
The Flow Caml System
version 1.00

Documentation and user’s manual

V I N C E N T S I M O N E T

July, 2003

Acknowledgments I would like to thank François Pottier for his support and numerous com-
ments in the design of the Flow Caml system and the writing of this document.

An electronic version of this document is available at the following address:
http://cristal.inria.fr/~simonet/soft/flowcaml/manual/

Copyright c© 2003 Institut National de Recherche en Informatique et en Automatique

http://cristal.inria.fr/~simonet/soft/flowcaml/manual/

Abstract

Flow Caml is an extension of the Objective Caml language with a type system tracing information
flow. Its purpose is basically to allow to write “real” programs and to automatically check that
they obey some confidentiality or integrity policy. In Flow Caml, standard ML types are annotated
with security levels chosen in a user-definable lattice. Each annotation gives an approximation of
the information that the described expression may convey. Because it has full type inference, the
system verifies, without requiring source code annotations, that every information flow caused by
the analyzed program is legal with regard to the security policy specified by the programmer.

2

Contents

I An introduction to Flow Caml 7

1 Overview 9
1.1 Language-based Information Flow Analysis . 9
1.2 Relating Flow Caml to Objective Caml . 10
1.3 How to get the Flow Caml system ? . 10
1.4 Theoretical background and related work . 10

2 A Tutorial 13
2.1 Security levels and data structures . 13

2.1.1 Simple types . 13
2.1.2 Strings . 16
2.1.3 Lists . 16
2.1.4 Options . 17
2.1.5 Tuples . 18

2.2 Constrained type schemes . 18
2.2.1 Subtyping . 18
2.2.2 level constraints . 21
2.2.3 content constraints . 23
2.2.4 Same-skeleton constraints . 25
2.2.5 Functions as values . 26
2.2.6 Interlude: the graphical output of type schemes 26

2.3 Imperative features . 28
2.3.1 Direct and indirect information flows . 28
2.3.2 References . 29
2.3.3 Arrays, strings and loops . 31

2.4 Dealing with exceptions . 32
2.4.1 Rows . 32
2.4.2 Exceptions and side-effects . 35
2.4.3 The special constructs: try ... finally and try ... propagate 37
2.4.4 Parameterized exception names . 38

2.5 Defining new types . 39
2.5.1 Variants . 39
2.5.2 Records . 42

2.6 Interacting with the outside world . 45
2.6.1 The example of the standard input and output 45
2.6.2 Modeling principals . 47

2.7 The module language . 47
2.7.1 Structures and signatures . 47
2.7.2 Functors . 48
2.7.3 Side-effects, exceptions and the module language 53

3

2.8 Standalone programs . 54
2.8.1 Compilation units and batch compilation 54
2.8.2 flow declarations in implementations and interfaces 55
2.8.3 affects and raises statements in interfaces 58

II Reference manual 61

3 The Flow Caml language 63
3.1 Lexical conventions . 63
3.2 The core language . 64

3.2.1 Values . 64
3.2.2 Names . 65
3.2.3 Security levels . 66
3.2.4 Level definitions . 66
3.2.5 Type expressions . 67
3.2.6 Type schemes . 67
3.2.7 Type definitions . 68
3.2.8 Exception definitions . 69
3.2.9 Constants . 70
3.2.10 Patterns . 70
3.2.11 Expressions . 71

3.3 The module language . 72
3.3.1 Module types (module specifications) . 72
3.3.2 Module expressions (module implementations) 73
3.3.3 Compilation units . 73

4 Tools 75
4.1 The interactive toplevel (flowcaml) . 75

4.1.1 Graphical output . 75
4.1.2 Options . 75
4.1.3 Toplevel directives . 76

4.2 The batch compiler (flowcamlc) . 77
4.2.1 Overview . 77
4.2.2 Options . 77

4.3 The security policy displayer (flowcamlpol) . 78
4.3.1 Overview . 78
4.3.2 Options . 79

4.4 The dependency generator (flowcamldep) . 79
4.4.1 Options . 79
4.4.2 A typical Makefile . 80

5 The Flow Caml library 83
5.1 Built-in types and predefined exceptions . 83
5.2 Module Array . 85
5.3 Module Buffer . 89
5.4 Module Char . 91
5.5 Module Charray . 91
5.6 Module Complex . 95
5.7 Module Digest . 97
5.8 Module Filename . 98
5.9 Module Fmarshal . 99

4

5.10 Module Hashtbl . 100
5.11 Module Int32 . 105
5.12 Module Int64 . 108
5.13 Module List . 112
5.14 Module Map . 119
5.15 Module Nativeint . 121
5.16 Module Pervasives . 125
5.17 Module Queue . 140
5.18 Module Random . 141
5.19 Module Set . 143
5.20 Module Stack . 146
5.21 Module String . 147
5.22 Module Sys . 150

5

6

P A R T I

An introduction to
Flow Caml

7

C H A P T E R 1

Overview

1.1 Language-based Information Flow Analysis

A computer system generally handles considerable amount of data. It may be directly stored in
memory (e.g. a physical drive) or transit through some network interface or interactive device.
Thus, programs running on the system potentially have access to this information, as inputs—
e.g. the program may read data stored in memory or listen to a network interface—but also as
outputs—e.g. the program may write data to memory (appending new information to existing one
or replacing it) or emit some message on a network interface. Then, they may violate the privacy
or the integrity of data in the system by releasing secret information or corrupting sensitive one.
That is the reason why it is mandatory in many situations to control manipulations performed by
a program in order to ensure they fulfill some integrity or security policy.

A common solution is to provide an access control system. Roughly speaking, this consists in
attaching to every fragment of data some access rights that specify who may read and/or write
it; then, only authorized programs are allowed to read or write sensitive information. Such a
mechanism is deployed by most operating systems, including all UNIX variants. However, this
addresses only a part of the problem because it just controls accesses to information but does not
trace the security or integrity laws through computation: for example, a program executed with
privileged rights can read a secret location and copy its contents to a public place. Thus, access
control mechanisms provide some protection but require the programs to which access is granted
to be trusted without any restriction.

Information flow analysis consists in statically analyzing the source code of a program before
its execution, in order to ensure that all the operations it performs respect the security policy of
the system. In short, this requires to trace every information flow performed by the program and
to check it is legal. Such an analysis may be formulated as a type system; this choice presents many
advantages: types may serve as a formal specification language and offer automated verification
of code—provided type inference is available. Moreover, because the analysis may be performed
entirely at compile-time, it has no run-time cost.

Flow Caml is an extension of the Objective Caml language with a type system tracing informa-
tion flow. Its purpose is basically to allow to write real programs and to automatically check that
they obey some security policy. In Flow Caml, usual ML types are annotated with security levels
chosen in a suitable lattice. Each annotation gives an approximation of the information which the
expression that it describes may convey. Because it has full type inference, the system verifies,
without requiring source code annotations, that every information flow performed by the analyzed
program is legal w.r.t. the security policy specified by the programmer.

9

1.2 Relating Flow Caml to Objective Caml

Let us briefly discuss the relationship between Flow Caml and Objective Caml [LDG+02b]. First of
all, one may mention that the Flow Caml system—including its type inference engine—is entirely
written in Objective Caml. Although some part of Flow Caml’s source code comes from that of
Objective Caml, the system is distributed as a standalone program—not just a patch on Objective
Caml—because its heart, the type inference engine, totally differs from the original one.

Putting aside these implementation issues which do not really concern the final user, the most
important relationship between Flow Caml and Objective Caml lies in the fact that the former
handles a (large) subset of the language of the latter. Roughly speaking, this means that a Flow
Caml program may also be read as an Objective Caml one. However, this is not exactly true because
Flow Caml type expressions include security annotations. Flow Caml handles all the core constructs
of the Caml language, including imperative features (references, mutable values), exceptions (with
the slight difference that exception names are no more first class values), datatypes and pattern
matching. It also features most of the module layer of the language, including functors. However,
Flow Caml does not support the object-oriented features of Objective Caml, nor polymorphic
variants and labels. (In fact, the programming language of Flow Caml is approximately the same
as that of the now defunct Caml Special Light.)

For the reason explained above, a Flow Caml program is generally not a valid input for the
Objective Caml compiler. Nevertheless, the Flow Caml compiler outputs legal Objective Caml
code from Flow Caml code. This allows to compile every program written in Flow Caml, using the
byte-code or the native compiler, and running it as for every Objective Caml program. Moreover,
it is possible to easily interface a program written in Flow Caml with Objective Caml code and
hence to benefit from a large amount of existing libraries.

1.3 How to get the Flow Caml system ?

The Flow Caml system is freely available on the World Wide Web at the following address:

http://cristal.inria.fr/~simonet/soft/flowcaml/

The source distribution should compile on almost every UNIX machine where recent versions of
GNU Make and Objective Caml are installed (including the Cygwin environment for Microsoft
Windows). A binary distribution for Microsoft Windows operating systems is also provided.

1.4 Theoretical background and related work

The type system implemented in the Flow Caml system for tracing information flow has been
developed by François Pottier and Vincent Simonet and is fully presented in [PS02, PS03]. These
papers give a formal presentation of the type algebra and typing rules for the core of the language,
that is Core ML (a λ-calculus with references, exceptions, primitives and let-polymorphism). They
also provide a correctness proof of the type system. That means that the (non-interference)
property that the system is supposed to enforce has been formally stated and verified.

The design of a type inference engine for a system providing both subtyping and polymorphism
formed another part of the work. The form of subtyping present in Flow Caml is generally said to be
structural. Dealing with subtyping constraints in an efficient way requires quite subtle algorithms;
they are presented (and proved correct) in another article [Sim03]. In fact, the type inference
engine of Flow Caml has been implemented independently of its final use and is also distributed
as a separate library [Sim02]. Hence, we hope it will be suitable for a variety of applications.

The last step of the job consisted in integrating the information flow analysis in the Caml
language itself. This required to extend in some way every programming construct provided by

10

http://cristal.inria.fr/~simonet/soft/flowcaml/

the language, including datatype definitions, the module system, the implementation/interface
mechanism; in order to obtain a complete programming language.

To the best of our knowledge, the only other real size implementation of a language-based
information flow analysis is the Jif system by Myers et al. [MNZZ01], based on the type system
presented in Myers’ thesis [Mye99]. This prototype handles a large subset of the Java language,
which is roughly comparable to that of Flow Caml. Sketching a comparison, one of the main
differences between Flow Caml and Jif is that, going up with the ML tradition, the former features
polymorphism and has a full type inference algorithm, while the latter performs only local type
reconstruction, in the Java style. In particular, in Jif programs, methods arguments must be
annotated with their whole type, including the security annotations. On the other hand, Jif
provides an interesting mechanism of dynamic labels which allows performing some checks at run-
time. This has, for the time being, no counterpart in Flow Caml.

11

12

C H A P T E R 2

A Tutorial

This chapter introduces various features of the Flow Caml language through examples, beginning
with simple expressions, and finally touching upon more advanced points like the module system
and the interaction with the outside world. Our goal is to provide an introduction to Flow Caml for
someone who has some experience with programming in the Caml language (or possibly another
functional language based on the ML type system, such as SML or Haskell). If the reader wishes
to learn more about basic programming in Caml, we highly recommend the reading of the first
chapter (“The core language”) of Objective Caml’s tutorial [LDG+02a].

Excepted in the last section, we use for this tutorial the interactive toplevel, which can be
started by running the flowcaml command from the shell. Under the interactive toplevel, the user
types Flow Caml phrases, terminated by ;;, in response to the # prompt. The system type-checks
them on the fly and prints the inferred type scheme.

We encourage the reader to run a Flow Caml toplevel while reading this tutorial in order
to interactively discover the language and its type system, by testing the given examples and
experimenting his/her own pieces of code. However, this tutorial is also self-contained, so it can
be read off-line as well.

2.1 Security levels and data structures

In this section, we explain how ML (data)types are annotated in Flow Caml with security levels
in order to describe information flow.

2.1.1 Simple types

Let us begin with this first definition:

let x = 1;;

x : ’a int

(In this tutorial, pieces of Flow Caml code are typeset in roman typewriter. They are generally
followed by the output produced by the toplevel in slanted typewriter .) Our first example
simply binds the identifier x to the integer constant 1. The toplevel answers that this constant
has type ’a int. In Flow Caml, the type constructor int takes one argument, which is a security
level belonging to an arbitrary lattice. These annotations allow the system to trace information
flow. In the above example, the security level is a variable, ’a; as every variable appearing free
in a type, it is implicitly universally quantified. Basically, this means that outside of any context,
the constant 1 may have any security level.

The security level of such a constant may be specified thanks to a simple type constraint.
Assume we receive three integers from different sources named Alice, Bob and Cecil (such sources
are often called principals in the literature):

13

let x1 : !alice int = 42;;

val x1 : !alice int

let x2 : !bob int = 53;;

val x2 : !bob int

let x3 : !charlie int = 11;;

val x3 : !charlie int

In Flow Caml, each data source may be symbolized by a constant security level such as !alice,
!bob or !charlie (Any alphanumeric identifier preceded by a ! is a suitable constant security
level.) Initially, these security levels are incomparable points in the lattice: this means that the
principals they represent cannot exchange any information. We will further on see how to allow
some (see section 2.6).

The above bindings are global in the toplevel, hence you can use them in the next expressions
you enter:

x1 + x1;;

- : !alice int

x1 + x2;;

- : [> !alice, !bob] int

x1 * x2 * x3;;

- : [> !alice, !bob, !charlie] int

The first expression contains information about only x1, so its security level is !alice. The sum
x1 + x2 is liable to leak information about x1 and x2. Then, its security level must be greater
than those of x1 and x2: [> !alice, !bob] stands for any level which is greater than or equal to
!alice and !bob. This can be read as the “symbolic union” of these two principals. Similarly, the
security level of the last expression must be greater than or equal to !alice, !bob and !charlie.

However, some programming experience in Flow Caml shows that using such explicit level
constants is most of the time unnecessary: thanks to ML polymorphism, universally quantified
type schemes are generally expressive enough to describe a piece of code (such as a function) w.r.t.
information flow. In fact, the fundamental use of level constants appears in the interaction with
external channels (e.g. file i/o or networking) and will be discussed in section 2.6 of the current
tutorial. For the time being, we will only use them in a somewhat artificial way, just for guiding
your intuition.

We now define a function which computes the successor of an integer:

let succ = function x -> x + 1;;

val succ : ’a int -> ’a int

Once again, the system automatically computes the most general typing for this definition, which
is ’a int -> ’a int. This type means that the function succ takes as argument one integer
of some level ’a and returns another integer whose security level is exactly the same: indeed the
result of this function carries information about its input. Because its type is polymorphic w.r.t.
the security level of the integer argument, you can apply succ on arguments of different levels:

succ x1;;

- : !alice int

succ x2;;

- : !bob int

14

This example is sufficient to illustrate that polymorphism on security levels is a prominent feature
for type systems tracing information flow: here, in the absence of polymorphism, one have to write
a specialized version of the function succ for every level it is used with.

It is worth noting that information flow is traced in a somewhat conservative way: in the
underlying security model, there is an information flow from an input to an output as soon as
knowing the latter reveals some information, even incomplete, about the former. Let us for instance
consider the following function which computes the euclidean division of an integer by 2 thanks to
a logical shift.

let half = function x -> x lsr 1;;

val half : ’a int -> ’a int

The inferred scheme for half is exactly the same as that of succ: it reflects that the result
produced by half reveals some information about its input. However, this leak is only partial,
because it is, for instance, not possible to completely retrieve x1 from the result of half x1. In
some situations, this may yield typings which are surprising at first sight:

let return_zero = function x -> x * 0;;

val return_zero : ’a int -> ’a int

In this example, the system detects a dependency between the input and the output of the function,
although there is none: return_zero always returns zero! Roughly speaking, this is because for
the system, the result of a product always leaks information about the two factors, whatever they
are. Obviously, if you rewrite the function as follows:

let return_zero’ = function x -> 0;;

val return_zero’ : ’a int -> ’b int

you obtain a more precise statement: in the inferred type, the security level of the result of the
function (denoted by the variable ’b) is not related to that of the input (’a), reflecting the absence
of information flow from the latter to the former.

return_zero x1;;

- : !alice int

return_zero’ x1;;

- : ’a int

In addition to integers, Flow Caml offers the usual basic datatypes: booleans, floating-point
numbers and characters. Like int, the corresponding type constructors carry one security level:

let y0 = true;;

- : ’a bool

let z0 = ’a’;;

val z0 : ’a char

These do not raise particular difficulties, since they behave exactly like integers w.r.t. information
flow analysis. For instance, usual arithmetic functions for floating point numbers are available:

let pi = 3.14159265359;;

val pi : ’a float

let pi’ = 4.0 *. atan 1.0;;

val pi’ : ’a float

15

2.1.2 Strings

There are two flavors of character strings in Flow Caml: immutable strings (type string) mutable
ones (type charray). One may wonder why we distinguish them, since in Objective Caml every
string is mutable—even if it is not used as such—and everything works well. This design choice is
motivated because, in type systems tracing information flow, mutable values require some particular
care which increases the complexity of types (we will discuss this point in section 2.3) whereas, in
many situations, strings are used without in place modification. Hence, providing a distinct type
for such cases allows better typings.

Immutable string literals appear in source code between double quotes:

let s = "Flow Caml";;

val s : ’a string

As illustrated by the above example, the type constructor for immutable strings is string and
it has one argument which is a security level. It naturally describes all information attached to
the string. The module String provides functions for manipulating immutable strings.

2.1.3 Lists

The variables ’a, ’b, etc. we have encountered in type schemes up to now stand for levels of the
security lattice. In Flow Caml, polymorphism applies naturally on whole types (as in Objective
Caml) too. For instance, define the identity function:

let id x = x;;

val id : ’a -> ’a

In this scheme, the variable ’a stands for a type. Indeed, in Flow Caml, a variable appearing in a
typing can be of different kinds: it may stand either for a level or for a type (in section 2.4, we will
see it also may denote a row). What is more, kinds are not given explicitly by the system (and the
programmer does not have to give them when he enters a type expression) because they always
can be deduced from the context. The type scheme inferred for id does not involve any security
annotation: it simply says that the function takes an argument of some type ’a and produces a
result of the same type. For instance, if you specialize the identity function so that it applies only
to integers, it will have the type ’b int -> ’b int.

In Flow Caml, the list type constructor has two arguments (while in Objective Caml it has
only one). Thus, in the type (’a, ’b) list, ’a is a type variable which gives the type of the
elements of the list; ’b is a level variable describing the information attached to the structure of
the list. This corresponds for instance to the information leaked by testing whether the list is
empty.

let l1 = [1; 2; 3; 4];;

val l1 : (’a int, ’b) list

let l2 = [x1; x2];;

val l2 : ([> !alice; !bob] int, ’b) list

As usual in ML, functions manipulating lists generally perform pattern-matching on their struc-
ture. Here is such a simple function testing whether a list is empty:

let is_empty = function
[] -> true

| _ :: _ -> false
;;

val is_empty: (’a, ’b) list -> ’b bool

16

In this type, the security annotation of the boolean produced by the function, ’b does not depend
on the type of the list’s elements, ’a, but is the same as the level of the input list, because the
function reveals information only about its structure of the list. Functions manipulating lists are
often recursive, but this does not raise any particular difficulty concerning typing:

let rec length = function
[] -> 0

| _ :: tl -> 1 + length tl
;;
val length: (’a, ’b) list -> ’b int

The type scheme obtained for length is similar to that of is_empty : the length of the list contains
some information about its structure, but not about its elements. On the contrary, a function
testing whether the integer 0 appears in a list reveals information about both the structure of the
list and its elements, hence its type:

let rec mem0 = function
[] -> false

| hd :: tl -> hd = 0 || mem0 tl
;;
val mem0: (’a int, ’a) list -> ’a bool

The module List of the standard library provides usual functions operating on lists, including
the following examples:

let rec rev_append l1 l2 =
match l1 with

[] -> l2
| hd :: tl -> rev_append tl (hd :: l2)

;;
val rev_append: (’a, ’b) list -> (’a, ’b) list -> (’a, ’b) list

let rev l = rev_append l [];;
val rev: (’a, ’b) list -> (’a, ’b) list

2.1.4 Options

In ML, an option is a value which may be of two different forms: either None (the empty option)
or Some v, where v is another value, the content of the option. The type option behaves similarly
to that of lists. It has two arguments too: in (’a, ’b) option, ’a is the type of the content of
the option while ’b is the security level attached to the option itself, describing the information
attached to the knowledge of its form. This is illustrated by the following functions:

let is_none = function
None -> true

| Some _ -> false
;;
val is_none: (’a, ’b) option -> ’b bool

The function is_none tests whether an option is None, by a simple pattern matching. Thus,
the security level of the obtained integer is exactly that of the option: the test is likely to leak
information only about the form of the argument.

let default = function
None -> 0

| Some x -> x
;;

17

val default: (’a int, ’a) option -> ’a int

Similarly, default matches an integer option. If it is None, it returns the default value 0, and
otherwise the content of the option itself. Thus, the result produced by an application of default
carries information about both the form of the option and its content.

2.1.5 Tuples

Tuples of arbitrary length are also available in Flow Caml: if x1, . . ., xn are values whose respective
types are t1, . . ., tn then (x1, ..., xn) is a tuple of type t1 * ... * tn. For instance:

let pair0 = (0, true);;

val pair0 : ’a int * ’a bool

let triple0 = (0, 1, ’a’);;

val triple0 = ’a int * ’a int * ’a char

Product types carry no particular security annotation because—with the slight exception of
observations made by the physical equality operator, see ?—all the information carried by a tuple
is in fact carried by its components. However, each component of a tuple has its own security
annotation, which may differ from those of the others. For instance, one may define a pair of
integers whose first integer has level !alice and the second !bob :

let pair1 = x1, x2;;

val pair0 : !alice int * !bob int

2.2 Constrained type schemes

We will now show that Flow Caml features a constraint-based type system with subtyping. ML’s
type system (which is the basis of SML, Objective Caml or Haskell) relies on unification; which
means that the only expressible relationship between (type) variables is equality. Unfortunately,
as will be demonstrated by our next examples, this is not expressive enough to faithfully trace
information flow in many cases, and then type schemes must include constraints between security
levels such as inequalities.

2.2.1 Subtyping

Subtyping between security levels Let us consider a first example of function whose type scheme
comprises an inequality: f1 takes one integer x as argument and returns a pair formed of its
successor and its sum with the global constant x1 defined above:

let f1 x = (x + 1, x + x1);;

val f1 : ’a int -> ’a int * ’b int

with ’a < ’b

and !alice < ’b

The type scheme returned by the system involves two level variables, ’a and ’b. The first one, ’a,
is the security level of the function’s argument. Naturally, it is also that of the first component of
the pair returned by the function. The second integer returned by the function is labeled by the
variable ’b. This security level is related to ’a by the first inequality appearing after the keyword
with: ’a < ’b tells us that ’b must be greater than or equal to ’a (note that the character <
output by your terminal stands, in Flow Caml, for the mathematical symbol ≤). In what concerns
information flow, this inequality reflects the fact that the integer labeled by ’b depends on the one
labeled ’a; in other words that there is a flow from the latter to the former. The other constraint,
!alice < ’b requires ’b to be greater than or equal to the constant !alice. It says that there is

18

a possible flow from data (namely x1) coming from the external source symbolized by the constant
!alice (the principal Alice) to the second output of the function.

Now, we can apply this function to different integers:

f1 0;;
- : ’a int * !alice int
f1 x1;;
- : !alice int * !alice int
f1 x2;;
- : !bob int * [> !alice, !bob] int

From a type-theoretic point of view, the type scheme inferred for f1 means that every instance
of ’a int -> ’a int * ’b int for some ’a and ’b which satisfy the inequalities ’a < ’b and
!alice < ’b is a valid type for the function. This statement cannot be expressed as precisely
in a unification-based type system. Indeed, in such a framework, every < must be read as =, i.e.
the variables ’a and ’b must be unified with the constant !alice. Thus we would obtain the
following judgment:

val f1 : !alice int -> !alice int * !alice int

which is much more restrictive than the previous one: here, applying f1 to the integer 0 would
yield a result of type !alice int (instead of ’a int), while the expression f1 x2 would be ill-
typed. The same observation can be made with the following function, f2, which takes three
integer arguments and computes the sums of each pair of them:

let f2 x y z =
(x + y, y + z, x + z)

;;
val f2 : ’a int -> ’b int -> ’c int -> ’d int * ’e int * ’f int

with ’a < ’d, ’f

and ’b < ’d, ’e

and ’c < ’e, ’f

The obtained type scheme involves three constraints; each of them relates one argument of the
function to two of its outputs. For instance, the constraint ’a < ’d, ’f (which is a shorthand
for ’a < ’d and ’a < ’f) traces the information flow from the first argument, x to the first
and third components of the result, x + y and x + z respectively. The next two constraints deal
similarly with the second and third arguments of the function, respectively. Obviously, the system
performs some arbitrary choice when it typesets a list of constraints. For instance, f2’s scheme
may equivalently be written:

val f2 : ’a int -> ’b int -> ’c int -> ’d int * ’e int * ’f int

with ’a, ’b < ’d

and ’b, ’c < ’e

and ’a, ’c < ’f

When one applies the function to the three constants x1, x2 and x3, the constraints allow to
compute the respective levels of the resulting integer:

f2 x1 x2 x3;;
- : [> !alice, !bob] int * [> !bob, !charlie] int

* [> !alice, !charlie] int

Once again, if the system did not feature subtyping but only unification, f2 would have a much
more restrictive typing

val f2 : ’a int -> ’a int -> ’a int -> ’a int * ’a int * ’a int

which tells only that each component of the returned tuple is likely to depend on all three arguments
given to the function.

19

Subtyping between types In the previous examples, inequalities involve only security levels.
However, types are also ordered by the partial order <, which is said to be a subtyping order. In
general terms, subtyping consists of a partial order on types and a subsumption rule that allows
every expression which has a given type to be used with any greater type, i.e. if an expression e
has some type t and t is a subtype of t′ (t < t′) then e also has type t′. In Flow Caml, subtyping
is structural and defined by lifting the order between security levels throughout the structure of
types: two comparable types must have the same “structure” and only their annotations may
differ. For this purpose, every type constructor (such as int, list or ->) has a signature which
gives the variance (and the kind) of each of its argument. A variance is either + (covariant),
- (contravariant) or = (invariant). The signature of a type constructor can be displayed in the
toplevel thanks to the directive #lookup_type :

#lookup_type "int";;

type (#’a:level) int

This tells that the only argument (’a) of int is a level and is covariant. (The # symbol is a
distinguished form of +, whose role will be explained in section 2.2.2. For the time being, you can
simply read it as if it were +.) This defines the subtyping order on integer types: given two security
levels ’a and ’b, ’a int < ’b int holds if and only if ’a < ’b. Similarly, the two arguments
of list are also covariant:

#lookup_type "list";;

type (+’a:type, #’b:level) list = ...

Then, (’a1, ’b1) list < (’a2, ’b2) list is equivalent to ’a1 < ’a2 and ’b1 < ’b2. As
a result, subtyping constraints involving two type structures can be decomposed recursively: for
instance (’a1 int, ’b1) list < (’a2 int, ’b2) list produces ’a1 int < ’a2 int and
’b1 < ’b2 and then ’a1 < ’a2 and ’b1 < ’b2.

The function f3 takes three arguments and build three lists of two elements each:

let f3 x y z =
([x; y], [y; z], [x; z])

;;

val f3 : ’a -> ’b -> ’c -> (’d, ’e) list * (’f, ’g) list * (’h, ’i) list

with ’a < ’d, ’h

and ’b < ’d, ’f

and ’c < ’f, ’h

The typing inferred by the system is similar to that of f2. Each constraint relates the type of one
input to those of the result: thus, the type of the first argument, ’a is “injected” in those of the
elements of the first and third lists, reflecting the dependency. However, it is worth noting that
here, the variables ’a, ’b, ’c, ’d, ’e and ’f are types, not levels.

The arrow type constructor -> we have encountered in the previous examples has the following
signature:

type (-’a:type) -> (+’b:type)

As usual in the presence of subtyping, the result type is a covariant parameter while the argument
is a contravariant one. This means that the inequality ’a1 -> ’b1 ≤ ’a2 -> ’b2 holds if and
only if ’b1 ≤ ’b2 and ’a2 ≤ ’a1.

Simplification of type schemes Flow Caml automatically performs some simplifications before
it outputs a scheme in order to make the printing as concise as possible. Indeed, because of the
presence of subtyping, the same type scheme can be written in different but equivalent forms. To
illustrate this, let us consider the integer sum operator, +. In the Flow Caml standard library, it
is declared with the following scheme:

20

val (+) : ’a int -> ’a int -> ’a int

This type scheme apparently constrains its two arguments to have the same security level. However,
it is still possible to compute the sum of two integers which have different security levels, as in the
following example:

x1 + x2;;
- : [> !alice, !bob] int

The integer x1 has the type !alice int. By subsumption, it can be freely used with any greater
type, e.g. [> !alice, !bob] int. (The system is able to perform the coercion itself when needed,
no explicit annotation is therefore required.) Similarly, x2 has type !bob int but it can also
be used as a value of type [> !alice, !bob] int. It follows that the expression x1 + x2 is
well-typed and produces a value of type [> !alice, !bob] int. Generalizing this process, one
may naturally propose another type scheme for (+), which explicitly includes the subsumption
mechanism:

val (+) : ’a1 int -> ’a2 int -> ’a3 int
with ’a1, ’a2 < ’a3

Nevertheless Flow Caml tries to output every type scheme in a form that is as concise as possible
(for efficiency reasons, its simplification algorithm is however incomplete). In order to help you
in reading types, each occurrence of a variable is printed with a color which indicates its polarity:
negative occurrences appear in green while positive ones are in red. Then, when interpreting a
type, any negative (resp. positive) occurrence of a variable ’a can be replaced by a fresh variable
’b with the constraint ’b < ’a (resp. ’a < ’b). Applying this principle to the scheme

val (+) : ’a int -> ’a int -> ’a int

one obtains

val (+) : ’a1 int -> ’a2 int -> ’a3 int
with ’a1 < ’a
and ’a2 < ’a
and ’a < ’a3

which becomes, by transitivity of <,

val (+) : ’a1 int -> ’a2 int -> ’a3 int
with ’a1 < ’a3

and ’a2 < ’a3

2.2.2 level constraints

Flow Caml provides the conditional construct if . . . then . . . else . . ., which has the same
semantics as that of Objective Caml, as well as polymorphic comparison primitives. As explained
above, the type of boolean values carries one security level:

let y1 : !alice bool = false;;
val y1 : !alice bool

let y2 : !bob bool = false;;
val y2 : !bob bool

When it encounters a conditional construct, the execution of a program evaluates the condition,
and depending on the result, continues with one of the two branches. Thus, the result produced
by the whole expression is that of one of the two sub-expressions appearing after then and else.
Hence, the type of the former must be a super-type of the latter. For instance, in the simple case
where a conditional produces integers, this means that the security level of the whole expression
must be the union of those of the two branches:

21

if y0 then x1 else x2;;

- : [> !alice, !bob] int

In this example, x1 has type !alice int, x2 has type !bob int, so the whole expression has type
[> !alice, !bob] int. The value produced by a conditional also carries information about the
result of the test. Hence, in order to take in account this possible information flow, the security
level of the latter must guard the type of the former, this means that its security level(s) must be
greater than or equal to that of the condition:

if y1 then 1 else 0;;

- : !alice int

Here, the condition, y1, has level !alice; hence the result of the whole expression must have this
level too. Similarly, if a conditional evaluates to a tuple, the type of each of its components must
be guarded by the level attached to the test:

if y1 then (x1, (true, ’a’)) else (x2, (false, ’b’));;

- : [> !alice, !bob] int * (!alice bool * !alice char)

We now introduce some functions whose result depends on some test(s) performed on their
argument(s). The function int_of_bool simply converts a boolean into an integer:

let int_of_bool x =
if x then 1 else 0

;;

val int_of_bool : ’a bool -> ’a int

However, because of polymorphism, it is possible for the type produced by a conditional construct
not to be known, for instance if it depends on that of some argument in an abstraction:

let choose y1 y0 x =
if x then y1 else y0

;;

val choose : ’a -> ’a -> ’b bool -> ’a

with ’b < level(’a)

The result produced by choose clearly depends on the value of the boolean x, and hence must
be guarded by its security level, ’b. However, it has the type of the two other arguments of the
function, y0 and y1, but this may be arbitrary. That is the reason why this example involves a
new form of constraint, ’b < level(’a). (In [PS03], this is written ’b C ’a.) Let us first remark
that in this constraint ’b and ’a are variables of different kinds: ’b stands for a security level
while ’a is a type. This constraint can be viewed as an inequality delayed until the structure
of the type ’a is known: roughly speaking, it means that the topmost security level(s) of the
type ’a must be greater than or equal to ’b. For instance, if you instantiate ’a by ’a1 int, the
constraint is simply decomposed as ’b < ’a1, but, if you instantiate ’a by ’a1 int * ’a2 bool,
it produces ’b < ’a1 and ’b < ’a2. To illustrate how this decomposition mechanism works, one
can consider some partial applications of the function:

let choose1 y = choose 1 0 y;;

val choose : ’a bool -> ’a int

let choose2 y = choose (1, 1) (0, 0) y;;

val choose : ’a bool -> ’a int * ’a int

In the first example, ’a is instantiated by ’a1 int and the constraint ’b < level(’a1 int) is
decomposed as ’b < ’a1. This yields the scheme

’b bool -> ’a1 int with ’b < ’a1

22

which is simplified into ’a bool -> ’a int. In the second example, ’a is instantiated by
’a1 int * ’a2 int. The constraint becomes successively

’b < level(’a1 int * ’a2 int)
’b < level(’a1 int) and ’b < level(’a2 int)
’b < ’a1 and ’b < ’a2

The obtained scheme can be simplified into ’a bool -> ’a int * ’a int. Similarly, we can
also consider lists:

let choose3 y = choose [] [1;2] y;;

val choose3 : ’a bool -> (’b, ’a) list

Here, the type variable ’a is instantiated by (’a1, ’a2) list, which yields the constraint
’b < level((’a1, ’a2) list) that is decomposed into ’b < ’a2.

A question naturally arises: how does the type-checker determine on which arguments of each
type constructor the destructor level must be decomposed? This information is retrieved from
signatures: the arguments on which level applies are those which are marked as “guarded” by a
sharp symbol (#):

#lookup_type "int";;

type (#’a:level) int

#lookup_type "list";;

type (+’a:type, #’b:level) list = ...

This means for instance that level applies on the single argument of int while it considers only
the second one of list. It is worth noting that # is a distinguished form of +, that means that
guarded arguments are always covariant.

2.2.3 content constraints

Flow Caml supports the polymorphic comparison primitives of Objective Caml, such as = or <=.
These operators can be used to compare data structures of any type, so, in Objective Caml, they
have the following type

’a -> ’a -> bool

which means they expect two arguments of the same type and returns a boolean. In Flow Caml,
the type of the boolean result must carry a security annotation, say the level variable ’b. Moreover,
because, the result produced by the operator is liable to carry information about the two compared
values, ’b must be related to the security levels which describe them, i.e. those that appear within
the type ’a. For instance, specialized versions of the equality for integers, pairs of integers, lists
of integers and lists of pairs of integers should have the following type schemes:

val eq_int : ’a int -> ’a int -> ’b bool
with ’a < ’b

val eq_int_pair : (’a1 int * ’a2 int) -> (’a1 int * ’a2 int) -> ’b bool
with ’a1, ’a2 < ’b

val eq_int_list : (’a1 int, ’a2) list -> ’b bool
with ’a1, ’a2 < ’b

val eq_int_pair_list : (’a1 int * ’a2 int, ’a3) list -> ’b bool
with ’a1, ’a2, ’a3 < ’b

Indeed, comparing two pairs can leak information about each member of each pair while comparing
two lists gives some knowledge about the structure of the lists (e.g. their length) and/or their
elements. Similarly, an equality operator which applies to integer references has the following
type:

23

val eq_int_ref : (’a1 int, ’a2) ref -> (’a1 int, ’a2) ref -> ’b
with ’a1, ’a2 < ’b

Comparing two references reveal information about their respective addresses—hence ’a2 < ’b—
and their contents, hence ’a1 < ’b.

We observe that in all cases, the security level ’b that labels the boolean produced by the
comparison must be greater than or equal to every security level that appears in the type of
the arguments. This reflects how comparison applies recursively on data-structures. Thus, in
order to give a principal type to these polymorphic operators, we need an additional form of
constraint, content(’a) < ’b where ’a is a type and ’b is a level. (In [PS03], this is writ-
ten ’b J ’a.) This constraint requires every security annotation of the type ’a to be less than
or equal to the security level ’b. For instance, content(’a1 int * ’a2 int) < ’b is equiva-
lent to ’a1 < ’b and ’a2 < ’b while content(’a1 ref, ’a2) < ’b stands for ’a1 < ’b and
’a2 < ’b. This definition mimics the behavior of generic comparison operators which traverse data
structures recursively. Then, in Flow Caml, = and <= have the following type:

val (=) : ’a -> ’a -> ’b bool
when content(’a) < ’b

val (<=) : ’a -> ’a -> ’b bool
when content(’a) < ’b

They can be used to implement a polymorphic function mem which searches whether an element
is amember of a list:

let rec mem x = function
[] -> false

| hd :: tl -> (x = hd) || mem x tl
;;

val mem : ’a -> (’a, ’b) list -> ’b bool
with content(’a) < ’b

or an insertion sort on lists:

let rec insert x = function
[] -> [x]

| hd :: tl -> (min hd x) :: insert (max hd x) tl
;;

val insert : ’a -> (’a, ’b) list -> (’c, ’b) list

with ’a < ’c

and content(’a) < level(’c)

let rec sort = function
[] -> []

| hd :: tl -> insert hd (sort tl)
;;

val sort : (’a, ’b) list -> (’c, ’b) list

with ’a < ’c

and content(’a) < level(’c)

In Objective Caml, it is even possible to apply polymorphic comparison primitives to func-
tional values: for instance, if f1 and f2 are two functions, (f1 = f2) either returns true (if
the two functions have the same memory address) or raises an exception in all other cases. Such
an expression seems to have a very limited interest and is not really used because it largely de-
pends on the implementation: for instance let f = fun x -> x in (f = f) returns true while
(fun x -> x) = (fun x -> x) raises an exception. However, the Caml type system has no way
to prevent such calls from arising. The SML [MTHM97] dialect of ML addresses these issues

24

by introducing “eq” types, and hence refuses at compile time any application of a comparison
primitive to values which (are likely to) contain closures. The same approach is followed in Flow
Caml, where non-eq types are marked by the keywork noneq in their definition, and the constraint
content(’a) < ’b cannot be satisfied if ’a is a non-eq type. Hence, the following piece of code
yields a type error:

(fun x -> x) = (fun x -> x);;

Magic generic primitives cannot be applied on expressions

of type ~a -> ~a

2.2.4 Same-skeleton constraints

In addition to inequalities, Flow Caml type schemes may involve another sort of constraints, which
are referred to as same-skeleton constraints. Let us consider the following function:

let skel x y =
if x = y then ();
x

;;

val skel : ’a -> ’b -> ’a

with ’a ~ ’b

skel x y tests whether x equals y, then returns x. In the case where the test succeeds, the
function skel does nothing particular, but it should for instance be possible to replace () by an
expression which performs side-effects, as we will do in section 2.3.2. However, the current function
is sufficient to illustrate the need of same-skeleton constraints.

In Objective Caml, the two arguments of skel, x and y, will be required to be of the same
type, in order to allow comparing them: skel’s principal type scheme would be ’a -> ’a -> ’a.
However, in Flow Caml, thanks to subtyping, it is no longer necessary to require them to have
exactly the same type: indeed, they may have different security annotations, e.g. be two integers
of different security levels. Formally, if x has type ’a and y has type ’b, it is sufficient to require
the existence of a super-type ’c of ’a and ’b (i.e. such that ’a < ’c and ’b < ’c). This is what
expresses the ~ constraint. Indeed, the above type scheme is equivalent to:

val skel : ’a -> ’b -> ’a

with ’a < ’c

and ’b < ’c

where ’c is an extra type variable. It is easy to check that such a ’c exists if and only if ’a
and ’b are two types of the same shape or skeleton i.e. differ only by their non-invariant security
annotations.

It is worth noting that the ~ predicate is transitive and associative (it is indeed the symmetric,
transitive closure of <), so that same-skeleton constraints which involve a common variable can be
merged, as in the following example:

let skel3 x y z =
if x = y or y = z then ();
x

;;

val skel3 : ’a -> ’b -> ’c -> ’a

with ’a ~ ’b ~ ’c

25

2.2.5 Functions as values

Flow Caml is a functional language: functions are first class citizens and hence can be manipulated
as regular values. Thus, one may define a function whose result itself is a function:

let pred x = x + 1;;

val pred : ’a int -> ’a int

let pred_or_succ y = if y then pred else succ;;

val pred_or_succ : ’a bool -> ’b int -{|| ’a}-> ’b int

(To help comprehension, the inferred type scheme may be parenthesized as follows:

val pred_or_succ : ’a bool -> (’b int -{|| ’a}-> ’b int)

However, this is naturally unnecessary because the arrow type constructor is right associative.)
Knowing which function among pred or succ an application of pred_or_succ returns naturally
leaks information about the boolean given as argument. In order to reflect this information flow,
the type assigned to the function returned by pred_or_succ comprises an additional security level,
’a, printed inside the arrow symbol: it intends to describe how much information is attached to
the knowledge of the function. For instance, an application of pred_or_succ with a boolean of
level !alice yields a function whose identity has level !alice too:

pred_or_succ y1;;

- : ’a int -{|| !alice}-> ’a int

The language naturally allows to observe the “identity” of a function by watching the result
produced by some application of it. For instance, when one applies (pred_or_succ y1) to some
integer, the result must be guarded by the level !alice, because it allows determining whether
the function was pred or succ and hence the boolean y1.

(pred_or_succ y1) 0;;

- : !alice int

(pred_or_succ y1) x2;;

- : [> !alice, !bob] int

In fact, arrows in Flow Caml involve three security annotations; then, the general form of a
function type is

’a -{’b | ’c | ’d}-> ’e

where ’a and ’e are the types of the argument expected by the function and the result it produces,
respectively. Furthermore, ’b and ’d are levels. The former is a lower bound on the side effects
performed by the function (it will be introduced in section 2.3) while the latter represents informa-
tion about the function’s identity, as explained above. Lastly, ’c is a row describing the exceptions
the function may raise (we will detail its usage in section 2.4). However, in order to improve read-
ability, Flow Caml does not print annotations on arrows that carry no information, i.e. that are
universally quantified and unconstrained type variables. For instance ’a -> ’b is a shorthand for
’a -{’c | ’d | ’e}-> ’b (where ’c, ’d and ’e are fresh variables), while ’a -{|| ’b}-> ’c
stands for ’a -{’d | ’e | ’b}-> ’c (where ’d and ’e are fresh).

2.2.6 Interlude: the graphical output of type schemes

Flow Caml’s toplevel is able to give a graphical representation of type schemes, in addition to the
standard textual one. The graphical output is enabled when the toplevel is launched with the
-graph option, or—at any time—by entering the following directive in the toplevel:

#open_graph;;

26

The graphical representation of a type scheme may be easier to interpret than its textual coun-
terpart, because it gives a visual description of information flow. Let us explain how to read such
representations on some examples.

let succ x = x + 1;;

val succ : ’a int -> ’a int

The graphical representation of a type scheme is made of two parts: at the bottom appears the
skeleton of the scheme, which consists in the type expression where security annotations have been
replaced with bullets •. Roughly speaking, ignoring these bullets, this can be read as a Caml type.
A color code is adopted for drawing security annotations: contravariant annotations (which stand
for inputs) appear in green while covariant ones (outputs) are drawn in red. Invariant annotations
are in orange. Then subtyping constraints are represented in the top part of the drawing by
arrows. In succ’s type scheme, the dashed arrow from the green bullet to the red one symbolizes
an inequality whose left- (resp. right-) hand-side is the security annotation symbolized by the green
(resp. red) bullet. Then, the drawing must be read as the following scheme

val succ : ’a int -> ’b int
with ’a < ’b

which is equivalent to ’a int -> ’a int. Let us now show how type variables are graphically
represented.

let skel x y =
if x = y then ();
x

;;

val skel : ’a -> ’b -> ’a

with ’a ~ ’b

In the body of the graphical representation of skel’s type scheme, the boxes labeled ~a stand for
a skeleton class: each occurrence of ~a must be read as a different type variable a1, a2, ..., an,
with the constraint a1 ~ a2 ~ ...~ an. For instance, ~a -> ~a -> ~a represents

’a1 -> ’a2 -> ’a3

with ’a1 ~ ’a2 ~ ’a3

The same color code is followed for boxes as for bullets. Subtyping constraints between type
variables are represented by black arrows: in skel’s type scheme, the arrow from the first box to
the third one stands for the constraint ’a1 < ’a3.

Arrows heads and tails can be shared, as in the following examples:

let sum x y = x + y;;

val sum : ’a int -> ’a int -> ’a int

let make_pair x = (x, x);;

val make_pair : ’a -> ’a -> ’a

It remains to show how special forms of inequalities, i.e. constraints such as content(’a) < ’b,
’a < level(’b) and level(’a) < content(’b), are drawn. All of them are represented by a
dashed arrow from (the box/bullet which stands for) ’a to (the box/bullet which stands for) ’b.
No confusion can arise thanks to kinding as illustrated by the following table:

27

kind of ’a kind of ’b meaning of a dashed arrow from ’a to ’b
level level ’a < ’b
level type ’a < level(’b)
type level content(’a) < ’b
type type content(’a) < level(’b)

This is illustrated by the two following examples:

let choose y1 y0 x =
if x then y1 else y0

;;

val choose : ’a -> ’a -> ’b bool -> ’a

with ’b < level(’a)

(=);;

val (=) : ’a -> ’a -> ’b bool

with content(’a) < ’b

In the type scheme of choose, the dashed arrow symbolizes the constraint ’b < level(’a), while
in that of (=) it stands for content(’a) < ’b.

2.3 Imperative features

Though all the examples given so far in this tutorial are in a “purely functional” style, Flow Caml
also provides full imperatives features. This includes mutable data structures such as references
and arrays, as well as usual while and for loops.

2.3.1 Direct and indirect information flows

Unfortunately, in a programming language equipped with side effects, it is possible to leak infor-
mation in indirect ways. Let us consider the following pieces of code:

r := not y
r := if y then false else true
if y then r := false else r := true
r := true; if y then r := false

All of them are semantically equivalent: they update the content of the reference r, storing in it
the negation of the boolean y. Hence, this produces some information flow from y to r. However,
depending on the cases, it is of a different nature. In the two first examples, the flow is said to be
direct : a value depending from y is computed and then stored in r; this is very similar to what
we have encountered up to now. On the contrary, in the last two expressions, the value in every
right-hand-side of the := operator does not involve y: it is even given explicitly in the source
code. However, the reference’s update is performed in a branch of the program whose execution
is conditioned by the value of y. In this situation, we say there is an indirect flow form y to r.
The last example calls for an additional comment: in the case where the boolean y is false, the
reference r is never updated in a context conditioned by y. However, the information flow from
the latter to the former still exists: it is indeed possible to leak information through the absence
of a certain effect. (This last example shows that it would be very difficult to detect information
flow at run time.)

28

2.3.2 References

In Flow Caml, the type constructor for references, ref, has two arguments:

#lookup_type "ref";;

type (=’a:type, +’b:level) ref = ...

The first one is the type of the value stored in the reference. Because the content of a reference
is accessible in reading and writing, it must be at the same time covariant and invariant, i.e. it
is invariant. The second argument of ref is a security level, which is guarded and covariant. It
describes how much information is attached to the identity of the reference, in other words its
memory address.

Let us now illustrate how information flow with mutable structures is traced by some examples
of Flow Caml code. We first define two references r1 and r2 whose contents are declared to be
booleans of levels !alice and !bob, respectively.

let r1 : (!alice bool, ’a) ref = ref true;;

val r1 : (!alice bool, ’a) ref

let r2 : (!bob bool, ’a) ref = ref true;;

val r2 : (!bob bool, ’a) ref

In the above example, the content of reference r1 has type !alice bool. This means it may
receive any boolean whose security level is less than or equal to !alice, i.e. a boolean Alice is
allowed to read. The boolean y1 (defined in section 2.1) has level !alice. Hence it can legally be
stored in r1:

r1 := y1;;

- : unit

This expression only produces a side-effect, so it has type unit. Because there is only one value
of this type, the constant (), the value of a unit expression yields no information. At a result,
the unit type constructor does not carry any security annotation. On the contrary, the boolean
y2 has been declared with the level !bob. Because information flow from !bob to !alice is not
allowed (see section 2.6), assigning it to r1 raises a typing error:

r1 := y2;;

This expression generates the following information flow:

from !bob to !alice

which is not legal.

Similarly, the reference r1 can be updated in a context whose execution depends on y1 but not
y2:

if y1 then r1 := false else r1 := true;;

- : unit

if y2 then r1 := false else r1 := true;;

This expression generates the following information flow:

from !bob to !alice

which is not legal.

Lastly, reading the content of r1 naturally yields a boolean of level !alice:

!r1;;

- : !alice bool

29

Let us explain in a few words how the type system is able to trace indirect information flow in
the above examples. Flow Caml associates to every context of an expression (i.e. every point of
the program) a security level telling how much information the given sub-expression gains when it
is executed. (In the literature, this security level is generally written pc, in reference to program
counter.) Basically, each time a conditional construct is traversed, this level is augmented with the
annotation of the condition, as illustrated in this example:

if y1 (* y1 has type !alice bool *) then
... (* this branch is typechecked at level !alice *)

else
if y2 (* y2 has type !bob bool *) then

... (* this branch is typechecked at level [> !alice, !bob] *)

else
... (* this branch is typechecked at level [> !alice, !bob] *)

Moreover, when some data is written in a reference, the system constrains the level of its content
to be greater than or equal to the security level attached to the context, reflecting the fact that,
because of the update, the content of the reference is liable to carry information about all the tests
traversed to reach this point of the program.

The purpose of the second argument of the type constructor ref appears when a reference is
used as first class value, e.g. if it is the result of some function. For instance, let us define a version
of the function choose specialized for references by a type constraint:

let choose_ref y r1 r0 : (_, _) ref =
if y then r1 else r0

;;

val choose_ref : ’a bool ->

(’b, ’a) ref -> (’b, ’a) ref -> (’b, ’a) ref

The security level of the reference returned by this function must be greater than or equal to that
of the boolean given as argument. Indeed, revealing which reference is returned by the function
may leak information about the value of the condition, y. Such an observation can be performed,
for instance, by updating its content.

Some additional difficulty arises when one defines a function performing side-effects: because
the body of a function is executed at the point of the program where it is applied —and not the
one where it is defined— it must be type-checked at the level of the former rather than the latter.
This is the purpose of the first security annotation appearing in function types (see section 2.2.5).
For instance, consider a function which sets the content of r1 to false:

let reset_r1 () =
r1 := false

;;

val reset_r1 : unit -{!alice ||}-> unit

This function can only be executed in a context whose level is less than or equal to !alice. This
is reflected by the annotation !alice printed “inside” the arrow symbol of the above type: this
security level is a lower bound on the effects performed by the function and an upper bound on
the contexts where it can be applied. In many cases, it is a variable related to (parts of) the type
of the function’s argument:

let reset r =
r := false

;;

val reset : (’a bool, ’a) ref -{’a ||}-> unit

30

The function reset takes a reference as argument and sets its content to false. The type
system constrains the level of the content of the reference to be equal to or greater than (1) the level
attached to the reference’s identity and (2) the level attached to the context where the function is
applied.
The identity of the reference returned by this function carries information about those of the
references given as argument, but also about the boolean y. This is reflected in the inferred
scheme by the fact that all of them are annotated by the same security level, ’a.

We now re-implement the function calculating the length of a list, length, in imperative style:

let length’ list =
let counter = ref 0 in
let rec loop = function

[] -> ()
| _ :: tl ->

incr counter;
loop tl

in
loop list;
!counter

;;
val length’ : (’a, ’b) list -{’b ||}-> ’b int

The obtained scheme appears more restrictive than length’s type:

val length: (’a, ’b) list -> ’b int

Indeed, with length’, the result’s security level must be greater than or equal to the function’s
pc parameter. However, the difference is only superficial; it can be checked that both types in fact
have the same expressive power.

2.3.3 Arrays, strings and loops

We conclude this section by a few words about arrays and (mutable) strings. In Flow Caml, the
type constructor for arrays (array) carries two arguments:

[|0; 1; 2|];;
- : (’a int, ’b) array

The respective roles of these arguments are similar to those of ref: the former is the type of the
content of the cells of the array, and the latter is a security level, related to the array identity. A
slight novelty is that this comprises information attached to the length of the array. Indeed, the
function returning the length of an array has the following type:

Array.length;;
- : (’a, ’b) array -> ’b int

(which is similar to that of the function calculating the length of a list.)
In the Caml language, the only difference between a mutable string and an array of characters

concerns its representation in the runtime system. Hence, the type of mutable strings is isomorphic
to that of an array of characters:

[|’a’; ’b’; ’c’|];;
- : (’a char, ’b) array
"abc";;
- : (’a, ’b) charray

Indeed, the type constructor charray expects two security levels as arguments. The first one
describes information attached to the characters stored in the string while the second one is related
to the identity of the string (including its length).

31

2.4 Dealing with exceptions

In this section, we explain how Flow Caml deals with exceptions. For the programmer, exceptions
are a powerful mechanism for signaling and handling exceptional conditions. As in Objective
Caml, exceptions names are declared with the exception construct and signaled with the raise
operator:

exception X;;

exception X

exception Y;;

exception Y

raise X;;

- : ’a

However, the exception machinery provided by Flow Caml is slightly restricted in comparison
with that of Objective Caml, mostly because exceptions are not first class values. Basically, an
exception name (such as X in the above example) is not a value, and hence cannot be bound to
a variable or passed as argument to a function (while in Objective Caml, it is a legal value of
type exn). Similarly, in Objective Caml, raise is a regular function which accepts an arbitrary
argument (of type exn), but, in Flow Caml, it is a built-in construct which requires the name of
the raised exception to be statically specified. For instance, the following Objective Caml piece of
code cannot be written in Flow Caml:

let f x =
raise (if x then X else Y)

;;

but, in this particular case, it may be rewritten into:

let f x =
if x then raise X else raise Y

;;

Although it should theoretically be possible to deal with exceptions as first class citizens in
Flow Caml [PS02], we believe our design choice to be a good balance between expressiveness and
simplicity: having first class exceptions would generate complex typings (which involve conditional
constraints), whereas, according to our experience, the use of exceptions as values in real programs
seems to be rather limited. To mitigate the loss in expressiveness and provide alternatives for the
most common usages of exceptions as first class values made in Caml programs, Flow Caml provides
two additional constructs for handling exceptions: try ... finally and try ... propagate
(see section 2.4.3).

2.4.1 Rows

The exceptions that an expression is likely to raise are traced in Flow Caml’s type system using a
row. A row is a mapping from exception names to security levels: for every exception name, it tells
how much information is leaked if the related expression effectively raises an exception of this name.
Because the set of exception names is open (in the sense that the programmer can incrementally
define an arbitrary number of them), rows must range over all potentially definable exceptions
names; hence they are infinite objects. So, in order to allow denoting them in a finite concrete
syntax, Flow Caml uses row variables and adopts Rémy’s row syntax. For instance, the (row)
expression X: ’a; Y: ’b; ’c stands for the row which maps the exception name X to ’a, Y to ’b
and whose other entries are given by ’c. Here, ’a and ’b are levels while ’c is a row variable of
domain {X, Y}: it stands for a row ranging over all exception names except X and Y. The order in
which fields appear is not significant: the above row is equal to Y: ’b; X: ’a; ’c. Row variables

32

can appear in constraints: the subtyping order is extended point-wise to rows. Indeed, if ’c1 and
’c2 are two row variables of the same co-domain, the constraint ’c1 < ’c2 means that every entry
of ’c1 must be less than or equal to the corresponding one in ’c2. Hence, constraints involving
expanded row terms may be decomposed: X: ’a1; Y: ’b1; ’c1 < X: ’a2; Y: ’b2; ’c2 is
equivalent to ’a1 < ’a2 and ’b1 < ’b2 and ’c1 < ’c2. Lastly, for the sake of conciseness,
when it prints a type scheme, Flow Caml omits unconstrained universally quantified row variables:
for instance, A: ’a; Y: ’b stands for A: ’a; Y: ’b; ’c where ’c is a fresh row variable.

Because exceptions constitute an observable form of result for functions, they must be taken in
account in their types. Let us for instance define a simple function which raises the exception X:

let raise_X () =
raise X

;;

val raise_X : unit -{’a | X: ’a |}-> ’b

The second annotation appearing on the arrow is a row describing the exceptions that the function
is likely to raise when it is called. Here, X: ’a, tells that the given function may raise an exception
of name X: catching this exception leaks information about the context where the function is called,
so the security level associated to X is constrained to be at least that of the context where the
function is applied (which appears as usual in first place in the arrow). In the following example,

let raise_X’ y =
if y then raise X

;;

val raise_X’ : ’a bool -{’a | X: ’a |}-> unit

catching the exception X gives information about both the context where raise_X’ has been
applied and the boolean argument given to the function. Thus, the annotation associated to the
entry X in the row of this function must be greater than or equal to the security levels of both.

When a function is likely to raise exceptions of different names, its row comprises one entry for
each of them:

let raise_X_or_Y x y =
if x then raise X;
if y then raise Y

;;

val raise_X_or_y : ’a bool -> ’b bool -{’a | X: ’a; Y: ’b |}-> unit

with ’a < ’b

The type scheme inferred by the system distinguishes one security level for each exception name:
handling X yields information only about the first argument, x; while handling Y about both.

Let us now define a function which takes an integer as argument, raises X if it is zero and
returns false otherwise:

let test_zero x =
if x = 0 then raise X;
false

;;

val test_zero: ’a int -> {’a | X: ’a |}-> ’b bool

The inferred type schemes states that the boolean returned by the function does not depend on
its argument. Indeed, if the function effectively produces a value, it is invariably false. However,
this function can reveal information about its argument through its effect. This is reflected by the
security level associated to the exception X in its type: it must be greater than or equal to the
levels of the context where the function is applied and the integer argument.

Exceptions can be trapped with the try ... with construct.

33

try
test_zero x1

with
X -> true

;;
- : !alice bool

In this example, test_zero x1 is liable to raise an exception X with the level !alice, which will
be catched by the handler try ... with X ->. Thus, the value produced by the whole construct
must be guarded by the level of the handled exception, i.e. !alice. Let us embed this piece of
code in a function:

let f5 x =
try

test_zero x
with

X -> true
;;
- : ’a int -{’a ||}-> ’a bool

The type scheme output by the system reflects that the output of f carries information about its
argument, but also about the context where the function is called although it does not. However,
we witness the same phenomenon as for side effects: once again this is only a superficial difference
with the typing obtained for the function written in a direct style:

let f6 x =
if x = 0 then true else false

;;
val f6 : ’a int -> ’a bool

The with part is actually a kind of pattern-matching on exception names (however, this is
not a regular pattern matching since exceptions are not values). In particular, one try .. with
construct can catch several exceptions names (or even all of them using the _ pattern), as illustrated
by the following example:

let f7 x y =
try

raise_X_or_Y x y;
0

with
X -> 1

| Y -> 2
;;
val f7 : ’a bool -> ’a bool -{’a ||}-> ’a int

Many functions in the standard library raise an exception when they cannot complete normally.
For instance, the integer division yields Division_by_zero when its second argument is zero, as
reflected by its type:

val (/) : ’a int -> ’b int -{’c | Division_by_zero: ’c |}-> ’a int

with ’b < ’c, ’a

It is noticeable that there is no relationship between the level of the first argument and that of
the exception Division_by_zero . This reflects that this operator does not need to match its first
argument before raising the exception.

For the purpose of obtaining a precise information flow analysis, the evaluation order of expres-
sions must be specified. As a result, the right-to-left evaluation order of the current implementation

34

of the Objective Caml language is made part of the specification of the Flow Caml core language.
For instance, Flow Caml type system takes into account that the arguments passed to a function
are evaluated from left to right:

let f8 x y =
(if x = 0 then raise X else x) + (if y = 0 then raise Y else y)

;;

val f8 : ’a int -> ’b int -{’c | X: ’d; Y: ’e |}-> ’f int

with ’b < ’d, ’e, ’f

and ’c < ’d, ’e

and ’a < ’d, ’f

The inferred type scheme reflects that the condition y = 0 is considered before x = 0, so the
exception X carries information about x and y while Y only about y. Assuming a left-to-right
evaluation order, one would obtain the following scheme, where the roles of the variables ’a and
’b are exchanged:

’a int -> ’b int -{’c | X: ’d; Y: ’e |}-> ’f int

with ’b < ’d, ’f

and ’c < ’d, ’e

and ’a < ’d, ’e, ’f

Lastly, if the evaluation order were not specified, the type system would have to consider every
possible strategy. In this case, the type scheme for f8 would be much less informative about the
function:

’a int -> ’a int -{’b | X: ’b; Y: ’b |}-> ’a int

with ’a < ’b

Indeed, the security levels associated to the two exceptions are no longer differenced and must
both be greater than or equal to those of the two integer arguments.

2.4.2 Exceptions and side-effects

When, in a toplevel phrase, an exception is raised outside of any handler, it will not be trapped
and hence the program must terminate. As a consequence, if they gain control, the next phrases
of the program observe that the exception was not raised; and this must be taken in account in
the type system.

test_zero x1;;

- : ’a bool

Current evaluation context has level !alice

In this example, if x1 is zero, evaluating this toplevel phrase causes the program to terminate.
Hence, if this does not happen and execution continues, the remaining expressions receive some
information about x1 when they are evaluated. Therefore, they must be type-checked in a context
augmented with the security level of the information carried by x1, i.e. !alice. This point is
expressed by the second line output by the system. Thus, all side-effects performed afterward by
the program must affect data of levels greater than or equal to !alice. For instance, the reference
r1 (whose content has level !alice) can be updated while r2 (whose content has level !bob)
cannot:

r1 := false;;

- : unit

r2 := false;;

35

This expression is executed in a context of level !alice

but has an effect at level !bob.

This yields the following information flow:

from !alice to !bob

which is not legal.

Similarly, if one feeds test_zero with x2, the level of the toplevel context is increased by !bob:

test_zero x2;;
- : ’a bool

Current evaluation context has level !bob, !alice

and now, the reference r1 can no longer be updated, because information flow from !alice to
!bob is not allowed (i.e. !alice is not inferior to !bob).

In a regular program, any increase of the security level associated with the topmost evaluation
context is naturally irremediable. However, in the interactive toplevel, for the convenience of the
user, it is possible to reset it to its initial value—as if a new program was started—by the simple
directive:

#reset_context;;
Level of evaluation context reset

The previous examples illustrate how the security level attached to the evaluation context
increases through a sequence of toplevel phrases. Sequencing of statements is also possible inside
expressions, thanks in particular to the ; operator. Let us for instance consider the following
function:

let f9 x r =
if x = 0 then raise X;
r := false

;;
val f9 : ’a int -> (’b bool, ’b) ref -{’a | X: ’a |}-> unit

with ’a < ’b

f9 takes two arguments: an integer x and a boolean reference r. If the integer is 0 then the
exception X is raised, and the following statement is not performed. Otherwise, execution continues
and the reference r is set to false. We now explain the typing inferred by the system, which reflects
the two possible observable effects of the function. First of all, it may raise the exception X. The
security level attached to this effect, ’a, must be greater than or equal to that attached to the
context where the function is applied and that of the integer argument, because the exception
raising is conditioned by a test on x. The second effect that the function is liable to have is the
update of the reference r. Observing it gives information naturally about the context where f has
been called, but also reveals whether the exception X has been raised, and, as a consequence, about
the integer x. That is the reason why, the security level of the content of the reference, ’b, must
be greater than the levels of the context where the expression is applied and the first argument, as
reflected by the constraint ’a < ’b.

Similarly, every side-effect performed in an exception handler must have a level greater than
or equal to that of the trapped exception. If one rewrites f9 into the following, the inferred type
scheme is similar:

let f10 x r =
try

if x <> 0 then raise X;
()

with
X -> r := false

;;

36

val f10 : ’a int -> (’a bool, ’a) ref -{’a ||}-> unit

Indeed the reference update, r := false is increased by the security level associated to X in the
expression between try and with.

2.4.3 The special constructs: try ... finally and try ... propagate

In addition to the traditional try ... with, Flow Caml features two other ways of handling
expressions. Two reasons have motivated their introduction: firstly, they partially counterbalance
the loss of expressiveness resulting of our decision to make exception names second-class citizens;
secondly, they allow a more precise typing (w.r.t. information flow) of common idioms.

Each clause appearing in the with part of a try ... with may be terminated by the keyword
propagate . In this case, the exception trapped by the handler is re-raised at the end of its
execution. For instance:

try
e

with
X | Y -> e’; propagate

evaluates e. If it raises X or Y then e’ is executed and, then, the trapped exception, X or Y, is raised
again. In Objective Caml, this can be implemented by binding the exception to an identifier:

try
e

with
X | Y as x -> e’; raise x

In addition to the fact that this is not possible with the second-class exceptions of Flow Caml,
providing a dedicated idiom for this idiom allows a fine-grained typing: the exception catched by
the handler is propagated with exactly the same level than it was in e. In particular, two different
levels may be associated to X and Y.

The try ... finally construct of Flow Caml is a translation of the Java’s construct for the
Caml language. Indeed

try
e1

finally
e2

first, evaluates e1, which yields either a regular value or an exception. In both cases, e2 is
executed, and the result produced by e1 is returned. Once again, this can be encoded in regular
Caml (without even using exception values):

try
let r = e1 in e2; r

with
exn -> e2; raise exn

(assuming e2 does not raise any exception). However, using the dedicated construct try ...
finally allows better typings (w.r.t. information flow): this makes explicit that the expression e2
is always executed (whether e1 raises an exception or not). Thus, the type system is able to take
this in account and type-checks e2 in a context whose level is not altered by those of the exceptions
possibly raised by e1, whereas, in the proposed encoding, it is. For instance the following piece of
code is accepted by the type system:

37

try
if y1 then raise X

finally
r2 := false

;;

while its expansion is rejected

try
if y1 then raise X;
r2 := false;

with
_ -> r2 := false; propagate

;;

2.4.4 Parameterized exception names

In Objective Caml, it is possible to declare an exceptions name which takes some argument when
it is raised. The type of the argument is given when the exception is defined, this may be for
instance an integer corresponding to some error code:

exception Error of int;;

In Flow Caml, such a definition is also possible. However, the type of integers is parameterized
by a security level which must in consequence appear in the declaration of the exception. For
instance, one may introduce the exception ErrorAlice which is parameterized by an integer of
level !alice:

exception ErrorAlice of !alice int;;

and then this exception can be raised with different integers of level less than or equal to !alice
as argument:

raise (ErrorAlice 0);;
raise (ErrorAlice x1);;

However, this has two limitations: first, it is not possible to raise the exception ErrorAlice
with an argument whose level is, for instance, !bob. Obviously, a workaround may consist in
defining another exception name:

raise (ErrorAlice x2);;
This expression generates the following information flow:

from !bob to !alice

which is not legal.

exception ErrorBob of !bob int
;;
raise (ErrorBob x2);;

However, this does not seem practical. That is the reason why, in Flow Caml, the type of
exceptions arguments may be parameterized by some security level:

exception Error : ’a of ’a int;;

To explain how the security level of the argument given to an exception is traced, let us define the
following function:

let error code =
raise (Error code)

;;

38

val error: ’a int -{’a | Error: ’a |}-> ’b

The security level associated to the exception Error in the row of this function combines two
pieces of information: first, the security level of the context where the exception is raised and,
that of the integer argument. Merging these two annotations into a single one is relatively ad hoc;
however, this allows keeping concise typings, and works well with most common usage of exceptions
with arguments. It should be possible to provide a more flexible mechanism for parameterizing
types of exceptions arguments, for instance by allowing several security levels as arguments, which
will also appear in rows. However, this would increase the complexity of the system, as well as the
verbosity of function types.

To conclude this section about exceptions, let us mention that some of the built-in exceptions
of Objective Caml are not defined in the Flow Caml library. This is the case for instance of
Out_of_memory and Stack_overflow which are respectively raised by the garbage collector when
there is insufficient memory to complete the computation and the bytecode interpreter when the
evaluation stack reaches its maximal size. Indeed, analyzing them with Flow Caml would be of
little sense, because, in absence of sophisticated memory and stack analyzes, one must assume
them to be possibly raised at almost every point of the program. That is the reason why they are
not provided in Flow Caml library: thus, they cannot be catched by programs and become fatal
errors.

Before reading further this tutorial, please reset the security level of the evaluation context in
your toplevel by entering:

#reset_context;;

2.5 Defining new types

In Flow Caml, the programmer can introduce types thanks to the type declaration. First and
foremost, this allows to define new data structures using records and variants. The mechanism
used to define types in Flow Caml is similar to that of Objective Caml. However, type declarations
involve additional information, in order to deal with the extra features of the type system related
to the security analysis.

2.5.1 Variants

We begin this introduction with some examples of variant datatypes. Let us first define a type
whose values are the four cardinal points:

type ’a cardinal =
North

| West
| South
| East
’a

;;
type (#’a:level) cardinal = North | West | South | East # ’a

In the Flow Caml type system, information carried by a value of type cardinal (which is one of
the four symbolic constants listed in the declaration) is described by one security level, similarly
to the built-in enumerated types, such as integers or characters. Indeed, the type constructor
cardinal has one argument which is a security level. In the above definition, this argument, ’a,
is declared to be the information level related to the sum by the clause # ’a.

The answer produced by the system when a type is defined gives its signature, which is au-
tomatically inferred. This gives the kind and the variance of every argument: #’a:level means
that ’a is a parameter of kind level, is covariant and must be guarded.

39

let p0 = North;;

val p0 : ’a cardinal

let p1 : !alice cardinal = North;;

val p1 : !alice cardinal

let p2 = if y2 then North else South;;

val p2 : !bob cardinal

We now define the function rotate, which takes as argument a cardinal point and returns its
successor in the clockwise order:

let rotate = function
North -> East

| West -> North
| South -> West
| East -> South

;;

val rotate: ’a cardinal -> ’a cardinal

As reflected by the inferred type scheme, this function takes a cardinal point of any level as
argument and returns another cardinal point of the same level as a result.

In sections 2.1.3 and 2.1.4, we have encountered two examples of variant datatypes, which are
predefined in the system. Obviously, there is nothing magic with them and, now, we can give their
regular definition:

type (’a, ’b) option =
None

| Some of ’a
’b

;;

type (+’a:type, #’b:level) option = None | Some of ’a # ’b

The definition lists all the possible forms of a value of type (’a, ’b) option: it is either the
constant None or the constructor Some with some argument of type ’a. The fourth line of the
declaration, # ’b tells that ’b is the security level attached to the knowledge of the form of the
option, i.e. whether it is None or Some. (Let us recall that, in the second case, information carried
by Some’s argument is reflected by the security levels appearing in the type ’a itself.)

The output produced by the system after the definition of this type gives the signature of the
type option: +’a:type means that the first argument is covariant and is a type; while #’b:level
means that the second argument is a level, and is covariant and guarded.

The definition of the type list is naturally recursive; but this has no particular consequence
and the declaration is therefore similar to the previous one:

type (’a, ’b) list =
[]

| :: of ’a * (’a, ’b) list
’b

;;

type (+’a:type, #’b:level) list = [] | (::) of ’a * (’a, ’b) list # ’b

Following the same principle, one can also define binary trees as follows:

type (’a, ’b) tree =
Leaf

| Node of (’a, ’b) tree * ’a * (’a, ’b) tree
’b

;;

40

type (+’a:type, #’b:level) tree =

Leaf

| Node of (’a, ’b) tree * ’a * (’a, ’b) tree

’b

and define the function which computes the height of a tree:

let rec height = function
Leaf -> 0

| Node (tl, _, tr) -> max (height tl) (height tr)
;;

val height: (’a, ’b) tree -> ’b int

As for the function which calculates the length of a list, the inferred type scheme reflects that the
height of a tree depends on its structure (i.e. the embedding of constructors Leaf and Node) but
not on the values stored inside the nodes.

Equipping a type definition taken from an Objective Caml program in order to obtain a Flow
Caml one which includes security annotations, generally requires to make some design choices,
related to the security properties one wants to enforce. For instance, let us consider the definition,
in Objective Caml, of binary trees whose nodes are labeled by integers:

type int_tree =
ILeaf

| INode of int_tree * int * int_tree
;;

There are at least two relevant ways to “decorate” this definition in order to obtain a Flow Caml
type. A first solution consists in specializing the definition of the type tree given above:

type (’a, ’b) int_tree =
ILeaf

| INode of (’a, ’b) int_tree * ’a int * (’a, ’b) int_tree
’b

;;

type (+’a:level, #’b:level) int_tree =

ILeaf

| INode of (’a, ’b) int_tree * ’a int * (’a, ’b) int_tree

’b

;;

In this case, the type of a integer tree carries two security annotations, ’a and ’b: the former
describes information attached to the integers stored in the tree while is related to the structure
of the tree. In fact, the type (’a, ’b) int_tree is isomorphic to (’a int, ’b) tree. This
allows distinguishing the knowledge of the structure of a tree from that of its labels. To illustrate
this point, let us define two functions: size which calculates the number of nodes of a tree and
sum which calculates the sum of its labels:

let rec size = function
ILeaf -> 0

| INode (tl, x, tr) -> size tl + 1 + size tr
;;

val size : (’a, ’b) int_tree -> ’b int

let rec sum = function
ILeaf -> 0

| INode (tl, x, tr) -> sum tl + x + sum tr
;;

41

val sum : (’a, ’a) int_tree -> ’a int

The result of the first function depends only on the structure of the tree, and not on its content.
As a result its security level is related only to the second annotation of the tree given as argument.
On the other hand, the sum of the labels of a tree carries information about the structure of the
tree and about its labels, so in the type of sum, the security level of the returned integer must be
greater than or equal to the two ones of the tree.

A possible alternative consists in equipping the type of trees labeled by integers with only one
security level:

type ’a int_tree1 =
ILeaf1

| INode1 of ’a int_tree1 * ’a int * ’a int_tree1
’a

;;
type (#’a:level) int_tree1 =

ILeaf1

| INode1 of ’a int_tree1 * ’a int * ’a int_tree1

’a

;;

Information carried by the labels is no longer distinguished from the knowledge of the structure of
the tree. This choice allows more concise and simpler but less precise typings. For instance, with
this definition, both functions computing respectively the size of a tree and the sum of its labels
have the same types:

let rec size1 = function
ILeaf1 -> 0

| INode1 (tl, x, tr) -> size1 tl + 1 + size1 tr
;;
val size1 : ’a int_tree1 -> ’a int

let rec sum1 = function
ILeaf1 -> 0

| INode1 (tl, x, tr) -> sum1 tl + x + sum1 tr
;;
val sum1 : ’a int_tree1 -> ’a int

The type obtained for size1 gives a less precise description of the behavior of the function
w.r.t. information flow than that of size: it does not reflect that the size of a tree does not depend
on the value of its labels, as reflected by these computations:

size (INode (ILeaf, x1, ILeaf));;
- : ’a int

size1 (INode1 (ILeaf1, x1, ILeaf1));;
- : !alice int

2.5.2 Records

Records as tuples Records are an improved form of tuples, with named fields. Here, we declare
a record type to represent points or vectors in a two-dimensional space.

type ’a vector =
{ x: ’a int;

y: ’a int
}

;;

42

type (#’a:level) vector = { x: ’a int; y: ’a int }

As reflected by the output of the toplevel, the type constructor vector has one argument which
is the common level of the two integers it is made of. This argument is covariant and guarded. As
for tuples, there is no particular security level attached to the record structure itself, since it is not
really observable in the language.

So, when a vector is built from two integers, its security level is nothing but the union of those
of the given integers:

let v = { x = x1; y = x2 };;

val v : [> !alice, !bob] vector

One can also define some of the classical functions operating on vectors:

let add_vector v1 v2 =
{ x = v1.x + v2.x;

y = v1.y + v2.y
}

;;

val add_vector: ’a vector -> ’a vector -> ’a vector

let rot_vector v =
{ x = - v.y;

y = v.x
}

;;

val rot_vector: ’a vector -> ’a vector

The manner we equip the type vector with security annotations is somehow arbitrary. Indeed,
it is also possible to distinguish the information carried by each of its components and hence have
two security levels:

type (’a, ’b) vector2 =
{ x2: ’a int;

y2: ’b int
}

;;

type (#’a:level, #’b:level) vector = { x2: ’a int; y2: ’b int }

Such a declaration allows in some cases more precise, but also more verbose, typings.

let add_vector2 v1 v2 =
{ x2 = v1.x2 + v2.x2;

y2 = v1.y2 + v2.y2
}

;;

val add_vector2: (’a, ’b) vector -> (’a, ’b) vector -> (’a, ’b) vector

let rot_vector2 v =
{ x2 = - v.y2;

y2 = v.x2
}

;;

val rot_vector2: (’a, ’b) vector2 -> (’b, ’a) vector2

In particular, the type obtained for the function rot_vector2 clearly shows that the function
performs some permutation of the two components of the vector.

43

Mutable records As in Objective Caml, records can also have mutable fields whose content may
be modified in place. They are declared with the mutable keyword:

type (’a, ’b) mvector =
{ mutable mx: ’a int; mutable my: ’a int } # ’b

;;

type (=’a:level, #’b:level) mvector = {

mutable mx : ’a int;

mutable my : ’a int;

} # ’b

This defines a type for mutable vectors. This declaration calls for two comments. Firstly, a mutable
field is at the same time an input and an output channel of a value: it contents can be written
and read. Because it is described by an only type, it must be invariant. Hence, in the above
definition, the parameter ’a is invariant, as reflected in the signature by the =. Secondly, a record
involving some mutable field is no longer a simple tuple: the information it carries is not entirely
contained by its components because its identity (i.e. its address in memory) can be observed in the
language. Hence, its type must carry an additional security level which tells how much information
is attached to the knowledge of its identity. In our example, this role is played by the argument
’b, which is specified by the clause # ’b at the end of the definition. To illustrate the use of such
a datatype, let us define the function rot_mvector which rotates in place a vector:

let rot_mvector v =
let x = v.mx in
v.mx <- v.my;
v.my <- x

;;

val rot_mvector : (’a, ’a) mvector -{’a ||}-> unit

Because of their update, the integers of the vector given as argument contain information about
both the context where the function is applied and the identity of the record given as argument.

In section 2.3, we have introduced references. However, they are only a particular case of
mutable records and can be defined as follows:

type (’a, ’b) ref =
{ mutable contents: ’a } # ’b

;;

type (=’a:type, #’b:level) ref = { mutable contents: ’a } # ’b

What is more, the three primitives operations ref, := and ! on references are regular functions
which can be implemented from the record representation of references:

let ref x =
{ contents = x }

;;

val ref : ’a -> (’a, _) ref

let (:=) r x =
r.contents <- x

;;

val (:=) : (’a, ’b) ref -> ’a -{’b ||}-> unit

with ’b < level(’a)

let (!) r =
r.contents

;;

44

val (!) : (’a, ’b) ref -> ’c

with ’b < level(’c)

and ’a < ’c

2.6 Interacting with the outside world

A whole Flow Caml program may be viewed as a process that receives information from one or
several sources, performs some computation and sends its results to one or several receivers. Then,
the final purpose of the Flow Caml type system is to check that every information flow from a
source to a receiver generated by the execution is legal w.r.t. the security policy of the system. In
this section, we describe how such external entities are modeled in Flow Caml and how the desired
security policy may be specified by the programmer.

In the literature, holders of information are generally referred to as principals (from the pro-
gram’s viewpoint, each of them can be a source, a receiver, or both). Depending on the context,
principals may stand for a variety of concepts: (groups of) human beings, security classes (e.g. pub-
lic or secret), subsets of the system’s memory, communication channels through some peripheral
or network interface. However Flow Caml is not concerned with the real existence of such entities,
and provides a general and uniform manner to deal with them: in its type system, principals are
represented by constant security levels. In the beginning of this tutorial, Alice, Bob and Charlie
were examples of principals and represented by the security levels !alice, !bob and !charlie,
respectively. However, they remained relatively abstract, because we just declared a series of val-
ues to have these levels—thanks to some type constraint—but we did not say how a program can
really interact with them.

2.6.1 The example of the standard input and output

More concrete examples of external communication channels for a program consist in its standard
input and output. Both can be viewed as principals and we therefore decide to represent them
by the two security levels !stdin and !stdout, respectively. A program can interact with them
using the usual functions of the standard library. For instance, print_int outputs an integer on
the standard output:

print_int;;

- : !stdout int -{!stdout ||}-> unit

Because the integer provided as argument is sent to the standard output, its security level must
be less than or equal to !stdout. To print the integer 1, one writes:

print_int 1;;

- : unit

The literal constant 1 has type ’a int for every ’a; hence one can instantiate ’a < !stdout
and the call to the function is possible. However, printing the integer x1 (which comes from the
principal Alice and hence has the security level !alice) is not, in the default security policy, legal:

print_int x1;;

This expression generates the following information flow:

from !alice to !stdout

which is not legal.

Indeed, this piece of code generates a flow from Alice to the standard output and hence requires
the inequality !alice < !stdout. This is not satisfied in the default security policy which is the
empty one: it never allows any communication from one principal to another. It can be refined
using declarations introduced by the keyword flow:

45

flow !alice < !stdout;;

This makes the security level !alice less than or equal to !stdout. In other words, this allows
information flow from the principal represented by !alice (Alice) to that of !stdout (the standard
output). These declarations are naturally “transitive”. For instance, if one declares:

flow !bob < !alice;;

then Bob is allowed to send information to Alice, but also, by transitivity, to the standard output:

print_int x2;;

- : unit

It is worth noting that the constant security levels are global as well as the declarations that
relate them. This is natural because the principals and the security policy they represent are so.
However, for convenience, the interactive toplevel allows the programmer to refine the security
policy incrementally. This is always safe because a piece of code that is legal in some security
policy is still allowed in another one where more information flow is possible.

Similarly, the security level !stdin intends to represent the standard input in the type system.
For instance, the function read_line has the following type:

read_line;;

- : unit -{[< !stdout, !stdin] | End_of_file: !stdin |}-> !stdin string

Quoting the documentation of the standard library, read_line “flushes standard output, then reads
characters from standard input until a newline character is encountered [and] returns the string of
all characters read, without the newline character at the end”. Thus, invoking read_line affects
both the standard input and output, which explains the first annotation in the arrow of its type.
Furthermore, if the user sent the “end-of-file” sequence (e.g. by typing ^D), the function raises the
exception End_of_file , hence the second annotation on the arrow. Lastly, a string obtained by
reading on the standard input must have the level !stdin:

let s1 = read_line ();;

val s1 : !stdin string

Current evaluation context has level !stdin

Let us note that, if one wants to print on the standard output a string read on the standard
input, the security policy of the program must allow information flow from the latter to the former.
This is declared by the following statement:

flow !stdin < !stdout;;

and then, it is possible to write a function echo which “pipes” the standard input to the standard
output:

let echo () =
try

while true do
let s = read_line () in
print_string s

done
with

End_of_file -> ();;

val echo : unit -{[< !stdout, !stdin] ||}-> unit

46

2.6.2 Modeling principals

Real programs are liable to communicate with external entities through other channels than the
simple standard input and output, e.g. the file system, network interfaces or display devices. How-
ever, the Flow Caml library does not provide functions allowing such communications: analyzing
these low-level operations with its type system would not yield any relevant information about their
behavior w.r.t. the security policy, because fine-grained considerations are in general mandatory
to prove they are safe. Then, the interaction with external entities must be modeled in Flow Caml
at a higher level.

That is the reason why a program written and verified with the Flow Caml system must
generally be divided in two parts. The purpose of the first one is to provide a high level model of
the external principals considered by the program. This should consist in a series of functions for
interacting with them, which are implemented in one or several regular Caml modules, using for
instance the standard i/o interface, the Unix library or some graphical toolkit. This part of the
code cannot be verified by the Flow Caml system: the programmer must supply itself an interface
for these “high level” functions which specifies their behavior w.r.t. the security policy. The second
part consists in the body of the program, which interacts with the outside world only with the
model of principals provided by the previous modules. This part can be written and type-checked
in Flow Caml, which automates its verification. In section 2.8, we will give more details about this
programming scheme: because this requires dividing the program at hand into several compilation
units. Because they are roughly a particular case of top-level modules, we first say a few words
about the module layer of the Flow Caml language.

2.7 The module language

The broad outline of the Flow Caml module language is the same as that of Objective Caml:
it provides structures, which are sequences of definitions, and signatures which are interfaces for
structures. Besides functors are “functions” from structures to structures, which allow expressing
parameterized structures.

Although, there is no major novelty compared with Objective Caml, this section describes how
its module language has been extended to handle the type system of Flow Caml and its information
flow analysis; and illustrates with some examples its basic usage.

2.7.1 Structures and signatures

A structure consists in an arbitrary sequence of definitions, which are packaged together. It
is introduced by the struct ... end construct, and is usually given a name with the module
binding. For instance, one may define a structure implementing sets of integers (with binary trees):

module IntSet = struct

type ’a t =
Empty

| Node of ’a t * ’a int * ’a t
’a

let empty = Empty

let rec add x = function
Empty -> Node (Empty, x, Empty)

| Node (l, y, r) ->
if x < y then Node (add x l, y, r)

47

else Node (l, y, add x r)

let rec mem x = function
Empty -> false

| Node (l, y, r) ->
(x = y) || mem x (if x < y then l else r)

end;;
module IntSet : sig

type (#’a:level) t = Empty | Node of ’a t * ’a int * ’a t # ’a

val empty : ’a t

val add : ’a int -> ’a t -> ’a t

val mem : ’a int -> ’a t -> ’a bool

end

This structure comprises one type definition (the type of sets of integers, t), and three values: the
empty set, empty, and two functions operating on sets, add (to add an integer to a set) and mem
(to test whether an integer belongs to a set). The system outputs the signature of the structure,
which is a list of its components with their declaration. Outside the structure, its components
can be referred to using the “dot notation”, that is, identifiers qualified by a structure name. For
instance, IntSet.add refers to the function add of this structure.

IntSet.add x1 (IntSet.add x2 IntSet.empty);;

- : [> !alice, !bob] IntSet.t

Signatures allows to abstract some characteristics of the implementation of a structure by hiding
some components or exporting them with a restricted declaration or type. For instance, one may
hide the concrete representation of integer sets:

module type INTSET = sig
type (#’a:level) t
val empty: ’a t
val add: ’a int -> ’a t -> ’a t
val mem: ’a int -> ’a t -> ’a bool

end;;
module AbstractIntSet = (IntSet : INTSET);;

module AbstractIntSet : INTSET

It is worth noting that parameters in declarations of abstract types must be annotated with their
kind and variance in signatures: because the representation of the type is not given, they can no
longer be inferred by the system. However, they are required to properly type-check the rest of
the program.

2.7.2 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures. A common example is a definition of a generic set library, parameterized by a structure
giving the type of the elements of the set and a function compare defining a total order between
them:

module type ORDERED_TYPE = sig
type (#’a:level) t
val compare : ’a t -> ’a t -> ’a int

end;;

48

(As usual in Caml, compare x y is expected to return 0 if x is equal to y, a negative integer if
x is less than y and a positive integer otherwise.) In this signature, the type of the elements, t,
is parameterized by one security level which describes all the information leaked by a comparison
(as reflected by the type of compare). However, this does not prevent to instantiate it with more
complex data types, which are originally parameterized by several security levels:

module IntList : ORDERED_TYPE = struct
type ’a t = (’a int, ’a) list
let rec compare l1 l2 =

match l1, l2 with
[], [] -> 0

| [], _ :: _ -> -1
| _ :: _, [] -> 1
| hd1 :: tl1, hd2 :: tl2 ->

let c = Pervasives.compare hd1 hd2 in
if c = 0 then compare tl1 tl2
else c

end;;
module IntList : sig

type (#’a:level) t

val compare : ’a t -> ’a t -> ’a int

end

We now define the functor implementing sets of arbitrary type. This functor takes the structure
Elt as argument which must have the signature ORDERED_TYPE :

module Set (Elt: ORDERED_TYPE) = struct

type ’a element =
’a Elt.t

type ’a t =
Empty

| Node of ’a t * ’a element * ’a t
’a

let empty = Empty

let rec add x = function
Empty -> Node (Empty, x, Empty)

| Node (l, y, r) ->
if Elt.compare x y < 0 then Node (add x l, y, r)
else Node (l, y, add x r)

let rec mem x = function
Empty -> false

| Node (l, y, r) ->
let c = Elt.compare x y in
(c = 0) || mem x (if c < 0 then l else r)

end;;
module Set : functor (Elt : ORDERED_TYPE) -> sig

type (#’a:level) element = ’a Elt.t

49

type (#’a:level) t = Empty | Node of ’a t * ’a Elt.t * ’a t # ’a

val empty : ’a t

val add : ’a Elt.t -> ’a t -> ’a t

val mem : ’a Elt.t -> ’a t -> ’a bool

end

As in the IntSet example, it would be good style to hide the actual implementation of the
type of sets. This can be achieved by restricting Set by a suitable functor signature. Firstly, let
us define the type of a module implementing a set structure:

module type SET = sig

type (#’a:level) element
type (#’a:level) t

val empty: ’a t
val add: ’a element -> ’a t -> ’a t
val mem: ’a element -> ’a t -> ’a bool

end;;

This signature lists the type of elements and sets as well as the functions operating on them. Then,
the Set functor takes a structure of signature ORDERED_TYPE and returns one of signature SET, so
it may be declared with the following type:

module Set (Elt: ORDERED_TYPE)
: (SET with type ’a element = ’a Elt.t) = struct

...
end

The type constraint with type ’a element = ’a Elt.t has the same purpose as in Objective
Caml: it points out the fact that the sets contain elements of type Elt.t, i.e. that the functions
add and mem can be applied with arguments of this type. To conclude with this example, one can
retrieve our first implementation of integer sets, the module IntSet, as an instance of the functor
Set:

module IntSet’ = Set (struct
type ’a t = ’a int
let compare = Pervasives.compare

end);;
module IntSet’ : sig

type ’a element = ’a int

type ’a t

val empty : ’a t

val add : ’a element -> ’a t -> ’a t

val mem : ’a element -> ’a t -> ’a bool

end

In the previous examples, the interaction between the module language and the security analysis
featured by the type system of Flow Caml remains relatively basic: roughly speaking, it simply
consists in including the relevant security annotations in value and type declarations in signatures.
However, it is sometimes necessary to parameterize a signature with some security level. For
instance, one may define a module type for a structure implementing some input channel:

50

module type IN = sig
level Data
level Prompt
val read : unit -{[< Prompt] ||}-> Data string

end;;

This signature involves two abstract levels: Data is the security level of data read on the input
channel; and Prompt represents the information leaked on the channel when one starts listening
on it. At the time being, nothing is known about these levels, so they remain “abstract”. The
function read is intended to read one line on the underlying channel. It naturally produces a string
whose level is Data (let us remark that, in this model, reading can never fail). An implementation
of this signature using the standard input would be as follows:

module Stdin = struct
level Data = !stdin
level Prompt less than !stdin, !stdout
let read () =

try read_line ()
with End_of_file -> ‘‘

end;;
module Stdin : sig

level Data = !stdin

level Prompt less than !stdout, !stdin

val read : unit -{[< !stdout, !stdin] ||}-> !stdin string

end

Strings read on the standard input have level !stdin, so Data is declared to equal to it in Stdin.
Invoking read_line affects the standard input and the standard output (because it is flushed), so
Prompt must be less than or equal to !stdin and !stdout. Then, the module Stdin implements
the signature IN, which may be immediately verified by a type constraint:

module AbstractStdin = (Stdin : IN);;

module AbstractStdin : IN

Similarly, we declare the module type for output channels, and implement an instance of it
devoted to the standard output:

module type OUT = sig
level Data
val print : Data string -{Data ||}-> unit

end;;

In this case, we only need one security level Data which represents the information which may be
sent on the channel. (We do not consider the possibility of receiving information from an output
channel, for instance because of a buffer overflow.) The module Stdout implements this signature
for the standard output:

module Stdout = struct
level Data = !stdout
let print = print_endline

end;;
module Stdout : sig

level Data = !stdout

val print : !stdout string -{!stdout ||}-> unit

end;;

51

Now, we aim at writing a functor which takes as argument two structures, defining an input
channel and an output channel, respectively. The body of the functor will define a function copy
whose purpose is simply to read one line on the input channel and print it on the output channel.
However, it is not enough to require the two structures parameterizing the functor to have the
respective signature INPUT and OUTPUT: indeed, the function copy implemented by the functor
generates an information flow from the channel represented by the former to that of the latter.
Hence the security level Data of the input channel, must be declared to be less than or equal to
that of the output channel.

module Copier (I : IN)
(O : OUT with level Data greater than I.Data) = struct

let copy () =
O.print (I.read ())

end;;
module Copier :

functor (I : IN) ->

functor

(O : sig

level Data greater than I.Data

val print : Data string -{Data ||}-> unit

end) ->

sig

val copy : unit -{[< O.Data, I.Prompt] ||}-> unit

end

That is the purpose of the constraint with level appearing in the type of the second argument
of the function. Its semantics is similar to that of with type or with module in Objective
Caml: it refines the definition of the level Data in the signature of the module O. The clause
greater than I.Data declares that this security level must be that of a principal allowed to
“receive” information from the channel implemented by the structure I whose level is I.Data.

It is worth noting that the order in which parameters appear in the functor definition generates
some asymmetry, because the constraint is applied on the second structure. Obviously, it is also
possible to permute the two arguments:

module Copier’ (O : OUT)
(I : IN with level Data less than O.Data) = struct

let copy () =
O.print (I.read ())

end;;
module Copier’ :

functor (O : OUT) ->

functor

(I : sig

level Data less than O.Data

level Prompt

val read : unit -{Prompt ||}-> Data string

end) ->

sig

val copy : unit -{[< I.Prompt, O.Data] ||}-> unit

end

The constraint now states that the principal represented by the level source in I must be allowed
to send information to O.Data.

52

To conclude with this example, let us build an instance of Copier dedicated to the standard
input and output. This requires to allow information flow from the former to the latter, which can
be done by the toplevel declaration:

flow !stdin < !stdout;;

Now, the security level Stdin.Data is less than or equal to Stdout.Data, so Stdin and Stdout
are legal arguments for Copier:

module StdCopier = Copier (Stdin) (Stdout);;

module StdCopier :

sig val copy : unit -{[< Stdout.Data, Stdin.Prompt] ||}-> unit

end

2.7.3 Side-effects, exceptions and the module language

Let us briefly explain how the type system of Flow Caml traces information flow due to side-effects
and exceptions throughout the evaluation of module expressions. Evaluating a structure consists
in considering successively each of its definitions; computation really arises only at let definitions
and their evaluation may have side-effects or raise exceptions. It is worth noting that an exception
which escapes the scope of a top-level let definition cannot be trapped further, so it terminates
the program.

In fact, Flow Caml’s type system associates not only a type to the body of a let definition
but also two lists of security levels, or bounds written from ... to ... where each ... stands
for a list of security levels. The lower bound (appearing after the from keyword) describes the
side-effects performed by the evaluation of the definition, roughly speaking it includes the security
level(s) of data structures the definition may affect. The upper bound (appearing after the to
keyword) tells how much information is attached to the exceptions the definition may raise. This
process is generalized to the whole module language by associating to every definition and module
expression a pair of bounds. Because they have no computational content, the bounds of external ,
type, level, exception , module type, open and include definitions are always empty. The
bounds of a module definition are obtained by considering recursively the module expression which
appears in the right-hand-side.

For instance, the evaluation of a structure struct def1 ... defn end consists in evaluating
successively each of the definitions, then the bounds associated to the whole module expression are
naturally obtained by merging those of the definitions def1 to defn. Moreover, while considering
this sequence of definitions, defi is evaluated if and only if none of def1 to defi−1 raised an
exception. As a result, to prevent any illegal information flow, the upper bounds of the former
must be less than or equal to the lower bound of the latter.

However, the toplevel system does not output the bounds of the definitions the user enters.
Instead, at every prompt, it considers all definitions entered so far as members of a single struc-
ture, whose upper bound corresponds to the evaluation context’s security level introduced in sec-
tion 2.4.2. When one enters a new definition, the system checks that its lower bound is less than
or equal to that of the current evaluation context’s security level, and then it is extended with the
upper bound of the new definition. A message giving the new evaluation context’s security level
is output in the case it is different from the previous one.

A functor definition does not perform any computation, so it has empty bounds. Indeed, the
body of the functor is executed only when the functor is applied. In order to trace bounds from
functors definitions to functors applications, the arrow symbols of functors types are annotated—
when necessary—by bounds:

module type S = sig
val x : ’a int

end;;

53

module F (X: S) = struct
let _ =

r1 := X.x;
if X.x = x2 then raise Exit

end;;
module F : functor (X : S) -{!alice | !bob}-> sig end

This module type means that any application of the functor F may generate a side-effect on cells
of level !alice and may raise an exception at level !bob. Then, an application of F inserts !bob
in the evaluation context’s security level:

module F0 = F (struct let x = 1 end);;
Current evaluation context has level !bob

Moreover, it is only possible to instantiate F if the evaluation context’s security level is less than
or equal to !alice, which is no longer the case after a first application of F:

module F1 = F (struct let x = 1 end);;
This expression is executed in a context of level !bob

but has an effect at level !alice.

This yields the following information flow:

from !bob to !alice

which is not legal.

2.8 Standalone programs

All examples given so far were entered under the interactive system. However, Flow Caml code can
also be written in separate files: the batch “compiler” flowcamlc allows to type-check them, and
also translates them into regular Objective Caml source code files, so that they can be compiled
using the compilers ocamlc or ocamlopt, yielding a standard executable.

In this section, we aim at explaining how it is possible to write such programs in Flow Caml.
To illustrate our discussion, we consider as example the complete program whose source code
is given pages 59 to 60. Let us briefly introduce the operation this example program performs:
on Unix systems with shadow passwords, information about user accounts is stored in two files.
The file /etc/passwd registers the list of logins, with, for each of them, a password and some
administrative information such as a numeric id, the user’s home directory and shell. Besides,
the file /etc/shadow associates to every login a password stored in a encrypted form (with some
optional aging information), which is used in place of that in /etc/passwd. Our program aims
at synchronizing these two files, i.e. generating an entry in /etc/shadow for every account which
is listed only in /etc/passwd. In the forthcoming subsections, we will explain step by step how
the source code is organized, how it is verified and compiled thanks to the Flow Caml system.
The type system will allow us to check that running the program cannot reveal to the user which
invokes the command any information about the passwords stored in the two files.

2.8.1 Compilation units and batch compilation

The source code of a program is generally split into several files, called compilation units, that can
be compiled separately. In Flow Caml, a compilation unit A comprises one or two files, among:

• the implementation file a.fml, which contains a sequence of definitions, analogous to the
inside of a struct...end construct;

54

• the interface file a.fmli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

(In addition to definitions and specifications, the implementation and the interface may include two
particular “headers”, made of a flow declaration and optional affects and raises statements,
whose respective purposes will be explained in the sections 2.8.2 and 2.8.3.) Both files define a
structure named A (same name as the base name of the two files, with the first letter capitalized),
as if the following definition was entered at top-level:

module A : sig (* specifications of file a.fmli *) end
= struct (* definitions of file a.fml *) end;;

The files defining a set of compilation units can be handled separately using flowcamlc, fol-
lowing for each unit A one of the three above schemes:

1. The compilation procedure of a unit A defined in files a.fmli and a.fml is described in
figure 2.1. First, the Flow Caml interface a.fmli is fed to flowcamlc, which checks its well-
formedness and produces a compiled version of it, a.fcmi. It also translates the interface file
into a regular Objective Caml one, namely a.mli. Second, the implementation a.fml can be
type-checked by flowcamlc. The compiler computes the most general interface for the imple-
mentation, and checks it fulfills the declared one (i.e. that stored in a.fcmi). Furthermore,
the source code of the unit in a.fml is translated into a Objective Caml implementation file,
a.ml. Then, a.mli and a.ml can be compiled with ocamlc to produce a compiled interface
a.cmi and a bytecode object file a.cmo.

2. However, as in Objective Caml, it is possible to build a unit A by providing only an implemen-
tation file a.fml but no interface file. This yields the compilation scheme of figure 2.2: the
implementation a.fml can be directly passed through flowcamlc and the interface computed
by type inference is stored itself in a.fcmi.

3. Lastly, as we have explained in section 2.6.2, some pieces of code cannot be satisfyingly typed
with Flow Caml’s system. Such definitions may be provided by a compilation unit with a
Flow Caml interface a.fmli but only an Objective Caml implementation a.ml, as illustrated
by the compilation scheme of figure 2.3. Then, the system will not check that the code in
a.ml fulfills the interface a.fmli w.r.t. the security policy—this is left to the programmer’s
responsibility—but the definitions exported by the unit (and registered in a.fcmi) will be
available to the rest of the program.

Our example program is made of four compilation units. Passwd and Shadow are low-level
modules which implement functions for accessing the /etc/passwd and /etc/shadows files: their
implementations are directly written in Objective Caml (files passwd.ml and shadow.ml), and
only interfaces are provided in Flow Caml (files passwd.fmli and shadow.fmli). These interfaces
assign security levels to the information manipulated by the units: data stored in /etc/passwd has
the level !passwd_file , except the passwords, which have level !password . Similarly, information
from /etc/shadow receives the level !shadow_file and ! shadow_password . The unit Verbose
provides a verbose mode: if the user runs the program with the -v option, then the execution
is traced on the standard output. The body of the program is in Main. These last two units
are fully implemented in Flow Caml: implementation (verbose.fml and main.fml) and interface
(verbose.fmli and main.fmli) files are provided for each of them.

2.8.2 flow declarations in implementations and interfaces

In section 2.6.1, we explained how flow declarations allow specifying the security policy by setting
inequalities between principals. We have seen that the toplevel system allows the programmer

55

Figure 2.1: Compilation scheme of a unit defined in a.fmli and a.fml

Figure 2.2: Compilation scheme of a unit defined in a.fml

Figure 2.3: Compilation scheme of a unit defined in a.fmli and a.ml

56

to refine the security policy incrementally, by entering new flow declarations which remain valid
until the end of the interactive session.

In programs written for the batch compiler flowcamlc, every compilation unit must come with
its own security policy, i.e. a flow declaration which specifies sufficient assumptions on principals
for its source code to be well-typed. This declaration must be provided at the beginning of the
implementation and interface files. For instance, the compilation unit Verbose of our example
begins with the following declaration:

flow !arg < !stderr, !stdout

By convention, the principals !stderr and !stdout represent the standard error and the standard
output of the program, respectively. !arg is the security level of the command-line arguments.
The declaration is a shorthand for

flow !arg < !stderr
and !arg < !stdout

It means that the unit is well-typed under every security policy which enforces at least the two
inequalities !arg < !stdout and !arg < !stderr. When a compilation unit includes no flow
declaration—as Passwd and Shadow in the example—this simply means it is well-typed in every
security policy.

The security policy under which a program made of several compilation units can be considered
to be verified is the union of those declared in the units, i.e. the least one which satisfies the
assumptions made by every unit. This is safe because if a piece of code is well-typed in a given
policy, it remains so under a refinement of it, i.e. a lattice which declares more information flow.
However, the possibility to provide a different flow declaration in every compilation unit of a
program is of main importance for modularity of programming and re-usability of code, in the
context of separate compilation. Indeed, this allows for instance having libraries (such as the
standard one) used in programs which have different security policies. Otherwise, one would have
to write or compile a specialized version of these libraries for each program which expects a different
policy.

The Flow Caml system provides a tool, flowcamlpol, to compute the (minimal) security policy
under which a program is (checked to be) safe. The usage of flowcamlpol is—to some extent—
similar to that of a linker of object files: it expects as argument the name of the compiled interfaces
of the program’s units, in the same order as the corresponding object files will be linked. For our
example, one must run the command:

flowcamlpol passwd.fcmi shadow.fcmi debug.fcmi main.fcmi

which leads the system to sum up all information flow the example program is liable to perform:

!shadow_file < !shadow_password
!shadow_file < !stdout
!passwd_file < !shadow_file
!password < !shadow_password
!arg < !stderr
!arg < !stdout

The graphical representation can be obtained if the command is run with the -graph option. It
shows some interesting properties of the information flow graph of the program, which have been
established automatically by the type system. For instance, the standard output is not related to
sensitive data stored in the /etc/passwd and /etc/shadow files, i.e. the user passwords.

Lastly, you may wonder why the minimal assumptions necessary for a compilation unit are
not inferred by the system while it type-checks the source code. Indeed, doing so is possible for
expressions of the core language. For instance, the following piece of code

57

print_string Sys.argv.(0);;

is well-typed if and only if the inequality !arg < !stdout is enforced. However, the existence of
a “minimal” solution to this problem is no longer ensured when considering the module language.
Indeed, typing module expressions requires comparing type schemes, i.e. verifying that a given
scheme is an instance of another one, which cannot yield principal flow declarations. For instance,
the comparison of [< !alice, !bob] int with !charlie int requires the least upper bound
of the levels !alice and !bob to be less than or equal to !charlie, which is not expressible in a
flow statement.

2.8.3 affects and raises statements in interfaces

The execution of a program made of one or several compilation units consists in evaluating succes-
sively each top-level structure, in the order specified at linking. For instance, our example program
is linked with the following command:

ocamlc -o passwd2shadow passwd.cmo shadow.cmo verbose.cmo main.cmo

then, when running the compiled executable passwd2shadow, the definitions of Passwd, Shadow,
Verbose and Main are successively evaluated, until an uncaught exception is raised or the end is
reached. Then, when gaining control, each unit acquires the information that the previous ones
normally terminated. So, in order to trace this possible information flow, one has to consider the
bounds of the underlying structures, as if the program where defined in a single unit such as:

module Passwd = struct
...

end

module Shadow = struct
...

end

module Verbose = struct
...

end

module Main = struct
...

end

For this purpose, every interface file can mention the lower and upper bounds of the underlying
structure thanks to the affects and raises statements, respectively , which appears between
the flow declaration and the signature (as usual, omitted bounds are supposed to be empty). For
instance, the interface of Verbose declares the following bounds

affects !arg
raises !arg

which means that the unit Verbose has side-effect of level !arg and can raise an exception at this
level. This statement appears only in the interface: when type-checking the implementation, the
bounds are inferred from the source code and compared to those provided in the interface.

Then, when linking a series of compilation units Unit1, . . ., Unitn to produce an executable,
one has to check that, for every i, the upper bounds of Unit1 to Uniti−1 are less than or equal to
the lower bound of Uniti, which is in fact achieved by the flowcamlpol command, at the same
time it computes the security policy:

flowcamlpol passwd.fcmi shadow.fcmi debug.fcmi main.fcmi

58

A complete example

passwd.fmli
(* An entry of "/etc/passwd" is represented by a record of

type [(!passwd_file, !password) entry] *)
type (’a, ’b) entry =

{ login: ’a string;
password: ’b string

}

(* Input from "/etc/passwd" *)
type noneq in_channel
val open_in: unit -{!passwd_file ||}-> in_channel
val input_entry: in_channel

-{!passwd_file | End_of_file: !passwd_file |}->
(!passwd_file, !password) entry

val close_in: in_channel -{!passwd_file ||}-> unit

passwd.ml
type entry =

{ login: string;
password: string

}

type in_channel = Pervasives.in_channel

let open_in () =
Pervasives.open_in "/etc/passwd"

let rec input_entry chan =
let line = input_line chan in
try

let i1 = String.index line ’:’ in
let i2 = String.index_from line (i1 + 1) ’:’ in
{ login = String.sub line 0 i1;

password = String.sub line (i1 + 1) (i2 - i1 - 1)
}

with
Not_found -> input_entry chan

let close_in chan =
Pervasives.close_in chan

shadow.fmli
(* An entry of "/etc/shadow" is represented by a record of

type [(!shadow_file, !shadow_password) entry] *)
type (’a, ’b) entry =

{ login: ’a string;
password: ’b string;
rem: ’b string;

}

(* Input from "/etc/shadow" *)
type noneq in_channel
val open_in: unit -{!shadow_file ||}-> in_channel
val input_entry: in_channel

-{!shadow_file | End_of_file: !shadow_file |}->
(!shadow_file, !shadow_password) entry

val close_in: in_channel -{!shadow_file ||}-> unit

(* Output to "/etc/shadow" *)
type noneq out_channel
val open_out: unit -{!shadow_file ||}-> out_channel
val output_entry:

out_channel -> (!shadow_file, !shadow_password) entry
-{!shadow_file ||}-> unit

val close_out: out_channel -{!shadow_file ||}-> unit

shadow.ml
type entry =

{ login: string;
password: string;
rem: string;

}

type in_channel = Pervasives.in_channel

let open_in () =
Pervasives.open_in "/etc/shadow"

let rec input_entry chan =
try

let line = input_line chan in
let i1 = String.index line ’:’ in
let i2 = String.index_from line (i1 + 1) ’:’ in
let ln = String.length line in
{ login = String.sub line 0 i1;

password = String.sub line (i1 + 1) (i2 - i1 - 1);
rem = String.sub line (i2 + 1) (ln - i2 - 1)

}
with

Not_found -> input_entry chan

let close_in chan =
Pervasives.close_in chan

type out_channel = Pervasives.out_channel

let open_out () =
Pervasives.open_out "/etc/shadow"

let output_entry chan e =
Printf.fprintf chan "%s:%s:%s\n" e.login e.password e.rem

let close_out chan =
Pervasives.close_out chan

verbose.fmli
flow !arg < !stderr
and !arg < !stdout

affects !arg
raises !arg

val message : !stdout string -{!stdout ||}-> unit

verbose.fml
flow !arg < !stderr, !stdout

(** [!verbose_mode] is true if the verbose mode is
active. *)

let verbose_mode : (!arg bool, _) ref = ref false

(** Parse command-line arguments. If the option "-v" if
found then [verbose_mode] is set to true. If any other
option is encountered then an error message is printed
and the exception [Exit] is raised. *)

59

let _ =
for i = 1 to Array.length Sys.argv - 1 do

match Sys.argv.(i) with
"-v" -> verbose_mode := true

| option ->
prerr_string "Invalid option ";
prerr_endline option;
raise Exit

done

(** [print message] print a message on the standard output
if the verbose mode is enabled. Otherwise, it does
nothing. *)

let message s =
if !verbose_mode then print_endline s

main.fml
flow !passwd_file < !shadow_file
and !passwd_file, !shadow_file < !stdout
and !passwd_file, !shadow_file < !shadow_password
and !password < !shadow_password

(** The module [StringMap] implements association tables
indexed by strings. *)

module StringMap = Map.Make (struct
type ’a t = ’a string
let compare = Pervasives.compare

end)

(** [read_shadow ()] reads the content of /etc/passwd
and returns a map associating each login to its
entry. *)

let read_shadow () =

let in_chan = Shadow.open_in () in

let rec loop accu =
try

let entry = Shadow.input_entry in_chan in
loop (StringMap.add entry.Shadow.login entry accu)

with End_of_file ->
Shadow.close_in in_chan;
accu

in

loop StringMap.empty

(** [read_passwd shadow_map] generates /etc/shadow from
/etc/passwd and the entries in [shadow_map] *)

let read_passwd shadow_map =

let in_chan = Passwd.open_in ()
and out_chan = Shadow.open_out () in

let rec loop () =

try

let passwd_entry = Passwd.input_entry in_chan in
Verbose.message passwd_entry.Passwd.login;

let shadow_entry =
try

StringMap.find passwd_entry.Passwd.login shadow_map
with

Not_found ->
Verbose.message " creating an entry";
{ Shadow.login = passwd_entry.Passwd.login;

Shadow.password = passwd_entry.Passwd.password;
Shadow.rem = ""

}
in

Shadow.output_entry out_chan shadow_entry

with

End_of_file -> ()

in

loop ();

Passwd.close_in in_chan;
Shadow.close_out out_chan

let _ =
let shadow_map = read_shadow () in
read_passwd shadow_map

60

P A R T II

Reference manual

61

C H A P T E R 3

The Flow Caml language

This chapter is a brief description of the Flow Caml language. It lists the language constructs, and
gives their syntax and semantics. However, this description is only informal, without the attempt
to provide a mathematical formalization of the language. For a more detailed description of the
core language and its type system, the reader is refereed to [PS03]. Moreover, many aspects of
the Flow Caml language are directly derived from Objective Caml, so they are described only
succinctly, the reader is refereed to the Objective Caml’s documentation [LDG+02a] for further
details.

Notations The syntax of the language is given in BNF-like notation. Terminal symbols are set
in typewriter font (like this). Non-terminal symbols are set in italic font (like that). Square
brackets [...] denote optional components. Curly brackets {...} denotes zero, one or several repe-
titions of the enclosed components. Curly bracket with a trailing plus sign {...}+ denote one or
several repetitions of the enclosed components. Parentheses (...) denote grouping.

3.1 Lexical conventions

Flow Caml adopts the same lexical conventions as Objective Caml.

ident ::= (letter | _) {letter | 0...9 | _ | ’}

letter ::= A...Z | a...z

infix-symbol ::= (= | < | > | @ | ^ | | | & | + | - | * | / | $ | %) {operator-char}

prefix-symbol ::= (! | ? | ~) {operator-char}

operator-char ::= ! | $ | % | & | + | - | . | / | : < | = | > | ? | @ | ^ | | | ~
Flow Caml integer, float and character literals are identical to those of Objective Caml. There

are two flavors of string literals in Flow Caml: mutable ones (charray-literal), introduced between
backquotes (‘) and immutable ones (string-literal), between double quotes ("). It is worth noting
that escape sequences are the same for both. In particular, \‘ is not a valid escape sequence, even
between ‘, so one has to write \096.

integer-literal ::= [-] {0...9}+
| [-] (0x | 0X) {0...9 | A...F | a...f}+
| [-] (0o | 0O) {0...7}+
| [-] (0b | 0B) {0...1}+

63

float-literal ::= [-] {0...9}+ [. {0...9}] [(e | E) [+ | -] {0...9}+]

char-literal ::= ’ regular-char ’
| ’ escape-sequence ’

escape-sequence ::= \ (\ | " | ’ | n | t | b | t)
| \ (0...9) (0...9) (0...9)

string-literal ::= " {string-character} "

charray-literal ::= ‘ {charray-character} ‘

string-character ::= regular-char-string
| escape-sequence

charray-character ::= regular-char-charray
| escape-sequence

The identifiers below are reserved as keywords, and cannot be employed otherwise. The first
groups include all Objective Caml keywords while the second group lists Flow Caml additional
ones.

and as assert asr begin class
closed constraint do done downto else
end exception external false for fun
function functor if in include inherit
land lazy let lor lsl lsr
lxor match method mod module mutable
new of open or parser private
rec sig struct then to true
try type val virtual when while
with

affects content finally flow greater less
level noneq propagate raise raises row
than

The following character sequences are also keywords:

& ’ () * , -> ?
??(.[: :: := ;
;; <- = [[| [< {<] |]
>] >} _ ‘ { | } ~

-{ }-> ={ }=>

3.2 The core language

3.2.1 Values

Values of Flow Caml are those of Objective Caml: integer numbers, floating-point numbers, char-
acters, character strings, tuples, arrays, variant values and functions. (Polymorphic variants and

64

objects are not supported.)

3.2.2 Names

Naming objects Identifiers are used to give names to several classes of language objects and refer
to these objects by name later:

• Value names: value-name ::= lowercase-ident | (operator-name)
operator-name ::= prefix-symbol | infix-symbol

| * | = | or | & | :=

• Value constructors: constr-name ::= capitalized-ident | false | true | [] | () | ::

• Record fields: field-name ::= lowercase-ident

• Type constructors: typeconstr-name ::= lowercase-ident

• Level names: level-name ::= uppercase-ident

• Principals: principal ::= ! lowercase-ident

• Exception names: exception-name ::= capitalized-ident

• Module name: module-name ::= capitalized-ident

• Module type names: modtype-name ::= ident

These nine name-spaces are distinguished both by the context and by the capitalization of
the identifier. In comparison with Objective Caml, we have three additional classes: level names
and principals (see section 3.2.3), and exception names. Exception names are syntactically distin-
guished from value constructors because exceptions are not first class values in Flow Caml.

Referring to named objects A named object can be referred to either by its name (following the
usual static scoping rules for names) or by an access path prefix.name, where prefix designates a
module and name is the name of an object defined in that module. The first component of the
path, prefix is either a simple module name or an access path name1.name2. . ., in case the defining
module is itself nested inside other modules. For referring to type constructors, levels, exceptions
(in type expressions) or module types, the prefix can also contain simple functor applications (as
in the syntactic class ext-module-path), in case the defining module is the result of a functor
application.

value-path ::= value-name | module-path . lowercase-ident

constr ::= constr-name | module-path . capitalized-ident

typeconstr ::= typeconstr-name | extended-module-path . lowercase-ident

level ::= level-name | extended-module-path . capitalized-ident

exception ::= exception-name | extended-module-path . capitalized-ident

field ::= field-name | module-path . lowercase-ident

65

module-path ::= module-name | module-path . capitalized-ident

ext-module-path ::= module-name
| ext-module-path . capitalized-ident
| ext-module-path (ext-module-path)

modtype-path ::= modtype-name | module-path . ident

Principal names need not be qualified because they are global labels.

3.2.3 Security levels

Flow Caml types are annotated by security levels, which are supposed to belong to a lattice (the
corresponding partial order is denoted by <, although it is not strict). The lattice must include
principals (principal) and levels introduced by level declarations (level), which form “(constant)
security levels”:

security-level ::= principal | level

However, in order to preserve the lattice structure, it may also contains other security levels,
which are not representable in Flow Caml syntax: they never will appear in type expressions;
however, assuming their existence is necessary to interpret type schemes. Principals are intended
to represent external entities or channels which programs may interact with.

The partial order on security levels is the smallest order which satisfies:

• The inequalities between principals provided in flow declarations (see section 3.3.3),

• and the assumptions made in level definitions (see section 3.2.4).

Information flow is allowed from a source labeled by the security level security-level1 to a sink
labeled by security-level2 if and only if security-level1 < security-level2 holds.

3.2.4 Level definitions

Level names can be bound to security levels of the lattice thanks to level definitions.

level-definition ::= level level-name level-repr

level-repr ::= [greater than security-level-list] [less than security-level-list]
| = security-level

security-level-list ::= security-level {, security-level}

A level definition is introduced by the level keyword. It consists in a capitalized identifier followed
by two optional sets of assumptions or bounds. The identifier is the name of the level being defined.
The assumptions relate this new level with existing ones:

• If a clause greater than security-level1 , ... , security-leveln is provided, then the new level
is made greater than or equal to security-leveli, for all i.

• If a clause less than security-level1 , ... , security-leveln is provided, then the new level is
made less than or equal to security-leveli, for all i.

66

The representation = security-level is a shorthand for greater than security-level less than
security-level. The definition cannot introduce new relationships about levels listed in these as-
sumptions: every level which appears in the former must be known to be less than or equal to each
of those appearing in the latter.

3.2.5 Type expressions

Type expressions denote types, security levels and rows in types schemes, definitions of data-types
as well as in type constraints over patterns and expressions. A type expression is of one of the three
kinds: level, type or row (this last kind is parametrized with a (possibly empty) set of exceptions
which is the complementary of its domain).

kind ::= level | type | row [[exception {, exception}]]

A row of kind row [exception1, ..., exceptionn] is a mapping from exceptions distinct of excep-
tion1, ..., exceptionn to security levels.

typexpr ::= ’ ident
| (typeexpr)
| typexpr -{typexpr | typexpr | typexpr }-> typexpr
| typexpr {* typexpr}+
| typeconstr
| typeexpr typeconstr
| (typexpr {, typexpr}) typeconstr
| exception : typexpr ; typexpr

Type expressions involve type variables ’ident. A type variable can be used with any kind
(i.e. there is a not a distinguished name-space for every kind of variables); however in a given
context (i.e. a type scheme, a data-type definition or a type constraint), every occurrence of a
given type variable must be used with the same kind. In type definitions, type variables are names
for the type parameters. In type schemes, they are implicitly universally quantified.

A function type comprises 5 type expressions: typexpr1 -{typexpr2 | typexpr3 | typexpr4}->
typexpr5. typexpr1 and typexpr5 have the kind type; the former is the type of the argument of
the function and the latter that of its result. typexpr2 and typexpr4 are levels (of kind level).
The former is the security level of the context (generally written pc in the literature) where the
function is called while the latter is the annotation attached to the function’s identity. Lastly,
typexpr3 is the row (of kind row []) describing the exceptions raised by the function.

Tuples types typexpr1 * ... * typexprn is the type of tuples whose elements belong to types
typexpr1, . . ., typexprn respectively.

Constructed types consists either of a type constructor with no parameter (typeconstr) or
with one (typeexpr typeconstr) or several ((typeexpr {, typeexpr})) arguments. Every type
constructor is supposed to have a signature which gives the number of parameters it expects and
their respective kind, see section 3.2.7.

The row term exception : typexpr1 ; typexpr2 stands for the row whose entry at index
exception is typexpr1 and whose other entries are given by the row typexpr2.

3.2.6 Type schemes

Type schemes intend to describe the set of admissible types for some expression or value. Because
of the presence of subtyping, this set cannot be represented by a single type expression with
(universally quantified) free variables but must involve constraints.

type-scheme ::= typexpr [with constraint {and constraint}]

67

constraint ::= left-hand-side {, left-hand-side} < right-hand-side {, right-hand-side}
| typexpr {~ typexpr}+

left-hand-side ::= typexpr | content (typexpr)

right-hand-side ::= typexpr | level (typexpr)

A type scheme consists in a type expression (the body) and an optional list of constraints,
stating assumptions between the variables appearing in the body. Type variables which appear
in a type scheme are implicitly universally quantified: intuitively, the type scheme stands for the
set of all instances of the body which satisfy then constraints. A constraint is either an inequality,
i.e. a pair of a left-hand-side and a right-hand-side, separated by the symbol <, or a same-skeleton
constraint, i.e. a ~-separated list of type expressions.

Some abbreviations are allowed in type expressions which appear as the body of a type scheme:

• A simple constant level security-level stands for a fresh level variable ’a with the two con-
straints security-level < ’a and ’a < security-level.

• [< security-level1 , ... , security-leveln] is a shorthand for a fresh level variable ’a with
the constraint ’a < security-level1 , ... , security-leveln. Similarly, [> security-level1 , ... ,
security-leveln] is a shorthand for a fresh level variable ’a with the constraint security-level1 ,
... , security-leveln < ’a. Lastly, [< security-level1 , ... , security-leveln |> security-leveln+1

, ... , security-leveln+k] is a shorthand for a fresh level variable ’a with the constraints
security-level1 , ... , security-leveln < ’a and ’a < security-leveln+1 , ... , security-leveln+k.

• _ stands for an anonymous fresh variable of any kind.

• On functions arrows, anonymous variables can be omitted. For instance, -{| typexpr1 |
typexpr2 }-> is a shorthand for -{ ’a | typexpr1 | typexpr2 }-> where ’a is a fresh variable.
Furthermore, an arrow whose three annotations are omitted, -{ | | | }->, can be written
->.

We do not give here a precise description of the interpretation of type schemes and constraints.
The reader is referred to section 2.2 for an informal presentation and to [PS03] for a formal definition
of the type system.

3.2.7 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

type-definition ::= type typedef {and typedef }

typedef ::= [noneq] [type-params] typeconstr-name [= typexpr] [type-repr]

type-params ::= type-param | (type-param {, type-param})

type-param ::= [+ | - | = | #] ’ ident [: (level | type row [[exception-list]])]

type-repr ::= constr-decl {| constr-decl} [# ’ident]
| { field-decl {; field-decl} } [# ’ident]

68

constr-decl ::= constr-name | constr-name of typexpr

field-decl ::= [mutable] field-name : typexpr

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor. A simple definition consists in a lowercase identifier, possibly preceded
by a noneq flag and one or several type parameters, and followed by an optional type equation,
and then an optional type representation. The identifier is the name of the type constructor being
defined.

The optional type parameters are either one type variable ’ident or a list of type variables (
’ident1 , ... , identn) for type constructors with several parameters. Each parameter may be
annotated by its variance and its kind. In the case where the type definition introduces an abstract
type (i.e. no type equation is provided), these annotations are mandatory and reproduced in the
signature of the type constructor. In other cases, the signature computed for the type constructor
is the minimal one which fits the type equation, the type representation and these annotations.

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr on the right of the = sign: one can be substituted for the other during typing. If no type
equation is given, a new type is generated which is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type):

• The type representation = constr-decl {| constr-decl} [# ’ ident] describes a variant type.
The optional annotation [# ’ ident] declares the security level attached to variant values. It
must be one of the parameters of the type constructor and it is required if the variant type
comprises several constructors.

• The type representation = { field-decl {; field-decl } } describes a record type. The optional
annotation [# ’ ident] declares the security level attached to records values. It must be one
of the parameter of the type constructor and it is required if the record type comprises one
or several mutable fields.

If no type representation is given, nothing is assumed on the structure of the type besides what is
stated in the optional type equation.

3.2.8 Exception definitions

Exception definitions introduce new exception names.

exntypexpr ::= ’ ident
| security-level
| (typeexpr)
| exntypexpr -{exntypexpr | exntypexpr | exntypexpr }-> exntypexpr
| exntypexpr {* exntypexpr}+
| typeconstr
| typeexpr typeconstr
| (exntypexpr {, exntypexpr}) typeconstr
| exception : exntypexpr ; exntypexpr

exception-definition ::= exception exception-name [exception-argument] [= exception-name]

exception-argument ::= [: ’ident] of exntypexpr

69

They consist in an upper case identifier, followed by an optional argument declaration, then an
optional equation.

If no argument declaration is provided, then the exception name is constant. Otherwise, the
argument declaration consists in an optional parameter and a type expression. The parameter is
a level variable ’ident which can appear in the type expression. The type expression exntypexpr
gives the type of the exception’s argument, it is a type expression which may involve constant
security levels.

If no equation is provided, then the definition generates a new exception, distinct from all other
exceptions in the system. Otherwise, it only gives an alternate name to an existing exception. In
this case, the optional argument declaration must be identical to that of the re-binded definition.

3.2.9 Constants

The syntactic class of constants comprises literals from the five base types (integers, floating-point
numbers, characters, mutable characters strings and immutable characters strings) and constant
constructors.

constant ::= integer-literal
| float-literal
| char-literal
| string-literal
| charray-literal
| constr

3.2.10 Patterns

Flow Caml provides the same patterns as Objective Caml (at the exception of the forms dealing
with polymorphic variants). Their respective semantics is naturally preserved.

pattern ::= value-name
| _
| pattern as value-name
| (pattern)
| (pattern : type-scheme)
| pattern | pattern
| constr pattern
| { field = pattern {; field = pattern} }
| [pattern {; pattern}]
| pattern :: pattern
| [| pattern {; pattern} |]

Because exceptions are not first class values and exception names are not regular value con-
structors, Flow Caml has a class of patterns dedicated to exceptions:

exception-pattern ::= _
| exception [pattern] {| exception [pattern]}

The first kind of pattern matches every exception. The second matches the exceptions of the given
names, with an argument value matching the additional pattern (if any).

70

3.2.11 Expressions

expr ::= value-path
| constant
| (expr)
| begin expr end
| (expr : type-scheme)
| expr , expr {, expr}
| ncconstr expr
| expr :: expr
| [expr {; expr}]
| [| expr {; expr} |]
| { field = expr {; field = expr} }
| { expr with field = expr {; field = expr} }
| expr {expr}+
| prefix-symbol expr
| expr (infix-symbol | * | = | or | &) expr
| expr . field
| expr . field <- expr
| expr .(expr)
| expr .(expr) <- expr
| expr .[expr]
| expr .[expr] <- expr
| if expr then expr [else expr]
| while expr do expr done
| for ident = expr (to | downto) expr do expr done
| expr ; expr
| match expr with pattern-matching
| function pattern-matching
| fun multiple-matching
| raise (exception | (exception expr))
| try expr with [|] handler {| handler}
| try expr finally expr
| let [rec] let-binding {and let-binding} in expr

pattern-matching ::= [|] pattern [when expr] -> expr {| pattern [when expr] -> expr}

multiple-matching ::= {pattern}+ [when expr] -> expr

let-binding ::= pattern [: type-scheme] = expr
| value-name {pattern}+ [: type-scheme] = expr

handler ::= exception-pattern -> expr [propagate]

The only differences between the syntax of Flow Caml expressions and those of Objective Caml
rely in the fact that exceptions are first class values in the former while they are not in the latter.
Thus, raise is no longer a regular function but a construct of the language. Two exceptions
handlers are provided: the expression

71

try
expr

with
pattern1 -> expr1 [propagate]
...
| patternn -> exprn [propagate]

evaluates the expression expr and returns its value if the evaluation does not raise any exception.
If it raises an exception, it is matched against the patterns pattern1 to patternn. If the matching
against patterni is the first which succeeds, the associated expression expri is evaluated (in an
environment enriched by the bindings performed during the matching). If the handler is terminated
with the keyword propagate, the trapped exception is propagated (in this case, exceptions raised
by expri are not thrown), otherwise the value produced by the evaluation of expri becomes that
of the whole try expression. If none of the patterns matches the exception raised by expr, the
exception is raised again, thereby transparently “passing through” the try construct.

The expression try expr1 finally expr2 evaluates the expression expr1. This produces a result
which is either a value of a raised exception. In both cases, the expression expr2 is evaluated and
its result (value or exception) discarded. Finally, the result produced by expr1 becomes the result
of the whole expression.

Evaluation order For the purpose of obtaining a precise information flow analysis, the evaluation
order of expressions must be specified. As a result, the right-to-left evaluation order of the current
implementation of the Objective Caml language is made part of the specification of the Flow Caml
core language.

3.3 The module language

3.3.1 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.

module-type ::= modtype-path
| sig {specification [;;]} end
| functor (module-name : module-type) functor-arrow module-type
| module-type with mod-constraint {and mod-constraint}
| (module-type)

specification ::= val value-name : type-scheme
| external value-name : type-scheme = external-declaration
| type-definition
| level-definition
| exception-definition
| module module-name module-args : module-type
| module type modtype-name = [module-type]
| open module-path
| include module-type

module-args ::= {(module-name : module-type)}

mod-constraint ::= type [type-parameters] typeconstr = typexpr
| level level level-repr
| module module-path = ext-module-path

72

functor-arrow ::= -> | -{ [security-level-list] | [security-level-list] }->

This language of module types is largely identical to that of Objective Caml, so we only mention
the significant differences:

• A new for of specifications, level definitions, may appear in signatures.

• In Flow Caml signatures, exception declarations (introduced by the keyword exception) may
mention an equality between exceptions (as in structures). This is made necessary because
exceptions appears in types for values.

• Functors arrows may mention two lists of security levels, a pair of bounds whose purpose is
explained in section 2.7.3 of the tutorial.

3.3.2 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types. There is no
difference with Objective Caml to be mentioned.

module-expr ::= module-path
| struct {definition [;;]} end
| functor (module-name : module-type) -> module-expr
| module-expr (module-expr)
| (module-expr)
| (module-expr : module-type)

definition ::= let [rec] let-binding {and let-binding}
| external value-name : type-scheme = external-declaration
| type-definition
| level-definition
| exception-definition
| module module-name module-args = module-expr
| module type modtype-name = module-type
| open module-path
| include module-expr

Evaluation order The remark about the evaluation order made for the core language also applies
to the module language. As a result, the right-to-left evaluation order of the current implementation
of the Objective Caml language is made part of the specification of the Flow Caml module language.

3.3.3 Compilation units

interface ::=
flows-declaration [affects security-level-list] [raises security-level-list]
{specification}

implementation ::= flows-declaration {specification}

flows-declaration ::= flow principal-list < principal-list {and principal-list < principal-list}

principal-list ::= principal {, principal}

73

A Flow Caml program can be made of one or several compilation units. Each compilation is
made of an interface and an implementation. It also has a name unit-name, derived from the
names of the files containing the interface and the implementation (see section 4.2 for details).

An implementation consists in two parts: a list of flow declarations and a specification. The
flow declarations define the partial order < between principals which is used throughout the type-
checking of the specification: it is the smallest one which satisfies all the listed inequalities. The
specification is the body of a structure which lists the values, types, levels, exceptions, modules
and module types implemented by the unit.

An interface is made of three sections: a list of flow declarations, the affects and raises
statements and a specification. The flow declarations define the partial order < between principals
which has been used throughout the type-checking of the unit: in short, it provides a description of
the possible information flow generated by the code of the unit. The inequality between principals
provided in the interface of a unit must imply (possibly by transitivity) all those mentioned in
the implementation of the unit. Lastly, the statements affects and raises mentions respectively
the lower and upper bounds of the module expression underlying the compilation unit. They are
omitted when the bound is empty.

74

C H A P T E R 4

Tools

4.1 The interactive toplevel (flowcaml)

The toplevel tool for Flow Caml, flowcaml, permits interactive use of the Flow Caml system
through a read–type-check loop. In this mode, the system repeatedly reads Flow Caml phrases
from the input, type-checks them and outputs the inferred type, if any. The system prints a #
(sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The
toplevel input has the following syntax.

toplevel-input ::= {toplevel-phrase} ;;
| flows-declaration ;;
| # ident [directive-argument];;

toplevel-phrase ::= definition
| expr

directive-argument ::= string-literal | integer-literal | value-path | level | typeconstr | exception

A toplevel input can consists in a series of definition, similar to those found in implementations
of compilation units or in struct ... end module expressions. It can also consist in a flow
declaration, which extend the current security policy, or in a toplevel directive, starting with #
(the sharp sign). These directives control the behavior of the toplevel; they are listed below in
section 4.1.3.

4.1.1 Graphical output

The toplevel offers a graphical output of inferred type schemes. It is enabled by the -graph
command line option or the directive #open_graph. For a description of the graphical output of
type schemes, see section 2.2.6 of the tutorial.

4.1.2 Options

The following command-line options are recognized by the flowcaml command.

-display host:display
Specify the host and screen to be used for displaying the graphic window (see the option
-graph). By default this is obtained from the environment variable DISPLAY.

75

-font fontname
Set the font used on the graphical window.

-geometry widthxheight+x-offset+y-offset
Specify the initial geometry of the graphical window. The four parameters are numbers
giving (in pixels) the width, height, horizontal offset and vertical offset respectively. Partial
specifications of the form widthxheight or +x-offset+y-offset are also allowed.

-graph
Enable the graphic window. The toplevel may produce a graphical representation of inferred
type schemes (in addition to the textual standard one), displayed a X graphical window.
The display and geometry of this window may be controlled by the options -display and
-geometry .

-I directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, the standard library directory. Directories
added with -I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory.

-linewidth width
Sets the number of columns of the terminal used for printing messages. Default is 78.

-nopervasives
Does not initially open then Pervasives module.

-pprint flags
Configure the pretty-print of types. The argument is a string of one or several characters,
with the following meaning for each character:

C/c enable/disable use of colors for displaying polarities of type variables (on
VT100 compatible terminals).

0/1/2 Set which universally quantified and unconstrained type variables are hidden.
In mode 0, all are hidden or replaced by _, in mode 1, only those which appear
on functions arrows are hidden, in mode 2, all are displayed.

H/h enable/disable the hiding of universally quantified and unconstrained type
variables (h implies g).

V/v enable/disable printing of the polarities of type variables (with the symbols +,
- and =)

Default is Cv1.

4.1.3 Toplevel directives

The following directives control the toplevel behavior.

#close graph
Close the graphical window (see section 4.1.1).

#lookup exception "ident"
Lookup for an exception in the environment and print its declaration.

#lookup level "ident"
Lookup for a level in the environment and print its declaration.

#lookup type "ident"
Lookup for a type in the environment and print its declaration.

76

#lookup value "ident"
Lookup for a value in the environment and print its description.

#open graph
Open the graphical window (see section 4.1.1).

#pprint "flags"
Set flags for pretty-print (see option -pprint above for a description of available flags).

#reset context
Reset the security level associated to the toplevel evaluation context to its initial value, as if
a new program were started.

#quit
Exit the toplevel loop and terminate the flowcaml command.

4.2 The batch compiler (flowcamlc)

This section is interested with the Flow Caml batch compiler flowcamlc. To describe in a few
words its working, let us say that it reads Flow Caml files as input, type-checks their content and
produces regular Objective Caml code as output. These may be later compiled using the standard
ocamlc or ocamlopt compilers to obtain executables.

4.2.1 Overview

The flowcamlc command has a command-line interface similar to that of the Objective Caml
compilers. It accepts several types of arguments:

• Arguments ending in .fmli are taken to be source files for compilation unit interfaces. From
the file x.fmli, the flowcamlc compiler produces a compiled interface in the file x.fcmi and
an Objective Caml compilation unit interface in the file x.mli.

• Arguments ending in .fml are taken to be source files for compilation unit implementations.
From the file x.fml, the flowcamlc compiler produces a Objective Caml compilation unit
implementation in the file x.ml.

If the interface file x.fmli exists, the implementation x.fml is checked against the corre-
sponding compiled interface x.fcmi, which is assumed to exist. If no interface x.fmli is
provided, the compilation of x.ml produces a compiled interface file x.fcmi in addition to
x.ml. The file x.fcmi produced corresponds to an interface that exports everything that is
defined in the implementation x.fml.

4.2.2 Options

The following command-line options are recognized by the flowcamlc command:

-dump
Produce dumped abstract syntax tree for Objective Caml as output, instead of literal source
code file. These dumped tree can be used as input for the Objective Caml compiler, which
won’t need to parse again the source code. However, the format of the abstract syntax tree
depends on the version of the Objective Caml compiler, so it may be not compatible with
yours.

77

-i
Cause the compiler to print the inferred interface when compiling an implementation (.fml
file). This can be useful to check the types inferred by the compiler. Also, since the output
follows the syntax of interface files, it can help in writing an explicit interface (.fmli file) for
a file: just redirect the standard output of the compiler to a .fmli file, and edit that file to
remove all declarations of unexported names.

-I directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, the the standard library directory. Directories
added with -I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory.

-nostdlib
Do not add the standard library directory in the default search path.

-pprint flags
Configure the pretty-print of types. See the documentation of the command flowcaml for a
description of available flags.

-runlib
Print the location of the run-time library and exit.

-stdlib
Print the location of the standard library and exit.

-v
Print the compiler version and location of libraries and exit.

-version
Print the compiler version and exit.

-nopervasives
Does not initially open the Pervasives module.

4.3 The security policy displayer (flowcamlpol)

4.3.1 Overview

The flowcamlpol tool aims at verifying that a series of compilation units can be linked together
in order to produce a secure program. It moreover computes the minimal security policy under
which the program can be safely run (which is the “union” of the security policies declared in the
compilation units).

The flowcamlpol command takes as argument the list of the compiled interface files of the
units which form the program, in the order they should be passed to the linker. For instance,
for a program made of the compilation units unit1, unit2, ..., unitn, which is linked with the
command ocamlc unit1.cmo unit2.cmo ... unitn.cmo, one have to run:

flowcamlpol unit1.fcmi unit2.fcmi ... unitn.fcmi

This outputs the smallest set of assumptions between principals under which the whole program
is type safe, i.e. the smallest security policy which allow its execution. (The tool can give a graphical
representation of this set of inequalities with the -graph option.) flowcamlpol also checks that
the bounds of the compilation units fit together, i.e. that for every i, the lower bound of uniti is
greater than or equal to the upper bounds of unit$_1$, ..., uniti−1, in the printed security policy.

A concrete example of use of flowcamlpol is given in sections 2.8.2 and 2.8.3 of the tutorial.

78

4.3.2 Options

The following command-line options are recognized by the flowcamlpol command.

-display host:display
Specifies the host and screen to be used for displaying the graphic window (see the option
-graph). By default this is obtained from the environment variable DISPLAY.

-font fontname
Sets the font used on the graphical window.

-geometry widthxheight+x-offset+y-offset
Specify the initial geometry of the graphical window. The four parameters are numbers
giving (in pixels) the width, height, horizontal offset and vertical offset respectively. Partial
specifications of the form widthxheight or +x-offset+y-offset are also allowed.

-graph
Gives a graphical representation of the security lattice. The display and geometry of this
windows may be controlled by the options -display and -geometry .

-linewidth width
Sets the number of columns of the terminal used for printing messages. Default is 78.

4.4 The dependency generator (flowcamldep)

The flowcamldep command scans a set of Flow Caml source files (.fml and .fmli files) for
references to external compilation units, and outputs dependency lines in a format suitable for the
make utility. This ensures that make will compile the source file in the correct order, and recompile
those files that need to when a source file is modified.

The typical usage is

flowcamldep *.fmli *.fml > Depend.flowcaml

where *.fmli *.fml expands to all source files in the current directory and Depend.flowcaml is
the file that should contain the dependencies. (See below for a typical Makefile.)

Let us note that flowcamldep generates only the dependencies needed to the Flow Caml com-
piler, that is those relating .fmli and .fml files to .mli and .ml. To compile the files generated
by Flow Caml with one of the Objective Caml compilers, you will need to run ocamldep on the
intermediate files .mli and .mli.

4.4.1 Options

The following command-line options are recognized by flowcamldep:

-I directory
Add the given directory to the list of directories searched for source files. If a source file
foo.fml mentions an external compilation unit Bar, a dependency on that unit’s interface
bar.mli is generated only if the source for bar is found in the current directory or in one of
the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard
library, and no dependencies are generated.

79

4.4.2 A typical Makefile

Here is a template Makefile for a Flow Caml program.

Compilers
OCAMLC=ocamlc -I +flowcamlrun
OCAMLOPT=ocamlopt -I +flowcamlrun
FLOWCAMLC=flowcamlc

OCAMLDEP=ocamldep
FLOWCAMLDEP=flowcamldep

The list of object files for the program
OBJECTS=mod1.cmo mod2.cmo mod3.cmo

To check the security policy
pol: $(OBJECTS.cmo=.fcmi)

flowcamlpol $^

To build the program
prog: $(OBJECTS)

$(OCAMLC) -o $@ flowcamlrun.cma $(OBJECTS)

Common rules
.SUFFIXES: .ml .mli .fml .fmli .cmi .cmo .cmx .fcmi

.ml.cmo:
$(OCAMLC) -c $<

.mli.cmi:
$(OCAMLC) -c $<

.ml.cmx:
$(OCAMLOPT) -c $<

.fmli.mli:
$(FLOWCAMLC) -c $<

.fml.ml:
$(FLOWCAMLC) -c $<

Clean up
rm -f prog
rm -f *.cm[iox] *.fcmi
for i in *.mli; do \
if test -f ‘basename $$i .mli‘.fmli; then rm -f $$i; fi \
done
for i in *.ml; do \
if test -f ‘basename $$i .ml‘.fml; then rm -f $$i; fi \
done

Dependencies
depend-flowcaml:

80

$(FLOWCAMLDEP) *.fml *.fmli > Depend.flowcaml

depend-ocaml:
$(OCAMLDEP) *.ml *.mli > Depend.ocaml

Dependencies
depend-flowcaml:

$(FLOWCAMLDEP) *.fml *.fmli > Depend.flowcaml

depend-ocaml: $(patsubst %.fml,%.ml,$(wildcard *.fml))\
$(patsubst %.fml,%.ml,$(wildcard *.fml))

$(OCAMLDEP) *.ml *.mli > Depend.ocaml

include Depend.flowcaml
include Depend.ocaml

81

82

C H A P T E R 5

The Flow Caml library

This chapter describes the Flow Caml library. This library is a translation of (a subset of) the
Objective Caml standard library for the Flow Caml language, which includes all the necessary
security annotations. As in Objective Caml, the Pervasives module is automatically “opened”
when a compilation starts or when the toplevel is launched.

5.1 Built-in types and predefined exceptions

The following built-in types and predefined exceptions are always defined in the compilation en-
vironment, but are not part of any module. As a consequence, they can only be referred by their
short names.

5.1.1 Predefined types

These are predefined types :
type (#’a:level) int

The type of integer numbers.

type (#’a:level) int32

The type of 32 bits integer numbers.

type (#’a:level) int64

The type of 64 bits integer numbers.

type (#’a:level) nativeint

The type of processor-native integer numbers.

type (#’a:level) char

The type of characters.

type (#’a:level) string

The type of immutable strings.

type (=’a:level, #’b:level) charray

The type of mutable character strings.

83

type (#’a:level) float

The type of floating-point numbers.

type (#’a:level) bool

The type of booleans (truth values).

type noneq unit = ()

The type of the unit value.

type (+’a:type, #’b:level) array

The type of arrays whose elements have type ’a.

type (+’a:type, #’b:level) list = [] | :: of ’a * (’a, ’b) list # ’b

The type of lists whose elements have type ’a.

type (+’a:type, #’b:level) option = None | Some of ’a # ’b

The type of optional values.

5.1.2 Exceptions

These are predefined exceptions :
exception Invalid_argument : ’a of ’a stg

Exception raised by library functions to signal that the given arguments do not make sense.
(For compatibility reasons with the Objective Caml library, this exception is
uncatchable for some particular values of its string argument.)

exception Failure : ’a of ’a stg

Exception raised by library functions to signal that they are undefined on the given arguments.
(For compatibility reasons with the Objective Caml library, this exception is
uncatchable for some particular values of its string argument.)

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by division and remainder operations when their second argument is null.

84

5.2 Module Array

Array operations.

val length : (’a, ’b) array -> ’b int

(~a ,) ar r ay −> i nt

Return the length (number of elements) of the given array.

val get : (’a, ’b) array -> ’b int -> ’c

with ’a < ’c

and ’b < level(’c)

(~a ,) ar r ay −> i nt −> ~a

Array.get a n returns the element number n of array a. The first element has number 0.
The last element has number Array.length a - 1.
Terminate the program if n is outside the range 0 to (Array.length a - 1). You can
also write a.(n) instead of Array.get a n.

val set : (’a, ’b) array -> ’b int -> ’a -{’b ||}-> unit

with ’b < level(’a)

(~a ,) ar r ay −> i nt −> ~a −{ | | } −> uni t

Array.set a n x modifies array a in place, replacing element number n with x.
Terminate the program if n is outside the range 0 to Array.length a - 1. You can also
write a.(n) <- x instead of Array.set a n x.

val make : ’a int -> ’b -> (’b, ’a) array

 i nt −> ~a −> (~a ,) ar r ay

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this
new array are initially physically equal to x (in the sense of the == predicate). Consequently,
if x is mutable, it is shared among all elements of the array, and modifying x through one of
the array entries will modify all other entries at the same time.
Terminate the program if n < 0 or n > Sys.max_array_length. If the value of x is a
floating-point number, then the maximum size is divided by 2.

val create : ’a int -> ’b -> (’b, ’a) array

 i nt −> ~a −> (~a ,) ar r ay

Deprecated. Array.create is an alias for Array.make.

val init : ’a int ->

(’a int -{’b | ’c | ’d}-> ’e) -{’d | ’c |}-> (’e, ’a) array

with ’a, content(’c), ’d < ’b

and ’a, content(’c), ’d < level(’e)

85

 i nt −> (i nt −{ | | } −> ~a) −{ | | } −> (~a ,) ar r ay

Array.init n f returns a fresh array of length n, with element number i initialized to the
result of f i. In other terms, Array.init n f tabulates the results of f applied to the integers
0 to n-1.

val make_matrix : ’a int ->

’b int -> ’c -{’b ||}-> ((’c, ’b) array, ’a) array

with ’a < ’b

 i nt −> i nt −> ~a −{ | | } −> ((~a ,) ar r ay,) ar r ay

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with
first dimension dimx and second dimension dimy. All the elements of this new matrix are
initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation
m.(x).(y).
Terminate the program if dimx or dimy is less than 1 or greater than Sys.max_array_length.
If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

val create_matrix : ’a int ->

’b int -> ’c -{’b ||}-> ((’c, ’b) array, ’a) array

with ’a < ’b

 i nt −> i nt −> ~a −{ | | } −> ((~a ,) ar r ay,) ar r ay

Deprecated. Array.create_matrix is an alias for Array.make_matrix.

val append : (’a, ’b) array -> (’c, ’b) array -> (’d, ’b) array

with ’a, ’c < ’d

(~a ,) ar r ay −> (~a ,) ar r ay −> (~a ,) ar r ay

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and
v2.

val concat : ((’a, ’b) array, ’b) list -> (’c, ’b) array

with ’a < ’c

((~a ,) ar r ay,) l i st −> (~a ,) ar r ay

Same as Array.append, but concatenates a list of arrays.

val sub : (’a, ’b) array -> ’b int -> ’b int -> (’c, ’b) array

with ’a < ’c

and ’b < level(’c)

(~a ,) ar r ay −> i nt −> i nt −> (~a ,) ar r ay

86

Array.sub a start len returns a fresh array of length len, containing the elements number
start to start + len - 1 of array a.
Terminate the program if start and len do not designate a valid subarray of a; that is,
if start < 0, or len < 0, or start + len > Array.length a.

val copy : (’a, ’b) array -> (’c, ’b) array

with ’a < ’c

(~a ,) ar r ay −> (~a ,) ar r ay

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : (’a, ’b) array -> ’b int -> ’b int -> ’a -{’b ||}-> unit

with ’b < level(’a)

(~a ,) ar r ay −> i nt −> i nt −> ~a −{ | | } −> uni t

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to
ofs + len - 1.
Terminate the program if ofs and len do not designate a valid subarray of a.

val blit : (’a, ’b) array ->

’b int -> (’c, ’b) array -> ’b int -> ’b int -{’b ||}-> unit

with ’a < ’c

and ’b < level(’c)

(~a ,) ar r ay −> i nt −> (~a ,) ar r ay −> i nt −> i nt −{ | | } −> uni t

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element number
o1, to array v2, starting at element number o2. It works correctly even if v1 and v2 are the
same array, and the source and destination chunks overlap.
Terminate the program if o1 and len do not designate a valid subarray of v1, or if o2 and
len do not designate a valid subarray of v2.

val to_list : (’a, ’b) array -> (’c, ’b) list

with ’a < ’c

and ’b < level(’c)

(~a ,) ar r ay −> (~a ,) l i st

Array.to_list a returns the list of all the elements of a.

val of_list : (’a, ’b) list -{’c ||}-> (’a, ’b) array

with ’b, ’c < level(’a)

(~a ,) l i st −{ | | } −> (~a ,) ar r ay

Array.of_list l returns a fresh array containing the elements of l.

87

val iter : (’a -{’b | ’c | ’b}-> ’d) -> (’e, ’f) array -{’b | ’c |}-> unit

with ’e < ’a

and ’f < level(’a), ’b

and content(’c) < ’b

(~a −{ | | } −> ~b) −> (~a ,) ar r ay −{ | | } −> uni t

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to
f a.(0); f a.(1); ...; f a.(Array.length a - 1); ().

val map : (’a -{’b | ’c | ’d}-> ’e) ->

(’f, ’g) array -{’d | ’c |}-> (’e, ’g) array

with ’f < ’a

and ’g < level(’a), ’b, level(’e)

and ’d < ’b, level(’e)

and content(’c) < ’b, level(’e)

(~a −{ | | } −> ~b) −> (~a ,) ar r ay −{ | | } −> (~b ,) ar r ay

Array.map f a applies function f to all the elements of a, and builds an array with the results
returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

val iteri : (’a int -{’b | ’c | ’d}-> ’e -{’f | ’c | ’f}-> ’g) ->

(’h, ’a) array -{’d | ’c |}-> unit

with ’d < ’b, ’f

and ’a < ’b, level(’e), ’f

and content(’c) < ’b, ’f

and ’h < ’e

(i nt −{ | | } −> ~a −{ | | } −> ~b) −> (~a ,) ar r ay −{ | | } −> uni t

Same as Array.iter, but the function is applied to the index of the element as first argument,
and the element itself as second argument.

val mapi : (’a int -{’b | ’c | ’d}-> ’e -{’f | ’c | ’g}-> ’h) ->

(’i, ’a) array -{’d | ’c |}-> (’h, ’a) array

with ’d < ’b, ’f, level(’h)

and ’g < ’f, level(’h)

and ’a < ’b, level(’e), ’f, level(’h)

and content(’c) < ’b, ’f, level(’h)

and ’i < ’e

(i nt −{ | | } −> ~a −{ | | } −> ~b) −> (~a ,) ar r ay −{ | | } −> (~b ,) ar r ay

Same as Array.map, but the function is applied to the index of the element as first argument,
and the element itself as second argument.

88

val fold_left : (’a -{’b | ’c | ’d}-> ’e -{’f | ’c | ’g}-> ’a) ->

’a -> (’h, ’i) array -{’d | ’c |}-> ’a

with ’i < level(’a), ’b, level(’e), ’f

and ’d < level(’a), ’b, ’f

and ’g < level(’a), ’f

and content(’c) < level(’a), ’b, ’f

and ’h < ’e

(~a −{ | | } −> ~b −{ | | } −> ~a) −> ~a −> (~b ,) ar r ay −{ | | } −> ~a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where
n is the length of the array a.

val fold_right : (’a -{’b | ’c | ’d}-> ’e -{’f | ’c | ’g}-> ’e) ->

(’h, ’i) array -> ’e -{’d | ’c |}-> ’e

with ’h < ’a

and ’i < level(’a), ’b, level(’e), ’f

and ’d < ’b, level(’e), ’f

and ’g < level(’e), ’f

and content(’c) < ’b, level(’e), ’f

(~a −{ | | } −> ~b −{ | | } −> ~b) −> (~a ,) ar r ay −> ~b −{ | | } −> ~b

Array.fold_right f a x computes f a.(0) (f a.(1) (... (f a.(n-1) x) ...)), where
n is the length of the array a.

5.3 Module Buffer

Extensible string buffers.

This module implements string buffers that automatically expand as necessary. It provides accu-
mulative concatenation of strings in quasi-linear time (instead of quadratic time when strings are
concatenated pairwise).

type (=’a:level, #’b:level) t

The abstract type of buffers.

val create : ’a int -> (’a, ’b) t

 i nt −> (,) t

create n returns a fresh buffer, initially empty. The n parameter is the initial size of the
internal string that holds the buffer contents. That string is automatically reallocated when
more than n characters are stored in the buffer, but shrinks back to n characters when reset
is called. For best performance, n should be of the same order of magnitude as the number of
characters that are expected to be stored in the buffer (for instance, 80 for a buffer that holds
one output line). Nothing bad will happen if the buffer grows beyond that limit, however. In
doubt, take n = 16 for instance. If n is not between 1 and Sys.max_string_length, it will
be clipped to that interval.

89

val contents : (’a, ’b) t -> ’b string

with ’a < ’b

(,) t −> st r i ng

Return a copy of the current contents of the buffer. The buffer itself is unchanged.

val length : (’a, ’b) t -> ’b int

with ’a < ’b

(,) t −> i nt

Return the number of characters currently contained in the buffer.

val clear : (’a, ’a) t -{’a ||}-> unit

(,) t −{ | | } −> uni t

Empty the buffer.

val reset : (’a, ’a) t -{’a ||}-> unit

(,) t −{ | | } −> uni t

Empty the buffer and deallocate the internal string holding the buffer contents, replacing it
with the initial internal string of length n that was allocated by Buffer.create n. For long-
lived buffers that may have grown a lot, reset allows faster reclamation of the space used by
the buffer.

val add_char : (’a, ’a) t -> ’a char -{’a ||}-> unit

(,) t −> char −{ | | } −> uni t

add_char b c appends the character c at the end of the buffer b.

val add_substring : (’a, ’a) t ->

’a string -> ’a int -> ’a int -{’a ||}-> unit

(,) t −> st r i ng −> i nt −> i nt −{ | | } −> uni t

add_substring b s ofs len takes len characters from offset ofs in string s and appends
them at the end of the buffer b.

val add_string : (’a, ’a) t -> ’a string -{’a ||}-> unit

(,) t −> st r i ng −{ | | } −> uni t

add_string b s appends the string s at the end of the buffer b.

val add_buffer : (’a, ’a) t -> (’b, ’a) t -{’a ||}-> unit

with ’b < ’a

(,) t −> (,) t −{ | | } −> uni t

add_buffer b1 b2 appends the current contents of buffer b2 at the end of buffer b1. b2 is
not modified.

90

5.4 Module Char

Character operations.

val code : ’a char -> ’a int

 char −> i nt

Return the ASCII code of the argument.

val chr : ’a int -{’b | Invalid_argument: ’b |}-> ’a char

with ’a < ’b

 i nt −{ | I nval i d_ar gument : | } −> char

Return the character with the given ASCII code. Raise Invalid_argument "Char.chr" if
the argument is outside the range 0–255.

val escaped : ’a char -> ’a string

 char −> st r i ng

Return a string representing the given character, with special characters escaped following
the lexical conventions of Objective Caml.

val lowercase : ’a char -> ’a char

 char −> char

Convert the given character to its equivalent lowercase character.

val uppercase : ’a char -> ’a char

 char −> char

Convert the given character to its equivalent uppercase character.

5.5 Module Charray

String operations.

type (=’a:level, #’b:level) t = (’a, ’b) charray

val length : (’a, ’b) t -> ’b int

(,) t −> i nt

Return the length (number of characters) of the given string.

val get : (’a, ’b) t -> ’b int -> ’b char

with ’a < ’b

(,) t −> i nt −> char

91

Charray.get s n returns character number n in string s. The first character is character
number 0. The last character is character number Charray.length s - 1.
Terminate the program if n is outside the range 0 to (Charray.length s - 1). You can
also write s.[n] instead of Charray.get s n.

val set : (’a, ’a) t -> ’a int -> ’a char -{’a ||}-> unit

(,) t −> i nt −> char −{ | | } −> uni t

Charray.set s n c modifies string s in place, replacing the character number n by c.
Terminate the program if n is outside the range 0 to (Charray.length s - 1). You can
also write s.[n] <- c instead of Charray.set s n c.

val make : ’a int -> ’b char -> (’b, ’a) t

 i nt −> char −> (,) t

Charray.make n c returns a fresh string of length n, filled with the character c. Terminate
the program if n < 0 or n > Sys.max_string_length.

val copy : (’a, ’b) t -> (’c, ’b) t

with ’a < ’c

(,) t −> (,) t

Return a copy of the given string.

val sub : (’a, ’b) t -> ’b int -> ’b int -> (’c, ’b) t

with ’a, ’b < ’c

(,) t −> i nt −> i nt −> (,) t

Charray.sub s start len returns a fresh string of length len, containing the characters
number start to start + len - 1 of string s.
Terminate the program if start and len do not designate a valid substring of s; that is,
if start < 0, or len < 0, or start + len > Charray.length s.

val fill : (’a, ’a) t -> ’a int -> ’a int -> ’a char -{’a ||}-> unit

(,) t −> i nt −> i nt −> char −{ | | } −> uni t

Charray.fill s start len c modifies string s in place, replacing the characters number
start to start + len - 1 by c.
Terminate the program if start and len do not designate a valid substring of s.

val blit : (’a, ’b) t ->

’b int -> (’b, ’b) t -> ’b int -> ’b int -{’b ||}-> unit

with ’a < ’b

(,) t −> i nt −> (,) t −> i nt −> i nt −{ | | } −> uni t

92

Charray.blit src srcoff dst dstoff len copies len characters from string src, starting
at character number srcoff, to string dst, starting at character number dstoff. It works
correctly even if src and dst are the same string, and the source and destination chunks
overlap.
Terminate the program if srcoff and len do not designate a valid substring of src, or if
dstoff and len do not designate a valid substring of dst.

val concat : (’a, ’b) t -> ((’c, ’b) t, ’b) list -> (’d, ’b) t

with ’a, ’b, ’c < ’d

(,) t −> ((,) t ,) l i st −> (,) t

Charray.concat sep sl concatenates the list of strings sl, inserting the separator string
sep between each.

val iter : (’a char -{’b | ’c | ’b}-> unit) -> (’d, ’e) t -{’b | ’c |}-> unit

with content(’c), ’e < ’b

and ’d, ’e < ’a

(char −{ | | } −> uni t) −> (,) t −{ | | } −> uni t

Charray.iter f s applies function f in turn to all the characters of s. It is equivalent to
f s.(0); f s.(1); ...; f s.(Charray.length s - 1); ().

val escaped : (’a, ’b) t -> (’c, ’b) t

with ’a < ’b, ’c

(,) t −> (,) t

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Objective Caml. If there is no special character in the
argument, return the original string itself, not a copy.

val index : (’a, ’b) t -> ’b char -{’c | Not_found: ’c |}-> ’d int

with ’b < ’c, ’d

and ’a < ’c, ’d

(,) t −> char −{ | Not _f ound: | } −> i nt

Charray.index s c returns the position of the leftmost occurrence of character c in string
s. Raise Not_found if c does not occur in s.

val rindex : (’a, ’b) t -> ’b char -{’c | Not_found: ’c |}-> ’d int

with ’b < ’c, ’d

and ’a < ’c, ’d

(,) t −> char −{ | Not _f ound: | } −> i nt

Charray.rindex s c returns the position of the rightmost occurrence of character c in string
s. Raise Not_found if c does not occur in s.

93

val index_from : (’a, ’b) t ->

’b int -> ’b char -{’c | Not_found: ’c |}-> ’d int

with ’b < ’c, ’d

and ’a < ’c, ’d

(,) t −> i nt −> char −{ | Not _f ound: | } −> i nt

Same as Charray.index, but start searching at the character position given as second argu-
ment. Charray.index s c is equivalent to Charray.index_from s 0 c.

val rindex_from : (’a, ’b) t ->

’b int -> ’b char -{’c | Not_found: ’c |}-> ’d int

with ’b < ’c, ’d

and ’a < ’c, ’d

(,) t −> i nt −> char −{ | Not _f ound: | } −> i nt

Same as Charray.rindex, but start searching at the character position given as second argu-
ment.
Charray.rindex s c is equivalent to Charray.rindex_from s (Charray.length s - 1) c.

val contains : (’a, ’b) t -> ’b char -> ’b bool

with ’a < ’b

(,) t −> char −> bool

Charray.contains s c tests if character c appears in the string s.

val contains_from : (’a, ’b) t -> ’b int -> ’b char -> ’b bool

with ’a < ’b

(,) t −> i nt −> char −> bool

Charray.contains_from s start c tests if character c appears in the substring of s starting
from start to the end of s. Terminate the program if start is not a valid index of s.

val rcontains_from : (’a, ’b) t -> ’b int -> ’b char -> ’b bool

with ’a < ’b

(,) t −> i nt −> char −> bool

Charray.rcontains_from s stop c tests if character c appears in the substring of s starting
from the beginning of s to index stop.
Terminate the program if stop is not a valid index of s.

val uppercase : (’a, ’b) t -> (’a, ’b) t

(,) t −> (,) t

Return a copy of the argument, with all lowercase letters translated to uppercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : (’a, ’b) t -> (’a, ’b) t

94

(,) t −> (,) t

Return a copy of the argument, with all uppercase letters translated to lowercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : (’a, ’b) t -> (’a, ’b) t

(,) t −> (,) t

Return a copy of the argument, with the first letter set to uppercase.

val uncapitalize : (’a, ’b) t -> (’a, ’b) t

(,) t −> (,) t

Return a copy of the argument, with the first letter set to lowercase.

5.6 Module Complex

Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are repre-
sented by their real and imaginary parts (cartesian representation). Each part is represented by a
double-precision floating-point number (type float).

type (#’a:level) t = { re : ’a float; im : ’a float; }

The type of complex numbers. re is the real part and im the imaginary part.

val zero : ’a t

 t

The complex number 0.

val one : ’a t

 t

The complex number 1.

val i : ’a t

 t

The complex number i.

val neg : ’a t -> ’a t

 t −> t

Unary negation.

val conj : ’a t -> ’a t

 t −> t

95

Conjugate: given the complex x + i.y, returns x - i.y.

val add : ’a t -> ’a t -> ’a t

 t −> t −> t

Addition

val sub : ’a t -> ’a t -> ’a t

 t −> t −> t

Subtraction

val mul : ’a t -> ’a t -> ’a t

 t −> t −> t

Multiplication

val inv : ’a t -> ’a t

 t −> t

Multiplicative inverse (1/z).

val div : ’a t -> ’a t -> ’a t

 t −> t −> t

Division

val sqrt : ’a t -> ’a t

 t −> t

Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0. This function has
a discontinuity along the negative real axis.

val norm2 : ’a t -> ’a float

 t −> f l oat

Norm squared: given x + i.y, returns x^2 + y^2.

val norm : ’a t -> ’a float

 t −> f l oat

Norm: given x + i.y, returns sqrt(x^2 + y^2).

val arg : ’a t -> ’a float

 t −> f l oat

96

Argument. The argument of a complex number is the angle in the complex plane between
the positive real axis and a line passing through zero and the number. This angle ranges from
-pi to pi. This function has a discontinuity along the negative real axis.

val polar : ’a float -> ’a float -> ’a t

 f l oat −> f l oat −> t

polar norm arg returns the complex having norm norm and argument arg.

val exp : ’a t -> ’a t

 t −> t

Exponentiation. exp z returns e to the z power.

val log : ’a t -> ’a t

 t −> t

Natural logarithm (in base e).

val pow : ’a t -> ’a t -> ’a t

 t −> t −> t

Power function. pow z1 z2 returns z1 to the z2 power.

5.7 Module Digest

MD5 message digest.

This module provides functions to compute 128-bit “digests” of arbitrary-length strings or files.
The digests are of cryptographic quality: it is very hard, given a digest, to forge a string having
that digest. The algorithm used is MD5.

type (#’a:level) t = ’a string

The type of digests: 16-character strings.

val string : ’a string -> ’a t

 st r i ng −> t

Return the digest of the given string.

val to_hex : ’a t -> ’a string

 t −> st r i ng

Return the printable hexadecimal representation of the given digest.

97

5.8 Module Filename

Operations on file names.

val current_dir_name : ’a string

 string

The conventional name for the current directory (e.g. . in Unix).

val parent_dir_name : ’a string

 string

The conventional name for the parent of the current directory (e.g. .. in Unix).

val concat : ’a string -> ’a string -> ’a string

 st r i ng −> st r i ng −> st r i ng

concat dir file returns a file name that designates file file in directory dir.

val is_relative : ’a string -> ’a bool

 st r i ng −> bool

Return true if the file name is relative to the current directory, false if it is absolute (i.e. in
Unix, starts with /).

val is_implicit : ’a string -> ’a bool

 st r i ng −> bool

Return true if the file name is relative and does not start with an explicit reference to the
current directory (./ or ../ in Unix), false if it starts with an explicit reference to the root
directory or the current directory.

val check_suffix : ’a string -> ’a string -> ’a bool

 st r i ng −> st r i ng −> bool

check_suffix name suff returns true if the filename name ends with the suffix suff.

val chop_suffix : ’a string ->

’a string -{’b | Invalid_argument: ’b |}-> ’a string

with ’a < ’b

 st r i ng −> st r i ng −{ | I nval i d_ar gument : | } −> st r i ng

chop_suffix name suff removes the suffix suff from the filename name. The behavior is
undefined if name does not end with the suffix suff.

val chop_extension : ’a string -{’b | Invalid_argument: ’b |}-> ’a string

with ’a < ’b

 st r i ng −{ | I nval i d_ar gument : | } −> st r i ng

98

Return the given file name without its extension. The extension is the shortest suffix starting
with a period, .xyz for instance.
Raise Invalid_argument if the given name does not contain a period.

val basename : ’a string -> ’a string

 st r i ng −> st r i ng

Split a file name into directory name / base file name.
concat (dirname name) (basename name) returns a file name which is equivalent to name.

val dirname : ’a string -> ’a string

 st r i ng −> st r i ng

See Filename.basename.

val quote : ’a string -> ’a string

 st r i ng −> st r i ng

Return a quoted version of a file name, suitable for use as one argument in a shell command
line, escaping all shell meta-characters.

5.9 Module Fmarshal

Marshaling of data structures.

This module provides functions to encode arbitrary data structures as sequences of bytes, which
can then be written on a file or sent over a pipe or network connection. The bytes can then be
read back later, possibly in another process, and decoded back into a data structure. The format
for the byte sequences is compatible across all machines for a given version of Objective Caml.

val to_string : ’a -> ’b string

with content(’a) < ’b

~a −> st r i ng

Fmarshal.to_string v flags returns a string containing the representation of v as a se-
quence of bytes.

val from_string : ’a string -> ’b

with ’a < level(’b)

 st r i ng −> ~a

Fmarshal.from_string buff ofs unmarshals a structured value stored in stg.

99

5.10 Module Hashtbl

Hash tables and hash functions.

Hash tables are hashed association tables, with in-place modification.

Generic interface

type (=’a:type, =’b:type, =’c:level, #’d:level) t

The type of hash tables from type ’a to type ’b.

val create : ’a int -> (’b, ’c, ’a, ’d) t

 i nt −> (~a , ~b , ,) t

Hashtbl.create n creates a new, empty hash table, with initial size n. For best results, n
should be on the order of the expected number of elements that will be in the table. The
table grows as needed, so n is just an initial guess.

val clear : (’a, ’b, ’c, ’c) t -{’c ||}-> unit

(~a , ~b , ,) t −{ | | } −> uni t

Empty a hash table.

val add : (’a, ’b, ’c, ’c) t -> ’d -> ’b -{’c ||}-> unit

with ’d < ’a

and content(’a), content(’d) < ’c

(~a , ~b , ,) t −> ~a −> ~b −{ | | } −> uni t

Hashtbl.add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not
removed, but simply hidden. That is, after performing Hashtbl.remove tbl x, the previous
binding for x, if any, is restored. (Same behavior as with association lists.)

val copy : (’a, ’b, ’c, ’d) t -> (’e, ’f, ’d, ’g) t

with ’a < ’e

and ’b < ’f

and ’c < ’d

(~a , ~b , ,) t −> (~a , ~b , ,) t

Return a copy of the given hashtable.

val find : (’a, ’b, ’c, ’d) t -> ’e -{’f | Not_found: ’f |}-> ’g

with ’e ~ ’a

and content(’a), ’c, ’d, content(’e) < level(’g)

and ’b < ’g

and content(’a), ’c, ’d, content(’e) < ’f

(~a , ~b , ,) t −> ~a −{ | Not _f ound: | } −> ~b

100

Hashtbl.find tbl x returns the current binding of x in tbl, or raises Not_found if no such
binding exists.

val find_all : (’a, ’b, ’c, ’d) t -> ’e -> (’b, ’d) list

with ’a ~ ’e

and content(’a), ’c, content(’e) < ’d

(~a , ~b , ,) t −> ~a −> (~b ,) l i st

Hashtbl.find_all tbl x returns the list of all data associated with x in tbl. The current
binding is returned first, then the previous bindings, in reverse order of introduction in the
table.

val mem : (’a, ’b, ’c, ’d) t -> ’e -> ’d bool

with ’a ~ ’e

and content(’a), ’c, content(’e) < ’d

(~a , ~b , ,) t −> ~a −> bool

Hashtbl.mem tbl x checks if x is bound in tbl.

val remove : (’a, ’b, ’c, ’c) t -> ’d -{’c ||}-> unit

with ’a ~ ’d

and content(’a), content(’d) < ’c

(~a , ~b , ,) t −> ~a −{ | | } −> uni t

Hashtbl.remove tbl x removes the current binding of x in tbl, restoring the previous bind-
ing if it exists. It does nothing if x is not bound in tbl.

val replace : (’a, ’b, ’c, ’c) t -> ’d -> ’b -{’c ||}-> unit

with ’d < ’a

and content(’a), content(’d) < ’c

(~a , ~b , ,) t −> ~a −> ~b −{ | | } −> uni t

Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y.
If x is unbound in tbl, a binding of x to y is added to tbl. This is functionally equivalent to
Hashtbl.remove tbl x followed by Hashtbl.add tbl x y.

val iter : (’a -{’b | ’c | ’d}-> ’e -{’f | ’c | ’f}-> ’g) ->

(’a, ’e, ’h, ’d) t -{’d | ’c |}-> unit

with content(’c), ’d, ’h < ’f

and content(’c), ’d, ’h < ’b

(~a −{ | | } −> ~b −{ | | } −> ~c) −> (~a , ~b , ,) t −{ | | } −> uni t

Hashtbl.iter f tbl applies f to all bindings in table tbl. f receives the key as first ar-
gument, and the associated value as second argument. The order in which the bindings are
passed to f is unspecified. Each binding is presented exactly once to f.

101

val fold : (’a -{’b | ’c | ’d}-> ’e -{’f | ’c | ’g}-> ’h -{’i | ’c | ’j}-> ’h) ->

(’a, ’e, ’k, ’d) t -> ’h -{’d | ’c |}-> ’h

with content(’c), ’d, ’g, ’j, ’k < ’i

and content(’c), ’d, ’g, ’k < ’f

and content(’c), ’d, ’k < ’b

and content(’c), ’d, ’g, ’j, ’k < level(’h)

(~a −{ | | } −> ~b −{ | | } −> ~c −{ | | } −> ~c) −> (~a , ~b , ,) t −> ~c −{ | | } −> ~c

Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN
are the keys of all bindings in tbl, and d1 ... dN are the associated values. The order in
which the bindings are passed to f is unspecified. Each binding is presented exactly once to
f.

Module type HashedType

The input signature of the functor Hashtbl.Make.
module type HashedType = sig

type (#’a:level) t

The type of the hashtable keys.

val equal : ’a t -> ’a t -> ’a bool

 t −> t −> bool

The equality predicate used to compare keys.

val hash : ’a t -> ’a int

 t −> i nt

A hashing function on keys. It must be such that if two keys are equal according to
equal, then they have identical hash values as computed by hash. Examples: suitable
(equal, hash) pairs for arbitrary key types include ((=), Hashtbl.hash) for comparing
objects by structure, and ((==), Hashtbl.hash) for comparing objects by addresses (e.g.
for mutable or cyclic keys).

end

Module type S

The output signature of the functor Hashtbl.Make.
module type S = sig

type (#’a:level) key

type (=’a:level, =’b:type, =’c:level, #’d:level) t

val create : ’a int -> (’b, ’c, ’a, ’d) t

 i nt −> (, ~a , ,) t

102

val clear : (’a, ’b, ’c, ’c) t -{’c ||}-> unit

(, ~a , ,) t −{ | | } −> uni t

val copy : (’a, ’b, ’c, ’d) t -> (’e, ’f, ’d, ’g) t

with ’c < ’d

and ’a < ’e

and ’b < ’f

(, ~a , ,) t −> (, ~a , ,) t

val add : (’a, ’b, ’c, ’c) t -> ’a key -> ’b -{’c ||}-> unit

with ’a < ’c

(, ~a , ,) t −> key −> ~a −{ | | } −> uni t

val remove : (’a, ’b, ’c, ’c) t -> ’c key -{’c ||}-> unit

with ’a < ’c

(, ~a , ,) t −> key −{ | | } −> uni t

val find : (’a, ’b, ’c, ’d) t -> ’d key -{’e | Not_found: ’e |}-> ’f

with ’a, ’c, ’d < ’e

and ’a, ’c, ’d < level(’f)

and ’b < ’f

(, ~a , ,) t −> key −{ | Not _f ound: | } −> ~a

val find_all : (’a, ’b, ’c, ’d) t -> ’d key -> (’b, ’d) list

with ’a, ’c < ’d

(, ~a , ,) t −> key −> (~a ,) l i st

val replace : (’a, ’b, ’c, ’c) t -> ’a key -> ’b -{’c ||}-> unit

with ’a < ’c

(, ~a , ,) t −> key −> ~a −{ | | } −> uni t

val mem : (’a, ’b, ’c, ’d) t -> ’d key -> ’d bool

with ’a, ’c < ’d

(, ~a , ,) t −> key −> bool

103

val iter : (’a key -{’b | ’c | ’d}-> ’e -{’f | ’c | ’f}-> ’g) ->

(’a, ’e, ’h, ’d) t -{’d | ’c |}-> unit

with content(’c), ’d, ’h < ’f

and content(’c), ’d, ’h < ’b

(key −{ | | } −> ~a −{ | | } −> ~b) −> (, ~a , ,) t −{ | | } −> uni t

val fold : (’a key -{’b | ’c | ’d}->

’e -{’f | ’c | ’g}-> ’h -{’i | ’c | ’j}-> ’h) ->

(’a, ’e, ’k, ’d) t -> ’h -{’d | ’c |}-> ’h

with content(’c), ’d, ’g, ’j, ’k < ’i

and content(’c), ’d, ’g, ’k < ’f

and content(’c), ’d, ’k < ’b

and content(’c), ’d, ’g, ’j, ’k < level(’h)

(key −{ | | } −> ~a −{ | | } −> ~b −{ | | } −> ~b) −> (, ~a , ,) t −> ~b −{ | | } −> ~b

end

module Make : functor (H : HashedType) -> S with type ’a key = ’a H.t

Functor building an implementation of the hashtable structure. The operations perform
similarly to those of the generic interface, but use the hashing and equality functions specified
in the functor argument H instead of generic equality and hashing.

The polymorphic hash primitive

val hash : ’a -> ’b int

with content(’a) < ’b

~a −> i nt

Hashtbl.hash x associates a positive integer to any value of any type. It is guaranteed that if
x = y, then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.

val hash_param : ’a int -> ’a int -> ’b -> ’a int

with content(’b) < ’a

 i nt −> i nt −> ~a −> i nt

Hashtbl.hash_param n m x computes a hash value for x, with the same properties as for
hash. The two extra parameters n and m give more precise control over hashing. Hashing
performs a depth-first, right-to-left traversal of the structure x, stopping after n meaningful
nodes were encountered, or m nodes, meaningful or not, were encountered. Meaningful nodes
are: integers; floating-point numbers; strings; characters; booleans; and constant constructors.
Larger values of m and n means that more nodes are taken into account to compute the final
hash value, and therefore collisions are less likely to happen. However, hashing takes longer.
The parameters m and n govern the tradeoff between accuracy and speed.

104

5.11 Module Int32

32-bit integers.

This module provides operations on the type int32 of signed 32-bit integers. Unlike the built-in
int type, the type int32 is guaranteed to be exactly 32-bit wide on all platforms. All arithmetic
operations over int32 are taken modulo 232.

Performance notice: values of type int32 occupy more memory space than values of type int, and
arithmetic operations on int32 are generally slower than those on int. Use int32 only when the
application requires exact 32-bit arithmetic.

val zero : ’a int32

 int32

The 32-bit integer 0.

val one : ’a int32

 int32

The 32-bit integer 1.

val minus_one : ’a int32

 int32

The 32-bit integer -1.

val neg : ’a int32 -> ’a int32

 i nt 32 −> i nt 32

Unary negation.

val add : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Addition.

val sub : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Subtraction.

val mul : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Multiplication.

val div : ’a int32 -> ’b int32 -{’c | Division_by_zero: ’c |}-> ’a int32

with ’b < ’a, ’c

 i nt 32 −> i nt 32 −{ | Di vi si on_by_zer o: | } −> i nt 32

105

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as specified for Pervasives.(/).

val rem : ’a int32 -> ’b int32 -{’c | Division_by_zero: ’c |}-> ’a int32

with ’b < ’a, ’c

 i nt 32 −> i nt 32 −{ | Di vi si on_by_zer o: | } −> i nt 32

Integer remainder.

val succ : ’a int32 -> ’a int32

 i nt 32 −> i nt 32

Successor. Int32.succ x is Int32.add x Int32.one.

val pred : ’a int32 -> ’a int32

 i nt 32 −> i nt 32

Predecessor. Int32.pred x is Int32.sub x Int32.one.

val abs : ’a int32 -> ’a int32

 i nt 32 −> i nt 32

Return the absolute value of its argument.

val max_int : ’a int32

 int32

The greatest representable 32-bit integer, 231 - 1.

val min_int : ’a int32

 int32

The smallest representable 32-bit integer, -231.

val logand : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Bitwise logical and.

val logor : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Bitwise logical or.

val logxor : ’a int32 -> ’a int32 -> ’a int32

 i nt 32 −> i nt 32 −> i nt 32

Bitwise logical exclusive or.

106

val lognot : ’a int32 -> ’a int32

 i nt 32 −> i nt 32

Bitwise logical negation

val shift_left : ’a int32 -> ’a int -> ’a int32

 i nt 32 −> i nt −> i nt 32

Int32.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or
y >= 32.

val shift_right : ’a int32 -> ’a int -> ’a int32

 i nt 32 −> i nt −> i nt 32

Int32.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign
bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or
y >= 32.

val shift_right_logical : ’a int32 -> ’a int -> ’a int32

 i nt 32 −> i nt −> i nt 32

Int32.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes
are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0
or y >= 32.

val of_int : ’a int -> ’a int32

 i nt −> i nt 32

Convert the given integer (type int) to a 32-bit integer (type int32).

val to_int : ’a int32 -> ’a int

 i nt 32 −> i nt

Convert the given 32-bit integer (type int32) to an integer (type int). On 32-bit platforms,
the 32-bit integer is taken modulo 231, i.e. the high-order bit is lost during the conversion.
On 64-bit platforms, the conversion is exact.

val of_float : ’a float -> ’a int32

 f l oat −> i nt 32

Convert the given floating-point number to a 32-bit integer, discarding the fractional part
(truncate towards 0). The result of the conversion is undefined if, after truncation, the
number is outside the range [Int32.min_int, Int32.max_int].

val to_float : ’a int32 -> ’a float

 i nt 32 −> f l oat

107

Convert the given 32-bit integer to a floating-point number.

val of_string : ’a string -{’b | Failure: ’b |}-> ’a int64

with ’a < ’b

 st r i ng −{ | Fai l ur e: | } −> i nt 64

Convert the given string to a 32-bit integer. The string is read in decimal (by default) or
in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer.

val to_string : ’a int32 -> ’a string

 i nt 32 −> st r i ng

Return the string representation of its argument, in signed decimal.

type (#’a:level) t = ’a int32

An alias for the type of 32-bit integers.

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

The comparison function for 32-bit integers, with the same specification as Pervasives.compare.
Along with the type t, this function compare allows the module Int32 to be passed as argu-
ment to the functors Set.Make and Map.Make.

5.12 Module Int64

64-bit integers.

This module provides operations on the type int64 of signed 64-bit integers. Unlike the built-in
int type, the type int64 is guaranteed to be exactly 64-bit wide on all platforms. All arithmetic
operations over int64 are taken modulo 264

Performance notice: values of type int64 occupy more memory space than values of type int, and
arithmetic operations on int64 are generally slower than those on int. Use int64 only when the
application requires exact 64-bit arithmetic.

val zero : ’a int64

 int64

The 64-bit integer 0.

val one : ’a int64

 int64

The 64-bit integer 1.

val minus_one : ’a int64

 int64

The 64-bit integer -1.

108

val neg : ’a int64 -> ’a int64

 i nt 64 −> i nt 64

Unary negation.

val add : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Addition.

val sub : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Subtraction.

val mul : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Multiplication.

val div : ’a int32 -> ’b int32 -{’c | Division_by_zero: ’c |}-> ’a int32

with ’b < ’a, ’c

 i nt 32 −> i nt 32 −{ | Di vi si on_by_zer o: | } −> i nt 32

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as specified for Pervasives.(/).

val rem : ’a int32 -> ’b int32 -{’c | Division_by_zero: ’c |}-> ’a int32

with ’b < ’a, ’c

 i nt 32 −> i nt 32 −{ | Di vi si on_by_zer o: | } −> i nt 32

Integer remainder.

val succ : ’a int64 -> ’a int64

 i nt 64 −> i nt 64

Successor. Int64.succ x is Int64.add x Int64.one.

val pred : ’a int64 -> ’a int64

 i nt 64 −> i nt 64

Predecessor. Int64.pred x is Int64.sub x Int64.one.

val abs : ’a int64 -> ’a int64

109

 i nt 64 −> i nt 64

Return the absolute value of its argument.

val max_int : ’a int64

 int64

The greatest representable 64-bit integer, 263 - 1.

val min_int : ’a int64

 int64

The smallest representable 64-bit integer, -263.

val logand : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Bitwise logical and.

val logor : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Bitwise logical or.

val logxor : ’a int64 -> ’a int64 -> ’a int64

 i nt 64 −> i nt 64 −> i nt 64

Bitwise logical exclusive or.

val lognot : ’a int64 -> ’a int64

 i nt 64 −> i nt 64

Bitwise logical negation

val shift_left : ’a int64 -> ’a int -> ’a int64

 i nt 64 −> i nt −> i nt 64

Int64.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0 or
y >= 64.

val shift_right : ’a int64 -> ’a int -> ’a int64

 i nt 64 −> i nt −> i nt 64

Int64.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign
bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0 or
y >= 64.

val shift_right_logical : ’a int64 -> ’a int -> ’a int64

110

 i nt 64 −> i nt −> i nt 64

Int64.shift_right_logical x y shifts x to the right by y bits. This is a logical shift: zeroes
are inserted in the vacated bits regardless of the sign of x. The result is unspecified if y < 0
or y >= 64.

val of_int : ’a int -> ’a int64

 i nt −> i nt 64

Convert the given integer (type int) to a 64-bit integer (type int64).

val to_int : ’a int64 -> ’a int

 i nt 64 −> i nt

Convert the given 64-bit integer (type int64) to an integer (type int). On 64-bit platforms,
the 64-bit integer is taken modulo 263, i.e. the high-order bit is lost during the conversion.
On 32-bit platforms, the 64-bit integer is taken modulo 231, i.e. the top 33 bits are lost during
the conversion.

val of_float : ’a float -> ’a int64

 f l oat −> i nt 64

Convert the given floating-point number to a 64-bit integer, discarding the fractional part
(truncate towards 0). The result of the conversion is undefined if, after truncation, the
number is outside the range [Int64.min_int, Int64.max_int].

val to_float : ’a int64 -> ’a float

 i nt 64 −> f l oat

Convert the given 64-bit integer to a floating-point number.

val of_int32 : ’a int32 -> ’a int64

 i nt 32 −> i nt 64

Convert the given 32-bit integer (type int32) to a 64-bit integer (type int64).

val to_int32 : ’a int64 -> ’a int32

 i nt 64 −> i nt 32

Convert the given 64-bit integer (type int64) to a 32-bit integer (type int32). The 64-bit
integer is taken modulo 232, i.e. the top 32 bits are lost during the conversion.

val of_nativeint : ’a nativeint -> ’a int64

 nat i vei nt −> i nt 64

Convert the given native integer (type nativeint) to a 64-bit integer (type int64).

val to_nativeint : ’a int64 -> ’a nativeint

111

 i nt 64 −> nat i vei nt

Convert the given 64-bit integer (type int64) to a native integer. On 32-bit platforms, the
64-bit integer is taken modulo 232. On 64-bit platforms, the conversion is exact.

val of_string : ’a string -{’b | Failure: ’b |}-> ’a int64

with ’a < ’b

 st r i ng −{ | Fai l ur e: | } −> i nt 64

Convert the given string to a 64-bit integer. The string is read in decimal (by default) or
in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer.

val to_string : ’a int64 -> ’a string

 i nt 64 −> st r i ng

Return the string representation of its argument, in decimal.

val bits_of_float : ’a float -> ’a int64

 f l oat −> i nt 64

Return the internal representation of the given float according to the IEEE 754 floating-point
“double format” bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52
represent the (biased) exponent; bits 51 to 0 represent the mantissa.

val float_of_bits : ’a int64 -> ’a float

 i nt 64 −> f l oat

Return the floating-point number whose internal representation, according to the IEEE 754
floating-point “double format” bit layout, is the given int64.

type (#’a:level) t = ’a int64

An alias for the type of 64-bit integers.

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

The comparison function for 64-bit integers, with the same specification as Pervasives.compare.
Along with the type t, this function compare allows the module Int64 to be passed as argu-
ment to the functors Set.Make and Map.Make.

5.13 Module List

List operations.

Some functions are flagged as not tail-recursive. A tail-recursive function uses constant stack space,
while a non-tail-recursive function uses stack space proportional to the length of its list argument,
which can be a problem with very long lists. When the function takes several list arguments, an
approximate formula giving stack usage (in some unspecified constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000
elements.

112

val length : (’a, ’b) list -> ’b int

(~a ,) l i st −> i nt

Return the length (number of elements) of the given list.

val hd : (’a, ’b) list -{’c | Failure: ’c |}-> ’a

with ’b < level(’a), ’c

(~a ,) l i st −{ | Fai l ur e: | } −> ~a

Return the first element of the given list. Raise Failure "hd" if the list is empty.

val tl : (’a, ’b) list -{’c | Failure: ’c |}-> (’a, ’b) list

with ’b < ’c

(~a ,) l i st −{ | Fai l ur e: | } −> (~a ,) l i st

Return the given list without its first element. Raise Failure "tl" if the list is empty.

val nth : (’a, ’b) list ->

’b int -{’c | Invalid_argument: ’c; Failure: ’c |}-> ’a

with ’b < level(’a), ’c

(~a ,) l i st −> i nt −{ | I nval i d_ar gument : ; Fai l ur e: | } −> ~a

Return the n-th element of the given list. The first element (head of the list) is at position 0.
Raise Failure "nth" if the list is too short.

val rev : (’a, ’b) list -> (’a, ’b) list

(~a ,) l i st −> (~a ,) l i st

List reversal.

val append : (’a, ’b) list -> (’a, ’b) list -> (’a, ’b) list

(~a ,) l i st −> (~a ,) l i st −> (~a ,) l i st

Catenate two lists. Same function as the infix operator @. Not tail-recursive (length of the
first argument). The @ operator is not tail-recursive either.

val rev_append : (’a, ’b) list -> (’a, ’b) list -> (’a, ’b) list

(~a ,) l i st −> (~a ,) l i st −> (~a ,) l i st

List.rev_append l1 l2 reverses l1 and concatenates it to l2.
This is equivalent to List.rev l1 @ l2, but rev_append is tail-recursive and more efficient.

113

val concat : ((’a, ’b) list, ’b) list -> (’a, ’b) list

((~a ,) l i st ,) l i st −> (~a ,) l i st

Concatenate a list of lists. Not tail-recursive (length of the argument + length of the longest
sub-list).

val flatten : ((’a, ’b) list, ’b) list -> (’a, ’b) list

((~a ,) l i st ,) l i st −> (~a ,) l i st

Flatten a list of lists. Not tail-recursive (length of the argument + length of the longest
sub-list).

5.13.1 Iterators

val iter : (’a -{’b | ’c | ’b}-> ’d) -> (’a, ’b) list -{’b | ’c |}-> unit

with content(’c) < ’b

(~a −{ | | } −> ~b) −> (~a ,) l i st −{ | | } −> uni t

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to
begin f a1; f a2; ...; f an; () end.

val map : (’a -{’b | ’c | ’d}-> ’e) ->

(’a, ’f) list -{’b | ’c |}-> (’e, ’f) list

with content(’c), ’d, ’f < ’b

and ’d < level(’e)

(~a −{ | | } −> ~b) −> (~a ,) l i st −{ | | } −> (~b ,) l i st

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an]
with the results returned by f. Not tail-recursive.

val rev_map : (’a -{’b | ’c | ’d}-> ’e) ->

(’a, ’f) list -{’b | ’c |}-> (’e, ’f) list

with content(’c), ’d, ’f < ’b

and ’d < level(’e)

(~a −{ | | } −> ~b) −> (~a ,) l i st −{ | | } −> (~b ,) l i st

List.rev_map f l gives the same result as List.rev (List.map f l), but is tail-recursive
and more efficient.

114

val fold_left : (’a -{’b | ’c | ’d}-> ’e -{’f | ’g | ’h}-> ’a) ->

’a -> (’e, ’i) list -{’b | ’g |}-> ’j

with content(’c), ’d, content(’g), ’i < ’b

and ’b, content(’c), ’d, content(’g), ’h, ’i < ’f

and ’c < ’g

and ’d, ’h, ’i < level(’j)

and ’a < ’j

and ’d, ’h < level(’a)

(~a −{ | | } −> ~b −{ | | } −> ~a) −> ~a −> (~b ,) l i st −{ | | } −> ~a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : (’a -{’b | ’c | ’d}-> ’e -{’f | ’g | ’h}-> ’i) ->

(’a, ’d) list -> ’i -{’b | ’g |}-> ’i

with content(’c), ’d, content(’g) < ’b

and ’b, content(’c), ’d, content(’g), ’h < ’f

and ’c < ’g

and ’d, ’h < level(’e)

and ’i < ’e

and ’d, ’h < level(’i)

(~a −{ | | } −> ~b −{ | | } −> ~b) −> (~a ,) l i st −> ~b −{ | | } −> ~b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not tail-recursive.

5.13.2 Iterators on two lists

val iter2 : (’a -{’b | Invalid_argument: ’c; ’d | ’e}->

’f -{’g | Invalid_argument: ’c; ’h | ’g}-> ’i) ->

(’a, ’c) list ->

(’f, ’c) list -{’c | Invalid_argument: ’j; ’h |}-> unit

with ’c, content(’d), content(’h) < ’j

and ’c, content(’d), ’e, content(’h) < ’b

and ’c, content(’d), ’e, content(’h) < ’g

and ’d < ’h

(~a −{ | I nval i d_ar gument : ; | } −> ~b −{ | I nval i d_ar gument : ; | } −> ~c) −> (~a ,) l i st −> (~b ,) l i st −{ | I nval i d_ar gument : ; | } −> uni t

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn. Raise
Invalid_argument if the two lists have different lengths.

115

5.13.3 List scanning

val for_all : (’a -{’b | ’c | ’d}-> ’e bool) ->

(’a, ’d) list -{’b | ’c |}-> ’e bool

with ’d < ’b, ’e

and content(’c) < ’b

(~a −{ | | } −> bool) −> (~a ,) l i st −{ | | } −> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is,
it returns (p a1) && (p a2) && ... && (p an).

val exists : (’a -{’b | ’c | ’d}-> ’e bool) ->

(’a, ’d) list -{’b | ’c |}-> ’e bool

with ’d < ’b, ’e

and content(’c) < ’b

(~a −{ | | } −> bool) −> (~a ,) l i st −{ | | } −> bool

exists p [a1; ...; an] checks if at least one element of the list satisfies the predicate p.
That is, it returns (p a1) || (p a2) || ... || (p an).

val mem : ’a -> (’a, ’b) list -> ’b bool

with content(’a) < ’b

~a −> (~a ,) l i st −> bool

mem a l is true if and only if a is equal to an element of l.

val memq : ’a -> (’a, ’b) list -> ’b bool

with content(’a) < ’b

~a −> (~a ,) l i st −> bool

Same as List.mem, but uses physical equality instead of structural equality to compare list
elements.

5.13.4 List searching

val find : (’a -{’b | Not_found: ’c; ’d | ’e}-> ’e bool) ->

(’a, ’e) list -{’f | Not_found: ’c; ’d |}-> ’g

with ’a < ’g

and ’f < ’b, ’c

and ’e < ’b, ’c, level(’g)

(~a −{ | Not _f ound: ; | } −> bool) −> (~a ,) l i st −{ | Not _f ound: ; | } −> ~a

116

find p l returns the first element of the list l that satisfies the predicate p. Raise Not_found
if there is no value that satisfies p in the list l.

val filter : (’a -{’b | ’c | ’d}-> ’d bool) ->

(’a, ’d) list -{’b | ’c |}-> (’a, ’d) list

with ’d < ’b

(~a −{ | | } −> bool) −> (~a ,) l i st −{ | | } −> (~a ,) l i st

filter p l returns all the elements of the list l that satisfy the predicate p. The order of
the elements in the input list is preserved.

val find_all : (’a -{’b | ’c | ’d}-> ’d bool) ->

(’a, ’d) list -{’b | ’c |}-> (’a, ’d) list

with ’d < ’b

(~a −{ | | } −> bool) −> (~a ,) l i st −{ | | } −> (~a ,) l i st

find_all is another name for List.filter.

val partition : (’a -{’b | ’c | ’d}-> ’e bool) ->

(’a, ’e) list -{’b | ’c |}-> (’a, ’e) list * (’a, ’e) list

with ’e < ’b

and ’d < ’b, ’e

(~a −{ | | } −> bool) −> (~a ,) l i st −{ | | } −> (~a ,) l i st * (~a ,) l i st

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l
that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p.
The order of the elements in the input list is preserved.

5.13.5 Association lists

val assoc : ’a -> (’a * ’b, ’c) list -{’d | Not_found: ’d |}-> ’b

with content(’a) < level(’b), ’d

and ’c < level(’b), ’d

~a −> (~a * ~b ,) l i st −{ | Not _f ound: | } −> ~b

assoc a l returns the value associated with key a in the list of pairs l.
That is, assoc a [...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l.
Raise Not_found if there is no value associated with a in the list l.

val mem_assoc : ’a -> (’a * ’b, ’c) list -> ’c bool

with content(’a) < ’c

~a −> (~a * ~b ,) l i st −> bool

117

Same as List.assoc, but simply return true if a binding exists, and false if no bindings exist
for the given key.

val remove_assoc : ’a -> (’a * ’b, ’c) list -> (’a * ’b, ’c) list

with content(’a) < ’c

~a −> (~a * ~b ,) l i st −> (~a * ~b ,) l i st

remove_assoc a l returns the list of pairs l without the first pair with key a, if any. Not
tail-recursive.

5.13.6 Lists of pairs

val split : (’a * ’b, ’c) list -> (’a, ’c) list * (’b, ’c) list

(~a * ~b ,) l i st −> (~a ,) l i st * (~b ,) l i st

Transform a list of pairs into a pair of lists:
split [(a1,b1); ...; (an,bn)] is ([a1; ...; an], [b1; ...; bn]). Not tail-recursive.

5.13.7 Sorting

val sort : (’a -{’b | ’c | ’d}-> ’a -{’e | ’c | ’f}-> ’g int) ->

(’a, ’h) list -{’i | ’c |}-> (’a, ’h) list

with ’d, ’f, ’g < level(’a)

and content(’c), ’d, ’f, ’h, ’i < ’e

and content(’c), ’d, ’h, ’i < ’b

(~a −{ | | } −> ~a −{ | | } −> i nt) −> (~a ,) l i st −{ | | } −> (~a ,) l i st

Sort a list in increasing order according to a comparison function. The comparison function
must return 0 if it arguments compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller. For example, the compare function is a suitable
comparison function. The resulting list is sorted in increasing order. List.sort is guaranteed
to run in constant heap space (in addition to the size of the result list) and logarithmic stack
space.
The current implementation uses Merge Sort and is the same as List.stable_sort.

val stable_sort : (’a -{’b | ’c | ’d}-> ’a -{’e | ’c | ’f}-> ’g int) ->

(’a, ’h) list -{’i | ’c |}-> (’a, ’h) list

with ’d, ’f, ’g < level(’a)

and content(’c), ’d, ’f, ’h, ’i < ’e

and content(’c), ’d, ’h, ’i < ’b

118

(~a −{ | | } −> ~a −{ | | } −> i nt) −> (~a ,) l i st −{ | | } −> (~a ,) l i st

Same as List.sort, but the sorting algorithm is stable.
The current implementation is Merge Sort. It runs in constant heap space and logarithmic
stack space.

5.14 Module Map

Module type OrderedType

Input signature of the functor Map.Make.
module type OrderedType = sig

type (#’a:level) t

The type of the map keys.

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

A total ordering function over the keys. This is a two-argument function f such that
f e1 e2 is zero if the keys e1 and e2 are equal, f e1 e2 is strictly negative if e1 is smaller
than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a suitable
ordering function is the generic structural comparison function Pervasives.compare.

end

Module type S

Output signature of the functor Map.Make.
module type S = sig

type (#’a:level) key

The type of the map keys.

type (+’a:type, #’b:level) t

The type of maps from type key to type ’a.

val empty : (’a, ’b) t

(~a,) t

The empty map.

val add : ’a key -> ’b -> (’b, ’a) t -> (’b, ’a) t

 key −> ~a −> (~a ,) t −> (~a ,) t

add x y m returns a map containing the same bindings as m, plus a binding of x to y. If
x was already bound in m, its previous binding disappears.

119

val find : ’a key -> (’b, ’a) t -{’c | Not_found: ’c |}-> ’b

with ’a < level(’b), ’c

 key −> (~a ,) t −{ | Not _f ound: | } −> ~a

find x m returns the current binding of x in m, or raises Not_found if no such binding
exists.

val remove : ’a key -> (’b, ’a) t -> (’b, ’a) t

 key −> (~a ,) t −> (~a ,) t

remove x m returns a map containing the same bindings as m, except for x which is
unbound in the returned map.

val mem : ’a key -> (’b, ’a) t -> ’a bool

 key −> (~a ,) t −> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val iter : (’a key -{’b | ’c | ’d}-> ’e -{’f | ’c | ’f}-> ’g) ->

(’e, ’a) t -{’d | ’c |}-> unit

with ’a, content(’c), ’d < ’f

and ’a, content(’c), ’d < ’b

(key −{ | | } −> ~a −{ | | } −> ~b) −> (~a ,) t −{ | | } −> uni t

iter f m applies f to all bindings in map m. f receives the key as first argument, and
the associated value as second argument. The order in which the bindings are passed
to f is unspecified. Only current bindings are presented to f: bindings hidden by more
recent bindings are not passed to f.

val map : (’a -{’b | ’c | ’d}-> ’e) -> (’a, ’f) t -{’b | ’c |}-> (’e, ’f) t

with content(’c), ’d, ’f < ’b

and ’d < level(’e)

(~a −{ | | } −> ~b) −> (~a ,) t −{ | | } −> (~b ,) t

map f m returns a map with same domain as m, where the associated value a of all
bindings of m has been replaced by the result of the application of f to a. The order in
which the associated values are passed to f is unspecified.

val mapi : (’a key -{’b | ’c | ’d}-> ’e -{’f | ’g | ’h}-> ’i) ->

(’e, ’a) t -{’j | ’g |}-> (’i, ’a) t

with ’a, content(’c), ’d, content(’g), ’h, ’j < ’f

and ’a, content(’c), ’d, content(’g), ’j < ’b

and ’c < ’g

and ’d, ’h < level(’i)

120

(key −{ | | } −> ~a −{ | | } −> ~b) −> (~a ,) t −{ | | } −> (~b ,) t

Same as Map.S.map, but the function receives as arguments both the key and the asso-
ciated value for each binding of the map.

val fold : (’a key -{’b | ’c | ’d}->

’e -{’f | ’c | ’g}-> ’h -{’i | ’c | ’j}-> ’k) ->

(’e, ’a) t -> ’k -{’l | ’c |}-> ’k

with ’a, content(’c), ’d, ’g, ’j, ’l < ’i

and ’a, content(’c), ’d, ’g, ’l < ’f

and ’a, content(’c), ’d, ’l < ’b

and ’a, ’d, ’g, ’j < level(’h)

and ’k < ’h

and ’a, ’d, ’g, ’j < level(’k)

(key −{ | | } −> ~a −{ | | } −> ~b −{ | | } −> ~b) −> (~a ,) t −> ~b −{ | | } −> ~b

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the keys
of all bindings in m, and d1 ... dN are the associated data. The order in which the
bindings are presented to f is unspecified.

end

module Make : functor (Ord : OrderedType) -> S with type ’a key = ’a Ord.t

Functor building an implementation of the map structure given a totally ordered type.

5.15 Module Nativeint

Processor-native integers.

This module provides operations on the type nativeint of signed 32-bit integers (on 32-bit plat-
forms) or signed 64-bit integers (on 64-bit platforms). This integer type has exactly the same
width as that of a long integer type in the C compiler. All arithmetic operations over nativeint
are taken modulo 232 or 264 depending on the word size of the architecture.

Performance notice: values of type nativeint occupy more memory space than values of type int,
and arithmetic operations on nativeint are generally slower than those on int. Use nativeint
only when the application requires the extra bit of precision over the int type.

val zero : ’a nativeint

 nativeint

The native integer 0.

val one : ’a nativeint

 nativeint

The native integer 1.

121

val minus_one : ’a nativeint

 nativeint

The native integer -1.

val neg : ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt

Unary negation.

val add : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Addition.

val sub : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Subtraction.

val mul : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Multiplication.

val div : ’a nativeint ->

’b nativeint -{’c | Division_by_zero: ’c |}-> ’a nativeint

with ’b < ’a, ’c

 nat i vei nt −> nat i vei nt −{ | Di vi si on_by_zer o: | } −> nat i vei nt

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as specified for Pervasives.(/).

val rem : ’a nativeint ->

’b nativeint -{’c | Division_by_zero: ’c |}-> ’a nativeint

with ’b < ’a, ’c

 nat i vei nt −> nat i vei nt −{ | Di vi si on_by_zer o: | } −> nat i vei nt

Integer remainder.

val succ : ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt

Successor. Nativeint.succ x is Nativeint.add x Nativeint.one.

122

val pred : ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt

Predecessor. Nativeint.pred x is Nativeint.sub x Nativeint.one.

val abs : ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt

Return the absolute value of its argument.

val size : ’a int

 int

The size in bits of a native integer. This is equal to 32 on a 32-bit platform and to 64 on a
64-bit platform.

val max_int : ’a nativeint

 nativeint

The greatest representable native integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a
64-bit platform.

val min_int : ’a nativeint

 nativeint

The greatest representable native integer, either -231 on a 32-bit platform, or -263 on a 64-bit
platform.

val logand : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Bitwise logical and.

val logor : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Bitwise logical or.

val logxor : ’a nativeint -> ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt −> nat i vei nt

Bitwise logical exclusive or.

val lognot : ’a nativeint -> ’a nativeint

 nat i vei nt −> nat i vei nt

Bitwise logical negation

123

val shift_left : ’a nativeint -> ’a int -> ’a nativeint

 nat i vei nt −> i nt −> nat i vei nt

Nativeint.shift_left x y shifts x to the left by y bits. The result is unspecified if y < 0
or y >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val shift_right : ’a nativeint -> ’a int -> ’a nativeint

 nat i vei nt −> i nt −> nat i vei nt

Nativeint.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the
sign bit of x is replicated and inserted in the vacated bits. The result is unspecified if y < 0
or y >= bitsize.

val shift_right_logical : ’a nativeint -> ’a int -> ’a nativeint

 nat i vei nt −> i nt −> nat i vei nt

Nativeint.shift_right_logical x y shifts x to the right by y bits. This is a logical shift:
zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspecified if
y < 0 or y >= bitsize.

val of_int : ’a int -> ’a nativeint

 i nt −> nat i vei nt

Convert the given integer (type int) to a native integer (type nativeint).

val to_int : ’a nativeint -> ’a int

 nat i vei nt −> i nt

Convert the given native integer (type nativeint) to an integer (type int). The high-order
bit is lost during the conversion.

val of_float : ’a float -> ’a nativeint

 f l oat −> nat i vei nt

Convert the given floating-point number to a native integer, discarding the fractional part
(truncate towards 0). The result of the conversion is undefined if, after truncation, the
number is outside the range [Nativeint.min_int, Nativeint.max_int].

val to_float : ’a nativeint -> ’a float

 nat i vei nt −> f l oat

Convert the given native integer to a floating-point number.

val of_int32 : ’a int32 -> ’a nativeint

 i nt 32 −> nat i vei nt

Convert the given 32-bit integer (type int32) to a native integer.

124

val to_int32 : ’a nativeint -> ’a int32

 nat i vei nt −> i nt 32

Convert the given native integer to a 32-bit integer (type int32). On 64-bit platforms, the
64-bit native integer is taken modulo 232, i.e. the top 32 bits are lost. On 32-bit platforms,
the conversion is exact.

val of_string : ’a string -{’b | Failure: ’b |}-> ’a nativeint

with ’a < ’b

 st r i ng −{ | Fai l ur e: | } −> nat i vei nt

Convert the given string to a native integer. The string is read in decimal (by default) or
in hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer.

val to_string : ’a nativeint -> ’a string

 nat i vei nt −> st r i ng

Return the string representation of its argument, in decimal.

type (#’a:level) t = ’a nativeint

An alias for the type of native integers.

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

The comparison function for native integers, with the same specification as Pervasives.compare.
Along with the type t, this function compare allows the module Nativeint to be passed as
argument to the functors Set.Make and Map.Make.

5.16 Module Pervasives

The initially opened module.

This module provides the built-in types (numbers, booleans, strings, exceptions, references, lists,
arrays, input-output channels, ...) and the basic operations over these types.

This module is automatically opened at the beginning of each compilation. All components of this
module can therefore be referred by their short name, without prefixing them by Pervasives.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your
programs.

val invalid_arg : ’a string -{’a | Invalid_argument: ’a |}-> ’b

 st r i ng −{ | I nval i d_ar gument : | } −> ~a

Raise exception Invalid_argument with the given string.

val failwith : ’a string -{’a | Failure: ’a |}-> ’b

 st r i ng −{ | Fai l ur e: | } −> ~a

Raise exception Failure with the given string.

125

5.16.1 Comparisons

val (=) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and
arrays) are equal if and only if their current contents are structurally equal, even if the two
mutable objects are not the same physical object. Equality between cyclic data structures
may not terminate.

val (<>) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

Negation of Pervasives.=.

val (<) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

See Pervasives.>=.

val (>) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

See Pervasives.>=.

val (<=) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

See Pervasives.>=.

val (>=) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

Structural ordering functions. These functions coincide with the usual orderings over integers,
characters, strings and floating-point numbers, and extend them to a total ordering over all
types. The ordering is compatible with (=). As in the case of (=), mutable structures are
compared by contents. Comparison between cyclic structures may not terminate.

val compare : ’a -> ’a -> ’b int

with content(’a) < ’b

~a −> ~a −> i nt

126

compare x y returns 0 if x=y, a negative integer if x<y, and a positive integer if x>y. The
same restrictions as for = apply. compare can be used as the comparison function required by
the Set and Map modules.

val min : ’a -> ’a -> ’b

with ’a < ’b

and content(’a) < level(’b)

~a −> ~a −> ~a

Return the smaller of the two arguments.

val max : ’a -> ’a -> ’b

with ’a < ’b

and content(’a) < level(’b)

~a −> ~a −> ~a

Return the greater of the two arguments.

val (==) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

e1 == e2 tests for physical equality of e1 and e2. On integers and characters, it is the
same as structural equality. On mutable structures, e1 == e2 is true if and only if physi-
cal modification of e1 also affects e2. On non-mutable structures, the behavior of (==) is
implementation-dependent, except that e1 == e2 implies e1 = e2.

val (!=) : ’a -> ’a -> ’b bool

with content(’a) < ’b

~a −> ~a −> bool

Negation of Pervasives.==.

5.16.2 Boolean operations

val not : ’a bool -> ’a bool

 bool −> bool

The boolean negation.

val (&&) : ’a bool -> ’a bool -> ’a bool

 bool −> bool −> bool

The boolean “and”. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first,
and if it returns false, e2 is not evaluated at all.

127

val (&) : ’a bool -> ’a bool -> ’a bool

 bool −> bool −> bool

Deprecated. Pervasives.&& should be used instead.

val (||) : ’a bool -> ’a bool -> ’a bool

 bool −> bool −> bool

See Pervasives.or.

val (or) : ’a bool -> ’a bool -> ’a bool

 bool −> bool −> bool

The boolean “or”. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated first,
and if it returns true, e2 is not evaluated at all.

5.16.3 Integer arithmetic

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or
263). They do not fail on overflow.

val (~-) : ’a int -> ’a int

 i nt −> i nt

Unary negation. You can also write -e instead of ~-e.

val succ : ’a int -> ’a int

 i nt −> i nt

succ x is x+1.

val pred : ’a int -> ’a int

 i nt −> i nt

pred x is x-1.

val (+) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

Integer addition.

val (-) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

Integer subtraction.

val (*) : ’a int -> ’a int -> ’a int

128

 i nt −> i nt −> i nt

Integer multiplication.

val (/) : ’a int -> ’b int -{’c | Division_by_zero: ’c |}-> ’a int

with ’b < ’a, ’c

 i nt −> i nt −{ | Di vi si on_by_zer o: | } −> i nt

Integer division. Raise Division_by_zero if the second argument is 0. Integer division
rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0,
x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover,
(-x) / y = x / (-y) = -(x / y).

val (mod) : ’a int -> ’b int -{’c | Division_by_zero: ’c |}-> ’a int

with ’b < ’a, ’c

 i nt −> i nt −{ | Di vi si on_by_zer o: | } −> i nt

Integer remainder. If y is not zero, the result of x mod y satisfies the following proper-
ties: x = (x / y) * y + x mod y and abs(x mod y) < abs(y). If y = 0, x mod y raises
Division_by_zero. Notice that x mod y is negative if x < 0.

val abs : ’a int -> ’a int

 i nt −> i nt

Return the absolute value of the argument.

val max_int : ’a int

 int

The greatest representable integer.

val min_int : ’a int

 int

The smallest representable integer.

Bitwise operations

val (land) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

Bitwise logical and.

val (lor) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

Bitwise logical or.

129

val (lxor) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

Bitwise logical exclusive or.

val lnot : ’a int -> ’a int

 i nt −> i nt

Bitwise logical negation.

val (lsl) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

n lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize,
where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val (lsr) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless
of the sign of n. The result is unspecified if m < 0 or m >= bitsize.

val (asr) : ’a int -> ’a int -> ’a int

 i nt −> i nt −> i nt

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is
replicated. The result is unspecified if m < 0 or m >= bitsize.

5.16.4 Floating-point arithmetic

Caml’s floating-point numbers follow the IEEE 754 standard, using double precision (64 bits)
numbers. Floating-point operations never raise an exception on overflow, underflow, division by
zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for
1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan (“not a number”) for 0.0 /. 0.0. These
special numbers then propagate through floating-point computations as expected: for instance,
1.0 /. infinity is 0.0, and any operation with nan as argument returns nan as result.

val (~-.) : ’a float -> ’a float

 f l oat −> f l oat

Unary negation. You can also write -.e instead of ~-.e.

val (+.) : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

Floating-point addition

130

val (-.) : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

Floating-point subtraction

val (*.) : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

Floating-point multiplication

val (/.) : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

Floating-point division.

val (**) : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

Exponentiation

val sqrt : ’a float -> ’a float

 f l oat −> f l oat

Square root

val exp : ’a float -> ’a float

 f l oat −> f l oat

Exponential.

val log : ’a float -> ’a float

 f l oat −> f l oat

Natural logarithm.

val log10 : ’a float -> ’a float

 f l oat −> f l oat

Base 10 logarithm.

val cos : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.atan2.

val sin : ’a float -> ’a float

131

 f l oat −> f l oat

See Pervasives.atan2.

val tan : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.atan2.

val acos : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.atan2.

val asin : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.atan2.

val atan : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.atan2.

val atan2 : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

The usual trigonometric functions.

val cosh : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.tanh.

val sinh : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.tanh.

val tanh : ’a float -> ’a float

 f l oat −> f l oat

The usual hyperbolic trigonometric functions.

val ceil : ’a float -> ’a float

 f l oat −> f l oat

See Pervasives.floor.

132

val floor : ’a float -> ’a float

 f l oat −> f l oat

Round the given float to an integer value. floor f returns the greatest integer value less
than or equal to f. ceil f returns the least integer value greater than or equal to f.

val abs_float : ’a float -> ’a float

 f l oat −> f l oat

Return the absolute value of the argument.

val mod_float : ’a float -> ’a float -> ’a float

 f l oat −> f l oat −> f l oat

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b,
where n is the quotient a /. b rounded towards zero to an integer.

val frexp : ’a float -> ’a float * ’a int

 f l oat −> f l oat * i nt

frexp f returns the pair of the significant and the exponent of f. When f is zero, the
significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined
by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : ’a float -> ’a int -> ’a float

 f l oat −> i nt −> f l oat

ldexp x n returns x *. 2 ** n.

val modf : ’a float -> ’a float * ’a float

 f l oat −> f l oat * f l oat

modf f returns the pair of the fractional and integral part of f.

val float : ’a int -> ’a float

 i nt −> f l oat

Same as Pervasives.float_of_int.

val float_of_int : ’a int -> ’a float

 i nt −> f l oat

Convert an integer to floating-point.

val truncate : ’a float -> ’a int

 f l oat −> i nt

133

Same as Pervasives.int_of_float.

val int_of_float : ’a float -> ’a int

 f l oat −> i nt

Truncate the given floating-point number to an integer. The result is unspecified if it falls
outside the range of representable integers.

val infinity : ’a float

 float

Positive infinity.

val neg_infinity : ’a float

 float

Negative infinity.

val nan : ’a float

 float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0.
Stands for “not a number”.

val max_float : ’a float

 float

The largest positive finite value of type float.

val min_float : ’a float

 float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : ’a float

 float

The smallest positive float x such that 1.0 +. x <> 1.0.

type (#’a:level) fpclass =

FP_normal

| FP_subnormal

| FP_zero

| FP_infinite

| FP_nan # ’a

The five classes of floating-point numbers, as determined by the Pervasives.classify_float
function.

val classify_float : ’a float -> ’a fpclass

 f l oat −> f pcl ass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not
a number.

134

5.16.5 String operations

More string operations are provided in the modules String (immutable strings) and Charray
(mutable strings).

val (^) : ’a string -> ’a string -> ’a string

 st r i ng −> st r i ng −> st r i ng

String concatenation.

val ($$) : ’a string -> ’a int -> ’a char

 st r i ng −> i nt −> char

Character access.

val (^^) : (’a, ’b) charray -> (’a, ’b) charray -> (’a, ’b) charray

(,) char r ay −> (,) char r ay −> (,) char r ay

Charray concatenation.

val string_of_charray : (’a, ’b) charray -> ’b string

with ’a < ’b

(,) char r ay −> st r i ng

Coerces a mutable string into an immutable one.

val charray_of_string : ’a string -> (’a, ’a) charray

 st r i ng −> (,) char r ay

Creates a mutable string from an immutable one.

5.16.6 Character operations

More character operations are provided in module Char.

val int_of_char : ’a char -> ’a int

 char −> i nt

Return the ASCII code of the argument.

val char_of_int : ’a int -{’b | Invalid_argument: ’b |}-> ’a char

with ’a < ’b

 i nt −{ | I nval i d_ar gument : | } −> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0–255.

135

5.16.7 Unit operations

val ignore : ’a -> unit

~a −> uni t

Discard the value of its argument and return (). For instance, ignore(f x) discards the
result of the side-effecting function f. It is equivalent to f x; (), except that the latter may
generate a compiler warning; writing ignore(f x) instead avoids the warning.

5.16.8 String conversion functions

val string_of_bool : ’a bool -> ’a string

 bool −> st r i ng

Return the string representation of a boolean.

val bool_of_string : ’a string -{’b | Invalid_argument: ’b |}-> ’a bool

with ’a < ’b

 st r i ng −{ | I nval i d_ar gument : | } −> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the
string is not "true" or "false".

val string_of_int : ’a int -> ’a string

 i nt −> st r i ng

Return the string representation of an integer, in decimal.

val int_of_string : ’a string -{’b | Failure: ’b |}-> ’a int

with ’a < ’b

 st r i ng −{ | Fai l ur e: | } −> i nt

Convert the given string to an integer. The string is read in decimal (by default) or in
hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer.

val string_of_float : ’a float -> ’a string

 f l oat −> st r i ng

Return the string representation of a floating-point number.

val float_of_string : ’a string -{’b | Failure: ’b |}-> ’a float

with ’a < ’b

 st r i ng −{ | Fai l ur e: | } −> f l oat

Convert the given string to a float. Raise Failure "float_of_string" if the given string is
not a valid representation of a float.

136

5.16.9 Pair operations

val fst : ’a * ’b -> ’a

~a * ~b −> ~a

Return the first component of a pair.

val snd : ’a * ’b -> ’b

~a * ~b −> ~b

Return the second component of a pair.

5.16.10 List operations

More list operations are provided in module List.

val (@) : (’a, ’b) list -> (’a, ’b) list -> (’a, ’b) list

(~a ,) l i st −> (~a ,) l i st −> (~a ,) l i st

List concatenation.

5.16.11 Input/output

Output functions on standard output

val print_char : !stdout char -{!stdout ||}-> unit

 char −{ | | } −> uni t

! st dout

Print a character on standard output.

val print_string : !stdout string -{!stdout ||}-> unit

 st r i ng −{ | | } −> uni t

! st dout

Print a string on standard output.

val print_int : !stdout int -{!stdout ||}-> unit

 i nt −{ | | } −> uni t

! st dout

Print an integer, in decimal, on standard output.

val print_float : !stdout float -{!stdout ||}-> unit

 f l oat −{ | | } −> uni t

! st dout

Print a floating-point number, in decimal, on standard output.

137

val print_endline : !stdout string -{!stdout ||}-> unit

 st r i ng −{ | | } −> uni t

! st dout

Print a string, followed by a newline character, on standard output.

val print_newline : unit -{!stdout ||}-> unit

uni t −{ | | } −> uni t

! st dout

Print a newline character on standard output, and flush standard output. This can be used
to simulate line buffering of standard output.

Output functions on standard error

val prerr_char : !stderr char -{!stderr ||}-> unit

 char −{ | | } −> uni t

! st der r

Print a character on standard error.

val prerr_string : !stderr string -{!stderr ||}-> unit

 st r i ng −{ | | } −> uni t

! st der r

Print a string on standard error.

val prerr_int : !stderr int -{!stderr ||}-> unit

 i nt −{ | | } −> uni t

! st der r

Print an integer, in decimal, on standard error.

val prerr_float : !stderr float -{!stderr ||}-> unit

 f l oat −{ | | } −> uni t

! st der r

Print a floating-point number, in decimal, on standard error.

val prerr_endline : !stderr string -{!stderr ||}-> unit

 st r i ng −{ | | } −> uni t

! st der r

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -{!stderr ||}-> unit

uni t −{ | | } −> uni t

! st der r

Print a newline character on standard error, and flush standard error.

138

Input functions on standard input

val read_line : unit -{[< !stdout, !stdin] | End_of_file: !stdin |}->

!stdin string

uni t −{ | End_of _f i l e: | } −> st r i ng

! st dout
! st di n

Flush standard output, then read characters from standard input until a newline character is
encountered. Return the string of all characters read, without the newline character at the
end.

val read_int : unit -{[< !stdout,

!stdin] | Failure: !stdin; End_of_file: !stdin |}-> !stdin int

uni t −{ | Fai l ur e: ; End_of _f i l e: | } −> i nt

! st dout
! st di n

Flush standard output, then read one line from standard input and convert it to an integer.
Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

val read_float : unit -{[< !stdout, !stdin] | End_of_file: !stdin |}->

!stdin float

uni t −{ | End_of _f i l e: | } −> f l oat

! st dout
! st di n

Flush standard output, then read one line from standard input and convert it to a floating-
point number. The result is unspecified if the line read is not a valid representation of a
floating-point number.

5.16.12 References

type (=’a:type, #’b:level) ref = { mutable contents : ’a; } # ’b

The type of references (mutable indirection cells) containing a value of type ’a.

val ref : ’a -> (’a, ’b) ref

~a −> (~a ,) r ef

Return a fresh reference containing the given value.

val (!) : (’a, ’b) ref -> ’c

with ’a < ’c

and ’b < level(’c)

(~a ,) r ef −> ~a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : (’a, ’b) ref -> ’a -{’b ||}-> unit

with ’b < level(’a)

139

(~a ,) r ef −> ~a −{ | | } −> uni t

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : (’a int, ’a) ref -{’a ||}-> unit

(i nt ,) r ef −{ | | } −> uni t

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r.

val decr : (’a int, ’a) ref -{’a ||}-> unit

(i nt ,) r ef −{ | | } −> uni t

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.

5.16.13 Program termination

val exit : !exit_code int -{’a | exit: ’a |}-> ’b

with ’a < !exit_code

 i nt −{ | exi t : | } −> ~a

! exi t _code

Flush all pending writes on Pervasives.stdout and Pervasives.stderr, and terminate the
process, returning the given status code to the operating system (usually 0 to indicate no
errors, and a small positive integer to indicate failure.) An implicit exit 0 is performed
each time a program terminates normally (but not if it terminates because of an uncaught
exception).

5.17 Module Queue

First-in first-out queues.

This module implements queues (FIFOs), with in-place modification.

type (=’a:type, =’b:level, #’c:level) t

The type of queues containing elements of type ’a.

exception Empty

Raised when Queue.take or Queue.peek is applied to an empty queue.

val create : unit -> (’a, ’b, ’c) t

uni t −> (~a , ,) t

Return a new queue, initially empty.

val add : ’a -> (’a, ’b, ’b) t -{’b ||}-> unit

~a −> (~a , ,) t −{ | | } −> uni t

add x q adds the element x at the end of the queue q.

140

val take : (’a, ’b, ’b) t -{’c | Empty: ’d |}-> ’e

with ’a < ’e

and ’c < ’b, ’d, level(’e)

and ’b < ’d, level(’e)

(~a , ,) t −{ | Empt y: | } −> ~a

take q removes and returns the first element in queue q, or raises Empty if the queue is empty.

val peek : (’a, ’b, ’c) t -{’d | Empty: ’d |}-> ’e

with ’a < ’e

and ’c < ’d, level(’e)

and ’b < ’d, level(’e)

(~a , ,) t −{ | Empt y: | } −> ~a

peek q returns the first element in queue q, without removing it from the queue, or raises
Empty if the queue is empty.

val clear : (’a, ’b, ’b) t -{’b ||}-> unit

(~a , ,) t −{ | | } −> uni t

Discard all elements from a queue.

val length : (’a, ’b, ’c) t -> ’c int

with ’b < ’c

(~a , ,) t −> i nt

Return the number of elements in a queue.

val iter : (’a -{’b | ’c | ’b}-> ’d) -> (’a, ’e, ’b) t -{’b | ’c |}-> unit

with content(’c), ’e < ’b

(~a −{ | | } −> ~b) −> (~a , ,) t −{ | | } −> uni t

iter f q applies f in turn to all elements of q, from the least recently entered to the most
recently entered. The queue itself is unchanged.

5.18 Module Random

Pseudo-random number generator (PRNG).

val init : !random int -{!random ||}-> unit

 i nt −{ | | } −> uni t

! r andom

Initialize the generator, using the argument as a seed. The same seed will always yield the
same sequence of numbers.

141

val full_init : ([< !random] int, !random) array -{!random ||}-> unit

(i nt ,) ar r ay −{ | | } −> uni t

! r andom

Same as Random.init but takes more data as seed.

val self_init : unit -{!random ||}-> unit

uni t −{ | | } −> uni t

! r andom

Initialize the generator with a more-or-less random seed chosen in a system-dependent way.

val bits : unit -{!random ||}-> !random int

uni t −{ | | } −> i nt

! r andom

Return 30 random bits in a nonnegative integer.

val int : ’a int -{!random ||}-> ’a int

with !random < ’a

 i nt −{ | | } −> i nt

! r andom

Random.int bound returns a random integer between 0 (inclusive) and bound (exclusive).
bound must be more than 0 and less than 230.

val float : ’a float -{!random ||}-> ’a float

with !random < ’a

 f l oat −{ | | } −> f l oat

! r andom

Random.float bound returns a random floating-point number between 0 (inclusive) and
bound (exclusive). If bound is negative, the result is negative. If bound is 0, the result is
0.

val bool : unit -{!random ||}-> !random bool

uni t −{ | | } −> bool

! r andom

Random.bool () returns true or false with probability 0.5 each.

type (=’a:level, #’b:level) state

Values of this type are used to store the current state of the generator.

val get_state : unit -> (!random, !random) state

uni t −> (,) st at e

! r andom

Returns the current state of the generator. This is useful for checkpointing computations that
use the PRNG.

val set_state : ([< !random], !random) state -{!random ||}-> unit

(,) st at e −{ | | } −> uni t

! r andom

Resets the state of the generator to some previous state returned by Random.get_state.

142

5.19 Module Set

Module type OrderedType

module type OrderedType = sig

type (#’a:level) t

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

end

Module type S

module type S = sig

type (#’a:level) elt

type (#’a:level) t

val empty : ’a t

 t

val is_empty : ’a t -> ’a bool

 t −> bool

val mem : ’a elt -> ’a t -> ’a bool

 el t −> t −> bool

val add : ’a elt -> ’a t -> ’a t

 el t −> t −> t

val singleton : ’a elt -> ’a t

 el t −> t

val remove : ’a elt -> ’a t -> ’a t

 el t −> t −> t

val union_ : ’a t -> ’a t -> ’a t

 t −> t −> t

143

val inter_ : ’a t -> ’a t -> ’a t

 t −> t −> t

val diff : ’a t -> ’a t -> ’a t

 t −> t −> t

val compare : ’a t -> ’a t -> ’a int

 t −> t −> i nt

val equal : ’a t -> ’a t -> ’a bool

 t −> t −> bool

val subset : ’a t -> ’a t -> ’a bool

 t −> t −> bool

val iter : (’a elt -{’b | ’c | ’b}-> ’d) -> ’a t -{’b | ’c |}-> unit

with ’a, content(’c) < ’b

(el t −{ | | } −> ~a) −> t −{ | | } −> uni t

val fold : (’a elt -{’b | ’c | ’d}-> ’e -{’f | ’c | ’g}-> ’h) ->

’a t -> ’h -{’i | ’c |}-> ’h

with ’a, content(’c), ’d, ’g, ’i < ’f

and ’a, content(’c), ’d, ’i < ’b

and ’a, ’d, ’g < level(’e)

and ’h < ’e

and ’a, ’d, ’g < level(’h)

(el t −{ | | } −> ~a −{ | | } −> ~a) −> t −> ~a −{ | | } −> ~a

val for_all : (’a elt -{’b | ’c | ’d}-> ’e bool) ->

’a t -{’b | ’c |}-> ’e bool

with ’a, ’d < ’e

and ’a, content(’c), ’d < ’b

(el t −{ | | } −> bool) −> t −{ | | } −> bool

144

val exists : (’a elt -{’b | ’c | ’d}-> ’e bool) ->

’a t -{’b | ’c |}-> ’e bool

with ’a, ’d < ’e

and ’a, content(’c), ’d < ’b

(el t −{ | | } −> bool) −> t −{ | | } −> bool

val filter : (’a elt -{’b | ’c | ’d}-> ’e bool) -> ’a t -{’b | ’c |}-> ’e t

with ’a, ’d < ’e

and ’a, content(’c), ’d < ’b

(el t −{ | | } −> bool) −> t −{ | | } −> t

val partition : (’a elt -{’b | ’c | ’d}-> ’e bool) ->

’a t -{’b | ’c |}-> ’e t * ’e t

with ’a, ’d < ’e

and ’a, content(’c), ’d < ’b

(el t −{ | | } −> bool) −> t −{ | | } −> t * t

val cardinal : ’a t -> ’a int

 t −> i nt

val elements : ’a t -> (’a elt, ’a) list

 t −> (el t ,) l i st

val min_elt : ’a t -{’b | Not_found: ’b |}-> ’a elt

with ’a < ’b

 t −{ | Not _f ound: | } −> el t

val max_elt : ’a t -{’b | Not_found: ’b |}-> ’a elt

with ’a < ’b

 t −{ | Not _f ound: | } −> el t

val choose : ’a t -{’b | Not_found: ’b |}-> ’a elt

with ’a < ’b

 t −{ | Not _f ound: | } −> el t

end

module Make : functor (Ord : OrderedType) -> S with type ’a elt = ’a Ord.t

145

5.20 Module Stack

Last-in first-out stacks.

This module implements stacks (LIFOs), with in-place modification.

type (=’a:type, =’b:level, #’c:level) t

The type of stacks containing elements of type ’a.

exception Empty

Raised when Stack.pop or Stack.top is applied to an empty stack.

val create : unit -> (’a, ’b, ’c) t

uni t −> (~a , ,) t

Return a new stack, initially empty.

val push : ’a -> (’a, ’b, ’b) t -{’b ||}-> unit

~a −> (~a , ,) t −{ | | } −> uni t

push x s adds the element x at the top of stack s.

val pop : (’a, ’b, ’b) t -{’c | Empty: ’d |}-> ’e

with ’a < ’e

and ’c < ’b, ’d, level(’e)

and ’b < ’d, level(’e)

(~a , ,) t −{ | Empt y: | } −> ~a

pop s removes and returns the topmost element in stack s, or raises Empty if the stack is
empty.

val top : (’a, ’b, ’c) t -{’d | Empty: ’d |}-> ’e

with ’a < ’e

and ’c < ’d, level(’e)

and ’b < ’d, level(’e)

(~a , ,) t −{ | Empt y: | } −> ~a

top s returns the topmost element in stack s, or raises Empty if the stack is empty.

val clear : (’a, ’b, ’b) t -{’b ||}-> unit

(~a , ,) t −{ | | } −> uni t

Discard all elements from a stack.

val copy : (’a, ’b, ’c) t -> (’d, ’c, ’e) t

with ’a < ’d

and ’b < ’c

146

(~a , ,) t −> (~a , ,) t

Return a copy of the given stack.

val length : (’a, ’b, ’c) t -> ’c int

with ’b < ’c

(~a , ,) t −> i nt

Return the number of elements in a stack.

val iter : (’a -{’b | ’c | ’b}-> ’d) -> (’a, ’e, ’b) t -{’b | ’c |}-> unit

with content(’c), ’e < ’b

(~a −{ | | } −> ~b) −> (~a , ,) t −{ | | } −> uni t

iter f s applies f in turn to all elements of s, from the element at the top of the stack to
the element at the bottom of the stack. The stack itself is unchanged.

5.21 Module String

String operations.

val length : ’a string -> ’a int

 st r i ng −> i nt

Return the length (number of characters) of the given string.

val get : ’a string -> ’a int -> ’a char

 st r i ng −> i nt −> char

String.get s n returns character number n in string s. The first character is character
number 0. The last character is character number String.length s - 1. Terminate the
program if n is outside the range 0 to (String.length s - 1). You can also write s.[n]
instead of String.get s n.

val make : ’a int -> ’a char -> ’a string

 i nt −> char −> st r i ng

String.make n c returns a fresh string of length n, filled with the character c. Terminate
the program if n < 0 or n > Sys.max_string_length.

val sub : ’a string -> ’a int -> ’a int -> ’a string

 st r i ng −> i nt −> i nt −> st r i ng

String.sub s start len returns a fresh string of length len, containing the characters num-
ber start to start + len - 1 of string s.
Terminate the program if start and len do not designate a valid substring of s; that is,
if start < 0, or len < 0, or start + len > String.length s.

147

val concat : ’a string -> (’a string, ’a) list -> ’a string

 st r i ng −> (st r i ng,) l i st −> st r i ng

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep
between each.

val iter : (’a char -{’b | ’c | ’b}-> ’d) -> ’a string -{’b | ’c |}-> unit

with ’a, content(’c) < ’b

(char −{ | | } −> ~a) −> st r i ng −{ | | } −> uni t

String.iter f s applies function f in turn to all the characters of s. It is equivalent to
f s.(0); f s.(1); ...; f s.(String.length s - 1); ().

val escaped : ’a string -> ’a string

 st r i ng −> st r i ng

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Objective Caml. If there is no special character in the
argument, return the original string itself, not a copy.

val index : ’a string -> ’a char -{’b | Not_found: ’b |}-> ’a int

with ’a < ’b

 st r i ng −> char −{ | Not _f ound: | } −> i nt

String.index s c returns the position of the leftmost occurrence of character c in string s.
Raise Not_found if c does not occur in s.

val rindex : ’a string -> ’a char -{’b | Not_found: ’b |}-> ’a int

with ’a < ’b

 st r i ng −> char −{ | Not _f ound: | } −> i nt

String.rindex s c returns the position of the rightmost occurrence of character c in string
s. Raise Not_found if c does not occur in s.

val index_from : ’a string -> ’a char -{’b | Not_found: ’b |}-> ’a int

with ’a < ’b

 st r i ng −> char −{ | Not _f ound: | } −> i nt

Same as String.index, but start searching at the character position given as second argu-
ment. String.index s c is equivalent to String.index_from s 0 c.

val rindex_from : ’a string -> ’a char -{’b | Not_found: ’b |}-> ’a int

with ’a < ’b

 st r i ng −> char −{ | Not _f ound: | } −> i nt

148

Same as String.rindex, but start searching at the character position given as second argu-
ment.
String.rindex s c is equivalent to String.rindex_from s (String.length s - 1) c.

val contains : ’a string -> ’a char -> ’a bool

 st r i ng −> char −> bool

String.contains s c tests if character c appears in the string s.

val contains_from : ’a string -> ’a char -> ’a int -> ’a bool

 st r i ng −> char −> i nt −> bool

String.contains_from s start c tests if character c appears in the substring of s starting
from start to the end of s. Terminate the program if start is not a valid index of s.

val rcontains_from : ’a string -> ’a char -> ’a int -> ’a bool

 st r i ng −> char −> i nt −> bool

String.rcontains_from s stop c tests if character c appears in the substring of s starting
from the beginning of s to index stop. Terminate the program if stop is not a valid index
of s.

val uppercase : ’a string -> ’a string

 st r i ng −> st r i ng

Return a copy of the argument, with all lowercase letters translated to uppercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : ’a string -> ’a string

 st r i ng −> st r i ng

Return a copy of the argument, with all uppercase letters translated to lowercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : ’a string -> ’a string

 st r i ng −> st r i ng

Return a copy of the argument, with the first letter set to uppercase.

val uncapitalize : ’a string -> ’a string

 st r i ng −> st r i ng

Return a copy of the argument, with the first letter set to lowercase.

149

5.22 Module Sys

System interface.

val argv : (!arg string, ’a) array

(string,) array

!arg

The command line arguments given to the process. The first element is the command name
used to invoke the program. The following elements are the command-line arguments given
to the program.

val executable_name : !arg string

 string

!arg

The name of the file containing the executable currently running.

val getenv : ’a string -{’b | Not_found: ’b |}-> ’c string

with !env < ’c

and !env < ’b

and ’a < ’b, ’c

 st r i ng −{ | Not _f ound: | } −> st r i ng

! env

Return the value associated to a variable in the process environment. Raise Not_found if the
variable is unbound.

val os_type : ’a bool

 bool

Operating system currently executing the Caml program. One of - "Unix" (for all Unix
versions, including Linux and Mac OS X), - "Win32" (for MS-Windows, OCaml compiled
with MSVC++ or Mingw), - "Cygwin" (for MS-Windows, OCaml compiled with Cygwin), -
"MacOS" (for MacOS 9).

val word_size : ’a int

 int

Size of one word on the machine currently executing the Caml program, in bits: 32 or 64.

val max_string_length : ’a int

 int

Maximum length of a string.

val max_array_length : ’a int

 int

Maximum length of an array.

val ocaml_version : ’a string

 string

ocaml_version is the version of Objective Caml.
It is a string of the form "major.minor[additional-info]" Where major and minor are
integers, and additional-info is a string that is empty or starts with a ’+’.

150

Appendix

151

Bibliography

[LDG+02a] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system, documentation and user’s manual. http://caml.inria.
fr/ocaml/htmlman/, 2002.

[LDG+02b] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system, release 3.06. http://caml.inria.fr/, 2002.

[MNZZ01] Andrew C. Myers, Nathaniel Nystrom, Lantian Zheng, and Steve Zdancewic. Jif: Java
+ information flow. http://www.cs.cornell.edu/jif/, September 2001.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

[Mye99] Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD
thesis, Massachusetts Institute of Technology, January 1999. Technical Report
MIT/LCS/TR-783. http://www.cs.cornell.edu/andru/release/tr783.ps.gz.

[PS02] François Pottier and Vincent Simonet. Information flow inference for ML. In Pro-
ceedings of the 29th ACM Symposium on Principles of Programming Languages, pages
319–330, Portland, Oregon, January 2002. ACM Press. http://cristal.inria.fr/
~simonet/publis/fpottier-simonet-popl02.ps.gz.

[PS03] François Pottier and Vincent Simonet. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, 25(1):117–158, January 2003.
http://cristal.inria.fr/~simonet/publis/fpottier-simonet-toplas.ps.gz.

[Sim02] Vincent Simonet. Dalton, an efficient implementation of type inference with structural
subtyping. http://cristal.inria.fr/~simonet/soft/dalton/, October 2002.

[Sim03] Vincent Simonet. Type inference with structural subtyping: A faithful formalization
of an efficient constraint solver. Submitted for publication. http://cristal.inria.
fr/~simonet/publis/simonet-structural-subtyping.ps.gz, March 2003.

153

http://caml.inria.fr/ocaml/htmlman/
http://caml.inria.fr/ocaml/htmlman/
http://caml.inria.fr/
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/andru/release/tr783.ps.gz
http://cristal.inria.fr/~simonet/publis/fpottier-simonet-popl02.ps.gz
http://cristal.inria.fr/~simonet/publis/fpottier-simonet-popl02.ps.gz
http://cristal.inria.fr/~simonet/publis/fpottier-simonet-toplas.ps.gz
http://cristal.inria.fr/~simonet/soft/dalton/
 http://cristal.inria.fr/~simonet/publis/simonet-structural-subtyping.ps.gz
 http://cristal.inria.fr/~simonet/publis/simonet-structural-subtyping.ps.gz

	I An introduction to Flow Caml
	Overview
	Language-based Information Flow Analysis
	Relating Flow Caml to Objective Caml
	How to get the Flow Caml system ?
	Theoretical background and related work

	A Tutorial
	Security levels and data structures
	Simple types
	Strings
	Lists
	Options
	Tuples

	Constrained type schemes
	Subtyping
	level constraints
	content constraints
	Same-skeleton constraints
	Functions as values
	Interlude: the graphical output of type schemes

	Imperative features
	Direct and indirect information flows
	References
	Arrays, strings and loops

	Dealing with exceptions
	Rows
	Exceptions and side-effects
	The special constructs: try ... finally and try ... propagate
	Parameterized exception names

	Defining new types
	Variants
	Records

	Interacting with the outside world
	The example of the standard input and output
	Modeling principals

	The module language
	Structures and signatures
	Functors
	Side-effects, exceptions and the module language

	Standalone programs
	Compilation units and batch compilation
	flow declarations in implementations and interfaces
	affects and raises statements in interfaces

	II Reference manual
	The Flow Caml language
	Lexical conventions
	The core language
	Values
	Names
	Security levels
	Level definitions
	Type expressions
	Type schemes
	Type definitions
	Exception definitions
	Constants
	Patterns
	Expressions

	The module language
	Module types (module specifications)
	Module expressions (module implementations)
	Compilation units

	Tools
	The interactive toplevel (flowcaml)
	Graphical output
	Options
	Toplevel directives

	The batch compiler (flowcamlc)
	Overview
	Options

	The security policy displayer (flowcamlpol)
	Overview
	Options

	The dependency generator (flowcamldep)
	Options
	A typical Makefile

	The Flow Caml library
	Built-in types and predefined exceptions
	Predefined types
	Exceptions

	Module Array
	Module Buffer
	Module Char
	Module Charray
	Module Complex
	Module Digest
	Module Filename
	Module Fmarshal
	Module Hashtbl
	Module Int32
	Module Int64
	Module List
	Iterators
	Iterators on two lists
	List scanning
	List searching
	Association lists
	Lists of pairs
	Sorting

	Module Map
	Module Nativeint
	Module Pervasives
	Comparisons
	Boolean operations
	Integer arithmetic
	Floating-point arithmetic
	String operations
	Character operations
	Unit operations
	String conversion functions
	Pair operations
	List operations
	Input/output
	References
	Program termination

	Module Queue
	Module Random
	Module Set
	Module Stack
	Module String
	Module Sys

