
Programming = proving?
The Curry-Howard correspondence today

Third lecture

Weapons of mass construction:
inductive types, inductive predicates

Xavier Leroy

Collège de France

2018-11-28

Today’s lecture

The previous lecture concentrated on functions and the⇒, ∀ fragment of
the logic. Let’s go beyond!

In programming languages: which mechanisms allow us to de�ne and work
with data structures beyond base types (numbers, etc) and functions?

In logics: how to treat all connectives? not just⇒, ∀ but also ∧, ∨, ⊥, ∃ ?
how to de�ne objects manipulated by the logic, such as natural numbers?
and predicates over these objects?

Let’s try to answer both questions at the same time, in the spirit of
Curry-Howard!

2

I

Data structures
in programming languages

Base types and arrays

As early as in FORTRAN, and in almost all later languages:
Base types: numbers (integers, “reals” (�oating-point numbers),
“complex”), characters, . . .
Arrays of one or several dimensions, indexed by integers.

Indirections and linked data structures can be encoded using array indices,
as in the example of heaps:

4

Records

COBOL introduces the concept of records, with named �elds, having
di�erent types, and possibly nested.

01 Transaction. *> record

05 Number PIC 9(10). *> field

05 Date. *> sub-record

10 Year PIC 9(4). *> field

10 Month PIC 99. *> field

10 Day PIC 99. *> field

5

Addresses, references, pointers

Assembly code o�en manipulates memory addresses for data blocks that
do not �t in a register.

This trick enters high-level programming languages under the names of
references in ALGOL-W (1966) and of pointers in C, Pascal, etc.

A pointer can be “null” (Hoare: my billion-dollar mistake).

Records + pointers⇒ somewhat natural encoding of linked data structures
(lists, trees, . . .).

struct list { struct tree {

int head; char * name;

struct list * tail; struct tree * left, * right;

}; }

6

Unions

If records are viewed as the “and” of several types, unions are the “or” of
several types. They appear in Algol 68:

mode node = union (real, int, string);

node n := "1234";

case n in

(real r): print(("real:", r)),

(int i): print(("int:", i)),

(string s): print(("string:", s))

out print(("?:", n))

esac

This is a discriminated union: the value of type node records which of the
three cases real, int and string applies. This is unlike unions in C:

union u { float f; int i; char * s; };

7

Unions

Pascal combines records and discriminated unions:

type

exprKind = (VAR, CONST, SUM, PROD);

expr = record

(* common part *)

size: integer;

(* variant part *)

case kind : exprKind of

VAR: (varName: string);

CONST: (constVal: integer);

SUM, PROD: (left, right: ^expr)

end

8

A universal type: S-expressions

Instead of leaving data structure de�nitions to the programmer, Lisp
provides a ”universal” type, S-expressions, which expresses easily a great
many data structures.

sexp ::= atom | (sexp . sexp)
atom ::= number | symbol | nil

Canonical encodings for many data structures:

Lists: (x1 . . . xn) ≡ (x1 . (· · · (xn . nil)))

Terms: cstr0 ≡ cstr0
cstr(x1, . . . , xn) ≡ (cstr x1 · · · xn)

Functions: λx.M ≡ (lambda (x) M)

9

A universal type: Prolog terms

Prolog provides another universal type, inspired by term algebras as used
in logic and in rewriting theory:

term ::= number | atom | Variable | atom(term, . . . ,term)

Atoms represent the constructors (constant or non-constant) of the term
algebras.

10

Cartesian product and binary sum

LCF-ML, the ancestor of the ML family, provides no mechanism to declare
record or union types. It prede�nes two types: Cartesian product (two-�eld
record) and binary sum (discriminated union of two types):

Types: t ::= int | bool | . . . base types
| t1 → t2 function types
| t1 # t2 products: pairs of a t1 and a t2
| t1 + t2 sums: either a t1 or a t2

Note: via Curry-Howard, product types correspond to conjunction ∧ and
sum types to disjunction ∨.

11

Recursion in LCF-ML

A type abstraction mechanism allows us to de�ne recursive types as
abstract types equipped with constructor functions and destructor
functions.

Example: binary trees with values of type * at leaves.

absrectype * tree = * + * tree # * tree

with leaf n = abstree(inl n)

and node (t1, t2) = abstree(inr(t1, t2))

and isleaf t = isl(reptree t)

and leafval t = outl(reptree t) ? failwith ‘leafval‘

and leftchild t = fst(outr(reptree t) ? failwith ‘leftchild‘

and rightchild t = snd(outr(reptree t) ? failwith ‘leftchild‘

12

Algebraic types

In 1980 the purely functional language HOPE (Burstall, MacQueen, Sannella)
introduced the modern presentation of algebraic types. Later reused by
Milner and by Cousineau for integration in CAML and in Standard ML.

type expr =

| Const of int

| Infinity

| Sum of expr * expr

| Prod of expr * expr

A sum of product types that is recursive.

Each case of the sum is discriminated by its constructor
(Const, Infinity, Sum, Prod)

Each constructor carries zero, one or several arguments.

An argument can be of the type being de�ned (recursion).

13

Working with an algebraic type

Building values of the type: via constructor application.

let e = Sum(Const 1, Prod (Const 2, Infinity))

Using values of the type: by pattern matching.

let rec floatval e =

match e with

| Const n -> Float.of_int n

| Infinity -> Float.infinity

| Sum(e1, e2) -> floatval e1 +. floatval e2

| Prod(e1, e2) -> floatval e2 *. floatval e2

14

II

Inductive types

Inductive types

A variant of algebraic types, compatible with type theory.

Extension: dependencies in the types of constructors and in the kinds
of inductive types.

Restriction: restricted recursion, to preserve strong normalization and
logical consistency.

Inductive types were introduced by Paulin-Mohring and Pfenning in 1989 as
an extension of the Calculus of Constructions.

They are primitive notions in Coq and in Agda, encoded in Isabelle/HOL.

16

Inductive types

Same idea “sum of products + recursion” but a di�erent vision:

universe containing the type

↙
Inductive expr : Type :=

| Const: nat -> expr

| Infinity: expr

| Sum: expr -> expr -> expr

| Prod: expr -> expr -> expr

↑ ↑
constructors with their types

Each constructor is a constant of type expr or a function returning an expr.

The type expr is the set of values generated by these constants and
functions. (That is, the smallest set containing the constants and stable by
the functions.)

17

Familiar data types

Inductive bool : Type :=

| true : bool

| false : bool.

Inductive unit : Type :=

| tt : unit.

Inductive empty : Type := . (* empty type, zero constructors *)

Inductive nat : Type := (* Peano integers *)

| O : nat

| S : nat -> nat.

18

Inductive types and functions

Unlike ordinary term algebras, inductive types can contain functions as
arguments of constructors.

Example: Brouwer’s ordinals.

Inductive ord: Type :=

| Zero: ord

| Succ: ord -> ord

| Limit: (nat -> ord) -> ord.

Viewed as a tree, a value of inductive type is not always �nite: a node can
have in�nitely many siblings (like Limit above). However, there are no
in�nite paths.

19

Parameterized inductive types

An inductive type can be parameterized by types (or values) and have
polymorphic constructors.

parameter
↙

Inductive list (A: Type) : Type := (* lists *)

| nil : list A

| cons : A -> list A -> list A.

Inductive prod (A: Type) (B: Type) : Type :=

| pair : A -> B -> prod A B. (* Cartesian product *)

Inductive sum (A: Type) (B: Type) : Type :=

| inl : A -> sum A B (* binary sum *)

| inr : B -> sum A B.

20

Familiar logical connectives

By Curry-Howard magic, these inductive types can also be used as logical
connectives: Cartesian product is conjunction; binary sum is disjunction;
etc.

Instead of using the same inductives in data types and in logical formulas,
Coq prefers to de�ne them twice, once in the Prop universe and once in
the Type universe.

21

Familiar logical connectives

Inductive and (A: Prop) (B: Prop) : Prop := (* conjunction *)

| conj : A -> B -> and A B.

Inductive or (A: Prop) (B: Prop) : Prop := (* disjunction *)

| or_introl : A -> or A B

| or_intror : B -> or A B.

Inductive True : Prop := (* triviality *)

| I : True.

Inductive False : Prop := . (* absurdity *)

(* zero constructors! *)

A /\ B is a notation for and A B

A \/ B is a notation for or A B.

22

Dependently-typed constructors

The constructors of a type can have dependent types: the type of an
argument can depend on the value of a preceding argument.

Example: the type of dependent pairs, that is, the type Σx : A. B(x) in MLTT,
but also the quanti�er ∃x : A. P(x).

type family indexed by a:A

↘
Inductive sigma (A: Type) (B: A -> Type) : Type :=

| exist: forall (a: A), B a -> sigma A B.

↗ ↖
�rst argument second argument (dependent)

23

Three shades of Sigma

Owing to its Prop/Type distinction, Coq ends up with three variants of Σ
types, all de�ned as inductives + notations:

Notation result B(x)

exists x:A, B(x) Prop Prop “there exists”
quanti�er

{ x: A | B(x) } Type Prop subset type: an x:A with
a proof of B(x)

{ x: A & B(x) } Type Type dependent pair: an x:A

and a B(x)

24

The W type

Another component of MLTT de�nable as an inductive type is the type W of
well-founded trees:

Inductive W (L: Type) (A: L -> Type) : Type :=

| Node: forall (lbl: L), (A lbl -> W L A) -> W L A.

L is the type of labels carried by each node. A node labeled l:L has n
subtrees, where n is the number of elements of type A l, each subtree
being identi�ed by an element of A l.

l:L

a1 an. . .
where a1, . . . , an are the elements of type A l

25

The W type

Inductive W (L: Type) (A: L -> Type) : Type :=

| Node: forall (lbl: L), (A lbl -> W L A) -> W L A.

Examples: assume de�ned the types empty, unit and bool with 0, 1 and 2
elements respectively. Here is type nat:

W bool (fun b => match b with false => empty

| true => unit end)

The type of lists of A:

W (option A) (fun l => match l with None => empty

| Some _ => unit end)

The type of binary trees with A at leaves and B at nodes:

W (A + B) (fun l => match l with inl _ => empty

| inr _ => bool end)

26

Elimination of inductive types by pattern matching

As with algebraic types, a pattern-matching construct performs elimination
(case analysis) over inductive types.

Definition not (b: bool) := Definition pred (n: nat) :=

match b with match n with

| true => false | O => O

| false => true | S p => p

end. end.

27

Elimination of inductive types by pattern matching

Via Curry-Howard, pattern matching corresponds to a proof by case
analysis.

Example: a property is true for all b: bool if it is true for b = true and
for b = false.

Theorem bool_cases: forall (P: bool -> Prop),

P true -> P false -> forall b, P b.

Proof fun (P: bool -> Prop) (iftrue: P true) (iffalse: P false)

(b: bool) =>

match b with true => iftrue | false => iffalse end.

28

Elimination of inductive types by pattern matching

The general shape of a pattern matching for an inductive with n
constructors C1, . . . , Cn of arities a1, . . . , an is:

match e with
| C1 x1

1 . . . x
a1
1 => b1

| . . .
| Cn x1

n . . . x
an
n => bn

end

The corresponding reduction rule:

match Ci e1 . . . eai with . . . end → bi{x1
i ← e1, . . . , xaii ← eai}

Example of natural numbers:

match O with O => a | S p => b end → a

match S n with O => a | S p => b end → b{p←n}

29

Elimination of inductive types by recursors

An alternative to the pattern-matching construct (match) is for every
Inductive de�nition to produce a recursor function for the type,
combining case analysis and recursive computation.

For a type T with n constructors, this recursor has shape

T rec value case1 . . . casen

For example, for Booleans, options, and natural numbers:

bool_rec true a b → a
bool_rec false a b → b

option_rec None a b → a
option_rec (Some x) a b → b x

nat_rec O a b → a
nat_rec (S n) a b → b (nat_rec n a b) (* <- recursion *)

30

Iteration

Recursors provide a simple form of recursion called “iteration”, where
recursive calls are always done and only done over direct arguments of
recursive constructors.

For example, the “double” function over Peano integers is an iteration, but
Fibonacci’s function is not:

let rec double n = (* nat_rec n O (fun x => S (S x)) *)

match n with O -> O | S p -> S (S (double p))

let rec fib n =

match n with O -> S O

| S p -> match p with O -> S O

| S q -> fib p + fib q

Exercise: de�ne by iteration the function fib’ n
def
= (fib n, fib (S n)).

31

Pattern matching and recursion

To operate over inductive types, pattern matching (match) must be
combined with a mechanism to de�ne recursive functions (let rec in
Caml, Fixpoint in Coq).

Fixpoint double (n: nat) : nat :=

match n with O => O | S p => S (S (double p)) end.

Fixpoint fib (n: nat) : nat :=

match n with O => S O

| S p => match p with O => S O

| S q => fib p + fib q end

end.

A guard condition ensures termination. Typically, recursive calls must be
performed over a strict sub-term of the argument (structural recursion).

32

Termination and consistency

Almost always, if we can de�ne an expression that reduces in�nitely, we
can give it an empty type (False ou empty), which makes it possible to
“prove” any proposition P.

8 Fixpoint loop (n: nat) : False := loop (S n).

8 Theorem inconsistency (P: Prop) : P :=

match loop O with end.

Therefore, it is impossible to have general recursion in a language such as
Coq or Agda.

33

Positivity

For related reasons, an inductive type must appear in strictly positive
position in the types of the arguments of its constructors.

→++

→− →++

+ − − ++

++ strictly positive to the le� of zero arrows
+ positive to the le� of 2n arrows
− negative to the le� of 2n + 1 arrows

34

Positivity

A negative occurrence of an inductive predicate immediately leads to a
contradiction:

8 Inductive P : Prop := Pintro : (P -> False) -> P.

Lemma paradox: P <-> ~P.

A negative occurrence of an inductive type gives pure lambda-calculus and,
therefore, diverging computations:

8 Inductive lam : Type := Lam: (lam -> lam) -> lam.

Definition app (a b: lam) : lam := match a with Lam f => f b end.

Definition delta : lam := Lam (fun x => app x x).

Definition omega : lam := app delta delta. (* diverges! *)

35

Positivity

A “doubly negative” (positive but not strictly) occurrence leads to a
paradox.

8 Inductive A : Type := Aintro : ((A -> Prop) -> Prop) -> A.

Definition f (x: A -> Prop) : A := Aintro (fun y => x = y).

We show that f is an injection from A -> Prop (= the subsets of A) in A,
which is impossible by “cardinality”.

A Cantor-style diagonalization leads to a contradiction.

(Coquand, A new paradox in type theory, Studies in Logic and the Foundations of
Mathematics 134, 1995).

36

III

Inductive families

Over what does recursion apply?

Parameterized inductive type:
Function from parameters to
a recursive type.
Parameters are unchanged in
the types of constructors.

Inductive list (A:Type): Type :=

| nil: list A

| cons: A -> list A -> list A.

↖ ↗
(* same parameter *)

Inductive family:
Recursive function from
parameters to a type.
Parameters can assume
di�erent values in the types
of constructors.

Inductive t: Type -> Type :=

| A: t nat

| B: t bool.

↑
(* different parameters *)

38

Examples of inductive families

Inductive family: the type fin n of natural numbers between 0 and n.

Inductive fin: nat -> Type :=

| Zero : forall (n: nat), fin n

| Succ : forall (n: nat), fin n -> fin (S n).

Inductive family with one parameter:
the type vec A n of lists of A having length n.

Inductive vec (A: Type): nat -> Type :=

| nil: vec A O

| cons: forall (n: nat), A -> vec A n -> vec A (S n).

Exercise: de�ne a safe function to access the n-th element.

nth: forall (A: Type) (n: nat), vec A (S n) -> fin n -> A.

39

Inductive predicates

Inductive families are very useful to de�ne predicates by inference rules.

Predicate P of n arguments of types A1, . . . An
⇒ Inductive P : A1 → · · · → An → Prop

Axiom⇒ constant constructor
Inference rule with k premises⇒ constructor with k arguments.

Structural recursion over P provides us with a powerful proof principle: by
induction on the structure of a derivation and by case analysis on the last
rule used.

40

Example: the predicate “being even” on integers

even(0)

even(n)

even(S(S(n)))

Inductive even: nat -> Prop :=

| even_O:

even O

| even_S: forall n,

even n ->

even (S (S n)).

41

Example: representing a logic

Inference rules:

Γ ` > (>I) Γ1, P, Γ2 ` P (Ax)

Γ, P ` Q
(⇒I)

Γ ` P⇒ Q

Γ ` P⇒ Q Γ ` P
(⇒E)

Γ ` Q

Γ ` ⊥
(⊥E)

Γ ` P

Representing logic formulas:

Inductive formula : Type :=

| True : formula (* >, triviality *)

| False: formula (* ⊥, absurdity *)

| Imp : formula -> formula -> formula. (* ⇒, implication *)

42

Example: representing a logic

Transcribing the deduction rules:

Inductive sequent : list formula -> formula -> Prop :=

| TrueI: forall G,

sequent G True

| Ax: forall G1 P G2,

sequent (G1 ++ P :: G2) P

| ImpI: forall G P Q,

sequent (P :: G) Q ->

sequent G (Imp P Q)

| ImpE: forall G P Q,

sequent G (Imp P Q) -> sequent G P ->

sequent G Q

| FalseE: forall G P,

sequent G False ->

sequent G P.

43

Γ ` >

Γ1, P, Γ2 ` P

Γ, P ` Q

Γ ` P⇒ Q

Γ ` P⇒ Q Γ ` P

Γ ` Q
Γ ` ⊥

Γ ` P

Well-founded orders

A strict order is well founded if there are no in�nitely decreasing
sequences.

A more positive characterization: all x are “accessible”, that is, all
decreasing sequences starting in x are �nite.

Inductive Acc (A: Type) (ord: A -> A -> Prop) : A -> Prop :=

| Acc_intro: forall x:A,

(forall y:A, ord y x -> Acc A ord y) -> Acc A ord x.

Definition well_founded (A: Type) (ord: A -> A -> Prop) :=

forall x:A, Acc A ord x.

A structural induction over a proof of Acc x corresponds to Noetherian
induction over x.

44

Equality as an inductive predicate

In MLTT as in many logics, equality is a primitive notion, with speci�c
deduction rules.

Equality can also be de�ned as an inductive predicate.

Inductive equal (A: Type): A -> A -> Prop :=

| reflexivity: forall (x: A), equal x x.

To show a property P x y under hypothesis H: equal A x y, we do a
case analysis over H. The only possible case being H = reflexivity z, it
su�ces to show P z z for all z.

(More details in the lecture of Jan 23, “What is equality?”.)

45

IV

Generalized Algebraic Data Types (GADTs)

Generalized Algebraic Data Types (GADTs)

It is the closest thing to inductive families for programming languages such
as OCaml and Haskell that lack full dependent types.

GADTs are parameterized algebraic types (’a ty) where the constructors
do not all produce ’a ty but can produce instances τ ty.

Example: an optimized representation of arrays in OCaml

type ’a compact_array =

| Array: ’a array -> ’a compact_array (* default case *)

| Bytes: bytes -> char compact_array (* optimized case *)

| Bools: bitvect -> bool compact_array (* optimized case *)

47

History of GADTs

1992 Coquand: Pattern-matching with dependent types.
Combining inductive families with pattern matching.

1992 Läufer: Polymorphic Type Inference and Abstract Data Types.
“Existential types”, a special case of GADT.

1994 Augustsson, Petersson: Silly type families (dra�).
Let’s remove the regularity condition over constructor types.
Problems to infer the types of match.

2003 Xi, Chen, Chen: Guarded Recursive Datatype Constructors.
Rediscovery of the same ideas.

2006 Peyton-Jones et al + Pottier and Régis-Gianas. First
algorithms for partial type inference for GADTs pattern
matching.

2007 GHC 6.8.1: introduction of GADTs in Haskell.
2012 OCaml 4.00: introduction of GADTs in Caml.

48

Values that determine types
A special case of dependent types that GADTs express well.

Example: the sprintf function (formatted printing)

sprintf "toto" : string

sprintf "var = %d" : int -> string

sprintf "%s = %d" : string -> int -> string

We obtain a typed version sprintf: ’a format -> ’a

by encoding formats using the ’a format GADT below:

type _ format =

| Lit: string * ’a format -> ’a format

| Param_int: ’a format -> (int -> ’a) format

| Param_string: ’a format -> (string -> ’a) format

| End: string format

sprintf (Lit("toto", End)) : string

sprintf (Lit("var = ", Param_int End)) : int -> string

sprintf (Param_string (Param_int End)) : string -> int -> string

49

Existential types and type equalities

GADTs make it possible to existentially quantify over a type:

type printable =

| Printable: ’a * (’a -> string) -> printable

To be read as ∃A : Type. A× (A→ string).

We can also de�ne equality between two types:

type (’a, ’b) equal =

| Equal: (’c, ’c) equal

Conversely, any GADT can be written as a regular parameterized algebraic
type + existential types + type equalities.

50

V

Functional encodings

Inductive types: primitive or encoded?

Inductive types are a primitive concept in Coq and Agda, just like W types
are primitive in Martin-Löf type theory.

However, they can almost be de�ned in the Pure Type Systems from the
previous lecture, using only lambda-terms and Pi-types.

52

Untyped encoding

A generalization of Church’s encoding of natural numbers as pure
lambda-terms. We start with the equations de�ning the recursor for an
inductive type:

bool_rec true a b → a
bool_rec false a b → b
nat_rec O a b → a
nat_rec (S n) a b → b (nat_rec n a b)

We take recursors to be the identity function, hence constructor = recursor:

true a b → a O a b → a
false a b → b (S n) a b → b (n a b)

We deduce the lambda-terms that correspond to constructors:

true = λa. λb. a O = λa. λb. a
false = λa. λb. b S = λn. λa. λb. b (n a b)

53

Simply-typed encoding
With simple types, we are forced to give monomorphic types not only to
constructors but also to pattern matchings! Example with Booleans:

type bool = t→ t→ t (* for a fixed type t *)

true : bool = λa : t. λb : t. a
false : bool = λa : t. λb : t. b

We can write an “if then else” whose result has type t, but no other type.
Likewise for natural numbers:

type nat = t→ (t→ t)→ t (* for a fixed type t *)

we can de�ne the sum and the product of two numbers, but not the
exponential function.

Theorem (Schwichtenberg)
The functions N→ N de�nable in simply-typed lambda-calculus are
extended polynomials (polynomials + “is zero” test).

54

System F encoding

System F allows us to quantify universally over the result type of the
pattern matching:

type bool = ∀X. X → X → X

type nat = ∀X. X → (X → X)→ X

This makes the encoding very expressive, in practice and even in theory.

Theorem (Girard)
All functions N→ N provably total in second-order Peano arithmetic are
de�nable in System F.

55

System Fω encoding
The encoding is obtained from the types of the constructors, where we
replace the inductive type by a type variable R (= result type), universally
quanti�ed. Type parameters become λ in Fω .

pair: A -> B -> prod A B

prod = λA : ∗. λB : ∗. ∀R : ∗. (A -> B -> R) -> R

inl: A -> sum A B

inr: B -> sum A B

sum = λA : ∗. λB : ∗. ∀R : ∗. (A -> R) -> (B -> R) -> R

nil: list A

cons: A -> list A -> list A

list = λA : ∗. ∀R : ∗. R -> (A -> R -> R) -> R

tt: unit

unit = ∀R : ∗. R -> R

empty = ∀R : ∗. R

56

System Fω encoding

The approach extends to GADTs and to inductive families by replacing the
type constructor by a type variable of the same kind, universally quanti�ed.

Array: ∀X. array X -> compact_array X

Bytes: bytes -> compact_array char

Bools: bitvect -> compact_array bool

compact_array = λA : ∗. ∀R : ∗ ⇒ ∗.
(∀X. array X -> R X) ->

(bytes -> R char) ->

(bitvect -> R bool) -> R A

refl: ∀X. equal X X

equal = λA : ∗. λB : ∗. ∀R : ∗ ⇒ ∗ ⇒ ∗. (∀X. R X X) -> R A B.

57

Limitation: no dependent elimination

In general, the type of a case analysis depends on the value being
analyzed. This is o�en the case when the type is a proposition and the case
analysis its proof.

Example: to show ∀b : bool. P(b), we do a case analysis
match b with false => ... | true => ... end

whose type is P b.

The eliminator does not have type bool→ R→ R→ R
but it has type bool→ R false→ R true → ∀b : bool, R b.

A functional encoding would lead to a circular type. . .

bool = ∀R: bool -> Type. R -> R -> ∀b: bool. R b

58

Limitation: no “large elimination”

A pattern matching can produce a result in a universe “above” that of the
matched value. For example: we de�ne a type by pattern matching on a
nat.

Fixpoint vec (A: Type) (n: nat) : Type :=

match n with

| O => unit

| S p => prod A (vec A p)

end.

In a functional encoding, this leads to universe inconsistency.

59

VI

Advanced topics

The limitations of the guard condition

Fixpoint f (x: T) := ... f a ... f b ...

The guard condition “a, b strict subterms of x” is
1 not always well de�ned (many variants in Coq);
2 incompatible with abstraction.

In particular, it does not deal with nested recursion nor with generative
recursion (through other functions):

Fixpoint f (x: T) := ... f (g x) ...

Fixpoint f (x: T) := ... f (... f x ...) ...

61

Example of non-structural recursion

Euclidean division over Peano integers:

4 Fixpoint minus (p q: nat) :=

match p, q with

| O, _ => O

| _, O => q

| S p’, S q’ => minus p’ q’

end.

8 Fixpoint div (p q: nat) := (* divide p by q+1 *)

match p with

| O => O

| S p’ => S (div (minus p’ q) q)

end.

div terminates because minus p’ q <= p’. A Noetherian recursion (over
the well-founded order of natural numbers) est nécessaire.

62

Sized types

For each inductive type T we distinguish:
Ti : the t : T of size < i. (i natural number or ordinal)
Ti+1: the t : T of size ≤ i.

We can, then, typecheck recursion as follows:

Γ, f : Ti → S ` e : Ti+1 → S

Γ ` fixpoint f = e : T → S

Combined with subtyping Ti <: Tj if i < j.

In the Euclidean division example, we can show
minus : nati → nat→ nati, and conclude that div is a correct recursion.

63

Sized types

Agda uses dependent types to add size annotations to inductive types:

sized type SNat : Size -> Set where

zero: ∀(i: size) -> SNat ($ i)

succ: ∀(i: size) -> SNat i -> SNat ($ i)

SNat i is the type of numbers of size ≤ i.

Size is a prede�ned type ≈ ordinals..

$ is “size + 1”.

64

Other kinds of inductive types

Mutual inductives:

Inductive tree : Type :=

| Leaf: A -> tree

| Node: forest -> tree

and forest : Type :=

| Nil: forest

| Cons: tree -> forest -> forest.

Nested inductives:

Inductive tree : Type :=

| Leaf: A -> tree

| Node: list tree -> tree.

OK in Coq and Agda. Induction principles sometimes too weak.

65

Other kinds of inductive types

Induction-recursion: (P. Dybjer)
An inductive type A: Type

that uses a function A -> B.

Induction-induction:
An inductive type A: Type

that uses an inductive family B: A -> Type.

A motivation: encode a type theory (e.g. MLTT) in another.
(J. Chapman, Type theory should eat itself, 2009.)

66

Quotient types

A construction very o�en used in mathematics:
the quotient of a set by an equivalence relation.

Example: Q = (Z× Z∗) / R where R (p, q) (p′, q′) def
= pq′ = p′q.

In type theory, no general notion of “quotient type”.

In special cases we can de�ne the quotient type as the subset type of
canonical representatives:

Definition Q_canon (pq: Z * Z) : Prop :=

let (p, q) := pq in q > 0 /\ gcd p q = 1.

Definition Q = { pq: Z * Z | Q_canon pq }

67

Higher Inductive Types (HITs)

A concept from homotopy type theory: de�ne an inductive type by its
constructors and the equalities they satisfy.

Inductive Z2Z : Type :=

| O: Z2Z

| S: Z2Z -> Z2Z

| mod2: S (S O) = O.

Enforce that pattern matchings are compatible with these equalities.

match (n: Z2Z) with

| O => a
| S p => b p

| mod2 => (* proof that a = b (S O) *)

end.

(To be continued in the lecture of Jan 23, “What is equality?”.)

68

VII

Further reading

Further reading

Yves Bertot et Pierre Castéran. Interactive Theorem Proving and
Program Development. Chapitres 6, 8, 14, 15.

Adam Chlipala. Certi�ed Programming with Dependent Types.
http://adam.chlipala.net/cpdt/. Chapitres 3, 4, 6, 8, 9.

70

http://adam.chlipala.net/cpdt/

	Data structures
	Inductive types
	Inductive families
	GADT
	Functional encodings
	Advanced topics
	Further reading

