
An Extension of HM(X) with Bounded Existential and Universal Data-Types

Vincent Simonet∗

Vincent.Simonet@inria.fr

Abstract

We propose a conservative extension of HM(X), a generic
constraint-based type inference framework, with bounded
existential (a.k.a. abstract) and universal (a.k.a. polymor-
phic) data-types. In the first part of the article, which re-
mains abstract of the type and constraint language (i.e. the
logic X), we introduce the type system, prove its safety and
define a type inference algorithm which computes principal
typing judgments. In the second part, we propose a real-
istic constraint solving algorithm for the case of structural
subtyping, which handles the non-standard construct of the
constraint language generated by type inference: a form of
bounded universal quantification.

1 Introduction

HM(X) is a generic constraint-based type inference system,
originally defined for the λ-calculus with let by Odersky,
Sulzmann and Wehr [OSW99]. It goes on with the tradi-
tion of the Hindley–Milner type system by providing the
combination of let-polymorphism and a complete type re-
construction algorithm. However, the interest of HM(X)
lies in its greater generality: indeed, it is fully parametrized
by a logic, X, which is used for expressing types and relating
them with constraints. Then, instantiating the framework
with different possible logics yields a large variety of type
systems. For instance, letting X be the standard Herbrand
logic retrieves the usual unification-based Hindley–Milner
system. Similarly, choosing a logic equipped with a par-
tial order between types yields a type system featuring both
subtyping and let-polymorphism. Another contribution of
HM(X) resides in its treatment of the typing problem as
a constraint. This approach allows modular and system-
atic definitions of type inference systems, by reducing the
question of determining whether a program is well-typed to
constraint resolution.

The HM(X) framework can naturally be extended to
deal with the whole ML programming language, including
references [Pot01], exceptions and variant or record data-
types. It also has been used as the basis of type systems for
some advanced programming constructs [Pot00], or to de-
scribe static analyses [PS03]. However, all these extensions
are orthogonal to the treatment of polymorphism which re-
mains in the ML tradition.

Besides, Odersky and Läufer [OL92] proposed an exten-
sion of the ML language with existential quantification in

∗INRIA, BP 105, F-78153 Le Chesnay Cedex, France.

algebraic data-types, which yields a Hindley/Milner style
version of Mitchell and Plotkin’s abstract types [MP88]. In
this extension, the types provided in definitions of algebraic
data-types may comprise locally quantified variables, e.g.:

type t = K of Exists ’a. ’a * (’a -> int)

(Following Odersky and Läufer [OL92], we adopt a Caml-
like [LDG+] syntax for the examples, but we explicitly men-
tion quantifiers in declarations.) The intuition is that the
type t is isomorphic to the existential type ∃α.α×(α → int).
Any value of type α× (α → int), for some α, can be packed
in the type t by a simple application of the constructor K;
then, it can be accessed via a regular pattern-matching:

match (v : t) with
| K x -> e

In short, the expression e must be type-checked in an en-
vironment where the program variable x receives the type
κ × (κ → int) where κ is a new type symbol that cannot
occur in the type of e, in order to preserve abstraction. It
is equivalent to say that the function fun x -> e must re-
ceive the polymorphic type scheme ∀α.α × (α → int) → τ
for some type τ which does not involve α. This style of
existential quantification has been implemented in compil-
ers for Hope [Per90], Caml [MP93] and Haskell [Aug94],
and has shown its practicality and its value for program-
ming: it provides in particular first class data abstraction
and allows heterogeneous data structures aggregating dif-
ferent implementations of the same abstract type. What is
more, the principle of combining the introduction and the
elimination of existential quantification with the data-type
mechanism seems most appealing: this provides the neces-
sary source code annotations for preserving type inference,
while remaining reasonably lightweight and natural for the
programmer.

In the same spirit, Rémy [Rém94] proposed the intro-
duction of universally quantified variables in data-types, as
in the following declaration:

type u = L of ForAll ’a. (’a -> ’a)

Similarly, u is isomorphic to the polymorphic type ∀α.(α →
α). This extension permits to counterbalance in some sit-
uations the limitations of let polymorphism and allows an
encoding of System F. For instance, this is useful for defining
structures which contain simultaneously data and functions,
as in object-oriented programming, and also allows the in-
troduction of higher-order functions whose arguments have
polymorphic types. Such a need is particularly liable to

appear in the presence of abstract data-types, because—in
short—any function which manipulates a value coming from
some existential data-type must be polymorphic.

2 Overview

In this paper, we propose an extension, called HM∃∀(X), of
the HM(X) framework with bounded existential and uni-
versal data-types. The language we consider is a call-by-
value λ-calculus with let and references. As for the original
HM(X), our system is parametrized by the logic of types
and constraints, which allows different instances.

Let us now detail the contributions of this paper. First
and foremost, it provides a general template for equipping
HM(X)-based type systems with first class existential and
universal types: this naturally includes all HM(X) instances,
but also other systems which follow the same guidelines,
e.g. [CP01, PS03]. Obviously, the reasons which lead to
introduce such mechanisms are not particular to these pro-
gramming languages and systems; they correspond to those
which are largely discussed in the literature, some of which
we have mentioned in the introduction. However, the need
for a first class data abstraction mechanism is likely to in-
crease in languages featuring advanced and expressive type
systems: roughly speaking, the more precisely types describe
expressions, the more one needs to aggregate values of differ-
ent types. We observed this phenomenon while experiment-
ing with our HM(X)-like type system tracing information
flow in ML [PS03] and its prototype implementation for the
Caml language, Flow Caml [Sim03a]. In this system, usual
ML types are annotated with security levels belonging to
some arbitrary lattice and representing a hierarchy of prin-
cipals: for instance, modeling the security policy of a bank,
one may have one security level for every client. The in-
formation concerning each client can be stored in a record,
which may be defined as follows:

type ’a client_info =
{ cash: ’a int;

send_msg: ’a int -> unit;
... }

This definition is identical to that we would have in Caml,
with the difference that the record type client_info must
carry one parameter which is the security level of the client.
This security level also appears in the record components
types: the field cash stores the current balance of the client’s
account, hence it has the type of an integer labeled by the
client’s security level. Similarly, send_msg is a function
which allows sending a message to the given client. The
bank’s security policy naturally requires that each client can
only receive information about its personal situation, so the
argument of send_msg must have (at most) the security level
’a. In Caml, all records storing information about clients
would have the same unannotated type, client_info, so
it would be possible to store the clients file in some data
structure, such as a list of type client_info list. On the
contrary, in Flow Caml, records corresponding to distinct
clients have incompatible types—because their annotations
differ—and, as a consequence, the clients file forms a hetero-
geneous set of records which is not representable. A natural
solution consists in making the client’s security level existen-
tially quantified in the declaration: in section 6.2, we will
follow up on this example and show how extending Flow
Caml’s type system with the framework of the current pa-
per allows manipulating such data structures.

Secondly, instantiating HM∃∀(X) with the standard Her-
brand logic, we retrieve a system close to those of Odersky
and Läufer [OL92] and Rémy [Rém94]. However, we believe
our constraint-based presentation to be more modular and
lightweight, because it clearly separates issues related with
the logical definition of the type system from those concern-
ing type inference. Indeed, in previous approaches, the typ-
ing rule for opening abstract values introduce Skolem types
for existentially quantified variables, i.e. new incompatible
(for unification) type symbols. Although this is an effi-
cient implementation technique for dealing with existentially
quantified variables in a unification-based type inference en-
gine, this is not really handy to manipulate when studying
the type system itself, e.g. proving type safety results. Our
approach stands in sharp contrast: the logical presentation
of the type system relies only on the usual type generaliza-
tion mechanism. For the purpose of type inference, the con-
straint language is enriched with a construct which provides
a form of bounded universal quantification, whose resolution
is delegated to an external constraint solver.

As a third contribution, this paper describes a realistic
algorithm for solving this extended constraint language for
the case of structural subtyping. To the best of our knowl-
edge, this is the first practical algorithm to be proposed
which deals with a form of bounded universal quantification
in subtyping constraints.

We will now proceed as follows. In section 3, we in-
troduce the languages of types, constraints and programs.
Then, in section 4 we define the type system HM∃∀(X),
prove it ensures safety of program execution and describe
an algorithm which computes principal typing judgments.
The presentation and the proofs of these topics are carried
out in a general context, with limited assumptions about
the model in which types and constraints are interpreted. In
section 5, we propose a realistic algorithm for solving con-
straints generated by type inference in the case of structural
subtyping. Section 6 concludes with some discussion about
the possible continuations of this work, and about integrat-
ing it into our information flow analyzer [PS03, Sim03a]. By
lack of space, only the most significant fragments of proofs
are given. However, they can be found integrally in the full
version of this paper [Sim03b].

3 The core language

We let a variance ν be a pair of booleans (ν+, ν−). We write
⊕ (read: covariant), ª (contravariant) and ¯ (invariant)
for the variances (1, 0), (0, 1) and (1, 1), respectively. A
signature of arity n is a list of n variances [ν1, . . . , νn].

3.1 Types and constraints

Our framework is parametrized by a first-order logic, X,
whose variables, terms and formulas are respectively type
variables, types and constraints. Type variables are sup-
posed to be in infinite number and are denoted by the meta-
variables α and β. We let ᾱ stand for a finite list of types
variables, and given two sets of variables V1 and V2, we let
V1 # V2 be a shorthand for V1 ∩ V2 = ∅.

We follow the model-based approach of Pottier [Pot01]
by interpreting the logic in a model (T,≤), which is a par-
tially ordered set whose elements t are ground types. This
differs from the original presentation of HM(X) [SOW97]
where constraints are viewed as elements of an abstract

2

cylindric constraint system. Although it is slightly less gen-
eral, we believe our presentation to be more concise. Fur-
thermore, it allows manipulating solutions of constraints,
which is of greater help when one describes constraint res-
olution algorithms. As it is usual, we do not fully specify
the first-order logic X nor the model T , but only state a
few requirements they must fulfill. Thus, our framework
remains abstract from several choices, as the flavor of sub-
typing at hand (e.g. structural or non-structural subtyping).
In section 5, we will describe one of the possible instances.

The logic X must at least comprise the following lan-
guage of types:

τ ::= α | unit | τ → τ | τ ref | ε(τ̄) | π(τ̄) | . . .
Types include type variables, a base type unit, functions and
references types. Existential and universal types are named:
we let ε and π range over disjoint sets of existential and
universal constructors, respectively. For the time being, we
do not specify how data-types are declared, we will address
this question in section 3.2. We just require each constructor
to have a signature which specifies in particular its arity.

If ν is a variance, we define ≤ν by:

t ≤ν t′ ⇔ ((if ν+ then t ≤ t′) and (if ν− then t′ ≤ t))

Let a symbol be either an existential or universal con-
structor, or one of unit, → and ref. We equip the last
three symbols with the usual signatures: sig(unit) = [],
sig(→) = [ª,⊕] and sig(ref) = [¯]. A symbol ϕ of signature
[ν1, . . . , νn] is interpreted in the model by a total mapping
JϕK from T n to T , such that JϕK(t1, . . . , tn) ≤ JϕK(t′1, . . . , t′n)
if and only if, for all i, ti ≤νi t′i. Moreover, we assume the
interpretations of two distinct symbols to produce incompa-
rable ground types. Types are interpreted in the model by
assignments: an assignment ρ is a total mapping from types
to ground types which is a morphism for symbols (i.e. for all
ϕ and τ1, . . . , τn, ρ(ϕ(τ1, . . . , τn)) = JϕK(ρ(τ1), . . . , ρ(τn))).
Constraints are interpreted in the model by a two-place
predicate · ` ·, whose arguments are an assignment and
a constraint; if ρ ` C holds, we say that ρ satisfies or is a
solution of C.

The constraint language of the logic X must provide the
following constructs, whose interpretation is specified by the
laws of figure 1:

C, D ::= τ ≤ τ | C ∧ C | ∃ᾱ.C | ∀ᾱ.D =. C | . . .
Constraints include subtyping between types (we let τ = τ ′

be a shorthand for τ ≤ τ ′ ∧ τ ′ ≤ τ), conjunction of con-
straints and existential quantification. In addition to these
standard constructs, we require a custom form of constraint,
∀ᾱ.D =. C, which is generated by the type inference algo-
rithm when it requires an expression to have some bounded
polymorphic type. We give a weak semantics to universal
quantification by requiring the bound D to be satisfiable:
an assignment ρ is a solution of ∀ᾱ.D =. C if it satisfies
∃ᾱ.D and, for every assignment t̄ of the variables ᾱ such
that ρ[ᾱ 7→ t̄] satisfies D then ρ[ᾱ 7→ t̄] is a solution of C.
Doing so preserves the property that any sub-constraint of
a satisfiable constraint is also satisfiable, which shall help
constraint resolution, see section 5.

We introduce the constant true for some arbitrary uni-
versally true constraint, e.g. ∃α.α ≤ α. We assume the
standard notions of free-variables and capture-avoiding sub-
stitutions to be defined on constraints (fv(C) stands for the

ρ ` τ ≤ τ ′ ⇔ ρ(τ) ≤ ρ(τ ′)
ρ ` C1 ∧ C2 ⇔ ρ ` C1 and ρ ` C2

ρ ` ∃ᾱ.C ⇔ ∃t̄ ρ[ᾱ 7→ t̄] ` C

ρ ` ∀ᾱ.D =. C ⇔ ∀t̄ ρ[ᾱ 7→ t̄] ` D ⇒ ρ[ᾱ 7→ t̄] ` C
and ∃t̄ ρ[ᾱ 7→ t̄] ` D

Figure 1: Interpretation of constraints

set of variables free in C and C[τ/α] is the constraint C
where every free occurrence of α is substituted by τ). We
write C1 ² C2 if C1 implies C2, i.e. every solution of C1 is
also a solution of C2. Two constraints are equivalent if they
imply each other.

3.2 Data-type declarations

We now have to provide a way to relate data-type construc-
tors to plain types, i.e. to specify the type of the values
each data-type accepts. Our approach superficially differs
from that of Odersky and Läufer [OL92]. First, we choose
not to make data-types declarations part of the expression
language; instead we consider they are defined globally. Sec-
ond, we simplify the presentation by separating them from
variants and records; in other words we only consider one
summand variants (or isomorphically one field records). Al-
though combining the introduction of existential or universal
quantification with building or matching of data structures
is convenient in a real programming language, we believe
this to be orthogonal to the formal presentation of the sys-
tem.

For every existential constructor ε, we assume a declara-
tion of the form:

ε(ᾱ) , ∃β̄[D].τ with fv(τ, D) ⊆ ᾱ ∪ β̄

(Such a declaration is considered modulo α-conversion of the
variables ᾱ and β̄, which are supposed to be distinct.) The
intuition behind is that the type ε(ᾱ) is an abbreviation for
the existential type ∃β̄[D].τ . The main difference with the
case of ML is that existential types supply a constraint D
which bounds the quantification, i.e. which may relate the
quantified variables β̄ with one another and with the type
parameters ᾱ. In words, the above declaration means that
an expression of type ε(ᾱ) can be built from any expression
which has the type τ for some instance of β̄ satisfying D.
In the case of a unification-based system where the only
expressible relation between types is equality, there was no
need for such a constraint, because—roughly speaking—it
can always be set to true by unification and substitution of
type variables. However, this is no longer the case with a
more elaborate constraint language, e.g. in the presence of
subtyping.

Similarly, a universal constructor π must have a declara-
tion of the form:

π(ᾱ) , ∀β̄[D].τ with fv(τ, D) ⊆ ᾱ ∪ β̄

which means that a value may be injected in the type π(ᾱ)
if and only if it has the type τ for every solution β̄ of D.

Subtyping between data-types has been defined by equip-
ping constructors with signatures. One must ensure that

3

each of them fits the logical interpretation of the corre-
sponding constructor. Thus, for existential constructors, we
require that

if ε(ᾱ1) , ∃β̄1[D1].τ1 and ε(ᾱ2) , ∃β̄2[D2].τ2

with β̄2 # fv(τ1) then
D1 ∧ ε(ᾱ1) ≤ ε(ᾱ2) ² ∃β̄2.(D2 ∧ τ1 ≤ τ2)

The intuition is that ε(ᾱ1) ≤ ε(ᾱ2) requires every expression
of type ε(ᾱ1) to have the type ε(ᾱ2): then, for every instance
of τ1 with β̄1 satisfying D1, there must exist a greater in-
stance of τ2 for some β̄2 which satisfies D2. In other words,
the variances assigned to the constructor ε must be valid for
the underlying existential type, which is necessary for the
type system to be safe, see proof of lemma 3. The following
is the counterpart for universal constructors:

if π(ᾱ1) , ∀β̄1[D1].τ1 and π(ᾱ2) , ∀β̄2[D2].τ2

with β̄1 # fv(τ2) then
D2 ∧ π(ᾱ1) ≤ π(ᾱ2) ² ∃β̄1.(D1 ∧ τ1 ≤ τ2)

The inequality π(ᾱ1) ≤ π(ᾱ2) requires that for every in-
stance of ∀β̄2[D2].τ2, there exists a lesser one of ∀β̄1[D1].τ1.

3.3 Expressions

Let x, m range over disjoint denumerable sets of program
variables and memory locations, respectively. Then opera-
tors, values and expressions are defined as follows:

op ::= ref | := | !
v ::= x | m | () | λx.e | op | := m | 〈v〉ε | 〈v〉π
e ::= x | m | () | λx.e | op | e e | let x = v in e
| 〈e〉ε | openε e with v | 〈v〉π | openπ e

The core of the language is a λ-calculus with references.
Expressions include program variables, memory locations, a
unit constant, λ-abstractions, three operators for allocating,
updating and reading memory cells, and function applica-
tions. The let construct has the same meaning as the ba-
sic expression (λx.e) v; however, as usual in ML, it directs
the type-checker to generalize x’s type. The language is ex-
tended with existential and universal introduction and elim-
ination constructs. 〈·〉ε and 〈·〉π are data-type constructors,
they tell when to pack values as abstract or polymorphic
ones, respectively. Polymorphic values can be read directly
with openπ which is nothing but the inverse of the construc-
tor 〈·〉π. Accessing existential ones is slightly more subtle:
for the sake of type soundness, we need the content of an
existential value to be used only within a statically known
bounded scope: for this purpose, the construct openε e with v
includes a handling function v which will receive as argu-
ment the content of the matched expression e.

The grammar of expressions constrains sub-expressions
of some constructs to be values—rather than arbitrary ex-
pressions: the binding in let, the handler in openε and the
content of a polymorphic data-type. These sub-expressions
correspond to the point where the type system performs
some type generalization: following Wright [Wri93], we re-
strict it to values, to preserve soundness in the presence of
references.

A store is a partial mapping from memory locations to
values. The small-step semantics is defined on configura-
tions e / µ which consist in a pair of an expression and a

store. The reduction rules are given in figure 2. As usual
in presence of side-effects, we choose a call-by-value evalu-
ation strategy; hence evaluation contexts E are defined by
the following grammar:

E ::= [] e | v [] | 〈[]〉ε | openε [] with v | 〈[]〉π | openπ []

4 The type system

We now present the type system HM∃∀(X). In section 4.1, it
is defined as a logic of deduction rules. Then, in section 4.2,
we prove it is safe—i.e. reduction of well-typed expression
cannot go wrong—and section 4.3 describes a type inference
algorithm, that is, a procedure to derive most general typing
judgments.

In this section, we identify constraints modulo logical
equivalence. Although the representation of constraints is
of main importance for the design of a constraint solver, it
does not matter when defining a type system and proving it
correct.

4.1 Typing rules

A type scheme σ is a triple of a set of quantifiers ᾱ, a con-
straint C and a type τ ; we write σ = ∀ᾱ[C].τ . Type schemes
are considered modulo renaming of quantified variables. A
program environment is a partial mapping from program
variables to type schemes. A memory environment is a par-
tial mapping from memory locations to types.

The type system HM∃∀(X) is defined by the set of de-
duction rules of figure 3. Judgments about expressions have
the form C, Γ, M ` e : τ where τ is the type assigned to the
expression, the environments Γ and M give type schemes to
e’s free program variables and types to memory locations,
respectively, and the constraint C carries assumptions about
the type variables that are free in Γ, M and τ . By general-
ization, a type scheme may be assigned to a value, hence a
judgment of the form C, Γ, M ` v : σ. Two extra forms are
employed to reason about stores C, M ` µ and configura-
tions C, Γ ` e / µ : τ . We omit Γ and M in judgments when
they are empty.

We now comment on the typing rules of figure 3, starting
with the three non-syntax directed ones. Firstly, General-
ize generalizes the type of a value to produce a type scheme.
All type variables that are not free in the environments and
the constraint C can be universally quantified. Moreover, we
require the generated scheme to have instances, hence the
premise C ² ∃ᾱ.C′. Sub is a standard subsumption rule, al-
lowing an expression which has some type τ ′ to be used with
any greater type τ . Rule Hide makes a type variable local to
a sub-derivation, which is of interest before generalization.

Rules Var and Loc assign types to program variables
and memory locations by looking up the appropriate en-
vironment. Note that Γ(x) is a type scheme, of which
Var makes a fresh instance. Unit deals with the unit
constant and Op assigns the standard types to operators:
typeref(τ) = τ → τ ref, type:=(τ) = τ ref → τ → unit
and type!(τ) = τ ref → τ . Rules for λ-abstraction Abs,
function application App and let-binding Let are standard.
In Abs, we slightly abuse notations by mapping x to the
simple type τ in the program environment, while it should
be ∀∅[true].τ . When typing 〈e〉ε, rule Exist looks up the
declaration of the data-type ε and requires e to have some in-
stance of the type τ which satisfies D (in fact, by Sub, e may

4

λx.e v / µ → e[v/x] / µ (β)

let x = v in e / µ → e[v/x] / µ (let)

openε 〈v1〉ε with v2 / µ → v2 v1 / µ (ε)

openπ 〈v〉π / µ → v / µ (π)

ref v / µ → m / µ[m 7→ v] if m 6∈ dom µ (ref)

:= m v / µ → () / µ[m 7→ v] if m ∈ dom µ (assign)

! m / µ → µ(m) / µ (deref)

E[e] / µ → E[e′] / µ′ if e / µ → e′ / µ′ (context)

Figure 2: Semantics

have any type τ ′ such that C ² τ ′ ≤ τ). In OpenExist, the
expression e must have an ε type (for the sake of simplicity,
we require the parameters of the data-type to be variables,
but this is not restrictive because subsumption allows in-
troducing names for arbitrary sub-terms in types). Then,
the handler v must have the type scheme ∀β̄[D].τ ′ → τ so
that it is a function able to accept any possible instance of
the existential type. Furthermore, in order to preserve type
abstraction, the result returned by the handler cannot leak
information about the existentially quantified type variables
β̄, hence they must not appear in the type τ . Rule Poly
looks up the declaration of the universal data-type π and
requires the value v to have the corresponding type scheme.
Conversely, in OpenPoly, the expression e must have a π
type, and an instance of the scheme found in the declaration
is taken.

The last three rules of the system deal with stores and
configurations. Store requires each entry of the store to
have the type given by the memory environment. Conf al-
lows deriving a judgment about a configuration from those
on the expression and the store. ConfHide is required for
the type system to enforce subject-reduction: indeed, be-
cause of allocation, the memory environment is liable to
grow throughout reduction and therefore to involve new type
variables. Those can no longer be made local by Hide, but
still by ConfHide, because typing judgments on configura-
tions do not mention the memory environment.

For the sake of conciseness, we did not make the two
following rules part of our definition of HM∃∀(X), however
it can be checked that they are valid, i.e. adding them in the
system does not extend the set of derivable judgments:

Weaken
C, Γ, M ` e : ς C′ ² C

C′, Γ, M ` e : ς

Inst
C, Γ, M ` v : ∀ᾱ[C′].τ C ² C′

C, Γ, M ` v : τ

The former states that the constraint in a type judgment
about some expression can be weakened (ς stands for ei-
ther a type τ or a type scheme σ), while the latter allows
instantiating type schemes at any place in derivations.

4.2 Type safety

We now state the correctness of the type system, i.e.
that evaluation of well-typed expressions cannot go wrong.
This could be achieved following a semi-syntactic ap-
proach [Pot01], which consists in defining an intermedi-
ate ground system, B∃∀(T), whose types are those of T .
However, we prefer to proceed in a direct way, by prov-
ing HM∃∀(X) satisfies subject-reduction, since it shows that
each reduction step preserves typings.

Proving type safety is simplified by restricting our atten-
tion to canonical derivations. We chose a logic, rather than
syntax-directed, presentation of the type system, since the

former is much more concise than the latter. The restriction
to canonical derivations allows to recover the benefit of the
latter. Canonical derivations (about expressions or configu-
rations) are those where every instance of Hide is above an
instance of Generalize. We write C, Γ, M `c e : τ if the
judgment C, Γ, M ` e : τ has a canonical derivation.

Lemma 1 (Canonical derivations) If C, Γ ` e / µ : τ
holds then there exists a canonical derivation of this judg-
ment.

Lemma 2 (Subsumption) Assume C, Γ, M `c e : τ .
There exists τ ′ such that C ² τ ′ ≤ τ and the derivation
of C, Γ, M `c e : τ ′ ends by an instance of a syntax-directed
rule.

A memory environment M ′ extends M if and only if the
domain of the latter is a subset of that of the former, and
M agrees with M ′ where both are defined.

We can now state our main lemma.

Lemma 3 (Subject-reduction) Let e / µ → e′ / µ′. As-
sume C, M `c e : τ and C, M ` µ. Then, there exists
a memory environment M ′, which extends M , such that
C, M ′ ` e′ : τ and C, M ′ ` µ′.

Proof. By induction on the derivation of e / µ → e′ / µ′. By
lemma 2, we may assume, w.l.o.g., that the derivation of
C, M `c e : τ ends by an instance of a syntax-directed rule.
By lack of space, we only give the case related to existential
data-types; all others can be found in the full version of the
paper [Sim03b].

◦ Case (ε). e is openε 〈v1〉ε with v2 and e′ is v2 v1 and µ′ is µ.
The derivation of C, M `c e : τ must end with an instance
of OpenExist whose premises are C, M `c 〈v1〉ε : ε(ᾱ) (1)

and ε(ᾱ) , ∃β̄[D].τ1 (2) and C, M `c v2 : ∀β̄[D].τ1 → τ (3)
and β̄ # fv(τ) (4).

By lemma 2 and Exist, (1) implies C, M ` v1 : τ ′1 (5) and

ε(ᾱ′) , ∃β̄′[D′].τ ′1 (6) and C ² D′ (7) and C ² ε(ᾱ′) ≤ ε(ᾱ)
(8). Invoking (4) and by a renaming of β̄ in (2) and (3),
we may assume β̄ # fv(τ ′1, C, M) (9). By the requirement
on ε’s signature (section 3.2), (2), (6), (8) and (9) yield
(C ∧ D′) ² ∃β̄.(D ∧ τ ′1 ≤ τ1) and, by (7), C ² ∃β̄.(D ∧
τ ′1 ≤ τ1) (10) follows. By (5), Weaken and Sub, we have
(C ∧ D ∧ τ ′1 ≤ τ1), M ` v1 : τ1, and, by (3) and Inst,
(C ∧ D ∧ τ ′1 ≤ τ1), M ` v2 : τ1 → τ . By App, this yields
(C ∧ D ∧ τ ′1 ≤ τ1), M ` e′ : τ . Using (4) and (9), by an
instance of Hide, we obtain C∧∃β̄.(D∧τ ′1 ≤ τ1), M ` e′ : τ .
By Weaken and (10), C, M ` e′ : τ follows. ¤

The previous lemma entails the following, more abstract
statement:

Theorem 1 (Subject-reduction) If C ` e / µ : τ and
e / µ → e′ / µ′ then C ` e′ / µ′ : τ .

5

Syntax-directed rules

Var
Γ(x) = ∀ᾱ[C′].τ C ² C′

C, Γ, M ` x : τ

Loc
C, Γ, M ` m : M(m) ref

Unit
C, Γ, M ` () : unit

Op
C, Γ, M ` op : typeop(τ)

Abs
C, Γ[x 7→ τ ′], M ` e : τ

C, Γ, M ` λx.e : τ ′ → τ

App
C, Γ, M ` e1 : τ ′ → τ C, Γ, M ` e2 : τ ′

C, Γ, M ` e1 e2 : τ

Let
C, Γ, M ` v : σ C, Γ[x 7→ σ], M ` e : τ

C, Γ, M ` let x = v in e : τ

Exist
C, Γ, M ` e : τ ε(ᾱ) , ∃β̄[D].τ C ² D

C, Γ, M ` 〈e〉ε : ε(ᾱ)

OpenExist
C, Γ, M ` e : ε(ᾱ) ε(ᾱ) , ∃β̄[D].τ ′

C, Γ, M ` v : ∀β̄[D].τ ′ → τ β̄ # fv(τ)

C, Γ, M ` openε e with v : τ

Poly
C, Γ, M ` v : ∀β̄[D].τ π(ᾱ) , ∀β̄[D].τ

C, Γ, M ` 〈v〉π : π(ᾱ)

OpenPoly
C, Γ, M ` e : π(ᾱ) π(ᾱ) , ∀β̄[D].τ C ² D

C, Γ, M ` openπ e : τ

Non-syntax-directed rules

Generalize
C ∧ C′, Γ, M ` v : τ C ² ∃ᾱ.C′

ᾱ # fv(C, Γ, M)

C, Γ, M ` v : ∀ᾱ[C′].τ

Sub
C, Γ, M ` e : τ ′ C ² τ ′ ≤ τ

C, Γ, M ` e : τ

Hide
C, Γ, M ` e : τ α # fv(Γ, M, τ)

∃α.C, Γ, M ` e : τ

Stores and configurations

Store
dom µ = dom M

∀m ∈ dom M C, M ` µ(m) : M(m)

C, M ` µ

Conf
C, Γ, M ` e : τ C, M ` µ

C, Γ ` e / µ : τ

ConfHide
C, Γ, e ` µ : τ α # fv(Γ, τ)

∃α.C, Γ, e ` µ : τ

Figure 3: The type system HM∃∀(X)

6

A closed configuration e / µ is well-typed if C ` e / µ : τ
holds for some type τ and satisfiable constraint C.

Lemma 4 (Progress) Consider a closed configuration e /
µ. If it is well-typed and irreducible, then e is a value.

We omit the proof of this result, which is standard and
can be found in [Sim03b].

Let e be a closed expression. e / µ is said to go wrong
if there exists an irreducible configuration e′ / µ′ such that
e / µ →∗ e′ / µ′ and e′ is not a value. The combination
of subject-reduction and progress ensures that well-typed
configurations cannot go wrong, which proves the type safety
of HM∃∀(X).

Theorem 2 (Safety) If e/µ is closed and well-typed, then
it does not go wrong.

4.3 Type inference

From here on, we restrict our attention to source language
expressions, i.e. expressions which do not contain memory
locations. Indeed, introducing memory locations was only
useful to define a small-step semantics and state the type
safety theorem.

Figure 4 defines the type inference algorithm as a func-
tion, L · ` · : · M, which takes three arguments: the program
environment Γ, the expression to be typed, e, and a type
τ . It returns the minimal (w.r.t. implication) constraint C
under which hypothesis τ is a valid type for e in the envi-
ronment Γ, i.e. C, Γ ` e : τ holds. (In every line of figure 4,
we naturally assume the local type variables introduced by
the algorithm to be distinct and fresh w.r.t. fv(Γ, τ).)

The recursive definition of the constraint returned by the
type inference algorithm follows the syntax-directed rules of
the logical presentation of the type system (figure 3). How-
ever, in order to be complete, the algorithm must take in
account any possible use in HM∃∀(X) derivations of one of
the non-syntax-directed rules. First, Sub is dealt with by
generating coercions in constraints at any place where sub-
sumption can occur in HM∃∀(X). In what concerns Hide,
the constraints produced by the type inference algorithm
systematically expose a minimal number of type variables:
the free variables of LΓ ` e : τM are (a subset of) those of
Γ and τ . Lastly, generalization (rule Generalize) is han-
dled in the inference process in two different ways. On the
one hand, the treatment of polymorphism introduced by let
is standard: the type scheme to be assigned to the vari-
able x is not given explicitly in the program, so, to ensure
principality, the most general one must be computed and
inserted in the environment. For this purpose, a fresh type
variable α is introduced for the typing of v, so that α is
the only variable which can be generalized in the constraint
LΓ ` v : αM (other free variables are bound in the environ-
ment Γ). Hence, ∀α[LΓ ` v : αM].α is a most general type
scheme for v in the environment Γ. On the other hand, in the
expressions openε e with v and 〈v〉π the value v is expected
to have a type scheme which is given by the data-type decla-
ration. So, the type inference algorithm computes v’s prin-
cipal typing and must then ensure this to be more general
than the expected one. This comparison is simply encoded
by a universally quantified constraint: in openε e with v, the
handler v must have the scheme ∀β̄[D].τ ′ → τ , hence the
constraint ∀β̄.D =. LΓ ` v : τ ′ → τM. Similarly, in 〈v〉π,

the scheme ∀β̄[D].τ is expected; this yields the constraint
∀β̄.D =. LΓ ` v : τM.

The following theorem states that the type inference al-
gorithm is correct, i.e. that the constraint it generates is that
of a valid typing judgment about the given expression.

Theorem 3 (Correctness) For all Γ, e and τ , the judg-
ment LΓ ` e : τM, Γ ` e : τ is derivable.

Proof. The proof is by induction on the expression e. Again,
by lack of space, we only give the cases concerning existential
data-types. Those about universal data-types are similar,
and others are standard. All can be found in [Sim03b].

◦ Case e = 〈e′〉ε. Let ᾱ and β̄ be distinct variables not

in fv(τ, Γ) (1) and ε(ᾱ) , ∃β̄[D].τ ′ (2). By induction hy-
pothesis, we have LΓ ` e′ : τ ′M, Γ ` e′ : τ ′. By Weaken, this
yields LΓ ` e′ : τ ′M∧D, Γ ` e′ : τ ′ (3). By an instance of Ex-
ist with the premises (3), (2) and LΓ ` e′ : τ ′M ∧ D ² D,
we obtain LΓ ` e′ : τ ′M ∧ D, Γ ` e′ : ε(ᾱ). By Weaken
and Sub, LΓ ` e′ : τ ′M ∧ D ∧ ε(ᾱ) ≤ τ, Γ ` e′ : τ (4)
follows. By (1), ᾱβ̄ appear only in the constraint of the
judgment (4), then by Hide, we obtain ∃ᾱβ̄.(LΓ ` e′ :
τ ′M∧D∧ε(ᾱ) ≤ τ), Γ ` e′ : τ (5). By (1) and (2), LΓ ` e : τM
is ∃ᾱβ̄.(LΓ ` e′ : τ ′M ∧D ∧ ε(ᾱ) ≤ τ), hence (5) is the goal.

◦ Case e = openε e′ with v. Let ᾱ and β̄ be distinct variables

not in fv(τ, Γ) (1) and ε(ᾱ) , ∃β̄[D].τ ′ (2). By induction
hypothesis, we have LΓ ` e′ : ε(ᾱ)M, Γ ` e′ : ε(ᾱ) (3) and
LΓ ` v : τ ′ → τM, Γ ` v : τ ′ → τ (4). By Weaken, D ∧
∀β̄.D =. LΓ ` v : τ ′ → τM, Γ ` v : τ ′ → τ (5) follows
from (4). Because ∀β̄.D =. LΓ ` v : τ ′ → τM ² ∃β̄.D,
β̄ # fv(∀β̄.D =. LΓ ` v : τ ′ → τM), by Generalize, (1)
and (5) yield ∀β̄.D =. LΓ ` v : τ ′ → τM, Γ ` v : ∀β̄[D].τ ′ → τ
(6). By Weaken and OpenExist, the judgment LΓ ` e′ :
ε(ᾱ)M ∧ ∀β̄.D =. LΓ ` v : τ ′ → τM, Γ ` e : τ can be derived
from (3), (6), (2) and (1). By (1) and Hide, ∃ᾱ.(LΓ ` e′ :
ε(ᾱ)M∧∀β̄.D=.LΓ ` v : τ ′ → τM), Γ ` e : τ (7) follows. By (1)
and (2), LΓ ` e : τM is ∃ᾱ.(LΓ ` e′ : ε(ᾱ)M ∧ ∀β̄.D =. LΓ ` v :
τ ′ → τM), hence (7) is the goal.

We continue by showing the type inference algorithm to
be complete, i.e. to produce the minimal constraint (w.r.t.
implication) under whose hypothesis an expression is ty-
pable.

Lemma 5 (Subsumption) LΓ ` e : τM ∧ τ ≤ τ ′ ² LΓ ` e :
τ ′M.

Theorem 4 (Completeness) If C, Γ ` e : τ then C ²
LΓ ` e : τM. If C, Γ ` v : ∀ᾱ[C′].τ and ᾱ # fv(Γ) then
C ² ∀ᾱ.C′ =. LΓ ` v : τM.

Proof. By induction on the input derivation. By lack of
space, we only give the cases concerning existential data-
types. Those about universal data-types are similar, and
others are standard.

◦ Case Exist. The hypothesis is C, Γ ` 〈e〉ε : ε(ᾱ). This
derivation ends by an instance of Exist whose premises are
C, Γ ` e : τ (1), ε(ᾱ) , ∃β̄[D].τ (2) and C ² D (3). Using
the induction hypothesis with (1), we have C ² LΓ ` e :
τM . By (3), we obtain C ² LΓ ` e : τM ∧ D (4). Let

ε(ᾱ′β̄′) , ∃β̄[D′].τ ′ (5) with ᾱ′β̄′ # fv(Γ, ᾱ) (6). By (2), (5)
and lemma 5, (4) implies C ² ∃ᾱ′β̄′.(LΓ ` e : τ ′M ∧ D′ ∧
ε(ᾱ′) ≤ ε(ᾱ)) (7). By (5) and (6), LΓ ` 〈e〉ε : ε(ᾱ)M is the
right-hand-side of (7), which is hence the goal.

◦ Case OpenExist. The hypothesis is C, Γ ` openε e with v :
τ . This derivation ends by an instance of OpenExist whose

7

LΓ ` x : τM = ∃ᾱ.(C ∧ τ ′ ≤ τ) Γ(x) = ∀ᾱ[C].τ ′

LΓ ` () : τM = unit ≤ τ

LΓ ` λx.e : τM = ∃α1α2.(LΓ[x 7→ α1] ` e : α2M ∧ α1 → α2 ≤ τ)

LΓ ` e1 e2 : τM = ∃α.(LΓ ` e1 : α → τM ∧ LΓ ` e2 : αM)
LΓ ` let x = v in e : τM = LΓ[x 7→ ∀α[C].α] ` e : τM ∧ ∃α.C C = LΓ ` v : αM

LΓ ` op : τM = ∃α.(typeop(α) ≤ τ)

LΓ ` 〈e〉ε : τM = ∃ᾱβ̄.(LΓ ` e : τ ′M ∧D ∧ ε(ᾱ) ≤ τ) ε(ᾱ) , ∃β̄[D].τ ′

LΓ ` openε e with v : τM = ∃ᾱ.(LΓ ` e : ε(ᾱ)M ∧ ∀β̄.D =. LΓ ` v : τ ′ → τM) ε(ᾱ) , ∃β̄[D].τ ′

LΓ ` 〈v〉π : τM = ∃ᾱ.(∀β̄.D =. LΓ ` v : τ ′M ∧ π(ᾱ) ≤ τ) π(ᾱ) , ∀β̄[D].τ ′

LΓ ` openπ e : τM = ∃ᾱβ̄.(LΓ ` e : π(ᾱ)M ∧D ∧ τ ′ ≤ τ) π(ᾱ) , ∀β̄[D].τ ′

Figure 4: Type inference for HM∃∀(X)

premises are C, Γ ` e : ε(ᾱ) (1), ε(ᾱ) , ∃β̄[D].τ ′ (2), C, Γ `
v : ∀β̄[D].τ ′ → τ (3) and β̄ # fv(τ) (4). Thanks to (4),
we may assume β̄ # fv(C, Γ) (5). Invoking the induction
hypothesis, (1) and (3) yield C ² LΓ ` e : τ ′M (6) and C ²
∀β̄.D =. LΓ ` v : τ ′ → τM (7), respectively. Let ε(ᾱ′) ,
∃β̄[D′].τ ′′ (8) with ᾱ′ # fv(C, Γ, τ) (9). By lemma 5, (6)
and (7) yield C ∧ ᾱ = ᾱ′ ² LΓ ` e : τ ′′M ∧ ∀β̄.D =. LΓ `
v : τ ′′ → τM. By (9), C ² ∃ᾱ′.(LΓ ` e : τ ′′M ∧ ∀β̄.D =.
LΓ ` v : τ ′′ → τM) (10) follows. By (5), (8) and (9), LΓ `
openε e with v : τM is the right-hand-side of (10), which is
hence the goal.

5 Solving constraints:
the case of structural subtyping

We are done describing the HM∃∀(X) type system and its
type inference algorithm, which provides a procedure to
compute (the constraint of) the principal typing judgment
for a given program. We shall now deal with the resolution
of constraints: indeed, according to the type safety theo-
rem, a program is well-typed in HM∃∀(X) if and only if the
constraint produced by inference is satisfiable in the logic X.
However, addressing this question in a general context, with-
out specifying more precisely the properties of the logic and
the model is not conceivable: constraints resolution tech-
niques heavily depend on them.

We choose to turn our attention to the case of structural
subtyping [Mit91], because our initial motivation resides in
the introduction of existential and universal data-types in
our information flow inference system for the Caml lan-
guage [PS03, Sim03a]. In short, with structural subtyping,
two comparable ground types must be (finite) trees which
have the same shape and only differ by their leaves or atoms.
This flavor of subtyping naturally arises when one intends to
extend a unification-based type system with annotations be-
longing to a poset, in order to perform some static analysis
[AF97, FTA02, PS03].

Resolution of sets of inequalities in the case of struc-
tural subtyping has been intensively studied, and efficient
algorithms are known for solving and simplifying con-
straints [FM89, Tiu92, HM95, Sim03c]. However, the type
inference algorithm of section 4 produces a non-standard
form of constraints, ∀β̄.D =. C, which combines universal
quantification with implication. On the one hand, Kun-
cak and Rinard [KR03] recently showed that the first-order
theory of structural subtyping of non-recursive types is de-
cidable; however, this study does not yield a practical al-

gorithm for solving constraints. On the other hand, pre-
vious works [HR97, Sim03c] described efficient algorithms
for deciding top-level entailment of constraints, where all
free variables are implicitly universally quantified. However
the problem we tackle here is more general. Because of
the presence of unquantified free variables, the result of the
comparison is no longer a simple boolean: one must deter-
mine the minimal hypothesis—if any—about these variables
which guarantees the implication to be true. Our approach
consists in trying to express this hypothesis itself as a con-
straint, i.e. to translate every construct ∀β̄.D =. C into a
regular constraint without universal quantification and im-
plication. The interest of this strategy, known as quantifiers
elimination, is that, because the target constraint language
is standard, it benefits from the existing techniques, such as
simplification methods.

Designing algorithms for solving constraints of a logic
which includes an implication operator is recognized to be
a difficult question, because they involve a form of disjunc-
tion: the constraint can be solved either by negating the left-
hand-side of the implication or by satisfying the right-hand-
side, which breaks the usual closure mechanisms. Here, we
bypass this problem thanks to two particular properties.
Firstly, left-hand-sides of implications are not arbitrary in
constraints generated by type inference: they are exactly
the constraints which are given in data-type declarations
(by convention, all these have been denoted by the meta-
variable D in the paper). As a consequence, we impose some
restrictions about their form in order to strike a compromise
between the expressivity of the system and the efficiency of
constraint resolution, as will be explained in subsection 5.3.
Secondly, we gave a weak semantics to universal quantifica-
tion: indeed ∀β̄.D=.C implies ∃β̄.D (and, as a consequence,
∃β̄.(D ∧ C)). This was not necessary for the type inference
algorithm (because it could generate ∃β̄.D ∧ ∀β̄.D ⇒ C in
place of ∀β̄.D =. C). However, making this explicit in the
semantics of constraints serves the constraint solver: in par-
ticular, it preserves the property that any sub-constraint of
a satisfiable constraint is also satisfiable.

5.1 The ground model

Let us briefly introduce a generic model Ts for structural
subtyping, parametrized by a set of symbols (which must at
least include those of section 3). Every symbol ϕ must come
with a fixed arity a(ϕ) and a signature sig(ϕ). Then ground

8

types are finite trees labeled by symbols, defined by:

t ::= ϕ(t1, . . . , ta(ϕ))

Symbols of arity 0 are ground atoms; we suppose they
are partially ordered by the lattice order ≤0. Other non-
constant symbols are type constructors and denoted by the
meta-variable φ. (We do not introduce some kinding sys-
tem to separate them because this is not required by the
forthcoming algorithm.) Subtyping is the smallest partial
order between types ≤ which includes ≤0 and such that, if
sig(φ) = [ν1, . . . , νn], then for all t1, . . . , tn, t′1, . . . , t

′
n:

∀i ti ≤νi t′i ⇒ φ(t1, . . . , tn) ≤ φ(t′1, . . . , t
′
n)

We let ≈ be the symmetric transitive closure of ≤. Every
equivalence class of this relation is a set of ground types
which have the same shape; on which the subtyping order
≤ defines a lattice structure [Sim03c]. It is straightforward
to check that (Ts,≤) satisfies the assumptions made in sec-
tion 3 about the ground model of types.

5.2 The constraint language

In the forthcoming subsection 5.4, we will describe the solv-
ing algorithm as a small step reduction which rewrites con-
straints. As a consequence, constraints are not only used to
denote the problems produced by type inference, but also to
describe their internal representation in the solver as well as
intermediate steps of computation. Then, in the remainder
of this section, we extend the constraint language as follows.

Let a cset R be a multiset, interpreted as a conjunc-
tion, whose elements are elementary constraints of the form
τ1 ≤ τ2 or τ1 ≈ τ2. (This second non-standard form does
not improve the expressiveness of the language: indeed, be-
cause each of ≈’s equivalence classes is a lattice, τ1 ≈ τ2

could be encoded by ∃α.(α ≤ τ1 ∧ α ≤ τ2). However, the
possibility to explicitly remove existentially quantified vari-
ables is mandatory in several steps of the algorithm.) Then,
constraints are built on top of csets by the following gram-
mar:

C ::= R | C ∧ τ ≤ τ | ∃α.C | ∀β̄.D =. C | ∃∃〈φ(ᾱ)
.
= α〉.C

By scope extrusion, we can restrict the right-hand-side of
every conjunction to be a simple inequality—rather than an
arbitrary constraint—without loss of expressiveness (see the
full version of the paper [Sim03b] for the details). We made
this presentation choice because it simplifies the description
of the algorithm and avoids some technical issues; however
there is no theoretical difficulty in generalizing the frame-
work to an unrestricted conjunction.

The last construct of the constraint language is part
of the solver’s internal representation of constraints. In-
deed, the algorithm is based on the possibility offered by
structural subtyping to expand types and decompose in-
equalities, as illustrated by the following example. Con-
sider the constraint α ≤ φ(β1, . . . , βn): every solution of
this inequality maps α to a type whose root is φ; hence
we can expand this variable by introducing fresh variables
α1, . . . , αn and rewriting the constraint as ∃α1 . . . αn.(α =
φ(α1, . . . , αn) ∧ φ(α1, . . . , αn) ≤ φ(β1, . . . , βn)). Besides,
taking advantage of this expansion, it is possible to de-
compose the inequality as a conjunction relating variables
instead of type terms: the above constraint is indeed equiv-
alent to ∃α1 . . . αn.(α = φ(α1, . . . , αn) ∧ α1 ≤ν1 β1 ∧ · · · ∧

ρ ` R ⇔ ∀(τ ¦ τ ′) ∈ R ρ(τ) ¦ ρ(τ ′)
ρ ` ∃∃〈φ(ᾱ)

.
= α〉.C ⇔ ∃t̄ ρ(α) = φ(t̄) and ρ[ᾱ 7→ t̄] ` C

Figure 5: Interpretation of constraints

αn ≤νn βn) (where sig(φ) = [ν1, . . . , νn]). Although it is
logically correct, the result does not explicitly record the
fact that the variables α1, . . . , αn have been introduced by
the expansion, as names for α’s sub-terms. This is why we
provide a dedicated construct for binding variables gener-
ated by expansion: ∃∃〈φ(ᾱ)

.
= α〉.C requires α to be a φ

type and the “fresh” variables ᾱ are bound to its sub-terms
in C. We moreover require α not to appear free in C. This
can naturally be encoded as ∃ᾱ.(φ(ᾱ) = α ∧ C). However,
the former explicitly relates the introduced variables ᾱ to
the original one α, which guides the constraint solver.

We extend the interpretation of constraints to the new
language in the natural way, see figure 5 (¦ range over the
symbols ≤, ≥ and ≈). We let an atom η be either a symbol
of arity 0 or a type variable. A cset is atomic if and only
if it involves only atoms, i.e. all its elements have the form
η1 ¦ η2.

5.3 Restricting universal quantification

We now explain the restriction our algorithm imposes on
the form of constraints allowed in data-type declarations,
and, thereby those which appear in the left-hand-side of
∀β̄.D =. C constructs. In fact, the restriction concerns not
just the constraint D, but the pair of the list of quantified
variables β̄ and the constraint D, which we refer to as a
quantification bound.

It is worth noting that supposing the constraint D to
have no existential quantifier inside does not affect expres-
siveness: indeed, every variable which is existentially quan-
tified in D can be made universally quantified up front (e.g.,
with the appropriate capture-avoiding renamings, the con-
straint ∀β̄.(∃α.D) =. C is equivalent to ∀β̄α.D =. C). Be-
sides, type constructors can be removed from quantification
bounds by the standard expansion and decomposition pro-
cess. For instance ∀β.(β ≤ α1 → α2) =. C is equivalent to
∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) =. C[β1 → β2/β]. Similarly,
thanks to the weak interpretation of universal quantifica-
tion, ∀β1β2.(β1 → β2 ≤ α)=.C can be rewritten into ∃∃〈α .

=
α1 → α2〉.(∀β1β2.(α1 ≤ β1 ∧ β2 ≤ α2) =. C[α1 → α2/α]).

Combining these observations, it is natural to require
the constraint of a quantification bound ∀β̄.D Z⇒ · · · to be a
conjunction of inequalities involving atoms (which, abusing
notations, we consider to be a cset). These inequalities allow
to relate together the variables of β̄ and to limit their range
by some external bounds (i.e. ground atoms or variables not
in β̄). So, considering a variable β of β̄, three situations may
arise:

1. β has no bound in D, i.e. is only related to variables of
β̄. In this case, no assumption can be made about its
structure in the right-hand-side of the implication: for
instance, the constraint ∀β.true =. (β ≤ α1 → α2) is
not satisfiable, because β cannot be restricted to range
only over arrow types.

2. β has one lower and/or one upper bound(s) in D.
Consider for instance the constraint C1 = ∀β.(β ≤

9

α) =. (β ≤ α′1 → α′2). Because of the weak semantics
of ∀, this constraint implies ∃β.(β ≤ α∧β ≤ α′1 → α′2).
Hence, any solution of C1 maps β’s bound, α, to an ar-
row type. This allows expanding α as α1 → α2 and it
remains to solve C2 = ∀β.(β ≤ α1 → α2)=. (β ≤ α′1 →
α′2): C1 is indeed equivalent to ∃∃〈α .

= α1 → α2〉.C2.
As explained above, C2 is equivalent to ∀β1β2.(α1 ≤
β1 ∧ β2 ≤ α2) =. (α′1 ≤ β1 ∧ β2 ≤ α′2). Because α1

(resp. α2) is the unique lower (resp. upper) bound of
β1 (resp. β2), the latter can definitely be assigned to the
former in the right-hand-side of the implication. Then
C2 naturally implies (α′1 ≤ α1 ∧ α2 ≤ α′2). Next, it
is easy to check that these two constraints are in fact
equivalent, which completes the resolution.

3. β has several lower or upper bounds in D. In this case,
the same decomposition principle applies as in the pre-
vious case. However, it may produce constraints whose
resolution is difficult to deal with in an efficient manner.
To illustrate this point, let us consider the constraint
C3 = ∀β.(β ≤ α1 ∧ β ≤ α2) =. (β ≤ α), which can be
rewritten—using the least-upper-bound operator of the
lattice as syntactic sugar—into ∀β.(β ≤ α1uα2)=.(β ≤
α). By the same reasoning as above, C3 is equivalent
to (α1 u α2 ≤ α). However, the u operator now ap-
pears in the left-hand-side of an inequality. Designing
efficient algorithms for solving such inequalities seems
to be a difficult problem, because they encode a form
of disjunction.

That is the reason why we will restrict our attention to the
first two cases; as our examples will show, we believe they
are expressive enough for most usages (see section 6.2).

We now precisely formalize the assumption we make
about quantification bounds. For this purpose, we introduce
constraint graphs: a constraint graph G of size n is defined
as a subset of {1, . . . , n} × {1, . . . , n}. Then, given a list of
n types τ1, . . . , τn, we let the graph instance G [τ1, . . . , τn] be
the conjunction ∧{τi ≤ τj | (i, j) ∈ G}. A node i is said to
be the lower (resp. upper) bound of G if and only if for all j,
the pair (i, j) (resp. (j, i)) belongs to G. Abusing terminol-
ogy, we also say in this case that τi is the lower (resp. upper)
bound of G [τ1, . . . , τn]. Then, we require the constraint D
of any quantification bound ∀β̄.D Z⇒ · · · to be writable as a
conjunction of graph instances G1[τ̄1]∧· · ·∧Gn[τ̄n] such that
every variable of β̄ has at most one occurrence in τ̄1, . . . , τ̄n,
and, for all i, the graph instance Gi[τ̄i] is

• either unbounded : every term in τ̄i is a variable of β̄,

• or bounded : all variables in τ̄i are in β̄, except those of
two terms of τ̄i which are respectively lower and upper
bounds of the graph.

These correspond to the cases 1 and 2 of the above discus-
sion, respectively. Here are some examples of quantification
bounds:

(1) ∀β1β2β3.(β1 ≤ β2 ≤ β3) Z⇒ · · ·
(2) ∀β1β2.(α1 ≤ β1 ≤ α2 ∧ α1 ≤ β2 ≤ α2) Z⇒ · · ·
(3) ∀β1β2.(ϕ1 ≤ β1 ≤ β2 ≤ ϕ2) Z⇒ · · ·

Each of these three examples involve a single graph instance.
In (1), the constraint β1 ≤ β2 ≤ β3 is the unbounded in-
stance G1[β1, β2, β3] of the graph G1 = {(1, 2); (2, 3)}. On
the contrary, the graph instances in (2) and (3) are bounded:

in the former, the bounds are the free variables α1 and α2

and the latter is bounded by the ground atoms ϕ1 and ϕ2.
An atom η is unbounded under the quantification

∀β̄.D Z⇒ · · · if and only if it is a variable of β̄ which ap-
pears in a unbounded graph of D. Otherwise, it is bounded.
Given a graph G, we let G⊕ be G, Gª be the graph obtained
by reversing every edge in G (i.e. {(i, j) | (j, i) ∈ G}) and
G¯ be G⊕ ∪ Gª. We let bndβ̄(D) be the set of inequalities
α1 ≤ α2 such that α1 and α2 are respectively lower and
upper bounds of a graph instance of D. We write D∗ for
the closure of D, that is the smallest cset which contains D,
every trivial constraint α ¦ α, and such that if η1 ¦1 η2 ∈ D∗

and η2 ¦2 η3 ∈ D∗ then η1 ¦1¦2 η3 ∈ D∗.

5.4 The algorithm

The constraint resolution algorithm consists in the reduction
Ã defined in figure 6. Its broad outline is to rewrite the
input constraint into a solved form S (in the case where the
input constraint is not satisfiable, the algorithm can also
return the special constant failure). Solved forms compose
a subset of constraints defined as follows:

S ::= R | ∃∃〈φ(ᾱ)
.
= α〉.S

In short, a solved form is a cset R preceded by a list of
binders which record the type structure exhibited by expan-
sion.

The first group of rules in figure 6 governs expansion
and decomposition in a cset, with the purpose of making it
atomic: rule (a) expands a variable which has some known
structure and (b) decomposes an elementary constraint be-
tween two types with the same head constructor. If a cset
relates two incompatible types, then it is not satisfiable, as
reflected by (c).

The three next groups of rules deal with the constructs
[]∧ τ1 ≤ τ2, ∃α.[] and ∀β̄.D =. [], respectively: because they
are not allowed in solved forms, they must be eliminated.
Roughly speaking, these rules act by pushing down the con-
struct at hand until it reaches the cset of the constraint; and
then it can be eliminated by operating on the cset. Sketch-
ing a parallel with an implementation, one could say that
solved forms correspond to the memory representation of
constraints; the three constructs of the constraint language
stand for the functions provided to the client of the imple-
mentation to incrementally build constraints; and the three
corresponding sets of rules can be read as the (recursive)
definition of these functions.

Rules (d) and (e) deal with [] ∧ τ1 ≤ τ2: the former per-
mutes a conjunction ∧ with a binder ∃∃ (because the variable
α is not allowed to appear in the context ∃∃〈φ(ᾱ)

.
= α〉.[], it

must be substituted in the types τ1 and τ2) while the lat-
ter removes an inner-most occurrence of ∧ by inserting the
inequality in the cset of the constraint.

Rules of the next group deal with existential quantifica-
tion: (f) and (g) intend to commute an existential quantifi-
cation ∃β.[] with a binder ∃∃〈φ(ᾱ)

.
= α〉.[]. If β is α then (f)

applies and the quantification on α disappears. Otherwise,
the two quantifiers can be safely commuted by (g). When
an existential quantification reaches an atomic cset then it
is eliminated by (h) which performs a local transitive clo-
sure of the graph described by R. ¦1¦2 stands for the con-
catenation of ¦1 and ¦2, which is ≤ (resp. ≥) if ¦1 and ¦2
are both ≤ (resp. ≥) and ≈ otherwise; (R\α) stands for
the subset of R’s constraints which do not involve α, i.e.
{η1 ¦ η2 | η1 ¦ η2 ∈ R and η1, η2 6= α}.

10

Expansion and decomposition

(a) R Ã ∃∃〈φ(ᾱ)
.
= α〉.(R[φ(ᾱ)/α]) α ¦ φ(τ̄) ∈ R, ᾱ # fv(R)

(b) {φ(τ̄) ¦ φ(τ̄ ′)} ∪R Ã {τ1 ¦ν1 τ ′1, . . . , τn ¦νn τ ′n} ∪R sig(φ) = [ν1, . . . , νn]

(c) {φ(τ̄) ¦ ϕ(τ̄ ′)} ∪R Ã failure φ 6= ϕ

Insertion of an inequality

(d) (∃∃〈φ(ᾱ)
.
= α〉.S) ∧ τ1 ≤ τ2 Ã ∃∃〈φ(ᾱ)

.
= α〉.(S ∧ τ1[φ(ᾱ)/α] ≤ τ2[φ(ᾱ)/α])

(e) R ∧ τ1 ≤ τ2 Ã R ∪ {τ1 ≤ τ2}
Existential quantification

(f) ∃α.(∃∃〈φ(ᾱ)
.
= α〉.S) Ã ∃ᾱ.S

(g) ∃β.(∃∃〈φ(ᾱ)
.
= α〉.S) Ã ∃∃〈φ(ᾱ)

.
= α〉.(∃β.S) β 6∈ ᾱ

(h) ∃α.R Ã {η1 ¦1¦2 η2 | η1 ¦1 α, α ¦2 η2 ∈ R; η1, η2 6= α} ∪ (R\α) R atomic

Universal quantification

Scope-extrusion

(i) ∀β̄.D =. (∃∃〈φ(ᾱ)
.
= α〉.S) Ã ∃∃〈φ(ᾱ)

.
= α〉.(∀β̄.D[φ(ᾱ)/α] =. S) α 6∈ β̄, ᾱ # (β̄ ∪ fv(D))

(j) ∀αβ̄.D =. (∃∃〈φ(ᾱ)
.
= α〉.S) Ã ∀ᾱβ̄.D[φ(ᾱ)/α] =. S α bounded in D and ᾱ # (β̄ ∪ fv(D))

(k) ∀β̄α.D =. (∃∃〈φ(ᾱ)
.
= α〉.S) Ã failure α unbounded in D

Expansion and decomposition

(l) ∀β̄α.D =. R Ã ∀β̄ᾱ.(D[φ(ᾱ)/α]) =. (R[φ(ᾱ)/α]) α ¦ φ(τ̄) ∈ D, ᾱ # fv(D, R, β̄)

(m) ∀β̄.D =. R Ã ∃∃〈φ(ᾱ)
.
= α〉.(∀β̄.(D[φ(ᾱ)/α]) =. (R[φ(ᾱ)/α])) α ¦ φ(τ̄) ∈ D, ᾱ # fv(D, R, β̄), α 6∈ β̄

(n) ∀β̄.(D ∪ G [φ(τ̄1), . . . , φ(τ̄k)]) =. R Ã ∀β̄.(D ∪i Gνi [τ1,i, . . . , τk,i]) =. R sig(φ) = [ν1, . . . , νn]

(o) ∀β̄.(D ∪ {φ(τ̄) ≤ φ′(τ̄ ′)}) =. R Ã failure φ 6= φ′

Elimination

(p) ∀β̄.D =. R Ã bndβ̄(D) ∪ {ubβ̄.D(η1) ≤ lbβ̄.D(η2) | η1 ≤ η2 ∈ R\D∗}
∪ {skβ̄.D(η1) ≈ skβ̄.D(η2) | η1 ≈ η2 ∈ R\D∗}

D and R atomic

(q) ∀β̄.D =. R Ã failure
D and R atomic and β ¦ η ∈ (R\D∗)
for some β ∈ β̄ unbounded in D

Contexts

(r) C[C] Ã C[C′] if C Ã C′

(s) C[failure] Ã failure

C ::= [] ∧ τ ≤ τ | ∃α.[] | ∀β̄.D =. [] | ∃∃〈φ(ᾱ)
.
= α〉.[]

Figure 6: Solving constraints in structural subtyping

11

The fourth group of rules handles universal quantifiers.
Rules (i), (j) and (k) deal with binders ∃∃ which appear
in the right-hand-side of the implication. If the bound vari-
able, α, is not captured by the universal quantification, then
the two quantifiers may be commuted as reflected by (i). It
is worth noting that, in general, existential and universal
quantifiers cannot be swapped; however this is possible with
the restricted form of existential quantification provided by
binders ∃∃, because the introduced variables ᾱ are indeed
fully determined by α. The cases where the variable α is
universally bound are handled by (j) and (k): if α appears
in an unbounded graph of D then the latter applies: the con-
straint is not satisfiable because α cannot be constrained to
range only over φ types. On the contrary, if α has bounds
in D, it is possible to require them to be φ types, hence (j).
Rules (l) to (o) perform expansion and decomposition of the
constraint D which delimits the range of universal quantifi-
cation. In conjunction with (a) and (b) they aim at making
R and D both atomic. Lastly, rule (p) allows the elimination
of universal quantifiers by rewriting a constraint of the form
∀β̄.D =. R where D and R are atomic into a simple cset.
The built cset first contains bndβ̄(D), which is equivalent

to ∃β̄.D. Second, the algorithm considers every constraint
η1 ¦ η2 of the cset R. Two cases may arise: if it appears in
D∗, then it is satisfied by any solution of D so that it can be
forgotten. Otherwise, another elementary constraint, which
is necessary and sufficient for every solution of D to satisfy
η1 ¦ η2 (i.e. equivalent to ∀β̄.D =. η1 ¦ η2), is generated:

• In the case where η1 ¦ η2 is η1 ≤ η2, we consider the
greatest assignment ubβ̄.D(η1) the atom η1 may receive

in the quantification bound ∀β̄.D Z⇒ · · · : if η1 is not
one of the quantified variables (i.e. η1 6∈ β̄), ubβ̄.D(η1)

is naturally η1 itself; if η1 ∈ β̄ and η1 is bounded in
D then ubβ̄.D(η1) is the unique lower bound of η1 in
D. We symmetrically define lbβ̄.D(η2) and generate the
constraint ubβ̄.D(η1) ≤ lbβ̄.D(η2).

• The case where η1 ¦ η2 is η1 ≈ η2 is dealt with similarly.
We let skβ̄.D(η) be a representative of η’s ≈ equivalence

class under the bound ∀β̄.D Z⇒ · · · , e.g. lbβ̄.D(η) or
ubβ̄.D(η). Then the constraint skβ̄.D(η1) ≈ skβ̄.D(η2)
is generated.

If one of η1 and η2, say η1, is unbounded in ∀β̄.D Z⇒ · · · ,
lbβ̄.D(η1), ubβ̄.D(η1) and skβ̄.D(η1) are not defined. Then,
(p) cannot be applied, but (q) yields a failure.

Because recursive types are not valid solutions for con-
straints in the ground model, one must ensure that the el-
ementary constraints of a solved form do not require cyclic
type structures. This verification is commonly referred to as
the occur-check ; because it is standard, we omit its formal
description which can be found in previous works [Sim03c].
What is more, this check is necessary to guarantee the termi-
nation of expansion and decomposition: as a consequence,
it must be performed when expanding a cset or the quan-
tification bound of the inner-most universal quantification,
if any.

In the full version of this paper [Sim03b], we give a for-
mal proof that the reduction Ã defines an algorithm rewrit-
ing constraints that satisfy the occur-check into an atomic
solved form or fails. This addresses the question of con-
straint resolution. Indeed, solving atomic solved forms is a
well-known issue [FM89]: it only requires to check that ev-
ery path between ground atoms in the graph defined by the
inequalities of the cset is valid w.r.t. the partial order ≤0.

6 Discussion and examples

6.1 On possible extensions

The programming language studied in this paper is reduced
to its core. However, it can naturally be extended by adding
constants in the language, appropriate δ-rules in the seman-
tics, new type constructors and the corresponding typing
rules, which should not raise any particular issue. Further-
more, the solving algorithm of section 5 is already equipped
for such extensions, because it makes no particular assump-
tion about the set of type constructors.

We did not introduce in the description of the solving
procedure any procedure for simplifying constraints; never-
theless, such techniques are mandatory to obtain efficient
and scalable algorithms. In [Sim03c], we formalized a com-
plete resolution framework (for standard structural subtyp-
ing constraints) that includes a series of simplification tech-
niques, many of which rely on polarities assigned to type
variables. These techniques can be generalized in the pres-
ence of universal quantifiers, considering universally quanti-
fied variables as bipolar. What is more, because the mech-
anism described in section 5 permits to incrementally elim-
inate universal quantifications from constraints, extending
an existing constraint solver for structural subtyping can be
done with a limited effort. Indeed, a reasonable strategy
consists in, every time a constraint ∀β̄.D =. S is built, sim-
plifying the constraint S, and then eliminating the universal
quantification. Such an extension would preserve most of
the existing implementation, in particular the internal rep-
resentation of constraints.

It would be an interesting question to design algorithms
for solving constraints generated by HM∃∀(X) which han-
dle other forms of subtyping. We considered the case of
non-structural subtyping where the set of types forms a lat-
tice, as in [Pot00]. Limiting quantification bounds to be
conjunctions of inequalities between universally quantified
variables, we believe it is possible to solve the constraints
generated by HM∃∀(X)’s inference algorithm by consider-
ing these variables as new symbols in the types lattice—
as Skolem types—and to translate the constraint bounding
quantification as axioms about the order between symbols.
However, further studies are necessary to precisely formalize
and prove this possibility.

Lastly, several researchers have recently proposed conser-
vative extensions of ML which offer higher-order polymor-
phism in a more flexible way. Odersky and Läufer [OL96]
studied a type system that allows explicit type scheme an-
notations for function arguments. Garrigue and Rémy de-
signed PolyML [GR99], where the elimination of polymor-
phic types is said semi-explicit : the source code must men-
tion only the points where polymorphic values are used, their
types can be inferred. Subsuming PolyML, MLF [LBR03]
made the opening of polymorphic values fully implicit. Ac-
tually, these works rely on unification mechanisms and do
not consider subtyping; extending them in this direction re-
mains to be explored. Other proposals try to combine sub-
typing in combination with higher-order polymorphism and
type inference [Car93, PT00, OZZ01]; however, they fail to
type all ML programs.

6.2 On information flow analysis

We plan to integrate the mechanism of abstract and poly-
morphic data-types described in the current paper in the

12

Flow Caml system, our prototype information flow analyzer
for the Caml language. We here give a taste of that by con-
sidering some examples, which illustrate the expressiveness
of HM∃∀(X) in a concrete setting. For the sake of simplic-
ity, we omit some of the security annotations in Flow Caml
types (in particular those on top of →), because they are
out of the topic of the current paper.

We follow up on the example of a bank’s clients file intro-
duced in section 2. As we have explained, the type of every
value giving some information about a client is labeled by its
security level: for instance !alice int is the type of an in-
teger carrying information about the client !alice. The set
of security levels is supposed to be equipped with a lattice
structure, so we have in particular a security level !clients
which is the least upper bound of all clients security levels.
The framework presented in the current paper allows to get
round the problem we pointed out in section 2 by defining
the type client_info as follows:

type client_info = Exists ’a with ’a < !clients .
{ cash : ’a int;

send_msg : ’a int -> unit;
... }

This declaration mentions one existentially quantified vari-
able, ’a, which is the security level of the client, hence it
must be less than !clients, as reflected by the constraint
’a < !clients which bounds the quantification (the lower
bound of ’a is implicitly the bottom element, ⊥, of the se-
curity level lattice). Because ’a is local to the declaration,
it does not appear as a parameter of the type. As a result,
all client records have the same type, client_info, and can
be stored in a list of type client_info list.

Then, one may define a function which iterates on a list
of clients and sends to each of them a message containing
its current balance:

let rec send_balances = function
[] -> []

| { cash = x; send_msg = send } :: tl ->
send x; send_balances tl

We combine the elimination of the existential quantification
with the matching of the record structure, which allows an
intuitive and lightweight syntax. De-sugaring this example
in the syntax of the current paper, we realize that the func-
tion which corresponds to the second case of the pattern
matching

λx.send .tl .(send x; send balances tl)

must, to preserve type abstraction, have a type scheme
where the security level of the integer x and f’s argument
can range over all levels less than !clients, i.e.

∀α[α ≤ !clients].
α int → (α int → unit) → client info list → unit

which is naturally the case in our example. On the contrary,
consider the following ill-typed piece of code:

let illegal_flow = function
{ cash = x1 } :: { send_msg = f2 } :: _ -> f2 x1

| _ -> ()

In the case where the clients list comprises at least two en-
tries, this function sends the balance of the first client to

the second one. This is not allowed by the bank’s security
policy and rejected by the type system: in the first clause of
the pattern-matching, the pattern introduces two variables,
β1 and β2, which are the respective existentially quantified
variables of the two opened records, ranging independently
on security levels less than !clients. The clause’s body
requires β1 to be less than or equal to β2, this yields the
constraint ∀β1β2.(β1 tβ2 ≤ !clients)=. (β1 ≤ β2) which is
not satisfiable, hence the typing failure.

Our next example is a function which computes the total
balance of the bank from a clients file:

let rec total = function
[] -> 0

| { cash = x } :: tl -> x + total tl

The result of total is an integer which is likely to carry
information about any opened record, hence it must be la-
beled by the least upper bounds of their security levels,
which is !clients. Hence, this function receives the type
client info list → !clients int.

As pointed out in the introduction, high order functions
operating on existential types generally require second order
polymorphic types. For instance, let us try to write a func-
tion check which takes as argument a record and a function
which performs some computation on the client’s balance:

let check f { cash = x; send_msg = send } =
send (f x)

To preserve abstraction, this definition requires the function
f to have the type !clients int → ⊥ int, i.e. to accept any
argument whose level is less than or equal to !clients and
to produce a result of level ⊥. Such a type constrains f’s
result not to depend on its argument, which is naturally not
acceptable. A solution consists in packing the function f in
a polymorphic data-type:

type t = ForAll ’a . { op: ’a int -> ’a int }

This allows to write:

let check { op = f }
{ cash = x; send_msg = send } =

send (f x)

which has the type t -> client_info -> unit. In fact, the
data-type t provides an encoding of second order polymor-
phic types; some syntactic sugar avoiding the prior declara-
tion of the type t would be convenient in such a situation.

Our main direction for future work is to study the pos-
sibility to make security levels also values of the Flow Caml
language. This would permit some dynamic tests—whose
correctness must be verified statically—on existentially
quantified variables when opening data structures. Con-
tinuing with our example, this would allow—for instance—
computing the total balance of a subset of clients.

References

[AF97] Alexander S. Aiken and Manuel Fähndrich. Pro-
gram analysis using mixed term and set con-
straints. In Proceedings of the 4th Inter-
national Static Analysis Symposium, Lecture
Notes in Computer Science LNCS, pages 114–126,
Paris, France, September 1997. Springer Verlag.
URL: http://www.cs.berkeley.edu/~aiken/publications/

papers/sas97.ps.

13

[Aug94] L. Augustsson. Haskell B. user’s manual, October
1994.

[Car93] Luca Cardelli. An implementation of FSub. Tech-
nical Report 97, Digital Equipment Corporation
Systems Research Center, 1993.

[CP01] Sylvain Conchon and François Pottier. JOIN(X):
Constraint-based type inference for the join-
calculus. In Proceedings of the 10th European
Symposium on Programming, Lecture Notes in
Computer Science LNCS, pages 221–236. Springer
Verlag, April 2001. URL: http://pauillac.inria.fr/

~fpottier/publis/conchon-fpottier-esop01.ps.gz.

[FM89] You-Chin Fuh and Prateek Mishra. Polymorphic
subtype inference: Closing the theory-practice
gap. In Proceedings of the European Joint Confer-
ence on Theory and Practice of Software Develop-
ment, Lecture Notes in Computer Science LNCS,
pages 167–183, Berlin, March 1989. Springer Ver-
lag.

[FTA02] Jeffrey S. Foster, Tachio Terauchi, and Alex
Aiken. Flow-sensitive type qualifiers. In Pro-
ceedings of the ACM Conference on Pro-
gramming Language Design and Implementation,
2002. URL: http://http.cs.berkeley.edu/~jfoster/

papers/pldi02.ps.gz.

[GR99] Jacques Garrigue and Didier Rémy. Extend-
ing ML with semi-explicit higher-order polymor-
phism. Journal of Functional Programming,
155(1/2):134–168, 1999.

[HM95] My Hoang and John C. Mitchell. Lower bounds
on type inference with subtypes. In Proceedings of
the 22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 176–185, New York,
NY, USA, January 1995. ACM Press.

[HR97] Fritz Henglein and Jakob Rehof. The complexity
of subtype entailment for simple types. In Pro-
ceedings of the 12th IEEE Symposium on Logic
in Computer Science, pages 352–361, June 1997.
URL: http://research.microsoft.com/~rehof/lics97.ps.

[KR03] Viktor Kuncak and Martin Rinard. Structural
subtyping of non-recursive types is decidable. In
Proceedings of the 18th IEEE Symposium on
Logic in Computer Science, June 2003.

[LBR03] Didier Le Botlan and Didier Rémy. MLF: Rais-
ing ML to the power of system F. In Proceedings
of the 8th ACM International Conference on
Functional Programming, Uppsala, Sweden, Au-
gust 2003. URL: http://pauillac.inria.fr/~remy/work/

mlf/icfp.pdf.

[LDG+] Xavier Leroy, Damien Doligez, Jacques Garrigue,
Didier Rémy, and Jérôme Vouillon. The Objective
Caml system. URL: http://caml.inria.fr/.

[Mit91] John C. Mitchell. Type inference with simple
subtypes. Journal of Functional Programming,
1(3):245–286, 1991.

[MP88] J. Mitchell and G. Plotkin. Abstract types have
existential types. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):470–502,
1988.

[MP93] Michel Mauny and François Pottier. An im-
plementation of Caml Light with existential
types. Research Report 2183, Institut de
Recherche en Informatique et en Automatique
, 1993. URL: http://pauillac.inria.fr/~fpottier/

publis/rapport-maitrise.ps.gz.

[OL92] Martin Odersky and Konstantin Läufer. An ex-
tension of ML with first-class abstract types.
In Proceedings of the ACM Workshop on
ML and its Applications, pages 78–91, June
1992. URL: ftp://ftp.math.luc.edu/pub/laufer/papers/

ml+extypes.ps.gz.

[OL96] Martin Odersky and Konstantin Läufer. Putting
type annotations to work. In Proceedings of the
23rd ACM Symposium on Principles of Pro-
gramming Languages, pages 54–67. ACM Press,
January 1996.

[OSW99] Martin Odersky, Martin Sulzmann, and Martin
Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–
55, 1999. URL: http://www.comp.nus.edu.sg/~sulzmann/

publications/tapos.ps.

[OZZ01] Martin Odersky, Christoph Zenger, and Matthias
Zenger. Colored local type inference. ACM SIG-
PLAN Notices, 36(3):41–53, March 2001.

[Per90] N. Perry. The Implementation of Practical Func-
tional Programming Languages. PhD thesis, Uni-
versity of London, 1990.

[Pot00] François Pottier. A versatile constraint-
based type inference system. Nordic Jour-
nal of Computing, 7(4):312–347, November
2000. URL: http://pauillac.inria.fr/~fpottier/

publis/fpottier-njc-2000.ps.gz.

[Pot01] François Pottier. A semi-syntactic soundness
proof for HM(X). Research Report 4150, Insti-
tut de Recherche en Informatique et en Automa-
tique , March 2001. URL: ftp://ftp.inria.fr/INRIA/

publication/RR/RR-4150.ps.gz.

[PS03] François Pottier and Vincent Simonet. Informa-
tion flow inference for ML. ACM Transactions on
Programming Languages and Systems, 25(1):117–
158, January 2003. URL: http://cristal.inria.fr/

~simonet/publis/fpottier-simonet-toplas.ps.gz.

[PT00] Benjamin C. Pierce and David N. Turner. Local
type inference. ACM Transactions on Program-
ming Languages and Systems, 22(1):1–44, Jan-
uary 2000.

[Rém94] Didier Rémy. Programming objects with ML-
ART: An extension to ML with abstract and
record types. In International Symposium on
Theoretical Aspects of Computer Science, pages
321–346, Sendai, Japan, April 1994. Springer Ver-
lag. URL: ftp://ftp.inria.fr/INRIA/Projects/cristal/

Didier.Remy/tacs94.ps.gz.

14

[Sim03a] Vincent Simonet. Flow Caml, information flow
inference in Objective Caml. URL: http://cristal.

inria.fr/~simonet/soft/flowcaml/, June 2003.

[Sim03b] Vincent Simonet. An extension of HM(X) with
bounded existential and universal data-types.
Full version. URL: http://cristal.inria.fr/~simonet/

publis/simonet-ifcp03-full.ps.gz, August 2003.

[Sim03c] Vincent Simonet. Type inference with structural
subtyping: The faithful formalization of an effi-
cient constraint solver. Submitted for publica-
tion. URL: http://cristal.inria.fr/~simonet/publis/

simonet-structural-subtyping.ps.gz, March 2003.

[SOW97] Martin Sulzmann, Martin Odersky, and Martin
Wehr. Type inference with constrained types.
In Proceedings of the 4th International Work-
shop on Foundations of Object-Oriented Lan-
guages, January 1997. URL: http://www.cis.upenn.

edu/~bcpierce/fool/sulzmann.ps.gz.

[Tiu92] Jerzy Tiuryn. Subtype inequalities. In Proceedings
of the 7th IEEE Symposium on Logic in Com-
puter Science, pages 308–317, Santa Cruz, CA,
June 1992. IEEE Computer Society Press.

[Wri93] Andrew K. Wright. Polymorphism for impera-
tive languages without imperative types. Tech-
nical Report 93-200, Rice University, February
1993.

15

