
Programming = proving?
The Curry-Howard correspondence today

Tenth lecture

What is equality?
From Leibniz to homotopy type theory

Xavier Leroy

Collège de France

2019-01-23

What do we mean?

In computing, when we write in a program

e1 = e2 e1 == e2 e1 === e2 e1.equals(e2)

In mathematics, when we write

∆ = b2 − 4ac
2
4
=
1
2

eiπ = −1

In philosophy, when we talk about object identity.
(Is Theseus’ ship still the same a�er all of its parts were replaced with new ones?)

2

I

Notions of equality

The equality known as Leibniz equality

Two objects are equal
if and only if

every property that holds for one object also holds for the other

In higher-order logic, this principle provides a definition of equality known
as “Leibniz equality”:

x = y def
= ∀P, P(x) ⇔ P(y)

4

Render unto Leibniz . . .

Principle of indiscernibility of identicals: two identical entities have the
same properties.

A et B sont identiques signifie qu’ils peuvent être substitués l’un à
l’autre dans toutes les propriétés salva veritate.

G. W. Leibniz, Échantillon de calcul universel

Principe of identity of indiscernibles: if two entities have the same
properties, then they are identical.

[I]l n’est pas vrai que deux substances se ressemblent entièrement
et soient différentes solo numero.

G. W. Leibniz, Discours de métaphysique

5

Variations on Leibniz equality

An axiomatization in first-order logic:

Reflexivity axiom: ∀x, x = x
Axiom schema: ∀x, y, x = y ⇒ (P(x) ⇔ P(y))

(one axiom per predicate P)

From these axioms, the converse property follows:
if P(x) ⇔ P(y) for every predicate P,
we take λz. (x = z) for P and we have x = x ⇔ x = y,
thus x = y.

6

Variations on Leibniz equality

We can replace the equivalence P(x) ⇔ P(y) by an implication:

x = y def
= ∀P, P(x) ⇒ P(y)

Despite the apparent asymmetry, the definition is equivalent:
if ∀P, P(x) ⇒ P(y), taking P = λz. P(z) ⇒ P(x) we get

(P(x) ⇒ P(x)) ⇒ (P(y) ⇒ P(x)) and, therefore, P(y) ⇒ P(x)

Hence ∀P, P(y) ⇒ P(x).

7

Equivalence relations

A relation R is an equivalence relation if it is

reflexive: ∀x, R(x, x)
symmetric: ∀x, y, R(x, y) ⇒ R(y, x)
transitive: ∀x, y, z, R(x, y) ∧ R(y, z) ⇒ R(x, z)

Another definition of equality over a set A: it is the smallest of the
equivalence relations over A, that is, the intersection of all these relations.

x =A y
def
= (x, y) ∈

⋂

{R | R equivalence relation over A}
def
= R(x, y) for all equivalence relations R over A

This definition is equivalent to Leibniz equality. (Exercise.)

8

Equality in type theory

In the 1973 version of his type theory, Per Martin-Löf introduced a type
x =A y of identities between x, y : A.

An element of type x =A y is a proof of equality between x and y.

This type has one constructor reflA and one eliminator JA.

reflA : ∀x : A. x =A x

JA : ∀C : (∀x, y : A. x =A y → Set).
(∀z : A. C z z (reflA z)) → (∀x, y : A. ∀s : x =A y. C x y s)

such that JA C d a a (reflA(a)) = d a : C a a (reflA(a)).

9

Equality in type theory

JA : ∀C : (∀x, y : A. x =A y → Set).
(∀z : A. C z z (reflA z)) → (∀x, y : A. ∀s : x =A y. C x y s)

In other words: let C be a three-place predicate, x and y of type A, and
s : x =A y a proof of equality between x and y.

In order for C to be always true, it suffices that it is true in the case where x
and y are the same variable z and s is the trivial equality reflA z.

Example: indiscernability of identicals!
Let P : A → Set be a predicate. We take C x y s = (P x → P y).
Clearly, C z z (reflA z) = P z → P z holds.
Hence, for any proof of x =A y, we have P x → P y.

10

Equality in type theory

The type x =A y, interpreted via Curry-Howard as a proposition, is
equivalent to Leibniz equality:

Reflexivity: the type x =A x is inhabited by reflA x.
Indiscernability of identicals: if x =A y is inhabited,
then P x → P y for all predicates P : A → Set.

Moreover, we can “compute with equality proofs” in an effective way. For
instance, using J we can define terms

symA : ∀x, y : A. x =A y → y =A x
transA : ∀x, y, z : A. x =A y → y =A z → x =A z

that satisfy transA x y x s (symA x y s)
∗

→ reflA x.

11

Equality as an inductive predicate

If we have inductive families, that is, inductive predicates, as in Agda and
Coq, we can define equality as an inductive predicate.

Inductive eq (A: Type): A -> A -> Prop :=

| eq_refl: forall (x: A), eq A x x.

Coq uses the following variant, logically equivalent but sometimes easier
to use:

Inductive eq (A: Type) (x: A): A -> Prop :=

| eq_refl: eq A x x.

12

Equality as an inductive predicate

Inductive eq (A: Type) (x: A): A -> Prop :=

| eq_refl: eq A x x.

The induction principle for this inductive predicate, automatically
generated by Coq, is the principle of indiscernability of identicals:

eq_ind: forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, eq A x y -> P y

It follows that this eq predicate is equivalent to Leibniz equality:

forall (A: Type) (x y: A),

eq A x y <-> forall (P: A -> Prop), P x -> P y.

13

Equality as an inductive predicate

Inductive eq (A: Type) (x: A): A -> Prop :=

eq_refl: eq A x x.

All the uses (“eliminations”) of an equality reduce to pattern-matching
over terms of type eq A x y. For instance, the principle of indiscernability
of identicals:

Definition F (A: Type) (P: A -> Prop) (x y: A) (s: eq A x y)

: P x -> P y :=

match s with

| eq_refl _ _ => fun p => p

end.

Exercise: define Martin-Löf’s eliminator JA by pattern-matching.

14

II

The highs and lows of equality in Coq

Equality over simple inductive types

Equality from type theory behaves well over purely inductive types such as
nat or nat * bool or list nat.

In particular, extensionality holds: two data structures are equal if and
only if all their components are equal. For instance, in the case of two lists:

[x1; . . . ; xp] = [y1; . . . ; yq] iff p = q and xi = yi for i = 1, . . . p

Moreover, equality is decidable: for a purely inductive type A, we can
define a function beq : A → A → bool such that
beq x y returns true iff x = y and returns false iff x 6= y.

Fixpoint beq_nat (p q: nat) : bool :=

match p, q with

| O, O => true | S p, S q => beq_nat p q | _, _ => false

end

16

Equality between functions

Two functions are equal if they are convertible. For instance, using Coq’s
definition for + :

(fun x => 1 + x) =β (fun x => S x) =η S

(fun x => x + 1) 6=βη S

This is the only way to show that two functions are equal. In particular, we
cannot prove an extensionality principle (two functions having the same
graph are equal).

FE (Function Extensionality)
∀A, B : Type. ∀f , g : A → B. (∀x : A, f x = g x) → f = g

DFE (Dependent Function Extensionality)
∀A : Type. ∀B : A → Type. ∀f , g : Π(x : A). B x. (∀x : A, f x = g x) → f = g

17

Equality between functions

Consider two functions f , g : A → B such that ∀x : A. f x = g x.

An argument based on logical relations shows contextual equivalence
between f and g, from which it follows that P f and P g are logically
equivalent for all P : (A → B) → Prop.

However, this is a “meta” argument that cannot be proved within the type
theory!

Actually, FE and its extension DFE are independent from CC + universes:
Set-based models validate DFE.
A syntactic model by Boulier, Pédrot, Tabareau (2017) invalidates it.

18

Equality between coinductive types

As in the case of functions, equality over coinductive types is not
extensional: two streams s1, s2 such that

hd(tln(s1)) = hd(tln(s2)) for all n

do not satisfy s1 = s2 in general.

Usually, we reason not over equality between streams but over bisimilarity
between streams, a notion defined as a coinductive predicate:

CoInductive bisim (A: Type): stream A -> stream A -> Prop :=

| bisim_intro: forall s1 s2,

hd s1 = hd s2 -> bisim (tl s1) (tl s2) -> bisim s1 s2.

The extensionality axiom for streams ∀s1, s2. bisim s1 s2 ⇒ s1 = s2
is presumed independent from Coq’s logic.

19

Equality between proof terms

A value of a (co-)inductive type can contain proof terms: values of a type
P : Prop representing a logical proposition.

Example: the subset type {x : A | P(x)}, defined by

Inductive sig (A: Type) (P: A -> Prop) : Type :=

| exist: forall (x: A), P x -> sig A P.

A value of type {x : A | P(x)} is a pair of an x : A and a proof of P x.

20

Equality between proof terms
To show that two values of type {x : A | P(x)} are equal, we need to show
not only that their first components x are equal, but also that the two
proofs of P x are equal. Equality between proof terms can be quite
surprising indeed!

Example: we’d like to define Z as a quotient of N× N.

Definition Z := { p: nat * nat | fst p = O ∨ snd p = O }

There are two proofs of O = O ∨ O = O: the proof stating that the le�
claim is true, and the proof stating that the right claim is true. Hence two
definitions for the zero of Z:

Definition zero : Z := exist _ (O,O) (or_introl eq_refl).

Definition zero’ : Z := exist _ (O,O) (or_intror eq_refl).

We cannot prove that zero = zero’.
(Neither can we prove that zero 6= zero’, by the way.)

21

Uniqueness of proof terms

We would like two values of type {x : A | P(x)} to be equal as soon as their
first components x are equal.

Three possibilities:
1 Show that proofs of P(x) are unique:
for all p, q : P(x) we have p = q.
O�en impossible to prove; always difficult to prove.

2 Replace P by an equivalent predicate Q that has the unique proof
property, typically a Boolean equality f x = true.

3 Take proof irrelevance as an axiom:
PI (Proof Irrelevance) ∀P : Prop. ∀p, q : P. p = q

22

Uniqueness of identity proofs

An important special case is uniqueness of identity proofs:

UIP(A) (Uniqueness of Identity Proofs) ∀x, y : A. ∀p, q : x = y. p = q

We can prove this property for several types A, in particular those where
equality is decidable: ∀x, y : A. x = y ∨ x 6= y.
This includes purely inductive types such as bool and nat.

(Hence the idea to replace {x | P x} by {x | f x = true}.)

We can also take UIP as axiom, for a given type, or for all types.

23

Summary

Equality as defined in type theory is perfect for purely inductive types, but
does not allow us to identify object that we think are equal:

two functions that have the same graph;
two streams that are bisimilar;
two proofs of the same proposition;
two propositions P,Q that are equivalent P ⇔ Q.

24

Approach 1: the setoids

We can systematically work over types A equipped with equivalence
relations eqA that are the desired notions of equality, for instance

eqA→B f g = ∀x : A. eqB (f x) (g x)

A pain: we must prove compatibility of every function or predicate
definition.

for all functions f : A → B, show ∀x, y : A. eqA x y → eqB (f x) (f y)
for all predicates P : A → Prop, show ∀x, y : A. eqA x y → P x ⇔ P y

Coq provides some notations and tactics to facilitate this style.

25

Approach 2: add axioms

The most common axioms:

∀A, B : Type. ∀f , g : A → B. (∀x : A, f x = g x) → f = g (FE)

∀A : Type. ∀B : A → Type. ∀f , g : Π(x : A). B x. (∀x : A, f x = g x) → f = g
(DFE)

∀P,Q : Prop, (P ⇔ Q) ⇒ P = Q (PE)

∀P : Prop. ∀p, q : P. p = q (PI)

∀x, y : A. ∀p, q : x = y. p = q (UIP)

We have good reasons to believe that these axioms are consistent with
CC + universes. With all of Coq, it’s less clear.

Also: PE and PI rely on the very special status of Prop in Coq, and make no
sense in other type theories (e.g. Agda).

26

Approach 3: think equality differently

A fresh perspective on equality could enlighten us . . .

27

III

Equality and homotopy

Homotopy

A tool from algebraic topology that considers continuous deformations
between two topological objects.

a b

f(t)

g(t)

H(s, t)

Example of topological object:
a path between two points a, b of space A is a continuous function
f : [0, 1] → A such that f(0) = a and f(1) = b.

Example of continuous deformation:
two paths f , g from a to b are homotopic if there exists
a continuous function H : [0, 1]× [0, 1] → A such that
H(0, t) = f(t) and H(1, t) = g(t) and H(s, 0) = a and H(s, 1) = b.

29

Liberty, equality, connectedness

In archipelago A, tradition says that two inhabitants of A are equal if there
exists a path (over land) that connects them.

Two inhabitants of the same island are equal.
Two inhabitants of different islands are different.
(Unless there exists a bridge between the islands.)

30

Operations over paths

a ida a b
f

f−1
a b c

f g

g ◦ f

Unit: for every point a we have a trivial paths ida from a to a
ida = t ∈ [0, 1] 7→ a

Inverse: for every path f from a to b, we have a path f−1 from b to a
f−1 = t ∈ [0, 1] 7→ f(1− t)

Composition: for every paths f from a to b and g from b to c, we have a
path g ◦ f from a to c

g ◦ f =

{

t ∈ [0, 12] 7→ f(2t)
t ∈] 12 , 1] 7→ g(2t− 1)

Corollary
The relation “being connected by a path” is an equivalence relation.

31

A groupoid?

id : Path(a, a)
·−1 : Path(a, b) → Path(b, a)
· ◦ · : Path(b, c) → Path(a, b) → Path(a, c)

We would like to see here a groupoid, that is,
a group where the binary operator ◦ is partial;
a category where every arrow has an inverse arrow.

For this, we would need the following identities:

f ◦ f−1 = id f−1 ◦ f = id
f ◦ id = f id ◦ f = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)

32

Equality between paths = homotopy

f−1 ◦ f = ida for all f : Path(a, b)

Viewed as an equality between functions, this property is false:
ida is a constant function, while f−1 ◦ f goes through a · · · b · · · a.

Viewed as an homotopy relation, this property is true:
the paths ida and f−1 ◦ f are homotopic.

a b

f

f−1

a H(s, t) =

{

f(s× 2t) if t ≤ 1
2

f(s× 2(1− t)) if t > 1
2

33

Homotopic paths, non-homotopic paths

In general, any two paths from a to b are not homotopic, and a loop (a path
from a to a) is not homotopic to ida.

a b
⇓

6⇓

⇓

aida

However, the paths appearing in the groupoid equations are always
homotopic, regardless of the topology of space A.
Reading = as “is homotopic to”:

f ◦ f−1 = id f−1 ◦ f = id
f ◦ id = f id ◦ f = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)

34

Turtles all the way down

Homotopies between paths are themselves a groupoid, comprising
unit homotopies idf (where f is a given path);
a composition law;
an inverse.

These operations satisfy the groupoid laws provided equality between
homotopies is interpreted as existence of a “level 2” homotopy:
a continuous function Φ : [0, 1]3 → A such that Φ(0, ,) is equal to the first
homotopy and Φ(1, ,) is equal to the second.

We can iterate this construction for every level k, obtaining an
ω-groupoid or∞-groupoid.

35

The first three levels

Level Objects Identities Compositions (transitivity)

0 • •
!!
•

•

f
!!
•

g
!!
•

" !! •

g◦f
!!
•

1 •
!!
• • •

""
##$$ • •

""
##α$$ ••

""
##β$$

" !!
• •

""
##β∗α$$

2 • •

""
##$$ • •

""
##

%% &&
!''

• •

""
•

""
##

%% && %% &&
! '' ! '' " !!

• •

""
##

%% &&
!''

(Source: Cheng and Lauda, Higher-Dimensional Categories: an illustrated guide book.)

36

Type theory and homotopy theory

The presentation of type theory in type theory (type x =A y, constructor
reflA, eliminator JA) naturally generates an ω-groupoid for every type A.

(van den Berg and Garner, 2008; Lumsdaine, 2009)

Conversely, ω-groupoids and higher-order homotopy provide models of
type theory with equality.

For instance, Hofmann and Streicher (1998) used 1-groupoids to construct a
model where UIP is false, that is, where there exists two different proofs for
an equality a = b.

37

IV

Homotopy type theory

Homotopy type theory

Very briefly: it is a type theory, close to that of Martin-Löf, but explained,
revised and extended in the light of higher-order homotopy.

Origin: a recent (2005–2010) encounter between a mathematician
(Voevodsky), category theorists (Awodey, Warren, . . .) and computer
scientists (Streicher, Coquand, . . .).

Reference book: the collective book Homotopy Type Theory: Univalent
Foundations of Mathematics, 2013, available on the Web.

39

The types of HoTT

HoTT starts with the same types as MLTT:

A, B ::= empty | unit | bool enumerated types (0, 1, 2 elements)
| Πx : A. B | Σx : A. B dependent products and sums
| A+ B sums
| a =A b identities (equality proofs)
| U names of universes

Standard abbreviations: A → B is Π : A. B; A× B is Σ : A. B.

40

Classifying types according to their equalities

We distinguish two important families of types:

Propositions (mere propositions in the book).
These are the types A where all values are equal:
prop(A) def= Πx, y : A. x =A y.

Sets
These are the types A such that identities are unique:
set(A) def= Πx, y : A. prop(x =A y)

def
= Πx, y : A.Πp, q : x =A y. p = q

In other words: the sets are the types that already satisfy UIP, and the
propositions are the types that already satisfy PI.

41

Examples of propositions

The following are propositions:

unit (≈ truth)

empty (≈ absurdity)

A → B if B is a proposition (+ FE axiom)

A → empty (≈ negation) (+ FE axiom)

Πx : A. B(x) if B(x) is a proposition for all x : A (+ DFE axiom)

A× B if A and B are propositions.

A+ B if A and B are propositions and A → B → empty.

A+ B is not a proposition in general:
e.g. unit+ unit has two different values, inl tt and inr tt.
Σx : A. B(x) is not a proposition in general.

42

Examples of sets

Enumerated types: empty, unit, bool.

A → B if B is a set (+ FE axiom)

Πx : A. B(x) if B(x) is a set for all x : A (+ DFE axiom)

A× B and A+ B if A and B are sets.

Σx : A. B(x) if A and B(x) for all x : A are sets

A if A is a proposition.

43

A propositions as types correspondence

We’d like to represent propositions from higher-order logic as types that
are propositions in the sense of HoTT, that is, types A such that x = y for
all x, y : A.

We use a propositional truncation operator:
a type ‖A‖ that is a proposition, for all types A.

[⊤] = unit [⊥] = empty

[P ⇒ Q] = [P] → [Q] [¬P] = [P] → empty

[P ∧ Q] = [P]× [Q] [P ∨ Q] = ‖[P] + [Q]‖
[∀x : A. P] = Πx : A. [P] [∃x : A. P] = ‖Σx : A. [P]‖

44

Propositional truncation

Two operations over type ‖A‖:
img : A → ‖A‖

lift : (A → B) → (‖A‖ → B) if B is a proposition

such that img x = img y for all x, y : A and lift f (img x) = f x for all x : A.

img a erases all information on the value of a. Its result just witnesses that
type A is inhabited.

If f : A → B and B is a proposition, function f returns the same result
regardless of its argument a : A. All that matters to f is that A is inhabited.
We can therefore transform it into a function lift f : ‖A‖ → B.

45

Propositional truncation

img : A → ‖A‖
lift : (A → B) → (‖A‖ → B) if B is a proposition

In the encoding of P ∨ Q by ‖[P] + [Q]‖, we hide which of P or Q is true. We
cannot, therefore, write a function f : [P ∨ Q] → bool that is true in the P
case and false otherwise.

However, lift still lets us do a case analysis “P true? Q true?” for the
purpose of concluding a proposition R.

p : [P]

img(inl p) : [P ∨ Q]

q : [Q]

img(inr q) : [P ∨ Q]

a : [P ∨ Q] f : [P] → [R] g : [Q] → [R]

lift (λx. match x with inl p ⇒ f p | inr q ⇒ g q) a : [R]

46

Higher-inductive types (HIT)

In a standard inductive type, constructors generate the values of the type:

Inductive nat: Type :=

| O: nat

| S: nat -> nat.

A higher-inductive type can also have constructors that generate paths
between values of the type, that is, equalities beyond the default equality,
and even higher-order paths, that is, equalities between equalities.

Inductive Z4: Type :=

| O: Z4

| S: Z4 -> Z4

| mod4: S(S(S(S O))) = O.

47

HIT = inductive types + equations

The definition of Z as a “free” inductive type:

Inductive Z :=

| Z0: Z

| Zpos: positive -> Z

| Zneg: positive -> Z.

A definition “with two zeros” and an equation between them:

Inductive Z :=

| Zpos: nat -> Z

| Zneg: nat -> Z

| Zzero: Zneg O = Zpos O.

Z generated by O, successor (S), and its inverse, the predecessor (P):

Inductive Z :=

| O: Z | S: Z -> Z | P: Z -> Z

| SP: forall z, S (P z) = z

| PS: forall z, P (S z) = z.

48

Case analysis over a HIT

Inductive Z4: Type :=

| O: Z4

| S: Z4 -> Z4

| mod4: S(S(S(S O))) = O.

The declaration gives us an equality “for free”, mod4. Now, we must respect
this equality in all computations that analyze a value of type Z4:

match (n: Z4) with O => a | S m => f m end

must produce the same result if n = O and if n = S(S(S(S O))),
hence a proof obligation: f (S(S(S O)) = a.

Definition pred (n: Z4) := Definition pred (n: Z4) :=

match n with match n with

| O => S(S(S O)) ✔ | O => O ✘

| S m => m | S m => m

end. end.

49

Recursors over a HIT

This proof obligation appears in the type of the recursor (the higher-order
function that performs case analysis and recursion).

For a standard inductive type such as nat, the recursor takes one
argument per value constructor:

nat_rec : ∀X: Type. X → (X → X) → nat → X

ր տ
case O case S

For a HIT such as Z4, the recursor takes one argument per value
constructor or path constructor, and in the latter case it’s an equality proof.

Z4_rec : ∀X: Type. ∀z: X. ∀s: X → X. s(s(s(s z))) = z → Z4 → X

ր ↑ ↑
case O case S case mod4

50

Recursors over a HIT

Z4_rec : ∀X: Type. ∀z: X. ∀s: X → X. s(s(s(s z))) = z → Z4 → X

Equipped with this recursor, it is easy to define the predecessor function:

Definition pred : Z4 → Z4 :=

Z4_rec Z4 (S(S(S O))) (fun m => m) (eq_refl (S(S(S O)))).

Addition is just as easy:
(we follow the schema add m O = m and add m (S n) = S(add m n))

Definition add (m: Z4) : Z4 → Z4 :=

Z4_rec Z4 m S (p m).

The term p must prove ∀m, S(S(S(S m))) = m. This can be proved by
induction over m, using a dependently-typed recursor that is slightly more
complex.

(See the paper by Basold et al given in references.)

51

Truncation as a HIT
Propositional truncation is defined by a very simple HIT:

Inductive tr (A: Type) : Type :=

| img: A → tr A

| tr_prop: ∀x y: tr A, x = y.

The tr_prop constructor asserts that tr A is a proposition.

The corresponding recursor is:

tr_rec (A: Type) :

∀X: Type. ∀i: A → X. (∀x y: X. x = y) → tr A → X

We see that it applies only to types X that are propositions. But, given a
type X and a proof pX: prop X, we define easily the li�ing of a function
A → X:

lift (f: A → X) : tr A → X := tr_rec X f pX

52

Quotient types as a HIT

In set theory, the quotient A/R of a set A by an equivalence relation R over
A is the set of all equivalence classes of R.

Given A : Type and R : A → A → Type, we can define a quotient type A/R
by the following HIT:

Inductive Q : Type :=

| img: A → Q

| img_eq: forall x y, R x y → img x = img y.

Assuming that R is an equivalence relation, we can prove the converse of
img_eq, which shows that

forall x y, img x = img y <-> R x y.

53

Quotient types as a HIT

Inductive Q : Type :=

| img: A → Q

| img_eq: forall x y, R x y → img x = img y.

Given a function f : A → B that is compatible with R
(i.e. R x y ⇒ f x = f y), we want to construct a function g : Q → B:

A B
f

Q
img g

It suffices to take

Definition g (q: Q) := match q with img a => f a end

or, more exactly, the equivalent formulation using the recursor Q_rec.
It follows that g (img a) = f a for all a : A, as expected.

54

HITs for homotopy

HITs make it possible to describe topological spaces in a purely synthetic
manner:

⇑

Interval Circle Sphere Suspension

0: I base: S2

1: I surf: reflbase = reflbase
seg: 0=1

base: S1 N: Susp

loop: base = base S: Susp

merid: A -> N = S

55

V

Advanced topics

Equivalences and univalence
f : A → B is an equivalence if it is a bijection that “behaves well” with
respect to equality paths:

Πy : B. fibr(y)× prop(fibr(y)) with fibr(y) = Σx : A. f x = y

We write A ≅ B if there exists an equivalence from A to B.

Voevodsky’s univalence axiom:
the canonical function A = B → A ≅ B is an equivalence.
Consequently, if A ≅ B, then A = B.

Formalizes the intuitive idea of reasoning up to isomorphism
(not always valid in set theory).

Implies the usual extensionality axioms: FE, DFE, PE.

Computational content still unclear. (⇒ seminar by Th. Coquand)

57

HoTT for programming languages

The notion of equivalence as a very precise characterization of “good”
representation changes: not just a bijection between two types, but a
bijection that correctly “transports” equalities.

Higher-inductive types as a new tool to write “correct by construction”
programs, in a ways that differs from but complements dependently-typed
programming.

All this potential remains to be realized: no full implementation yet of
HoTT + HIT; partial prototypes in Agda, Coq, and Lean.

58

VI

Further reading

Further reading

The reference book:

Homotopy Type Theory: Univalent Foundations of Mathematics,
The Univalent Foundations Program, Institute for Advanced Study, 2013,
https://homotopytypetheory.org/book/

To read first: chapters 1, 2, 3 + chapter 6 for HITs.

A rather short presentation of HITs with nice examples:

Henning Basold, Herman Geuvers, Niels van der Weide: Higher Inductive
Types in Programming. J. UCS 23(1): 63-88 (2017).

Libraries to work with HoTT:

In Agda: https://github.com/HoTT/HoTT-Agda

In Coq: https://github.com/HoTT/HoTT

In Lean: https://github.com/leanprover/lean2/

60

	Notions of equality
	The highs and lows of equality in Coq
	Equality and homotopy
	Homotopy type theory
	Advanced topics
	Further reading

