
I 15th IEEE Computer Security Foundations Workshop

June 24 – 26, 2002

Fine-grained Information Flow Analysis
for a λ-calculus with Sum Types

Vincent Simonet

INRIA Rocquencourt — Projet Cristal

Vincent.Simonet@inria.fr
http://cristal.inria.fr/~simonet/

I Information Flow Analysis 2

Type Based Information Flow Analysis

Information flow analysis is concerned with statically determining the
dependencies between the inputs and outputs of a program. It allows
establishing instances of a non-interference property that may address secrecy
and integrity issues.

Types seem to be most suitable for static analysis of information flow:

• They may serve as specification language,

• They offer automated verification of code (if type inference is available),

• Such an analysis has no run-time cost.

• Non-interference results are easy to state in a type based framework.

I Information Flow Analysis 3

Annotated types

In these systems, types are annotated with security levels chosen in a lattice,
e.g. L = {Pub ≤ Sec}.
Type constructors for base values (e.g. integers, enumerated constants or
more generally sums values) typically carry one security level representing all
of the information attached to the value. Such an approximation may be too
restrictive:

let t = if x then (if y then A else B)
else (if z then A else D)

let u = t case [A,B 7→ 1 | D 7→ 0]

In this example, basic type systems will conservatively trace a flow from y to
u, although u’s value does not depend on y.

I Information Flow Analysis 4

Basic analysis of sums

if y then A else B :

A

DB

ȳtttt
if z then A else D :

A

DB
z̄ JJJJ

let t = if x then (if y then A else B)
else (if z then A else D) :

A

DB

x̄tȳtz̄
ttt

JJ

let u = t case [A,B 7→ 1 | D 7→ 0] :
0

1
x̄tȳtz̄

I Information Flow Analysis 5

Towards a more accurate analysis of sums

if y then A else B :

A

DB

⊥
11

11
11ȳ

°°
°°
°°

⊥

if z then A else D :

A

DB

z̄
11

11
11⊥

°°
°°
°°

⊥

let t = if x then (if y then A else B)
else (if z then A else D) :

A

DB

x̄tz̄
11

11
11x̄tȳ

°°
°°
°°

x̄

let u = t case [A,B 7→ 1 | D 7→ 0] :
0

1
x̄tz̄

I λ-calculus with sums 6

λ+: a λ-calculus with sum types

e ::= expression

| k (integer constant)

| x (program variable)

| λx.e (abstraction)

| e e (application)

| c e (sum construction)

| c̄ e (sum destruction)

| e case [h | . . . | h] (sum case)

h ::= C : x 7→ e case handler

c ∈ C constructor

C ⊆ C constructor set

(In the paper, the language is equipped with pairs and let polymorphism.)

I λ-calculus with sums 7

Semantics of λ+

(λx.e1) e2 → e1[x ⇐ e2] (β)

c̄ (c e) → e (destr)

(c e) case [. . . | Cj : xj 7→ ej | . . .] → ej[xj ⇐ c e] if c ∈ Cj (case)

I λ-calculus with sums 8

Typing λ+: 3 steps

1. Base type system (without information flow analysis)
[Rémy 1989]

2. Simple annotated type system
[Heintze and Riecke 1998]

3. Fine-grained type system

I Base type system for λ+ 9

Base types

t ::= int | t → t | Σ r type

a ::= Abs | Pre t alternative

r ::= {c 7→ a}c∈C row

A row r is a family of alternatives a indexed by constructors c. It indicates
for every constructor c if the given expression may (Pre t) or may not (Abs)
produce a value whose head constructor is c.

Subtyping (≤) is lead by the axiom: Abs ≤ Pre ∗

I Base type system for λ+ 10

Base type system : typing rules

Int
Γ ` k : int

Var
Γ ` x : Γ(x)

Abs
Γ[x 7→ t′] ` e : t

Γ ` λx.e : t′ → t

App
Γ ` e1 : t′ → t Γ ` e2 : t′

Γ ` e1 e2 : t

Sub
Γ ` e : t′ t′ ≤ t

Γ ` e : t

Inj
Γ ` e : t

Γ ` c e : Σ (c : Pre t; Abs)

Destr
Γ ` e : Σ (c : Pre t; Abs)

Γ ` c̄ e : t

Case
Γ ` e : Σ r r ≤ (C1 ∪ . . . ∪ Cn : ∗; Abs)

(∀ 1 ≤ j ≤ n) Γ[xj 7→ Σ r|Cj
] ` ej : t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

I Simple annotated type system 11

Simply annotated types

` ∈ L information level

t ::= int` | t → t | Σ r` type

The auxiliary predicate ` C t holds if ` guards t :

` ≤ `′

` C int`
′

` C t

` C t′ → t

` ≤ `′ ∀c, r(c) = Pre t⇒ ` C t

` C Σ r`′

I Simple annotated type system 12

Annotated Case rule

Case
Γ ` e : Σ r` r ≤ (C1 ∪ . . . ∪ Cn : ∗; Abs)

(∀ 1 ≤ j ≤ n) Γ[xj 7→ r|Cj
] ` ej : t ` C t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

I Simple annotated type system 13

Back to the example

if y then A else B :
Σ (A,B : Pre ; Abs)ȳ

if z then A else D :
Σ (A,D : Pre ; Abs)z̄

let t = if x then (if y then A else B)
else (if z then A else D) : Σ (A,B, D : Pre ; Abs)x̄tȳtz̄

let u = t case [A,B 7→ 1 | D 7→ 0] : intx̄tȳtz̄

I Fine-grained type system 14

Fine-grained sum types

In our fine-grained analysis, sum types are not annotated by a simple level
but by a matrix of levels. Sum types consist of a row and a matrix:

q ::= {c1 · c2 7→ `} matrix

t ::= int` | t → t | t× t | Σ rq type

• r(c) indicates if the given expression may (Pre t) or may not (Abs) produce
a value whose head constructor is c.

• q(c1 · c2) gives an approximation of the level of information leaked by
observing that the expression produces a result whose head constructor is
c1 rather than c2.

I Fine-grained type system 15

Typing the case construct

Case
Γ ` e : Σ rq

r ≤ (C1 ∪ . . . ∪ Cn : ∗; Abs)
∀ 1 ≤ j ≤ n, Γ[xj 7→ (Σ rq)|Cj

] ` ej : tj
[q(C1), . . . , q(Cn)] P [t1, . . . , tn] ≤ t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

• (Σ rq)|Cj
is the restriction of the type Σ rq to Cj

• q(Cj) = t{q(c · c′) | c ∈ Cj, c
′ 6∈ Cj} is an approximation of the

information leaked by testing wether the expression matches Cj.

I Fine-grained type system 16

Fine-grained guards

We use constraints of the form

[`1, . . . , `n] P [t1, . . . , tn] ≤ t

to record potential information flow at a point of the program where the
execution path may take one of n possible branches, because of a case
construct.

• The security level `j describes the information revealed by the test which
guards the jth branch,

• tj is the type of the jth branch’s result.

• t is the type of the whole expression.

I Fine-grained type system 17

Fine-grained guards (2)

[`1, . . . , `n] P [r1, . . . , rn] ≤ r q1 ≤ q · · · qn ≤ q
∀j1 6= j2, c1 6= c2, (rj1(c1) = Pre ∗ ∧ rj2(c2) = Pre ∗) ⇒ `j1 t `j2 ≤ q(c1 · c2)

[`1, . . . , `n] P [Σ r1
q1, . . . Σ rn

qn] ≤ Σ rq

If two branches j1 and j2 of the program may produce different constructors
c1 and c2, then observing that the program’s result is c1 and not c2 is liable
to leak information (`j1 t `j2) about the tests guarding the branches j1 and
j2.

I Fine-grained type system 18

Back to the example

if y then A else B :
Σ (A,B : Pre ; Abs)(A·B:ȳ;⊥)

if z then A else D :
Σ (A,D : Pre ; Abs)(A·D:z̄;⊥)

let t = if x then (if y then A else B)
else (if z then A else D) :

Σ (A,B, D : Pre ; Abs)(A·B:x̄tȳ; A·D:x̄tz̄; B·D:x̄; ⊥)

let u = t case [A,B 7→ 1 | D 7→ 0] : intx̄tz̄

I Fine-grained type system 19

Non-interference

Let us consider an expression e of type intPub with a “hole” x marked Sec:

(x 7→ t) ` e : intPub Sec C t

Non-interference

If

{` e1 : t
` e2 : t

and

{
e[x ⇐ e1] →∗ k1

e[x ⇐ e2] →∗ k2
then k1 = k2

In words : the result of e’s evaluation does not depend on the input value
inserted in the hole.
The theorem applies with a call-by-value or call-by-name semantics.

I Fine-grained type system 20

About weak non-interference

Our non-interference theorem is a weak result : it requires both expressions
e[x ⇐ e1] and e[x ⇐ e2] to converge.

This is made necessary by the fine-grained analysis: it is able to ignore some
test conditions. Consider for instance:

e = e′ case [A : 7→ D | B : 7→ D]

(where e′ has type Σ(A,B : Pre ∗; Abs)∗). The type system statically
detects that the result of e’s evaluation does not depend on e′, although e’s
termination does. (For instance, if e′ = Ω then e does not terminate.)

I Fine-grained type system 21

Encoding exceptions

Recent studies in the area of information flow analysis concern realistic
programming languages providing an exception mechanism (Java [Myers 99]
or ML [Pottier & Simonet 02]).
Their treatment of exceptions is direct and consequently relatively ad hoc.

Our fine-grained type system can be extended with exceptions à la ML, using
the standard monadic encoding into sums. This encoding provides a type
system tracing information flow for a language with exceptions more accurate
than previous ones.

I Fine-grained Information Flow Analysis 22

Conclusion

Because of the structure of security annotations involving matrices of levels,
an implementation of this framework is likely to produce very verbose type
schemes. Thus, it seems difficult to use it as the basis of a generic secure
programming language. Nevertheless:

• From a theoretical point of view, it allows a better understanding of ad-hoc
previous works on exceptions. To some extent, it may explain their design
choices.

• From a practical point of view, because this system has decidable type
inference, it might be of interest for automated analysis of very sensitive
part of programs (relatively to information flow) for which standard systems
remain too approximative. More experience in this area is however required
before going further.

