
Programming = proving?
The Curry-Howard correspondence today

Fourth lecture

You’ve got to decide one way or the other!
Classical logic, continuations,

and control operators

Xavier Leroy

Collège de France

2018-12-05

Today’s lecture

Let’s try to answer the question
If intuitionistic logic corresponds to typed lambda-calculus,
what does classical logic corresponds to?

For this purpose:
Understand classical logic in relation with intuitionistic logic.
Understand “control operators” (call/cc et al)
(≈ the goto of lambda-calculus).

2

I

Classical logic, intuitionistic logic

Classical logic, intuitionistic logic

The �rst lecture introduced intuitionistic logic as classical logic “minus”
some reasoning principles:

excluded middle P ∨ ¬P, that is, every P is either true or false;
¬¬P⇒ P, that is, proof by contradiction.

This idea o�ended many mathematicians, starting with Hilbert, who wrote
in 1927, criticizing Brouwer’s ideas:

Taking the principle of excluded middle from the mathematician would
be the same, say, as proscribing the telescope to the astronomer or to
the boxer the use of his �sts. To prohibit existence statements and the
principle of excluded middle is tantamount to relinquishing the science
of mathematics altogether.

(Hilbert, The foundations of mathematics, 1927; in van Heijenoort, From Frege to
Gödel: A Source Book in Mathematical Logic, 1976)

4

Classical logic, intuitionistic logic

Let’s o�end even more: take intuitionistic logic as a well-understood
starting point and use it to better understand classical logic.

Classical logic as intuitionistic logic “plus” some laws and some
symmetries.
Classical logic as a fragment of intuitionistic logic
(modulo encodings).

5

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical laws

The propositions below (∀P,Q, R) are:
true in classical logic (as show by their truth tables);
not provable but all equivalent in intuitionistic logic.

P ∨ ¬P excluded middle, tertium non datur, tiers exclu

¬¬P⇒ P double negation elimination

(¬P⇒ P)⇒ P mirabile consequentia, Clavius’ law

((P⇒ Q)⇒ P)⇒ P Peirce’s law

(¬(P⇒ Q))⇒ P ∧ ¬Q counterexample principle

P ∨ (P⇒ Q) Tarski’s formula

(P⇒ Q) ∨ (Q⇒ R) linearity principle

A vision: classical logic = intuitionistic logic + (one of) those laws.

6

Classical, intuitionistic, minimal logics

minimal logic

+ ex falso quodlibet

intuitionistic logic

+ excluded middle or equivalent

classical logic

7

Classical laws

In minimal logic (without ex falso quodlibet, ⊥ ⇒ P), those classical laws
are not all equivalent:

double negation elimination
¬¬P⇒ P

⇔ counterexample principle
(¬(P⇒ Q))⇒ P ∧ ¬Q

⇓
Peirce’s law

((P⇒ Q)⇒ P)⇒ P
⇔ Tarski’s formula

P ∨ (P⇒ Q)

⇔ linearity
(P⇒ Q) ∨ (Q⇒ R)

⇓
excluded middle

P ∨ ¬P
⇔ Clavius’ law

(¬P⇒ P)⇒ P
⇓

weak excluded middle
¬P ∨ ¬¬P

⇔ de Morgan’s law
¬(P ∧ Q)⇔ ¬P ∨ ¬Q

(Diener and McKubre-Jordens, Classifying Material Implications over Minimal Logic, 2018)

8

de Morgan’s laws and duality

The laws connecting “and”, “or”, “not” (de Morgan’s laws) do not all hold in
intuitionistic logic:

Classical Intuitionistic

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q ⇐

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q ⇔

¬(¬P ∧ ¬Q) ⇔ P ∨ Q ⇐

¬(¬P ∨ ¬Q) ⇔ P ∧ Q ⇐

A vision: classical logic = duality between ∧ and ∨ via ¬

9

Translations classical logic→ intuitionistic logic

A vision: intuitionistic logic as a mean to study classical logic.

An approach initiated by Gödel circa 1933 to show the consistency of
classical arithmetic (Peano’s arithmetic):

De�ne a translation [[·]] for logic formulas ϕ such that:
if C.L. ` ϕ then I.L. ` [[ϕ]];
if ϕ is a contradiction then [[ϕ]] is a contradiction.
Prove consistency of intuitionistic arithmetic (Heyting’s arithmetic)
using BHK-style interpretations.

The [[·]] translations are generally based on double negation.

10

Double negation

Double negation ¬¬P reads as “P is not wrong”.

In classical logic, ¬¬P is equivalent to P,
and “it’s not wrong” is equivalent to “it’s true”.

In intuitionistic logic, P implies ¬¬P but the converse does not hold
(no double negation elimination). Hence, “it’s not wrong” is weaker than
“it’s true”.

However, the intuitionistic “it’s not wrong” behaves much like the classical
“it’s true”. In particular, excluded middle is not wrong!

11

Double negation

Theorem (Excluded middle is not wrong)
¬¬(P ∨ ¬P) holds in intuitionistic logic.

Proof.
Assume ¬(P ∨ ¬P) and show absurdity ⊥.
By contraposition (if A⇒ B then ¬B⇒ ¬A) and by P⇒ P ∨ ¬P, we derive ¬P.
By contraposition and by ¬P⇒ P ∨ ¬P we derive ¬¬P.
Absurdity follows.

12

Negative translation: the propositional case

Theorem (Glivenko, 1929)
Let Φ be a propositional formula.
C.L. ` Φ if and only if I.L. ` ¬¬Φ.

Proof.
If I.L. ` ¬¬Φ, then C.L. ` ¬¬Φ, hence, classically, C.L. ` ϕ.
Conversely, assume C.L. ` Φ. Let P1, . . . , Pn be the variables of Φ. Using the truth
table technique,

Ψ
def
= P1 ∨ ¬P1 ⇒ · · · ⇒ Pn ∨ ¬Pn ⇒ Φ

is true in I.L., hence its double negation ¬¬Ψ is true as well. Yet,
¬¬Ψ ⇐⇒ (¬¬(P1 ∨ ¬P1)⇒ · · · ⇒ ¬¬(Pn ∨ ¬Pn)⇒ ¬¬Φ)

The premises ¬¬(Pi ∨ ¬Pi) being true in I.L., we have I.L. ` ¬¬Φ.

13

Negative translation: handling quanti�ers

With the quanti�ers ∀, ∃, adding ¬¬ at the head of the formula is not
enough. Kolmogorov (1925) adds ¬¬ to every sub-formula.

[[A]] = ¬¬A if A is atomic [[P⇒ Q]] = ¬¬([[P]]⇒ [[Q]])

[[P ∧ Q]] = ¬¬([[P]] ∧ [[Q]]) [[P ∨ Q]] = ¬¬([[P]] ∨ [[Q]])

[[∀x. P]] = ¬¬∀x. [[P]] [[∃x. P]] = ¬¬∃x. [[P]]

Theorem
If C.L. ` P then I.L. ` [[P]].

Since ¬¬⊥ ⇒ ⊥, it follows that C.L. ` ⊥ implies I.L. ` ⊥.
Therefore, if I.L. is consistent, C.L. is consistent.

14

Negative translation: variants

Gödel (1933) and Gentzen (1936) use a more “thri�y” translation,
¬¬ being unnecessary in front of ∧,⇒ and ∀.

[[A]] = ¬¬A [[P⇒ Q]] = [[P]]⇒ [[Q]]

[[P ∧ Q]] = [[P]] ∧ [[Q]] [[P ∨ Q]] = ¬¬([[P]] ∨ [[Q]])

[[∀x. P]] = ∀x. [[P]] [[∃x. P]] = ¬¬∃x. [[P]]

Kuroda (1951) is even more “thri�y”: [[P]] = ¬¬P∗, where

A∗ = A (P⇒ Q)∗ = P∗ ⇒ Q∗

(P ∧ Q)∗ = P∗ ∧ Q∗ (P ∨ Q)∗ = P∗ ∨ Q∗

(∀x. P)∗ = ∀x.¬¬P∗ (∃x. P)∗ = ∃x. P∗

(G. Ferreira, P. Oliva. On Various Negative Translations. EPTCS 47, 2011.)

15

Relative negation

As introduced by H. Friedman:

Replace absurdity ⊥ by a proposition R of our choosing.
Replace negation ¬P def

= P⇒ ⊥ by relative negation

¬R P
def
= P⇒ R

This gives rise to a relative negative translation:

[[A]]R = ¬R ¬R A [[P⇒ Q]]R = ¬R ¬R ([[P]]R ⇒ [[Q]]R)

[[P ∧ Q]]R = ¬R ¬R ([[P]]R ∧ [[Q]]R) [[P ∨ Q]]R = ¬R ¬R ([[P]]R ∨ [[Q]]R)

[[∀x. P]]R = ¬R ¬R ∀x. [[P]]R [[∃x. P]]R = ¬R ¬R ∃x. [[P]]R

It is apparent that we now target minimal logic
(without the ⊥ symbol nor its rule ex falso quodlibet).

16

A panorama of negative translations

minimal logic

+ ex falso quodlibet

intuitionistic logic

+ excluded middle or equivalent

classical logic

negative
translation

relative
negative

translation

17

Relative double negation

Preserves the nice properties of double negation:
(these properties are provable in minimal logic)

P ⇒ ¬R ¬R P
¬R ¬R ¬R ¬R P ⇒ ¬R ¬R P

¬R ¬R P⇒ ¬R ¬R Q ⇔ ¬R ¬R (P⇒ Q)
¬R ¬R P ∧ ¬R ¬R Q ⇔ ¬R ¬R (P ∧ Q)
¬R ¬R P ∨ ¬R ¬R Q ⇒ ¬R ¬R (P ∨ Q)

Validates “relative excluded middle”: ¬R ¬R (P ∨ ¬R P).

Validates elimination of the double negation of R: ¬R ¬R R⇒ R.

18

Conservativity
Theorem
If C.L. ` P then I.L. ` [[P]]R.

Corollary
If [[R]]R implies R, and if C.L. ` R, then I.L. ` R.

The hypothesis “[[R]]R implies R” holds in many cases:
R is an atomic formula A of the shape f(x1, . . . , xn) = 0
R is A1 ∨ A2

R is ∃x1, . . . , xn. A (Σ0
1 formula)

R is ∀x1, . . . xn.∃y1 . . . ym. A (Π0
2 formula).

Theorem (Friedman)
Any Π0

2 formula provable in classical arithmetic is provable in intuitionistic
arithmetic.

19

Conservativity

This is an impressive result, yet it has limitations:

Atomic formulas in arithmetic are all decidable because equivalent to
f(x1, . . . , xn) = 0 where f is a primitive recursive function. That’s why we do
not really need excluded middle to reason over Π0

2 formulas.

In the usual example of a statement where excluded middle is essential:

∀m : TM, terminates(m) ∨ ¬terminates(m)

terminates(m) is not an atomic formula, and the statement is not Π0
2 .

Indeed:
terminates(m)

def
= ∃n, exec(m, n) = halted

¬terminates(m)⇔ ∀n, exec(m, n) 6= halted

where exec(m, n) = run machine m for n steps.

20

II

Continuations and control operators

The concept of continuation

Given a functional program p and a subexpression a of p, the continuation
of a is the sequence of computations that remain to be executed, once a is
evaluated, to obtain the value of p.

It can be viewed as a function (value of a) 7→ (value of p).

Example
Consider the program p = (1 + 2)× (3 + 4), evaluated le�-to-right.
The continuation of a = (1 + 2) is λv. v × (3 + 4).
The continuation of a′ = (3 + 4) is λv. 3× v.
(But not λv. (1 + 2)× v, because 1 + 2 has already been evaluated to 3.)

22

Continuations and evaluation strategies

In a semantics for a programming language, making continuations explicit
enables us to de�ne precisely the evaluation strategy, that is, the order in
which computations are performed.

For instance, in functional languages we have two popular evaluation
strategies:

Call by value (CBV):
The argument N to a function call (λx.M) N is reduced to a value
(lambda-abstraction or constant) before being bound to parameter x.
Call by name (CBN):
The argument N is bound to x unevaluated. N will be evaluated when
(and every time) the value of x is needed.

23

The continuation passing style (CPS) transformation

We can impose an evaluation strategy for a lambda-term M by
transforming it into a term [[M]] in continuation passing style.
This term [[M]]

expects one argument k representing M’s continuation;
reduces M to a value v;
and �nally applies k to v.

Call by name

Call by value

[[cst]]n = λk. k cst

[[cst]]v = λk. k cst

[[λx.M]]n = λk. k (λx. [[M]]n)

[[λx.M]]v = λk. k (λx. [[M]]v)

[[x]]n = λk. x k

[[x]]v = λk. k x

[[M N]]n = λk. [[M]]n (λf . f [[N]]n k)

[[M N]]v = λk. [[M]]v (λf .
[[N]]v (λa.

f a k))

24

The continuation passing style (CPS) transformation

We can impose an evaluation strategy for a lambda-term M by
transforming it into a term [[M]] in continuation passing style.
This term [[M]]

expects one argument k representing M’s continuation;
reduces M to a value v;
and �nally applies k to v.

Call by name Call by value

[[cst]]n = λk. k cst [[cst]]v = λk. k cst
[[λx.M]]n = λk. k (λx. [[M]]n) [[λx.M]]v = λk. k (λx. [[M]]v)

[[x]]n = λk. x k [[x]]v = λk. k x
[[M N]]n = λk. [[M]]n (λf . f [[N]]n k) [[M N]]v = λk. [[M]]v (λf .

[[N]]v (λa.
f a k))

24

The CPS transformation

The CPS transformation preserves the expected semantics, while being
indi�erent to evaluation order:

M ∗→ cst in call by value i� [[M]]v (λx. x)
∗→ cst in any strategy.

M ∗→ cst in call by name i� [[M]]n (λx. x)
∗→ cst in any strategy.

25

Control operators

Control operators equip functional languages with the ability to reify
continuations as �rst-class values, enabling programs to manipulate their
own continuations.

The oldest control operator is Landin’s J
(A generalization of Jumps and Labels, 1965):

f = λx. let g = J(λy.N) in M

The J operator modi�es the local function g = λy.N in such a way that
when g is called inside M, it returns directly to the caller of f .

The best known control operator is call/cc (call with current
continuation) in the Scheme language.

26

The callcc operator

The expression callcc(λk.M) evaluates as follows:

The continuation of this expression is bound to variable k.

M is evaluated; its value is the value of callcc(λk.M).

If, during the evaluation of M or at any later time, k is applied to a
value v, evaluation continues as if callcc(λk.M) returned value v.

In other words, the continuation of the callcc expression is
reinstated and restarted with v as the result for the expression.

27

Example of use

Libraries for lists, sets, and other collections o�en provide an imperative
iterator iter, such as

(* list_iter: (’a -> unit) -> ’a list -> unit *)

let rec list_iter f l =

match l with

| [] -> ()

| head :: tail -> f head; list_iter f tail

28

Example of use

Using a control operator, an imperative iterator can be reused as a function
that returns the �rst element of a collection satisfying the predicate pred.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x then k (Some x) else ())

lst;

None)

If iteration hits an element x such that pred x = true,
the application of k causes Some x to be immediately returned as the
result of find pred lst.

If no such element x exists, list_iter terminates normally and None is
returned.

29

Example of use

The previous example can be implemented with exceptions. However,
callcc adds the ability to restart the search.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x

then callcc (λk’. k (Some(x, k’)))

else ())

lst;

None)

When we �nd x such that pred x = true, find returns not just x but also
a continuation k’ that can backtrack the search, restarting it on the
element that follows x.

30

Example of use

Iterating find as follows, we can print all elements of the collection that
satisfy the predicate:

let printall pred lst =

match find pred list with

| None -> ()

| Some(x, k) -> print_string x; k ()

The application k () restarts find pred list where it stopped last.

31

Semantics of callcc

The CPS transformation extends easily to control operators like callcc.
This gives a semantics to these operators, but also provides an
implementation for them, in a compiler or via manual CPS transformation.

[[callcc M]]v = λk. [[M]]v (λf . f (λv.λk′. k v) k)

In callcc M, the function value f of M receives the current continuation k
both as argument (wrapped in λv.λk′. k v) and as continuation.

When the captured continuation k is restarted on a value v, the current
continuation k′ at that time is ignored.

32

Other control operators

Introduced by Felleisen circa 1986, the operator C is a simpli�ed version of
callcc where the current continuation, once captured, is replaced by the
initial continuation. We have

callcc(λk.M) = C(λk. k M)

The operators F / # (Felleisen et al, 1987), shift / reset (Danvy and
Filinski, 1990), cupto (Gunter et al, 1995), etc, provide ways to capture
delimited continuations

value of an expression 7→ value of an enclosing expression

instead of full continuations

value of an expression 7→ value of the whole program

33

III

Correspondences between classical logic
and control operators

CPS transformation and negative translation

(Chetan Murthy, Extracting Constructive Content from Classical Proofs, PhD, Cornell, 1990.)

In his PhD, Chetan Murthy demonstrates a correspondence (in the style of
Curry-Howard) between

call-by-name CPS transformation;
Kolmogorov’s negative translation, relativized by Friedman.

More precisely: the negative translation describes the e�ect of the CPS
transformation over types.

35

Typing call-by-name CPS transformation

Let r be the type of the whole program. We de�ne the transformation of
simple types:

[[t]] = (t∗ → r)→ r
ι∗ = ι

(t→ s)∗ = [[t]]→ [[s]]

Intuition: a term of type t becomes a function λk . . .
The continuation k expects a value of type t∗ and produces the program
result, with type r. Hence, k : t∗ → r and the transformed term has type
(t∗ → r)→ r.

Theorem (CPS transformation preserves typing)
If . . . xi : ti . . . ` M : t, then . . . xi : [[ti]] . . . ` [[M]]n : [[t]].

36

Correspondence with the negative translation

This transformation of simple types corresponds to Kolmogorov’s negative
translation, made relative, for the⇒ fragment:

[[A]] = ¬R¬R A if A is atomic
[[P⇒ Q]] = ¬R¬R([[P]]⇒ [[Q]])

or, equivalently,

[[P]] = ¬R¬R P∗ = (P∗ ⇒ R)⇒ R

A∗ = A if A is atomic
(P⇒ Q)∗ = [[P]]⇒ [[Q]]

37

Correspondence with the negative translation

The correspondence extends to the other logical connectives (∧,∨,⊥,∀, ∃)
just like CPS transformation extends to system F and to inductive types,
and therefore to types ×, +, Σ, and to the empty type.

[[ΛX.M]]n = λk. k (ΛX. [[M]]n)

[[M[t]]]n = [[M]]n (λx. x[t] k)

[[C M1 · · · Mp]]n = λk. k (C [[M1]]n · · · [[Mp]]n)

[[match M with · · · | Ci ~xi ⇒ Ni | · · ·]]n = λk.M (λx. match x with
· · · | Ci ~xi ⇒ [[Ni]]n k | · · ·)

38

Typing the call-by-value CPS transformation

In call-by-value, the type translation di�ers slightly:

[[t]] = (t∗ → r)→ r
ι∗ = ι

(t→ s)∗ = t∗ → [[s]]

A transformed function expects an argument that is already evaluated,
hence of type t∗, instead of an argument that remains to be evaluated
(λk . . .) which would have type [[t]].

The type preservation results extend to call-by-value CPS transformation.

39

Correspondence with the negative translation

This call-by-value transformation of simple types corresponds to a variant
of Kuroda’s “thri�y” translation:

[[P]] = ¬R¬R P∗ = (P∗ ⇒ R)⇒ R

A∗ = A if A atomic
(P⇒ Q)∗ = P∗ ⇒ [[Q]] (call-by-value CPS)
(P⇒ Q)∗ = P∗ ⇒ Q∗ (Kuroda)

Viewed as program transformations, Kuroda’s and Gödel-Gentzen’s
negative translations are not interesting: they preserve types but not
dynamic semantics.

40

Control operators and classical laws
(Timothy Gri�n, A Formulae-as-Types Notion of Control, POPL 1990.)

In 1989, Gri�n observes that the control operators callcc and C have
types that correspond to laws of classical logic.

For instance, the type of callcc is: (consider callcc(λk. a))

∀X. ((X → ∀Y.Y)→ X)→ X

type of a

︸ ︷︷ ︸
type of k

value expected by k never returns

If we read ∀Y.Y as ⊥ and X → ∀Y.Y as ¬X,
this is Clavius’ law, mirabile consequentia:

∀P. (¬P⇒ P)⇒ P

41

Control operators and classical laws

Likewise, operator C has type (consider C(λk. a))

∀X. ((X → ∀Y.Y)→ ∀Y.Y)→ X

value given to k

︸ ︷︷ ︸
type of k

value expected by k never returns

If we read T → ∀Y.Y as ¬T, this is double negation elimination:

∀P. ¬¬P⇒ P

42

A “construction” of excluded middle

We saw that, in minimal logic, Clavius’ law implies excluded middle.

From the callcc operator whose type is Clavius’ law, we can therefore
construct a term whose type is excluded middle:

ΛP. callcc (λk : P ∨ ¬P⇒ ⊥. inj2 (λp : P. k (inj1(p))))

: ∀P. P ∨ ¬P

What is the dynamic behavior of this term??

43

A Faustian bargain
(from Philip Wadler, Call-by-Value is Dual to Call-by-Name, 2003)

The devil: Here is my o�er. Either (a) I will give you one million euros, or (b)
I will grant you any wish if you pay me one million euros.

Faust: No other conditions? Do I need to sign over my soul?

The devil: Keep it. But I get to choose whether I o�er (a) or (b).

Faust: I accept. Do I get (a) or (b)?

The devil: I choose (b).

Many years later, Faust returns with one million euros and gives it to the
devil.

Faust: Grant me my wish!

The devil: Oh, did I say (b) before? I’m so sorry. I meant (a). It is my great
pleasure to give you one million euros.

44

A “construction” of excluded middle

callcc (λk : P ∨ ¬P⇒ ⊥. inj2 (λp : P. k (inj1(p))))

The term returns inj2, that is, it chooses the ¬P case.

It also returns a “construction” of ¬P, that is, a function
λp : P . . . of type P→ ⊥.

If the remainder of the proof does not use this claim ¬P, everything is �ne.

If the remainder of the proof uses this claim, it is by “eliminating” the
negation, that is, by passing a proof p : P to the function λp : P . . .
so as to obtain a proof of ⊥.

At that time, the continuation k is invoked with inj1(p): we backtrack to
the choice point, we choose the P case, and we provide p as construction.

Exercise: which Faustian bargain is played by double negation elimination?

45

A “construction” of excluded middle

In the �rst lecture, we showed that there exists no construction (in the
sense of the BHK interpretation) for excluded middle, because such a
construction would decide the halting problem:

∀m : TM, terminates(m) ∨ ¬terminates(m)

What is going on here?

Logical inconsistency? No!
System F + callcc is normalizing.

A di�erent notion of construction? Yes!
The term callcc(λk . . .) has the right type but can reduce either to
inj2(np) or to inj1(p) depending on the context. This puts this term
outside of the BHK interpretation, where a construction for P ∨ Q
determines once and for all which of the two cases P or Q is proved.

46

IV

Classical sequents and L-calculi

Duality lost

The vision “classical logic = intuitionistic logic + excluded middle”
destroys an important formal symmetry:
the duality between conjunction and disjunction via negation.

¬(P ∧ Q) = ¬P ∨ ¬Q
¬(P ∨ Q) = ¬P ∧ ¬Q

Also lost: the ability to de�ne implication from the other connectives:
P⇒ Q = ¬P ∨ Q = ¬(P ∧ ¬Q).

Finally: cut elimination for ∨ is much more di�cult than for⇒ and ∧.

48

Duality regained

The classical sequent calculus (Gentzen, 1934, 1935) is a formulation of
classical logic that preserves duality between conjunction and disjunction.

A central notion: the classical sequent

A1, . . . , An ` B1, . . . , Bm “if A1 and . . . and An, then B1 or . . . or Bm”

Compare with intuitionistic sequents:

A1, . . . , An ` B “if A1 and . . . and An, then B”

Each logical connective has “right” rules (if it appears in the conclusions Bi)
and “le�” rules (if it appears in the hypotheses Ai).

49

Classical sequent calculus

A ` A (Id)
Γ ` ∆, A A, Γ′ ` ∆′

(cut)

Γ, Γ′ ` ∆,∆′

Γ ` ∆, A Γ ` ∆, B
(∧R)

Γ ` ∆, A ∧ B

A, Γ ` ∆
(∧L1)

A ∧ B, Γ ` ∆

B, Γ ` ∆
(∧L2)

A ∧ B, Γ ` ∆

Γ ` ∆, A
(∨R1)

Γ ` ∆, A ∨ B

Γ ` ∆, B
(∨R2)

Γ ` ∆, A ∨ B

A, Γ ` ∆ B, Γ ` ∆
(∨L)

A ∨ B, Γ ` ∆

A, Γ ` ∆
(¬R)

Γ ` ∆,¬A

Γ ` ∆, A
(¬L)

¬A, Γ ` ∆

A, Γ ` ∆, B
(⇒ R)

Γ ` ∆, A⇒ B

Γ ` ∆, A B, Γ′ ` ∆′
(⇒ L)

A⇒ B, Γ, Γ′ ` ∆,∆′

(Plus: weakening, contraction, exchange.)
50

The pleasures of a classical logic

A ` A
(¬R)

` A, ¬A

From this rule we prove excluded middle and double negation elimination:

` A, ¬A
(∨R1)

` A, A ∨ ¬A
(∨R2)

` A ∨ ¬A, A ∨ ¬A
(contraction)

` A ∨ ¬A

` A, ¬A
(¬L)

¬¬A ` A
(⇒ R)

` ¬¬A⇒ A

51

Curry-Howard for classical sequents

Via Curry-Howard, typed lambda-calculus corresponds to intuitionistic
sequent calculus.
What is the language that corresponds to classical sequent calculus?

Several proposals: λµ by Parigot (1992, 1994); λµµ̃ by Curien and Herbelin
(2000); the dual calculus by Wadler (2003); the L-calculus by
Munch-Maccagnoni et al (2009); etc.

Two core ideas:

1 A computation C = 〈M | K〉 is the interaction between a term M and a
context K (also called co-term, stack, or continuation).

2 To re�ect the multiple conclusions of a classical sequent, contexts can
have several “holes”, identi�ed by co-variables α.

52

A L-calculus for classical sequents
(Taken from Wadler, Call-by-value is dual to call-by-name, ICFP 2003.)

Computations: C ::= 〈M | K〉
Terms: M,N ::= x | . . .
Contexts: K, L ::= α | . . .

Three typing judgments:
C : (x1 : A1, . . . , xn : An ` α1 : B1, . . . , αm : Bm)
“if the xi are bound to values of types Ai, executing C passes one of the continuations
αj a value of type Bj”.

x1 : A1, . . . , xn : An ` α1 : B1, . . . , αm : Bm | M : B
“if the xi are bound to values of types Ai, evaluating M produces a value of type B or
passes one of the continuations αj a value of type Bj”.

K : A | x1 : A1, . . . , xn : An ` α1 : B1, . . . , αm : Bm
“if the xi are bound to values of types Ai and if K is passed a value of type A, one of
the continuations αj is passed a value of type Bj”.

53

Typing rules
x : A ` | x : A (IdR) α : A | ` α : A (IdL)

Γ ` ∆ | M : A K : A | Γ′ ` ∆′
(cut)

〈M | K〉 : (Γ, Γ′ ` ∆,∆′)

Γ ` ∆ | M : A Γ ` ∆ | N : B
(∧R)

Γ ` ∆ | (M,N) : A ∧ B

K : A | Γ ` ∆
(∧L1)

π1(K) : A ∧ B | Γ ` ∆

K : B | Γ ` ∆
(∧L2)

π2(K) : A ∧ B | Γ ` ∆

Γ ` ∆ | M : A
(∨R1)

Γ ` ∆ | inj1(M) : A ∨ B

Γ ` ∆ | N : B
(∨R2)

Γ ` ∆ | inj2(N) : A ∨ B

K : A | Γ ` ∆ L : B | Γ ` ∆
(∨L)

(K | L) : A ∨ B | Γ ` ∆

K : A | Γ ` ∆
(¬R)

Γ ` ∆ | not(K) : ¬A

Γ ` ∆ | M : A
(¬L)

not(M) : ¬A | Γ ` ∆

x : A, Γ ` ∆ | N : B
(⇒ R)

Γ ` ∆ | λx.N : A⇒ B

Γ ` ∆ | M : A K : B | Γ′ ` ∆′
(⇒ L)

M • K : A⇒ B | Γ, Γ′ ` ∆,∆′

C : (Γ ` ∆, α : A)
(actiR)

Γ ` ∆ | µα. C : A

C : (x : A, Γ ` ∆)
(actiL)

µx. C : A | Γ ` ∆

(Plus: weakening, contraction, exchange.)

54

Typing rules

x :

A ` |

x :

A (IdR)

α :

A | `

α :

A (IdL)

Γ ` ∆ |

M :

A

K :

A | Γ′ ` ∆′
(cut)

〈M | K〉 :

(Γ, Γ′ ` ∆,∆′)

Γ ` ∆ |

M :

A Γ ` ∆ |

N :

B
(∧R)

Γ ` ∆ |

(M,N) :

A ∧ B

K :

A | Γ ` ∆
(∧L1)

π1(K) :

A ∧ B | Γ ` ∆

K :

B | Γ ` ∆
(∧L2)

π2(K) :

A ∧ B | Γ ` ∆

Γ ` ∆ |

M :

A
(∨R1)

Γ ` ∆ |

inj1(M) :

A ∨ B

Γ ` ∆ |

N :

B
(∨R2)

Γ ` ∆ |

inj2(N) :

A ∨ B

K :

A | Γ ` ∆

L :

B | Γ ` ∆
(∨L)

(K | L) :

A ∨ B | Γ ` ∆

K :

A | Γ ` ∆
(¬R)

Γ ` ∆ |

not(K) :

¬A

Γ ` ∆ |

M :

A
(¬L)

not(M) :

¬A | Γ ` ∆

x :

A, Γ ` ∆ |

N :

B
(⇒ R)

Γ ` ∆ |

λx.N :

A⇒ B

Γ ` ∆ |

M :

A

K :

B | Γ′ ` ∆′
(⇒ L)

M • K :

A⇒ B | Γ, Γ′ ` ∆,∆′

C :

(Γ ` ∆,

α :

A)
(actiR)

Γ ` ∆ |

µα. C :

A

C :

(

x :

A, Γ ` ∆)
(actiL)

µx. C :

A | Γ ` ∆

(Plus: weakening, contraction, exchange.)

54

Syntax of terms
Deduced from the shape of the typing rules!

Computations: C ::= 〈M | K〉
Terms: M,N ::= x | λx.M variables, function abstractions

| (M,N) product constructor
| inj1(M) | inj2(M) sum constructors
| not(K) complement of a context
| µα.C co-variable abstraction

Contexts: K, L ::= α co-variable
| M • K function application to M, followed by K
| π1(K) | π2(K) projections from a product
| (K | L) case analysis over a sum
| not(M) complement of a term
| µx.C variable abstraction

Exercise: which term expresses double negation elimination?

55

Reduction rules

When a constructor (in the term) meets its destructor (in the context):

〈(M,N) | π1(K)〉 → 〈M | K〉 〈(M,N) | π2(K)〉 → 〈N | K〉
〈inj1(M) | (K | L)〉 → 〈M | K〉 〈inj2(M) | (K | L)〉 → 〈M | L〉
〈not(K) | not(M)〉 → 〈M | K〉 〈λx.M | N • K〉 → 〈N | µx. 〈M | K〉〉

Plus: β-reductions for µ binders:

〈M | µx. C〉 → C{x← M} 〈µα. C | K〉 → C{α← K}

Problem: reductions are not con�uent!
(For example 〈µα. C | µx. C′〉 reduces in two di�erent ways.)

56

Reduction strategies

We must impose a reduction strategy. For example, we reduce 〈M | K〉

only if M is a value (in particular: not µα. C)
⇒ a generalization of call by value

or only if K is a “co-value” (in particular: not µx. C)
⇒ a generalization of call by name.

(Other possible approach: by polarization.)

Theorem (Wadler 2003)
With the “by value” strategy, ¬(A ∧ ¬B) behaves like A⇒ B.
With the “by name” strategy, ¬A ∨ B behaves like A⇒ B.

57

V

Concluding remarks

Does a classical proof has a computational content?

No, according to Girard, Lafont, Taylor (1989).
Cut elimination for classical sequent calculus is not con�uent; therefore:

[A BHK interpretation] is not possible with classical logic: there is no sen-
sible way of considering proofs as algorithms. In fact, classical logic has
no denotational semantics, except the trivial one which identi�es all the
proofs of the same type. This is related to the nondeterministic behaviour
of cut elimination.

Yes, according to Murthy, Gri�n, and the L-calculi people.
But we need at least:

a �xed reduction strategy (call by name or call by value) to work
around the lack of con�uence;
to accept that the “constructions” (proof terms) are not just pure
lambda-calculus terms, but can also have e�ects.

59

Does a classical proof has a computational content?

No, according to Girard, Lafont, Taylor (1989).
Cut elimination for classical sequent calculus is not con�uent; therefore:

[A BHK interpretation] is not possible with classical logic: there is no sen-
sible way of considering proofs as algorithms. In fact, classical logic has
no denotational semantics, except the trivial one which identi�es all the
proofs of the same type. This is related to the nondeterministic behaviour
of cut elimination.

Yes, according to Murthy, Gri�n, and the L-calculi people.
But we need at least:

a �xed reduction strategy (call by name or call by value) to work
around the lack of con�uence;
to accept that the “constructions” (proof terms) are not just pure
lambda-calculus terms, but can also have e�ects.

59

VI

Further reading

Further reading

Programming with continuations and with callcc:
Shriram Krishnamurthi. Programming Languages: Application and
Interpretation. Chapter 14.
http://cs.brown.edu/courses/cs173/2012/book/index.html

Connections between classical logic and continuations:
Morten Heine Sørensen, Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism. 1998. Chapter 6.
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf.

Classical sequent calculus:
Jean-Yves Girard.The blind spot: Lectures on logic. European
Mathematical Society, 2011. Chapter 3.

61

http://cs.brown.edu/courses/cs173/2012/book/index.html
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf

	Classical logic
	Continuations
	Correspondences
	Classical sequents and L-calculi
	Conclusions
	Further reading

