set(`, v2; .M) (double write)
get(`; y. get(`′; z.M)) = get(`′; z. get(`; y.M)) if `′ 6= `

set(`, v; y. set(`′, v′; z.M)) = set(`′, v′; z. set(`, v; y.M)) if `′ 6= `

52

Handling e�ects

For I/O or mutable state, we can imagine that e�ects are executed by the
operating system or the runtime system of the language.

Can we enable the program to handle (“execute”) itself some of the e�ects
it produces?

53

Exception handling

raise(e) can be viewed as an operator producing the “exception e” e�ect.
It can be handled by the construct

try a with x→ b

that catches exceptions raised by a and then evaluates b (the exception
handler).

Some languages (Common Lisp, Dylan) allow the handler to restart the
computation at the point where the exception was raised. We can model
this by a parameter k to the handler, bound to the continuation of the
raise(e) exception:

try a with (x,k) → if ... then k 0 else b
↗ ↗

(resume with value 0 for the raise) (abort with value b)

54

E�ect handlers
Values: v ::= x | cst | λx. M
Computations: M,N ::= val v trivial computation

| let x⇐ M in N sequencing of 2 computations
| v v′ application
| op(~v; y.M) e�ectful operation
| with H handle M e�ect handler

Handlers: H ::= { val(x)→ Mval;
op1(~x; k)→ M1;
· · ·
opn(~x; k)→ Mn }

In with H handle M,
if M performs opi(~v; y.N), the Mi case is evaluated with~x = ~v and
k = λy.N;
if M evaluates val v, the Mval case is evaluated with x = v.

55

Examples of e�ect handlers

Exception handling:

with { val(x) → val(x);

raise(e; k) → if ... then k 0 else b }
handle a

Invert the order of print operations performed:

with { val(x) → val(x);

print(s; k) → let _ ⇐ k() in print(s) }
handle a

Collect print operations in a character string:

with { val(x) → val(x, "");

print(s; k) → let (x, acc) ⇐ k()

in val (x, concat s acc) }

(This changes the type of the computation: from A to A× string.)

56

Examples of e�ect handlers

Non-determinism by backtracking:
(choose() is an e�ect that returns true or false non-deterministically)

with { val(x) → val(x);

choose(_; k) → with { fail(_; k’) → k false }
handle k true }

Mutable state:

with { val(x) → λs. (x, s);

get(l; k) → λs. (k (lookup l s)) s;

set(l, v; k) → λs. (k ()) (update l v s) }

(This changes the type of the computation: from A to S→ A× S.)

57

Ongoing work on algebraic e�ects

Static typing that keeps tracks of e�ects, for example

Value types: A ::= ι | A1 × A2 | A→ C | C1 ⇒ C2 (handler type)
Computation types: C ::= A!{op1, . . . , opn}

Language designs and implementations:
E� https://www.eff-lang.org

Frank https://github.com/frank-lang/frank

Multicore OCaml https://github.com/ocamllabs/ocaml-multicore/wiki

58

https://www.eff-lang.org
https://github.com/frank-lang/frank
https://github.com/ocamllabs/ocaml-multicore/wiki

VI

Concluding remarks

Monadic e�ects, algebraic e�ects

A success for the “categorical” approach to programming languages.

The view that “category theory comes, logically, before the λ-
calculus” led us to consider a categorical semantics of computa-
tions �rst, rather than to modify directly the rules of βη-conversion
to get a correct calculus.

(E. Moggi, Notions of Computations and Monads, 1991)

Not a success for the “Curry-Howard” approach:
the connections with mathematical logic are weak.

60

VII

Further reading

Further reading

Programming with monads:
All About Monads, https://wiki.haskell.org/All_About_Monads

Programming and proving with Dijkstra monads:
Veri�ed programming in F*, https://www.fstar-lang.org/tutorial/

Algebraic e�ects and e�ect handlers:
Matija Pretnar, An Introduction to Algebraic E�ects and Handlers,
tutorial, MFPS 2015, https://www.eff-lang.org/handlers-tutorial.pdf
Andrej Bauer, Algebraic e�ects and handlers, OPLSS 2018 summer
school, https://www.cs.uoregon.edu/research/summerschool/summer18/
lectures/bauer_notes.pdf

62

https://wiki.haskell.org/All_About_Monads
https://www.fstar-lang.org/tutorial/
https://www.eff-lang.org/handlers-tutorial.pdf
https://www.cs.uoregon.edu/research/summerschool/summer18/lectures/bauer_notes.pdf
https://www.cs.uoregon.edu/research/summerschool/summer18/lectures/bauer_notes.pdf

	Effects
	Monads
	The logic behind monads
	Monads that support logic
	Algebraic effects
	Conclusions
	Further reading

