
Information Flow Inference for ML

François Pottier∗

Francois.Pottier@inria.fr
Vincent Simonet∗

Vincent.Simonet@inria.fr

Abstract

This paper presents a type-based information flow analysis
for a call-by-value λ-calculus equipped with references, ex-
ceptions and let-polymorphism, which we refer to as Core
ML. The type system is constraint-based and has decidable
type inference. Its non-interference proof is reasonably light-
weight, thanks to the use of a number of orthogonal tech-
niques. First, a syntactic segregation between values and
expressions allows a lighter formulation of the type system.
Second, non-interference is reduced to subject reduction for
a non-standard language extension. Lastly, a semi-syntactic
approach to type soundness allows dealing with constraint-
based polymorphism separately.

1 Introduction

Information flow analysis consists in statically determining
how a program’s outputs are related to its inputs, i.e. how
the former depend, directly or indirectly, on the latter. This
allows establishing secrecy and integrity properties of a pro-
gram, i.e. proving that some aspects of its behavior convey
no information about those of its inputs deemed “secret”,
or remain independent of those deemed “unreliable”. These
properties are instances of non-interference [7]: they state
the absence of certain dependencies.

Because information flow analysis is complex and error-
prone, it must be automated. During the past few years,
several researchers have advocated its formulation as a type
system. Then, existing type inference techniques provide
automation, while type signatures provide concise, formal
security specifications.

Our interest is in designing – and proving correct – a
type-based information flow analysis for (the kernel of) a
realistic sequential programming language. (In the presence
of concurrency, the termination of a process is observable by
other processes, creating new ways to leak information and
requiring more restrictive type systems. Hence, it appears
reasonable to first experiment with information flow control
in a sequential setting.) To date, most formal results ob-
tained in this area concern extremely reduced programming

∗INRIA, BP 105, F-78153 Le Chesnay Cedex, France.

To be presented at the 29th ACM Symposium on Prin-
ciples Of Programming Languages, Portland, Oregon,
January 2002.

languages. Several papers address pure λ-calculi [8, 1, 16].
Volpano et al. [22, 21] study a core imperative program-
ming language, where all variables store integers. Standing
in sharp contrast, Myers [10, 11] considers the full Java lan-
guage, including objects, exceptions, parameterized classes,
etc. However, he does not give a formal proof of correctness;
indeed, our formal approach uncovered a couple of flaws in
his type system (see section 7.3).

In an attempt to bridge the gap between these ap-
proaches, we consider a call-by-value λ-calculus equipped
with references, exceptions and let-polymorphism, which we
refer to as Core ML. (Presentation set aside, it is identical
to Wright and Felleisen’s Core ML [24], except our excep-
tion names have global scope and are not first-class val-
ues.) Such a calculus can be viewed as the core of the
functional programming language Caml-Light [9]. We en-
dow it with a polymorphic, constraint-based type system,
called mlif, which has decidable type inference and guaran-
tees non-interference.

A (monomorphic) treatment of references in a higher-
order language can be found in [25]. Exceptions have been
studied by Myers [10, 11] for Java. However, Myers’ treat-
ment relies on Java’s explicit, monomorphic throws clauses,
whereas our type system uses a more flexible, polymorphic
effect analysis, giving rise to issues discussed in section 10.
The combination of references, exceptions and constrained
let-polymorphism, as well as our use of a standard subject
reduction technique to establish non-interference, are novel.
Our treatment of un-annotated tuple types and of polymor-
phic equality form ancillary contributions.

2 Overview

Type systems are typically used to establish safety prop-
erties, i.e. prove that a certain invariant holds throughout
the execution of a program. Type safety is such a property.
However, non-interference [7] requires two independent pro-
gram runs, given different inputs, to yield the same output.
As a result, its proof is often more delicate.

Abadi et al. [2] devised a labelled operational semantics of
the λ-calculus, where the labels attached to a term indicate
how much information it carries. Executing a program un-
der such a semantics amounts to performing a dynamic de-
pendency analysis along with the actual computation. Pot-
tier and Conchon [16] later showed how static, type-based
dependency analyses could be systematically derived, and
proven safe, from such a labelled semantics.

Unfortunately, in a programming language with side ef-

fects, it is possible to leak information through the absence
of a certain effect. Indeed, consider the program fragment
“if x = 1 then y := 1”. If, after executing this statement, y
isn’t 1, then x cannot be 1 either. Thus, in that case, exe-
cution transfers information about x to y, even though no
assignment takes place, since the statement y :=1 is skipped.
It appears difficult for a labelled semantics to account for the
effect of code that is not executed; so, the approach must
be reconsidered.

Direct non-interference proofs, although straightforward
for simple programming languages [22], become increasingly
complex in richer languages, requiring cumbersome invari-
ants to be manipulated [25]. To avoid this pitfall, we break
our proof down into several independent steps. First, we
define a special-purpose extension of the language, which
allows explicit reasoning about the commonalities and dif-
ferences between two arbitrary program configurations, and
prove it adequate in a certain sense. Then, we define a
type system for this extended language, and prove that it
enjoys a subject reduction property. Lastly, we show that
non-interference for the base language is a consequence of
these results. In other words, we reduce the initial problem
to subject reduction – a safety property – for our special-
purpose language. The invariant preserved by reduction is
thus expressed in the type system itself, making it easier to
reason about.

In keeping with the ML tradition, our type system has
let-polymorphism and type inference. In addition to struc-
ture, our types describe effects and security levels; polymor-
phism allows writing code that is generic with respect to all
three. Type inference is an indispensable help, because our
types are verbose and information flow is often un-intuitive.
Because we employ subtyping (as well as other forms of
constraints), our type inference system is constraint-based.
Yet, if generalization, instantiation, and constraint manip-
ulation were part of the type system from the outset, our
subject reduction proof would be significantly obfuscated.
To work around this problem, we adopt a semi-syntactic
approach [15], which again consists in breaking down the
construction into two steps. First, we present a system
equipped with an extensional form of polymorphism, whose
formal treatment is remarkably un-intrusive. Then, we build
a constraint-based system in the style of HM(X) [12], which
we prove correct with respect to the former.

We will now proceed as follows. We first present the
syntax of Core ML (section 3). Then, we introduce our
technical extension of it, which we refer to as “Core ML2”,
give an operational semantics to both languages at once, and
show how they relate to each other (section 4). Section 5
introduces mlif0, a type system for Core ML2, and estab-
lishes subject reduction. Combining these results, we obtain
a non-interference property for Core ML (section 6). In sec-
tion 7, we digress and discuss a few language extensions.
Culminating our development, section 8 presents mlif, a
constraint-based type system which we prove correct with
respect to mlif0, allowing type inference. Sections 9 and 10
give some examples and conclude.

3 Core ML

Let k range over integers; let x, m, ε range over disjoint
denumerable sets of program variables, memory locations,
and exception names, respectively. Then, values, outcomes,

expressions and evaluation contexts are defined as follows:

v ::= x | fix f.λx.e | k | () | m | ε v
o ::= v | raise (ε v)
e ::= o

| v v
| ref v | v := v | ! v
| raise v
| let x = v in e
| E[e]

E ::= bind x = [] in e
| [] handle ε x � e
| [] handle x � e

Our values include variables, λ-abstractions, integers, a
unit constant, memory locations, and exceptions. An ab-
straction fix f.λx.e may recursively refer to itself through
the program variable f . (This is done merely to avoid deal-
ing with recursion separately.) Every exception name ε can
be used as a data constructor to build exception values of
the form ε v. Outcomes, known as answers in [24], represent
inactive computations; they are either values or unhandled
exceptions of the form raise (ε v). An expression is an out-
come, a so-called basic expression, a let construct, or another
expression enclosed within an evaluation context.

Basic expressions include function applications as well as
instances of four primitive operations, which allow allocat-
ing, updating, dereferencing memory cells, and raising ex-
ceptions. They are built out of values, rather than out of ar-
bitrary sub-expressions. This syntactic restriction, which is
reminiscent of Flanagan et al.’s A-normal forms [6], offers a
number of advantages. First, it enables a lighter formulation
of our type-and-effect system. Indeed, because values have
no computational effect, a basic expression’s sub-expressions
do not contribute to its effect. Furthermore, it allows our
system to remain independent of the evaluation strategy, i.e.
of the choice of left-to-right vs. right-to-left evaluation order.
User programs, expressed in a more liberal syntax, must be
translated down into our restricted syntax before they can
be analyzed; different evaluation strategies will simply cor-
respond to different translation schemes (see section 5.7).

The let construct let x = v in e has the same mean-
ing as the basic expression (fix f.λx.e) v (where f is not free
in e). However, as usual in ML [24], the let keyword di-
rects the type checker to give x polymorphic type. Follow-
ing Wright [23], we require the binding to contain a value
v, rather than an arbitrary sub-expression, so as to avoid
unsoundness in the presence of imperative features. As a
result, let constructs do not appear among evaluation con-
texts.

Evaluation contexts provide glue to combine expres-
sions and specify their evaluation order. The expression
bind x = e1 in e2 evaluates e1, binds its value (if any) to x,
then evaluates e2. The bind keyword does not request type
generalization; it merely expresses sequentiality. Our deci-
sion of making let and bind separate constructs emphasizes
this distinction. The handle constructs are dual to bind: they
specify what happens after the expression under scrutiny
raises an exception, rather than after it returns a value.

The meaning of the memory locations which occur in a
Core ML expression is given by a store µ, i.e. a partial map
from memory locations to values. We write µ[m 7→ v] and
µ⊕ [m 7→ v] for the store which maps m to v and otherwise
agrees with µ; the latter is defined only if m 6∈ dom(µ).

2

Basic reductions (fix f.λx.e) v /i µ → e[x⇐ v][f ⇐ fix f.λx.e] /i µ (β)
ref v /i µ → m /i µ⊕ [m 7→ newi v] (ref)

m := v /i µ → () /i µ[m 7→ updatei µ(m) v] (assign)
!m /i µ → readi µ(m) /i µ (deref)

let x = v in e /i µ → e[x⇐ v] /i µ (let)

Sequencing bind x = v in e /i µ → e[x⇐ v] /i µ (bind)
raise (ε v) handle ε x � e /i µ → e[x⇐ v] /i µ (handle)

raise (ε v) handle x � e /i µ → e[x⇐ ε v] /i µ (handle-all)
E[o] /i µ → o /i µ (throw-context)

if ¬(E handles boc1 ∨ E handles boc2)

Lifting E[〈o1 | o2〉] / µ → 〈bEc1[o1] | bEc2[o2]〉 / µ (lift-context)
if none of the sequencing rules applies

〈v1 | v2〉 v / µ → 〈v1 bvc1 | v2 bvc2〉 / µ (lift-app)
〈v1 | v2〉 := v / µ → 〈v1 := bvc1 | v2 := bvc2〉 / µ (lift-assign)

! 〈v1 | v2〉 / µ → 〈 ! v1 | ! v2〉 / µ (lift-deref)
raise 〈ε1 v1 | ε2 v2〉 / µ → 〈raise (ε1 v1) | raise (ε2 v2)〉 / µ (lift-raise)

Reduction under a context
e /i µ→ e′ /i µ

′

E[e] /i µ→ E[e′] /i µ
′ (context)

ei /i µ→ e′i /i µ
′ ej = e′j {i, j} = {1, 2}

〈e1 | e2〉 / µ→ 〈e′1 | e′2〉 / µ′
(bracket)

Auxiliary functions
new• v = v update• v v

′ = v′ read• v = v
new1 v = 〈v | void〉 update1 v v

′ = 〈v′ | bvc2〉 read1 v = bvc1
new2 v = 〈void | v〉 update2 v v

′ = 〈bvc1 | v′〉 read2 v = bvc2

Figure 1: Operational semantics of Core ML2

4 Core ML2

4.1 Presentation

Non-interference requires reasoning about two programs and
proving that they share some sub-terms throughout execu-
tion. To make such reasoning easier, we choose to represent
them as a single term of an extended language, called Core
ML2, rather than as a pair of Core ML terms. The extension
is as follows:

v ::= . . . | 〈v | v〉 | void
o ::= . . . | 〈o | o〉
e ::= . . . | 〈e | e〉

The Core ML2 term 〈e1 | e2〉 is intended to encode the pair
of Core ML terms (e1, e2). It is important to note that it can
appear at an arbitrary depth within a term. For instance,
assuming v is a Core ML value, the terms 〈v1 | v2〉 v and
〈v1 v | v2 v〉 both encode the pair (v1 v, v2 v). The former,
however, is more informative, because it explicitly records
the fact that the application node and its argument v are
shared, while the latter doesn’t. We do not allow nesting
〈· | ·〉 constructs.

We need to keep track of sharing not only between ex-
pressions, but also between stores. However, distinct stores
may have distinct domains. To account for this fact, we in-
troduce a special constant void. By creating bindings of the
form m 7→ 〈v | void〉 and m 7→ 〈void | v〉 in the store, we
represent situations where a memory location m is bound
within only one of the two Core ML expressions encoded by
a Core ML2 term.

A configuration e/iµ is a triple of an expression e, a store
µ, and an index i ∈ {•, 1, 2}, whose purpose is explained in
section 4.2. We write e / µ for e /• µ.

A configuration e /i µ is well-formed if the following con-
ditions hold:

• e does not contain void; furthermore, if i ∈ {1, 2}, then
e is a Core ML expression;

• for each m ∈ dom(µ), µ(m) is of the form v, 〈v | void〉
or 〈void | v〉, where v does not contain void.

Furthermore, we consider a memory location m to be bound
within e and µ according to the following rules:

• if µ(m) is of the form v, then m is in scope everywhere
within e and µ;

• if µ(m) is of the form 〈v | void〉 (resp. 〈void | v〉), then:

– m is in scope within the left (resp. right) branch
of every 〈· | ·〉 construct in µ;

– if i = •, then m is in scope within the left (resp.
right) branch of every 〈· | ·〉 construct in e; if i = 1
(resp. i = 2), then m is in scope within e.

A configuration e /i µ is closed if all occurrences of memory
locations in it are in scope. We restrict our attention to
well-formed, closed configurations. (These technical notions
are preserved by reduction and guarantee that void is used
exclusively in store bindings, as described above.) Further-
more, we identify configurations up to consistent renamings
of memory locations.

3

The correspondence between Core ML and Core ML2

is made explicit by means of two projection functions b·ci,
where i ranges over {1, 2}. They satisfy b〈e1 | e2〉ci = ei
and are homomorphisms on other expression forms. They
are extended to stores as follows: bµci maps m to bµ(m)ci
if and only if the latter is defined and isn’t void. Lastly,
the projection of a configuration is defined by be / µci =
beci / bµci.

4.2 Semantics

The small-step operational semantics of Core ML2 is given in
figure 1. The first two groups of reduction rules are those of
Core ML, with a few technical twists explained below. The
rules in the third group are specific to Core ML2; they allow
discarding sharing information if reduction cannot otherwise
take place. The rules in the fourth group allow reduction
under a context.

The rules are designed so that the image of any reduction
step through a projection function is again a valid reduction
step. Reduction may take place outside brackets, causing
both projections to perform the same reduction step; in-
side brackets, letting one projection compute independently,
while the other remains stationary; or lift up the bracket
boundary, discarding some sharing information, while leav-
ing both projections unchanged.

The capture-free substitution of v for x in e, written
e[x⇐ v], is defined in the usual way, except at 〈· | ·〉 nodes,
where we must use an appropriate projection of v in each
branch: 〈e1 | e2〉[x⇐ v] is 〈e1[x⇐ bvc1] | e2[x⇐ bvc2]〉.

We would like the rules in the first two groups to be
applicable under any context. However, (ref), (assign) and
(deref) need a small amount of contextual information. In-
deed, the store must be accessed in a context-dependent
manner: operations which take place inside a 〈· | ·〉 con-
struct must use or affect only one projection of the store.
The index i carried by configurations is used for this pur-
pose. Its value is • when dealing with top-level reduction
steps; it is made 1 (resp. 2) by rule (bracket) when reducing
within the left (resp. right) branch of a 〈· | ·〉 construct. It
is used in the auxiliary functions newi, updatei and readi
to access the store in an appropriate way.

The rules in the second group describe how values and
exceptions are bound (i.e. handled) or propagated. We say
that E handles o if and only if E[o] is reducible through
(bind), (handle) or (handle-all).

The rules in the third group have no computational con-
tent: they leave both projections unchanged. Their purpose
is to prevent 〈· | ·〉 constructs from blocking reduction, which
is done by lifting them up, thus causing some sub-terms to be
duplicated, but allowing reduction to proceed independently
within each branch. For instance, the left-hand expression
in (lift-app) is not a β-redex. In its reduct, the application
node and the sub-term v are duplicated, allowing two β-
redexes to appear. A somewhat analogous rule can be found
in Abadi et al.’s labelled semantics of the λ-calculus [2]. To
understand the significance of the “lift” rules, one must bear
in mind that the contents of every 〈· | ·〉 construct will be
viewed as “secret”. By causing new sub-terms to become
secret during reduction, these rules actually provide an ex-
plicit description of information flow. Our design attempts
to discard as little sharing information as possible; indeed,
replacing all of these rules with e→ 〈bec1 | bec2〉, while com-
putationally correct, would cause the type system to view
every expression as “secret”.

Our “lift” rules are not optimal, because there are situ-
ations where they discard sharing information which could
conceivably be preserved, and because they never re-create
sharing information; however, they are precise enough for
our purposes, which is to prove a particular type system
sound.

We remark that, because of rule (bracket), reductions
under a bracket may be interleaved in an arbitrary order,
causing non-determinism to arise. However, confluence is
preserved, as stated below.

Lemma 4.1 (Confluence) If e / µ→ e′1 / µ
′
1 and e / µ→

e′2 / µ
′
2, then there exists a configuration e′ / µ′ such that

e′1 / µ
′
1 →= e′ / µ′ and e′2 / µ

′
2 →= e′ / µ′.

The semantics of Core ML can be obtained as a fragment
of that of Core ML2.

4.3 Relating Core ML2 to Core ML

We now show that Core ML2 is an appropriate tool to rea-
son simultaneously about the execution of two Core ML
programs. This is expressed by two properties. First, as
explained above, the image of a valid reduction through
projection remains a valid reduction. Conversely, if both
projections of a term can be reduced to an outcome, then
so can the term itself.

Lemma 4.2 Let i ∈ {1, 2}. If e/iµ→ e′/iµ
′, then e/bµci →

e′ / bµ′ci.

Proof. By inspection of (ref), (assign) and (deref). �

Lemma 4.3 (Soundness) Let i ∈ {1, 2}. If e/µ→ e′/µ′,
then be / µci →= be′ / µ′ci.

Proof. By inspection of the reduction rules and appeal to
lemma 4.2. �

A configuration e /i µ is stuck if it is irreducible and e
isn’t an outcome. It is successful if e is an outcome. The
following lemma will be used in the proof of the completeness
property.

Lemma 4.4 (Stuck Configurations) If e / µ is stuck,
then be / µci is stuck for some i ∈ {1, 2}.

Proof. By induction on the structure of e.

◦ Case e = v1 v2. Because neither (β) nor (lift-app) is
applicable, v1 cannot be of the form 〈v11 | v12〉 or fix f.λx.e′.
As a result, for any i ∈ {1, 2}, bv1ci cannot be of the form
fix f.λx.e′. It follows that be / µci is stuck.

◦ Case e = (v1 := v2), e = ! v. Similar to the previous
case.

◦ Case e = ref v, e = (let x = v in e′). e / µ is not stuck.

◦ Case e = raise v. Because e isn’t an outcome, v isn’t of
the form ε v′. Because (lift-raise) isn’t applicable, v isn’t of
the form 〈ε1 v1 | ε2 v2〉. As a result, for some i ∈ {1, 2}, bvci
cannot be of the form ε v′. It follows that be / µci is stuck.

◦ Case e = E[e1]. By inspection of (bind), (handle),
(handle-all) and (throw-context), one determines that if e1

is an outcome, then E[e1] is reducible. So, e1 is not an
outcome, which implies that e1 / µ is stuck. By induction
hypothesis, be1 / µci is stuck, for some i ∈ {1, 2}. By in-
spection of the reduction rules, so is F [be1ci] / bµci, for any

4

evaluation context F ; in particular, so is bE[e1]ci / bµci,
which is be / µci.
◦ Case e = 〈e1 | e2〉. Assume e/µ is stuck. By (bracket),

both e1 /1 µ and e2 /2 µ are irreducible. Because e isn’t
an outcome, there exists i ∈ {1, 2} such that ei isn’t an
outcome. As a result, ei /iµ is stuck. It follows that ei /bµci
is stuck as well. �

Lemma 4.5 (Completeness) Assume be / µci →? oi / µ
′
i

for all i ∈ {1, 2}. Then, there exists a configuration o / µ′

such that e / µ →? o / µ′ and, for all i ∈ {1, 2}, bo / µ′ci =
oi / µ

′
i.

Proof. Let us first establish that e/µ does not admit an infi-
nite reduction sequence. To this end, let us first notice that
no infinite reduction sequence can consist exclusively of in-
stances of the “lift” reduction rules. (Indeed, each of these
rules moves some 〈· | ·〉 constructor strictly closer to the
term’s root.) Furthermore, these are the only rules which
leave both projections of a configuration unchanged. In light
of this remark, if e/µ admits an infinite reduction sequence,
then lemma 4.3 yields an infinite reduction sequence out of
be / µci, for some i ∈ {1, 2}. However, this is impossible,
because both be / µc1 and be / µc2 can be reduced to nor-
mal forms, and the semantics of the Core ML fragment is
deterministic.

As a result, e / µ can be reduced to an irreducible con-
figuration. Let us now reason by induction on the number
of steps in this reduction sequence.

First, assume the sequence is empty. Then, e / µ is irre-
ducible. If e /µ is stuck, then so is one of its projections, by
lemma 4.4. However, this is impossible, since both be / µc1
and be/µc2 can be reduced to successful configurations. So,
e / µ must be successful. Then, so must its projections; the
result follows.

Next, assume the sequence begins with e / µ → e0 / µ0.
By lemma 4.3, be / µci → be0 / µ0ci holds for all i ∈ {1, 2}.
By lemma 4.1, this implies be0 / µ0ci →? oi / µ

′
i. Thus, we

may apply the induction hypothesis to e0 /µ0, showing that
it reduces to some o / µ′ such that bo / µ′ci = oi / µ

′
i holds

for all i ∈ {1, 2}. The result follows. �

Our completeness result requires both projections to con-
verge; it is not applicable if one of them diverges. Indeed, de-
fine e as bind x = 〈Ω | 0〉 in 0, where Ω is a non-terminating
expression. Its right projection is bind x = 0 in 0, which
reduces to 0; yet, e cannot be reduced to any term whose
right projection is 0, because e only reduces to itself. Such a
formulation of completeness will naturally lead us to estab-
lish a weak non-interference result, whereby two programs
can be guaranteed to yield the same result only if they both
terminate. We do not aim at a strong non-interference re-
sult, because it would make little sense to plug information
leaks related to termination without attacking timing leaks
in general. Furthermore, such a result would require a much
more restrictive type system.

In essence, the completeness lemma guarantees that we
have provided enough “lift” rules to allow reducing all mean-
ingful Core ML2 expressions. In the next section, each of
these rules will add one case to our subject reduction proof,
forcing us to ensure that our type system accounts for all
possible kinds of information flow.

5 Typing Core ML2

We now give a type system, called mlif0, for Core ML2. It
is a ground type system: it has no type variables and deals
with polymorphism in a simple, abstract way. As a result,
it does not describe an algorithm; we will address this issue
in section 8.

Throughout the paper, every occurrence of ∗ stands for
a distinct anonymous meta-variable of appropriate kind.

5.1 Types

Let (L,≤) be a lattice whose elements, denoted by ` and pc,
represent security levels. (Following Denning [4], we typ-
ically use the meta-variable pc, rather than `, when con-
sidering information obtained by observing the value of the
“program counter”.) Types, rows and alternatives are de-
fined as follows:

t ::= unit
| int`

| (t
pc [r]−−−→ t)`

| t ref`

| r exn`

r ::= {ε 7→ a}ε∈E
a ::= Abs

| Pre pc

A row r is an infinite, quasi-constant family of alternatives
indexed by E . (A family is quasi-constant if all but a finite
number of its entries are equal.) We write (ε : a; r) for the
row whose element at index ε is a and whose other elements
are given by the sub-row r, which is indexed by E \ {ε}. We
write a ∈ r to indicate that a is a member of r’s codomain.

Our types are those of ML’s type system, decorated with
extra annotations of two kinds.

First, we employ rows to keep track of exceptions, as
in existing type-and-effect systems, such as Pessaux and
Leroy’s [13]. If an exception value has type r exn∗, then
the row r contains information about the exception’s name.
Specifically, for every ε ∈ E , if r(ε) is Abs, then the excep-
tion’s name cannot be ε; if, on the other hand, it is Pre ∗,
then the exception may be named ε. Furthermore, func-
tion types carry an effect [r]. It is also a row, and gives a
conservative description of all exceptions possibly raised by
executing the function.

Second, we use security levels to keep track of how much
information can be obtained by looking up integer values,
executing functions, dereferencing memory locations, and
handling exceptions. The remainder of this section describes
their meaning.

Because there is only one value of type unit, the value
of a unit expression yields no information whatsoever. As a
result, it would be superfluous for the unit type constructor
to carry a security level. Immutable tuple and record types
can be dealt with similarly; see section 7.1. Thus, we break
the convention set forth in a number of previous papers [8,
16] that all types be of the form ∗`. We expect this feature
to help reduce verbosity in practice.

The type int` describes integer expressions whose value
may reflect information of security level `.

Function types carry two security annotations. The ex-
ternal annotation ` represents information about the func-
tion’s identity. When the function is applied, part of this
information may be reflected in its result or in other aspects

5

int⊕ ([⊕]−−−−→ ⊕)⊕ � ref⊕ ⊕ exn⊕

{ε 7→ ⊕}ε∈E Pre ⊕ Abs ≤ Pre ∗

Figure 2: Subtyping

of the function’s behavior (i.e. in its effect); as a result, their
security level will be made ` or greater. The annotation pc,
found above the → symbol, tells how much information the
function obtains merely by gaining control – indeed, observ-
ing that a particular function is called may allow telling
which branches were previously taken. pc can be thought
of as an extra parameter to the function, and indeed it is
contravariant (see section 5.2). To avoid leaking this infor-
mation, the function will be allowed to write into memory
cells, or to raise exceptions, only at level pc or greater. This
explains why the annotation pc is sometimes described as a
lower bound on the level of the function’s effects [8].

Reference types carry one annotation `, which represents
information about the reference’s identity, i.e. about its ad-
dress. Information about the reference’s contents is found
within the parameter t.

Exceptions are described by rows, within which every
non-Abs entry, of the form ε 7→ Pre pc, carries an annota-
tion pc, telling how much information will be obtained by
observing (i.e. handling) the exception, if it is named ε. We
follow Myers [10, 11] and associate a distinct security level
with every exception name, so as to obtain better precision.
Our rows are closely related to Myers’ sets of path labels
X, which map every exception name to either a special con-
stant ∅ or a security level; compare these with our alterna-
tives Abs and Pre pc. (See section 10 for further comparison
with [10, 11].)

In addition to a row, exception types also carry an ex-
ternal annotation `. It is, in fact, redundant with the row
r. That is, manipulating an exception as a first-class value
causes its external level ` to increase, leaving the row r un-
changed; when the exception is later raised, every non-Abs
entry in r is raised to level ` or greater. It would be possi-
ble to suppress the external annotation, at the cost of some
extra implementation complexity. Another reasonable ap-
proach would be to restrict the language so that exceptions
are no longer first-class values; this would allow us to do
away with exn entirely.

The reader may notice that rows do not record the type
of exception arguments, i.e. the constructor Pre has no type
parameter. Indeed, as in ML, we make exceptions monomor-
phic by assuming given a fixed mapping typexn from excep-
tion names to types. This decision is useful in two ways.
First, it should make function types (which include a row)
much more compact. Second, it makes our subtyping re-
lation atomic (see section 5.2), which we believe opens the
way to simpler and (in practice) more efficient constraint
solving techniques.

5.2 Subtyping

We equip types, rows and alternatives with a subtyping rela-
tion ≤, which extends the partial order (L,≤). It is defined
by the axioms in figure 2. The axiom int⊕ is a compact
version of the assertion int`1 ≤ int`2 ⇐⇒ `1 ≤ `2. In
other words, it states that int’s parameter is covariant. The

other axioms are to be understood similarly; ⊕, 	 and �
represent covariant, contravariant and invariant parameters,
respectively. The fifth axiom extends subtyping to rows,
point-wise and covariantly.

The last axiom is the only one which relates two con-
structors of different arities, apparently making the subtyp-
ing relation non-atomic. However, it is only superficially so.
Indeed, it is possible to give a presentation of the system
where the set of alternatives is merely the disjoint union
{Abs} ∪ L, causing the explicit injection Pre to disappear,
because security levels become a subset of alternatives. In
this presentation, subtyping is atomic [18]: alternatives form
a set of atoms.

The use of subtyping in information flow control is ubiq-
uitous [3, 4, 21, 8] and appears essential, because it al-
lows building a directed view of the program’s information
flow graph, yielding better precision than a unification-based
analysis.

5.3 Additional notation

A polytype s is a nonempty, upward-closed set of types. A
polytype environment Γ is a partial mapping from program
variables to polytypes. Γ[x 7→ s] denotes the environment
which maps x to s and agrees with Γ otherwise. A memory
environment M is a partial mapping from memory locations
to types.

We define ` C t (read: ` guards t) as follows:

` ≤ `′

` C unit ` C int`
′

` C (∗ ∗ [∗]−−−→ ∗)`
′

` C ∗ ref`
′

` C ∗ exn`
′

The assertion ` C t requires t to have security level ` or
greater, and is used to record a potential information flow.
Note that, for any given ` and t, there exists a supertype
t′ of t such that ` C t′ holds. Thus, the presence of ` C t
as a premise typically never prevents the application of a
typing rule: indeed, preceding that rule with a subtyping
step will satisfy the premise. One exception is e-Assign,
where t cannot be promoted to a supertype because it ap-
pears as an invariant argument to the ref type constructor.
The predicate C has transitive behavior:

Lemma 5.1 If `′ ≤ ` and ` C t and t ≤ t′ then `′ C t′.

Proof. It is easy to see that ` C t is equivalent to ` ≤ level(t)
for some appropriately defined function level. The result
follows. �

To every row r, we associate two security levels, defined
by t r = t{pc | Pre pc ∈ r} and u r = u{pc | Pre pc ∈ r}.
Note that Abs entries in r do not contribute to these levels.

5.4 Typing judgements

We distinguish two forms of typing judgements: one deals
with values only, the other with arbitrary expressions. Be-
cause values are normal forms, they have no side effects, so
the former look quite simple:

Γ,M ` v : t

(We also write Γ,M ` v : s when Γ,M ` v : t holds for
all t ∈ s.) On the other hand, expressions do produce side
effects, so the latter are more elaborate:

pc,Γ,M ` v : t [r]

6

The pc parameter again tells how much information the ex-
pression may acquire by gaining control; it is a lower bound
on the level of the expression’s effects. Previous works [21, 8]
employ a similar parameter. The row r approximates the set
of exceptions which the expression may raise.

Two extra judgement forms are employed to type stores:
M ` µ and configurations: Γ ` e /i µ : t [r].

In typing judgements, we omit Γ and M when they are
empty; we sometimes omit pc and r when they are unspeci-
fied (i.e. when they could be written ∗).

Even though the security lattice (L,≤) is arbitrary, it
is desirable to establish a simple dichotomy between “low”
and “high” security levels. Such a distinction simplifies our
proofs; full generality will be recovered in section 6. In the
present section, we assume H is a fixed, upward-closed sub-
set of L. We will view levels inside (resp. outside) H as
“high” (resp. “low”).

Non-interference demands that two expressions which
differ only in high-level sub-terms have identical low-level
behavior. To achieve this, our type system requires ex-
pressions of the form 〈e1 | e2〉 – which we use to encode
the differences between two Core ML expressions – to have
high-security result and side effects. (See v-Bracket and
e-Bracket in figure 3.) This will be our only use of H in
this section.

5.5 Typing rules

We now comment on the typing rules, given in figure 3.
v-Unit and v-Int assign base types to constants. v-Void

allows typing values of the form 〈v | void〉 or 〈void | v〉
by pretending void has the same type as v. v-Loc and
v-Var assign types to memory locations and to variables
by looking up the appropriate environment. Note that Γ(x)
is a polytype, of which v-Var selects an arbitrary instance.
As usual in type-and-effect systems, v-Abs records, on top
of the → type constructor, information about a function’s
side effects. v-Exn associates to the exception value ε v
a row which maps the name ε to Pre ∗ and leaves other
entries unconstrained, allowing them to be Abs. v-Bracket

requires the components of a 〈· | ·〉 construct to have a
common type, which must have “high” security level, i.e.
be guarded by some (arbitrary) element of H. v-Sub is
standard.

e-Value allows viewing a value as an expression, and
reflects the fact that values have no side effect.

e-App governs function application. Because the effect of
a function application is exactly the function’s latent effect,
the security level pc, which should represent a lower bound
on the level of the former, must also be a lower bound on the
latter’s. Because a function’s side effects may reveal infor-
mation about its identity, their level must equal or exceed
the function’s own security level, namely `. As a result of
these remarks, the function’s body must run at level pc t `.
Because the function’s result, too, may reveal information
about its identity, we require its type to be guarded by `.

e-Ref and e-Assign require pc C t to ensure that pc is
indeed a lower bound on the security level of the memory
cell that is written. e-Assign and e-Deref require ` C t to
reflect the fact that writing or reading a cell may indirectly
reveal information about its identity.

e-Raise requires pc ≤ u r, ensuring that pc is a lower
bound on the level of every non-Abs entry in the row r. Thus,
any code fragment able to observe this expression’s side ef-
fect must run at level pc or greater (see e-Bind, e-Handle

and e-HandleAll). The security level `, which reflects ad-
ditional, exception-name-independent information, is dealt
with similarly.

Because let only binds values, e-Let is nearly as simple
as in ML. Note that v can be given a polytype s, allowing x
to be used at different types within e.

In a binding construct bind x = e1 in e2, the expres-
sion e2 observes, if it receives control, that no exception
was raised by e1. To account for this information channel,
e-Bind typechecks e2 at a security level augmented with
t r1, the combined level of all exceptions which e1 can po-
tentially raise. This is a conservative approximation, which
works well in the common case where e1 is statically known
never to raise exceptions; see section 10 for details. r1 t r2

denotes the least common supertype of r1 and r2.
Like e-Bind, e-Handle typechecks e2 at an increased

security level, reflecting the fact that, by gaining control, e2

observes that e1 raised an exception named ε. The incre-
ment is exactly pc′, the security level associated with ε in
e1’s effect, so the analysis is, in this case, quite accurate.
Because the result of the handle construct may also allow
determining whether the handler was executed, we require
pc′ C t. e-HandleAll is analogous; however, because the
construct allows observing any exception, regardless of its
name, we again use t r1 as a conservative approximation of
how much information is gained. Myers [10, 11] performs
the same approximation.

As explained earlier, e-Bracket requires both compo-
nents of a 〈· | ·〉 expression to have a common type, and
demands that its side effects and its result be of “high”
security level, i.e. guarded by an arbitrary pc′ ∈ H. The
auxiliary predicate e⇑ holds if and only if e is of the form
E1[. . . En[raise (ε v)] . . .] where n ≥ 0 and none of the Ei
handles raise (ε v). The use of this predicate in e-Bracket’s
last premise is technical; it is required for subject reduction
to hold.

5.6 Subject reduction

Let us first state a few auxiliary lemmas, whose proofs are
straightforward.

Lemma 5.2 (Subsumption) pc′ ≤ pc and pc,Γ,M ` e :
t [r] imply pc′,Γ,M ` e : t [r].

Proof. By induction on the derivation of pc,Γ,M ` e : t [r].
By monotonicity of t, contravariance of → with respect to
its pc parameter, rule v-Sub, lemma 5.1, and the induction
hypothesis, it is easy to check that every premise remains
valid when pc decreases. The result follows. �

Lemma 5.3 (Projection) Let i ∈ {1, 2}. If Γ,M ` v : t
then Γ,M ` bvci : t. If pc,Γ,M ` e : t [r] then pc,Γ,M `
beci : t [r].

Proof. By induction on the input derivation. The only case
of interest is that of e-Bracket, where the expression at
hand is 〈e1 | e2〉. Then, one of the first two premises is
pc t pc′,Γ,M ` ei : t [r]. Lemma 5.2 yields pc,Γ,M ` ei :
t [r], as required. �

Lemma 5.4 (Guard) If Γ,M ` 〈v1 | v2〉 : t then there
exists pc′ ∈ H such that pc′ C t.

Proof. Thanks to lemma 5.1, we may assume, w.l.o.g., that
the derivation of Γ,M ` 〈v1 | v2〉 : t does not end with

7

Values

v-Unit

Γ,M ` () : unit
v-Int

Γ,M ` k : int∗
v-Void

Γ,M ` void : ∗
v-Loc

Γ,M ` m : M(m) ref∗
v-Var

t ∈ Γ(x)

Γ,M ` x : t

v-Abs

pc,Γ[x 7→ t′][f 7→ (t′
pc [r]−−−→ t)`],M ` e : t [r]

Γ,M ` fix f.λx.e : (t′
pc [r]−−−→ t)`

v-Exn

Γ,M ` v : typexn(ε)

Γ,M ` ε v : (ε : Pre ∗; ∗) exn∗

v-Bracket

Γ,M ` v1 : t Γ,M ` v2 : t
pc′ ∈ H pc′ C t

Γ,M ` 〈v1 | v2〉 : t

v-Sub

Γ,M ` v : t′ t′ ≤ t
Γ,M ` v : t

Expressions

e-Value

Γ,M ` v : t

∗,Γ,M ` v : t [∗]

e-App

Γ,M ` v1 : (t′
pct` [r]−−−−−→ t)` Γ,M ` v2 : t′ ` C t

pc,Γ,M ` v1 v2 : t [r]

e-Ref

Γ,M ` v : t pc C t

pc,Γ,M ` ref v : t ref∗ [∗]

e-Assign

Γ,M ` v1 : t ref` Γ,M ` v2 : t
pc t ` C t

pc,Γ,M ` v1 := v2 : unit [∗]

e-Deref

Γ,M ` v : t′ ref` t′ ≤ t ` C t

pc,Γ,M ` ! v : t [∗]

e-Raise

Γ,M ` v : r exn` pc t ` ≤ u r
pc,Γ,M ` raise v : ∗ [r]

e-Let

Γ,M ` v : s pc,Γ[x 7→ s],M ` e : t [r]

pc,Γ,M ` let x = v in e : t [r]

e-Bind

pc,Γ,M ` e1 : t′ [r1]
pc t (t r1),Γ[x 7→ t′],M ` e2 : t [r2]

pc,Γ,M ` bind x = e1 in e2 : t [r1 t r2]

e-Handle

pc,Γ,M ` e1 : t [ε : Pre pc′; r]
pc t pc′,Γ[x 7→ typexn(ε)],M ` e2 : t [ε : a; r] pc′ C t

pc,Γ,M ` e1 handle ε x � e2 : t [ε : a; r]

e-HandleAll

pc,Γ,M ` e1 : t [r1]
pc t (t r1),Γ[x 7→ r1 exn∗],M ` e2 : t [r2] (t r1) C t

pc,Γ,M ` e1 handle x � e2 : t [r2]

e-Bracket

pc t pc′,Γ,M ` e1 : t [r] pc t pc′,Γ,M ` e2 : t [r]
pc′ ∈ H (pc′ C t) ∨ (e1⇑) ∨ (e2⇑)

pc,Γ,M ` 〈e1 | e2〉 : t [r]

e-Sub

pc,Γ,M ` e : t′ [r′] t′ ≤ t r′ ≤ r
pc,Γ,M ` e : t [r]

Configurations

Store

dom(M) = dom(µ)
∀m ∈ dom(µ) M ` µ(m) : M(m)

M ` µ

Conf

pc,Γ,M ` e : t [r] M ` µ
Γ ` e / µ : t [r]

Figure 3: The type system mlif0

8

an instance of v-Sub. Thus, it must end with an instance
of v-Bracket, among whose premises we find pc′ C t and
pc′ ∈ H. �

Lemma 5.5 (Store access) Let i be in {•, 1, 2}. Assume
Γ,M ` v : t and Γ,M ` v′ : t. Then, Γ,M ` readi v : t
holds. Moreover, if i ∈ {1, 2}, assume there exists some
pc′ ∈ H such that pc′ C t. Then, Γ,M ` newi v : t and
Γ,M ` updatei v v

′ : t hold.

Proof. By definition of the functions new, update and read
(figure 1), by lemma 5.3, by v-Void and v-Bracket. �

Lemma 5.6 (Substitution) Assume M ` v : s. Then,
Γ[x 7→ s],M ` v′ : t implies Γ,M ` v′[x ⇐ v] : t. Also,
pc,Γ[x 7→ s],M ` e : t [r] implies pc,Γ,M ` e[x ⇐ v] :
t [r].

Proof. By induction on the input derivation.

◦ Case v-Var. If v′ is x, then the premise is t ∈ s. Thus,
the hypothesis M ` v : s implies M ` v : t, and, a fortiori,
Γ,M ` v : t. Considering v′[x ⇐ v] = v, this was the goal.
If, on the other hand, v′ isn’t x, then the result stems from
Γ[x 7→ s](v′) = Γ(v′) and v′[x⇐ v] = v′.

◦ Case v-Abs. Then, the premise must be of the form
pc′,Γ[x 7→ s][y 7→ t′][f 7→ tf],M ` e′ : t′′ [r′]. Because
typing judgements are stable under α-conversion, we will
assume, w.l.o.g., that x, f and y are distinct. Then, Γ[x 7→
s][y 7→ t′][f 7→ tf] coincides with Γ[y 7→ t′][f 7→ tf][x 7→ s].
We conclude by applying the induction hypothesis, followed
by an instance of v-Abs.

◦ Case v-Bracket. The first premise is of the form
Γ[x 7→ s],M ` v′1 : t. By lemma 5.3, the hypothesis M `
v : s implies M ` bvc1 : s. Thus, by induction hypothesis,
Γ,M ` v′1[x ⇐ bvc1] : t holds. The second premise is dealt
with similarly. By v-Bracket, we obtain Γ,M ` 〈v′1[x ⇐
bvc1] | v′2[x⇐ bvc2]〉 : t, which, considering our definition of
substitution (section 4.2), was our goal.

Other cases are either immediate or analogous to those
above. �

Lemma 5.7 (Value) pc,Γ,M ` v : t [r] implies Γ,M `
v : t.

Proof. By induction on the proof of pc,Γ,M ` v : t [r].

◦ Case e-Value. Immediate.

◦ Case e-Sub. The result follows from the induction
hypothesis and v-Sub.

◦ Case e-Bracket. The predicate ·⇑ is never true of
a value, so pc′ C t must hold. The result follows from the
induction hypothesis and v-Bracket. �

We can now state our main lemma:

Lemma 5.8 (Subject reduction) Let e /i µ → e′ /i µ
′.

Assume pc,M ` e : t [r] and M ` µ. If i ∈ {1, 2}, assume
pc ∈ H. Then, there exists a memory environment M ′,
which extends M , such that pc,M ′ ` e′ : t [r] and M ′ ` µ′.

Proof. By induction on the derivation of e /i µ → e′ /i µ
′.

We assume, w.l.o.g., that the derivation of pc,M ` e : t [r]
does not end with an instance of e-Sub. As a result, it must
end with an instance of the single syntax-directed rule that
matches e’s structure.

◦ Case (β). e is (fix f.λx.e0) v. Let θ = (t′
pct` [r]−−−−−→

t)`. By e-App, we have M ` fix f.λx.e0 : θ and M ` v :
t′. The former’s derivation must end with an instance of
v-Abs, followed by a number of instances of v-Sub. Because
→ is contravariant (resp. covariant) in its first and second
(resp. third and fourth) parameters, applying lemma 5.2 and
e-Sub to v-Abs’s premise yields pc, (x 7→ t′′; f 7→ θ′),M `
e0 : t [r], for some t′′ and θ′ such that t′ ≤ t′′ and θ ≤ θ′.
By v-Sub, M ` v : t′′ and M ` fix f.λx.e0 : θ′ hold. Then,
lemma 5.6 yields pc,M ` e0[x⇐ v][f ⇐ fix f.λx.e0] : t [r].

◦ Case (ref). e is ref v, e′ is m and µ′ is µ ⊕ [m 7→
newi v]. By e-Ref, we have M ` v : t′ and pc C t′ and t =
t′ ref∗. By lemma 5.5, these imply M ` newi v : t′. Define
M ′ = M [m 7→ t′]. By Store, M ` µ yields dom(M) =
dom(µ). Because µ⊕ [m 7→ v] is defined, m isn’t a member
of dom(µ). So, M ′ extends M . Because M ′(m) = t′, v-Loc

and e-Value yield pc,M ′ ` e′ : t [r]. Lastly, M ` µ and
M ` newi v : t′ entail M ′ ` µ′.
◦ Case (assign). e is m := v and e′ is (). By e-Assign,

we must have M ` m : t′ ref∗ and M ` v : t′ and pc C t′.
Furthermore, t must be unit, which implies pc,M ` e′ :
t [r]. By v-Loc, v-Sub and by invariance of the ref type
constructor, M ` m : t′ ref∗ implies M(m) = t′. Thus,
M ` µ entails M ` µ(m) : t′. By lemma 5.5, we have
M ` updatei µ(m) v : t′, which yields M ` µ′.
◦ Case (deref). e is !m. By e-Deref, we have M ` m :

t′ ref∗, where t′ ≤ t. As above, this entails M ` µ(m) : t′.
By lemma 5.5, M ` readi µ(m) : t′ follows. Conclude with
v-Sub and e-Value.

◦ Case (let). By e-Let and lemma 5.6.

◦ Case (bind). e is bind x = v in e2 and e′ is e2[x ⇐ v].
By e-Bind, we have pc,M ` v : t′ [r1] and pct(t r1), (x 7→
t′),M ` e2 : t [r2], where r2 ≤ r. By lemma 5.7, the
former implies M ` v : t′. By lemma 5.2, the latter implies
pc, (x 7→ t′),M ` e2 : t [r2]. By lemma 5.6 and e-Sub, we
obtain pc,M ` e2[x⇐ v] : t [r].

◦ Case (handle). e is raise (ε v) handle ε x � e2 and e′

is e2[x ⇐ v]. By e-Handle, we have pc,M ` raise (ε v) :
t [ε : Pre pc′; r′] and pc t pc′, (x 7→ typexn(ε)),M ` e2 :
t [ε : a; r′], where r equals (ε : a; r′). By e-Sub, e-Raise,
v-Sub and v-Exn, the former yields M ` v : typexn(ε). By
lemmas 5.6 and 5.2, this yields pc,M ` e2[x⇐ v] : t [r].

◦ Case (handle-all). e is raise (ε v) handle x � e2 and e′ is
e2[x ⇐ ε v]. By e-HandleAll, pc,M ` raise (ε v) : t [r1]
and pc t (t r1), (x 7→ r1 exn`),M ` e2 : t [r] hold. By
e-Sub, e-Raise, v-Sub and v-Exn, and by covariance of the
exn type constructor, the former yields M ` ε v : r1 exn`.
Lemmas 5.6 and 5.2 yield pc,M ` e2[x⇐ ε v] : t [r].

◦ Case (throw-context). e is E[o] and e′ is o. Several
sub-cases arise.

Sub-case E = bind x = [] in e2. By e-Bind, we must
have pc,M ` o : t′ [r1], where r1 ≤ r. Because o must be
of the form raise (ε v) or 〈raise (ε1 v1) | raise (ε2 v2)〉, this
judgement must be a consequence of e-Raise, e-Bracket

and e-Sub. A derivation of identical shape can be built to
establish pc,M ` o : t [r1]. (In the case of e-Bracket,
the fourth premise is satisfied, though its first disjunct may
be false, because the other two hold.) The result follows by
e-Sub.

Sub-case E = [] handle ε x � e2. By e-Handle, we
have pc,M ` o : t [ε : Pre ∗; r′]. o must be of the form v
or raise (ε′ v) or 〈v1 | raise (ε2 v2)〉 or 〈raise (ε1 v1) | v2〉 or
〈raise (ε1 v1) | raise (ε2 v2)〉, where ε′, ε1 and ε2 are distinct

9

from ε. As a result, a derivation of identical shape can be
built to establish pc,M ` o : t [ε : a; r′], that is, pc,M `
o : t [r].

Sub-case E = [] handle x � e2. By e-HandleAll,
pc,M ` o : t [r1] holds. Because o must be a value, a
derivation of identical shape yields pc,M ` o : t [r].

◦ Case (lift-app). e is 〈v1 | v2〉 v. Let θ = (t′
pct` [r]−−−−−→ t)`.

e-App’s premises are M ` 〈v1 | v2〉 : θ and M ` v : t′ and
` C t. Lemma 5.3 yields M ` vi : θ and M ` bvci : t′, for
i ∈ {1, 2}. Then, e-App yields pc t `,M ` vi bvci : t [r].
Furthermore, applying lemma 5.4 to the first premise above
and recalling that H is upward-closed yields ` ∈ H. Because
` C t, e-Bracket is applicable and yields pc,M ` e′ : t [r].

◦ Case (lift-assign). e is 〈v1 | v2〉 := v. e-Assign’s
premises are M ` 〈v1 | v2〉 : t′ ref` and M ` v : t′ and
pct ` C t′. As above, applying lemma 5.3 and building new
instances of e-Assign, we obtain pct`,M ` vi:=bvci : t [r],
for i ∈ {1, 2}. Similarly, lemma 5.4 allows establishing
` ∈ H. The result follows by e-Bracket.

◦ Case (lift-deref). e is ! 〈v1 | v2〉. e-Deref’s premises
are M ` 〈v1 | v2〉 : t′ ref` and t′ ≤ t and ` C t. As above,
applying lemma 5.3 and building new instances of e-Deref,
we obtain pc t `,M ` ! vi : t [r], for i ∈ {1, 2}. Similarly,
lemma 5.4 yields ` ∈ H. Lastly, by e-Bracket, we obtain
pc,M ` 〈 ! v1 | ! v2〉 : t [r].

◦ Case (lift-raise). e is raise 〈ε1 v1 | ε2 v2〉. e-Raise’s
premises are M ` 〈ε1 v1 | ε2 v2〉 : r exn` and pct ` ≤ u r. As
above, lemma 5.3 and e-Raise yield pct`,M ` raise (εi vi) :
t [r], for i ∈ {1, 2}, while lemma 5.4 yields ` ∈ H. The
result follows by e-Bracket, whose fourth premise is satis-
fied, though ` C t may be false, because the other disjuncts
hold.

◦ Case (lift-context). e is E[〈o1 | o2〉]. If E is a bind con-
text, then, because e cannot be reduced by (bind), 〈o1 | o2〉
cannot be a value. If, on the other hand, E is a handle
context, then, because (throw-context) isn’t applicable, E
must handle o1 or o2. In either case, we conclude that
oi is of the form raise (ε v), for some i ∈ {1, 2}. Now,
e’s typing derivation must end with an instance of e-Bind,
e-Handle or e-HandleAll, whose first premise is of the
form pc,M ` 〈o1 | o2〉 : t′ [r1]. Because 〈o1 | o2〉 isn’t a
value, this must be a consequence of e-Sub and e-Bracket,
which yields pc t `,M ` oi : t′ [r1], for some ` ∈ H and
for i ∈ {1, 2}. By e-Raise, v-Sub and v-Exn, this im-
plies Pre ` ≤ r1(ε) and ` ≤ t r1; thus, the security as-
sumption in e-Bind, e-Handle or e-HandleAll’s second
premise is greater than or equal to `. As a result, by ap-
plying lemma 5.3 to that premise, then building new in-
stances of e-Bind, e-Handle or e-HandleAll, we obtain
pc t `,M ` bEci[oi] : t [r], for i ∈ {1, 2}. There remains
to apply e-Bracket. If E is a bind context, then bEci[oi]⇑
holds for some i ∈ {1, 2}; if, on the other hand, E is a
handle context, then ` C t holds, according to e-Handle or
e-HandleAll’s third premise. In either case, e-Bracket’s
fourth premise holds.

◦ Case (bracket). e is 〈e1 | e2〉 and e′ is 〈e′1 | e′2〉. We
have ei /i µ → e′i /i µ

′ and ej = e′j , where {i, j} = {1, 2}.
Because 〈e1 | e2〉 isn’t a value, its typing derivation must end
with an instance of e-Bracket, whose first two premises are
pct pc′,M ` ei : t [r] and pct pc′,M ` ej : t [r]. Because
pc′ ∈ H, the induction hypothesis is applicable, yielding
a memory environment M ′, which extends M , such that
pc t pc′,M ′ ` e′i : t [r] and M ′ ` µ′. Because M ′ extends

M , pct pc′,M ′ ` ej : t [r] holds as well. The result follows
by e-Bracket.

◦ Case (context). e is E[e0] and e′ is E[e′0], where e0 /i
µ→ e′0 /i µ

′. Applying the induction hypothesis to e-Bind,
e-Handle or e-HandleAll’s first premise yields a version
of it with M and e0 replaced with M ′ and e′0, where M ′

extends M and M ′ ` µ′ holds. Because M extends M ′, the
second premise remains valid when the former is replaced
with the latter. Build a new instance of e-Bind, e-Handle

or e-HandleAll to conclude. �

The previous lemma entails the following, more abstract
statement:

Theorem 5.1 (Subject reduction) If ` e /µ : t [r] and
e /µ→ e′ /µ′ then ` e′ /µ′ : t [r].

Proof. By Conf and lemma 5.8. �

We do not establish progress (i.e. “no well-typed config-
uration is stuck”), even though it does hold, because it is
unrelated to our concerns.

5.7 On evaluation order

As explained in section 3, our restricted syntax is fully ex-
plicit about evaluation order. In practice, it is possible to use
more permissive syntax, provided some evaluation strategy
is fixed. For instance, if left-to-right evaluation order is cho-
sen, then e1 e2 (the application of an expression to another
expression) is syntactic sugar for bind x1 = e1 in bind x2 =
e2 in x1 x2. This gives rise to the following derived typing
rule:

pc,Γ,M ` e1 : (t′
pct`t(t r1)t(t r2) [r]−−−−−−−−−−−−−−→ t)` [r1]

pc t (t r1),Γ,M ` e2 : t′ [r2] ` C t

pc,Γ,M ` e1 e2 : t [r t r1 t r2]

Conversely, under right-to-left evaluation order, e1 e2 is en-
coded as bind x2 = e2 in bind x1 = e1 in x1 x2, yielding a
different derived rule:

pc t (t r2),Γ,M ` e1 : (t′
pct`t(t r1)t(t r2) [r]−−−−−−−−−−−−−−→ t)` [r1]

pc,Γ,M ` e2 : t′ [r2] ` C t

pc,Γ,M ` e1 e2 : t [r t r1 t r2]

In either case, the second expression to be evaluated is type-
checked at an increased security level, reflecting the fact
that, by receiving control, it is able to observe that the ex-
pression which was executed first terminated normally.

Caml-Light [9] does not specify its evaluation order. It
is possible to give a conservative typing rule which is safe
with respect to both left-to-right and right-to-left evalua-
tion orders. Such a rule typechecks ei under pc t (t rj), for
{i, j} = {1, 2}. Because exceptions are annotated with the
value of pc at the point where they are raised, and because pc
can only increase within sub-expressions, this typically en-
tails t rj ≤ u ri. Furthermore, for every row r with at least
one non-Abs entry, u r ≤ t r holds. As a result, if ei is li-
able to raise some exception, then all exceptions in rj must
have the same security level. Thus, under-specifying the
evaluation order causes an important loss of precision in our
analysis. Caml-Light’s current implementation uses a right-
to-left evaluation strategy; for our purposes, this should be
made part of its specification.

10

6 Non-interference

From here on, the set H is no longer fixed. We introduce
it explicitly when needed, writing `H instead of ` in Core
ML2 typing judgements. (This is not necessary for those
judgements which involve plain Core ML expressions, be-
cause H is used only in v-Bracket and e-Bracket.) We
write e→? o if there exists a store µ such that e/∅→? o/µ,
where ∅ is the empty store.

Our type system keeps track of 〈· | ·〉 constructs by as-
signing them “high” security levels (i.e. levels in H). By sub-
ject reduction, any expression which may evaluate to such a
construct must also carry a “high” annotation. Conversely,
no expression with a “low” annotation can evaluate to such
a construct, as stated, in the particular case of integers, by
the following lemma:

Lemma 6.1 Let H be an upward-closed subset of L. Let
` 6∈ H. If `H e : int` and e→? v then bvc1 = bvc2.

Proof. By theorem 5.1 and Conf, there exists a memory
environment M such that M `H v : int` [∗] holds. A value
of type int∗ must be of the form k or 〈k1 | k2〉. If the latter,
then, by v-Bracket or e-Bracket, there exists pc′ ∈ H
such that pc′ ≤ `, which implies ` ∈ H, a contradiction.
Thus, we must have v = k = bvc1 = bvc2. �

We can now use the correspondence between Core ML
and Core ML2 developed in section 4.3 to reformulate this
result in a Core ML setting:

Theorem 6.1 (Non-interference) Choose `, h ∈ L such
that h 6≤ `. Let h C t. Assume (x 7→ t) ` e : int`, where e is
a Core ML expression. If ` vi : t and e[x ⇐ vi] →? v′i, for
i ∈ {1, 2}, then v′1 = v′2.

Proof. Let H = ↑{h}. Define v = 〈v1 | v2〉. By v-Bracket,
`H v : t holds. Lemma 5.6 yields `H e[x ⇐ v] : int`. Now,
be[x ⇐ v]ci is e[x ⇐ vi], which, by hypothesis, reduces to
v′i. According to lemma 4.5, there exists an outcome o such
that e[x ⇐ v] →? o and, for i ∈ {1, 2}, boci = v′i. Because
of the latter, o must be a value. Lastly, h 6≤ ` yields ` 6∈ H.
The result follows by lemma 6.1. �

In words, h and ` are security levels such that infor-
mation flow from h to ` is disallowed by the security lattice.
Assuming the hole x has a “high”-level type t, the expression
e can be given the “low”-level type int`. Then, no matter
which value (of type t) is placed in the hole, e will compute
the same value (that is, if it does produce a value at all).

7 Extensions

In this section, we describe a number of language extensions.
Some are standard programming facilities which we have left
out so far, namely products, sums, and primitive operations.
Others are new language constructs which capture common
idioms, so as to make them more amenable to analysis. We
omit all proofs in this section; they can be found in [17].

7.1 Products and sums

Extending our system with products and sums is straight-
forward. We extend values and expressions with standard
constructs:

v ::= . . . | (v, v) | injj v j ∈ {1, 2}
e ::= . . . | projj v | v case v v j ∈ {1, 2}

The semantics of Core ML2 is extended with the reduction
rules given in figure 4. Rules (proj) and (case) are standard.
(lift-proj) and (lift-case) handle the situation where the de-
sired structure is found under a 〈· | ·〉 construct; the brackets
are then lifted up, as usual, causing some sub-terms to be
duplicated. The grammar of types is extended as follows:

t ::= . . . | t× t | (t+ t)`

Our treatment of sums is similar to that of [8]. ` C (∗+ ∗)`
′

is, by definition, equivalent to ` ≤ `′. Products carry no
security annotation because, in the absence of a physical
equality operator, all of the information carried by a tuple
is in fact carried by its components. To reflect this, we define
` C t1 × t2 as ` C t1 ∧ ` C t2. The typing rules for products
and sums are given in figure 5. In v-Inj, (t1 +j t2)` stands
for (tj + ti)

`, where {i, j} = {1, 2}.
Our treatment of products is slightly innovative, and has

implications on constraint solving. Indeed, if every type
carried a security annotation, as in previous works [8, 1, 16],
then ` C ∗m would be syntactic sugar for ` ≤ m. Because
it is not the case here, constraints involving C must receive
special treatment by the constraint solver (see section 8.4).

7.2 Primitive operations

Practical programming languages usually provide many
primitive operations, such as integer arithmetic operators.
Some languages, such as Caml-Light [9], provide generic (i.e.
polymorphic) comparison, hashing or marshalling functions.
In the following, we present a way of assigning types to such
primitive operations, without knowledge of their semantics,
i.e. by considering them as “black boxes” which potentially
use all of the information content of their arguments.

Semantics Assuming given a set F of primitive opera-
tions f , we extend the syntax of expressions as follows:

e ::= . . . | f v

(We only consider unary operations; multiple arguments
must be passed in a tuple.) The semantics of every primi-
tive operation f is a partial function JfK which maps closed
Core ML configurations v / µ to closed Core ML outcomes.
Let |v / µ| denote the configuration obtained from v / µ by
removing all bindings in µ which are not accessible through
v. The semantics of Core ML2 is extended as follows:

f v /i µ → JfK(|v / readi µ|) /i µ (prim)
f v /µ → 〈f bvc1 | f bvc2〉 /µ (lift-prim)

if (prim) isn’t applicable

Rule (prim) gives the basic semantics of f . It uses the aux-
iliary function readi to access the store; compare to (deref).
Its use of |·| models the fact that the primitive operation can
access the store only through v. The operation cannot af-
fect the store; it may, however, raise an exception, since JfK
ranges over outcomes, rather than values. Rule (lift-prim)
must be applied whenever the configuration |v / µ| contains
at least one 〈· | ·〉 constructor; indeed, JfK is defined on Core
ML configurations only. In that case, we lift all brackets to
the toplevel. This is quite crude, but good enough given our
intended typing.

11

Basic reductions projj (v1, v2) /i µ → vj /i µ (proj)
(injj v) case v1 v2 /i µ → vj v /i µ (case)

Lifting projj 〈v1 | v2〉 /µ → 〈projj v1 | projj v2〉 /µ (lift-proj)
〈v1 | v2〉 case v′1 v

′
2 /µ → 〈v1 case bv′1c1 bv′2c1 | v2 case bv′1c2 bv′2c2〉 /µ (lift-case)

Figure 4: Semantics of products and sums

v-Pair

Γ,M ` v1 : t1 Γ,M ` v2 : t2

Γ,M ` (v1, v2) : t1 × t2

v-Inj

Γ,M ` v : t

Γ,M ` injj v : (t+j ∗)∗

e-Proj

Γ,M ` v : t1 × t2
∗,Γ,M ` projj v : tj [∗]

e-Match

Γ,M ` v : (t1 + t2)` ∀j ∈ {1, 2} Γ,M ` vj : (tj
pct`jt` [r]
−−−−−−−→ t)`j ` t `1 t `2 C t

pc,Γ,M ` v case v1 v2 : t [r]

Figure 5: Typing products and sums

unit J `
`′ ≤ `

int`
′
J `

t1 J ` t2 J `

t1 × t2 J `

`′ ≤ ` t1 J ` t2 J `

(t1 + t2)`
′
J `

t J ` `′ ≤ `
t ref`

′
J `

Figure 6: Collecting security annotations

Typing In the following, r̄ denotes a row ranging over
{Abs,Pre}. We write r̄ · pc for the row defined as follows:
r̄ · pc(ε) equals Pre pc if r̄(ε) is Pre; it equals Abs otherwise.

The typing of primitive operations, like their semantics,
is defined in two steps. First, we assume given, for every f ∈
F , a set typeof (f) such that, for every (t′, t, r̄) ∈ typeof (f),
M ` v : t′ and M ` µ imply pc,M ` JfK(|v / µ|) : t [r̄ · pc].
This amounts to assuming subject reduction for (prim); so
far, no security concerns need be taken into account.

Then, to enforce security, we define a two-place predicate
J, whose arguments are a type and a security level (figure 6).
In short, t J ` requires all of the security annotations which
appear in t and its sub-terms to be less than (or equal to) `.
It also requires t to have no function or exception types in its
sub-terms. (Functions are not valid arguments to the poly-
morphic comparison operators; exceptions must be ruled out
because exn is, in practice, an extensible type, i.e. the map-
ping typexn is never fully known.) The predicate J enjoys
the following property:

Lemma 7.1 Assume `H v / µ : t [∗] and t J `. If |v / µ|
isn’t a Core ML configuration, then ` ∈ H.

We give the following typing rule for applications of prim-
itive operations:

e-Primitive

(t′, t, r̄) ∈ typeof (f) Γ,M ` v : t′

t′ J ` ` C t

pc,Γ,M ` f v : t [r̄ · (pc t `)]

This is quite crude, since we require the security level of the

result type t to dominate all those which appear in the ar-
gument type t′. However, as long as nothing is known about
JfK, no better approximation can be given; the outcome may
actually depend on any part of f ’s argument.

Non-interference We now check that the new reduction
rules satisfy subject reduction under the extended type sys-
tem.

◦ Case (prim). By Conf and e-Primitive, we have
(t′, t, r̄) ∈ typeof (f) and M ` v : t′ and M ` µ. According
to our assumption concerning typeof (·), this implies pc,M `
JfK(|v / µ|) : t [r̄ · pc]. The result follows by e-Sub.

◦ Case (lift-prim). Conf and e-Primitive’s premises
allow applying lemma 7.1, yielding ` ∈ H. Applying
lemma 5.3 and building a new instance of e-Primitive, we
get pct`,M ` f bvci : t [r̄ ·(pct`)] for i ∈ {1, 2}. Recalling
` C t, we conclude with e-Bracket.

Applications Let us now illustrate the use of this general
mechanism.

The treatment of binary integer arithmetic operations
is quite simple, because they are monomorphic: they map
pairs of integers to integers. This rule effectively makes the
result’s security level the union of the arguments’ levels:

Γ,M ` v1 : int` Γ,M ` v2 : int`

∗,Γ,M ` v1 ? v2 : int` [∗]
? ∈ {+,−,×, . . .}

The treatment of the generic (i.e. polymorphic) compar-
ison operators is more interesting.

Γ,M ` v1 : t Γ,M ` v2 : t t J `

∗,Γ,M ` v1 ? v2 : bool` [∗]
? ∈ {=,≤,≥, . . .}

(The type bool` can be defined as (unit + unit)` or added
as a primitive type.) Because these operators traverse data
structures recursively, the result of a comparison may re-
veal information about any sub-term. The premise t J `
reflects this by requiring ` to dominate all security annota-
tions which appear in t.

12

Generic hashing and marshalling operations can be dealt
with similarly:

Γ,M ` v : t t J `

∗,Γ,M ` hash v : int` [∗]

Γ,M ` v : t t J `

∗,Γ,M ` marshal v : int` [∗]

By contrast, in Myers’ Java-based framework [10, 11], hash-
ing is done by having every class override the standard hash-
Code method, which is declared in class Object with signa-
ture int{this} hashCode (). A re-implementation of hashCode
by a sub-class of Object must also satisfy this signature. As a
result, it may only rely on fields labelled this. The paramet-
ric class Vector[L], for instance, must compute hash codes
in a way that does not depend upon the vector’s length or
contents, because their label is L. Of course, this severely
limits hashCode’s usefulness.

7.3 Common idioms

Because our type system is quite conservative, some common
programming idioms deserve special treatment, even though
they are already expressible in the language.

For instance, consider the expression form e1 finally e2,
akin to Lisp’s unwind-protect and Java’s try-finally con-
structs. Such an expression could be viewed as syntactic
sugar for bind x = (e1 handle y � e2; raise y) in e2; x.
However, by duplicating e2, this encoding prevents the type-
checker from discovering that e2 is executed always, i.e. re-
gardless of e1’s behavior. As a result, e2 is typechecked
under an increased security assumption pc. Zdancewic and
Myers [25] show how ordered linear continuations provide a
general solution to this problem. In our case, it is simpler to
make e1 finally e2 a primitive construct, whose typing rule
is given in figure 7.

Following Myers [10, 11], we typecheck e1 and e2 at a
common pc. However, we add the premise t r2 ≤ u r1,
which reflects that, by observing an exception thrown by
e1, one may deduce that e2 terminated normally. Its ab-
sence in Myers’ work is a flaw. Myers’ typing rule in fact
exhibits a second flaw: its overall effect should be X1 ⊕X2,
rather than X1[n := ∅]⊕X2, because normal termination of
the whole statement implies normal termination of e1. This
fact is taken into account in our typing rule, even though
we do not explicitly associate a security level to normal ter-
mination; see section 10. Both flaws in Myers’ framework
were uncovered by our formal approach [Andrew C. Myers,
personal communication, June 2001].

Another common idiom which seems to require special
treatment is the one which consists in anonymously handling
an exception, then raising it again, to be handled further
up the call chain. This is typically written e1 handle x �
(e2; raise x). In our type system, the handler e2; raise x
is typechecked at a security level increased by t r1, where
the row r1 describes the exception x. Then, the second
premise of e-Raise requires t r1 ≤ u r1, i.e. the security
levels associated with all exception names in r1 must be
conflated, leading to a loss of precision. If, on the other
hand, we introduce a new expression form e1 handle x �
e2 reraise with the same meaning, then we can safely give it
a more precise type; see figure 7.

Non-interference The syntax of evaluation contexts and
the semantics of Core ML2 are extended as described in
figure 8. (Making new evaluation contexts and new se-
quencing rules available effectively extends (throw-context),

e-Finally

pc,Γ,M ` e1 : t [r1]
pc,Γ,M ` e2 : ∗ [r2] t r2 ≤ u r1

pc,Γ,M ` e1 finally e2 : t [r1 t r2]

e-Reraise

pc,Γ,M ` e1 : t [r1]
pc t (t r1),Γ[x 7→ r1 exn∗],M ` e2 : ∗ [r2] t r2 ≤ u r1

pc,Γ,M ` e1 handle x � e2 reraise : t [r1 t r2]

Figure 7: Typing finally and reraise

(lift-context) and (context) as well.) Sequential composi-
tion e1; e2 is defined as syntactic sugar for bind x = e1 in e2,
where x doesn’t appear free in e2.

We begin by establishing the following simple lemma:

Lemma 7.2 pc,M ` o : t [r] and pc′ ≤ u r imply pc t
pc′,M ` o : t [r].

Proof. If o is a value, the result is a consequence of
lemma 5.7 and e-Value. If o is of the form raise (ε v),
then (discarding, w.l.o.g., any instances of e-Sub) the type
derivation ends with an instance of e-Raise, whose premises
remain valid if pc is replaced with pctpc′, thanks to the hy-
pothesis pc′ ≤ u r. If o is 〈o1 | o2〉, the result follows by
e-Bracket and the induction hypothesis. �

We now check that the new reduction rules satisfy sub-
ject reduction under the extended type system.

◦ Case (finally). e is o finally e2 and e′ is (e2; o). By
e-Finally, we have pc,M ` o : t [r1] and pc,M ` e2 :
∗ [r2] where t r2 ≤ u r1. By lemma 7.2, the former yields
pc t (t r2),M ` o : t [r1]. By e-Bind, we obtain pc,M `
e′ : t [r1 t r2].

◦ Case (reraise). e is raise (ε v) handle x � e2 reraise
and e′ is (e2[x ⇐ ε v]; raise (ε v)). By e-Reraise and
lemma 5.2, we have pc,M ` raise (ε v) : t [r1] and
pc, (x 7→ r1 exn`),M ` e2 : ∗ [r2] where t r2 ≤ u r1. By
lemma 7.2, the former yields pc t (t r2),M ` raise (ε v) :
t [r1]. By e-Sub, e-Raise, v-Sub and v-Exn, it also
yields M ` ε v : r1 exn`. By lemma 5.6, the latter then
yields pc,M ` e2[x ⇐ ε v] : ∗ [r2]. Then, by e-Bind,
pc,M ` e′ : t [r1 t r2] holds.

◦ Case (throw-context), sub-case E = [] handle x �
e2 reraise. e is E[o] and e′ is o. By e-Reraise, pc,M ` o :
t [r1] holds. By e-Sub, so does pc,M ` o : t [r1 t r2].

◦ Case (lift-context), (context). The descriptions in the
proof of lemma 5.8 still apply.

8 A constraint-based type system

We now give a more algorithmic presentation of our type
system, called mlif. It differs from mlif0 mainly by intro-
ducing type variables, constraints, and using them to form
universally quantified, constrained type schemes, in the style
of HM(X) [12]. Like HM(X), it has principal types and de-
cidable type inference. Because the construction is not the
central topic of this paper, we will describe it only succinctly;
the reader is referred to [12, 15] for more details.

13

E ::= . . . | [] finally e | [] handle x � e reraise

o finally e /i µ → e; o /i µ (finally)
raise (ε v) handle x � e reraise /i µ → e[x⇐ ε v]; raise (ε v) /i µ (reraise)

Figure 8: Syntax and semantics of finally and reraise

8.1 Types and constraints

In mlif, the grammar of types, rows, alternatives and lev-
els is extended with type variables. (We let α range over
type variables of all four kinds; no ambiguity will arise.)
Furthermore, Rémy’s [19] row syntax is introduced, turning
rows into finite lists of bindings from exception names to
alternatives, terminated with a row variable.

τ ::= α | unit | intλ | (τ π [ρ]−−−→ τ)λ | τ refλ | ρ exnλ

ρ ::= α | (ε : η; ρ)
η ::= α | Abs | Pre π

λ, π ::= α | `

The variable-free types (resp. rows, alternatives, levels) of
mlif are isomorphic to the types (resp. rows, alternatives,
levels) of mlif0; we identify them and refer to them as
ground. Then, constraints are defined as follows:

C ::= true | C ∧ C | ∃α.C
| τ ≤ τ | ρ ≤ ρ | η ≤ η | λ ≤ λ
| λ C τ | t ρ ≤ λ | λ ≤ u ρ | τ J λ

The constraint forms on the first line are standard [12].
Those on the second line are subtyping constraints; those
on the third line are custom constraint forms, which corre-
spond to the notions developed in sections 5 and 7.2. We
omit the sorting rules necessary to ensure that terms and
constraints involving rows are well-formed; see [19].

Let a ground assignment φmap every type variable α to a
ground type, row, alternative, or level, according to its kind.
The meaning of terms and constraints under an assignment
φ is defined in the obvious way. We write C
 C′ (read: C
entails C′) if and only if every assignment φ which satisfies
C satisfies C′ as well.

Let a type scheme be a triple of a set of quantifiers ᾱ, a
constraint C and a type τ ; we write σ = ∀ᾱ[C].τ . The type
variables in ᾱ are bound in σ; type schemes are considered
equal modulo α-conversion. By abuse of notation, a type τ
may be viewed as a type scheme ∀∅[true].τ . An environ-
ment Γ is a partial mapping from program variables to type
schemes.

8.2 Typing rules

The typing rules for mlif are given in figure 9. They look
very similar to those of mlif0; let us briefly discuss the dif-
ferences. We restrict our attention to source expressions,
i.e. Core ML expressions which do not contain memory lo-
cations; this is enough for our purposes. Thus, typing judge-
ments no longer contain a memory environment M . Every
judgement begins with a constraint C which represents an
assumption about its free type variables; for the judgement
to be valid, C must be satisfiable. (We omit C when it is
true.) Constrained type schemes are introduced by e-Let,
which performs generalization, and eliminated by v-Var,
which performs instantiation. For the sake of conciseness,
some rules use the binary operator t on levels and on rows,

as well as the unary operator t on rows, as if they were
part of our term syntax; we let the reader check that these
notations can be de-sugared into extra meta-variables and
constraints.

8.3 Non-interference

We prove the following statement by induction on type
derivations, along the lines of [15].

Lemma 8.1 (Soundness) Assume C, π,Γ ` e : τ [ρ].
Let φ be an arbitrary ground assignment which satisfies C.
Then, φ(π), φ(Γ),∅ ` e : φ(τ) [φ(ρ)] holds in mlif0.

(We do not define φ(Γ) here; see [15].) In particular, every
ground typing judgement in mlif is also a valid judgement
in mlif0. This allows us to lift our non-interference result to
mlif. That is, the statement of theorem 6.1 remains valid
if (x 7→ t) ` e : int` and ` vi : t are read as mlif typing
judgements.

The typing rules given in figure 9 do not necessarily allow
deriving ground typing judgements about every expression.
However, it is easy to enrich the system with rules similar
to HM(X)’s ∃-Intro and Weaken [20, 15], which allow
specializing a non-ground judgement to any of its ground
instances.

8.4 Type inference

It is easy to check that there exists a type inference algo-
rithm which computes principal types for mlif. Sulzmann
et al. [20] show how to derive a set of type inference rules
from a set of typing rules similar to ours. The main point
that remains to be settled is whether constraint solving is
decidable.

As explained in section 5.2, our subtyping relation is
atomic; constraint solving for atomic subtyping is decidable
and well understood [18]. The introduction of rows is essen-
tially orthogonal to other constraint solving issues [5, 14].
Lastly, our custom constraint forms can be solved in a “lazy”
manner. That is, a constraint of the form λ C α, α J λ,
tα ≤ λ or λ ≤ uα remains suspended as long as nothing
is known about α, and is decomposed into a number of sub-
constraints only when α is unified with a non-variable term
τ or row ρ. Further details, including proofs and algorithms,
will be given in a later paper.

9 Examples

We intend to integrate mlif into a realistic programming
language, such as Caml-Light [9]. In this section, we give
a taste of that by describing the principal type schemes in-
ferred for some library functions by our prototype imple-
mentation. We use Caml-Light syntax, which can be easily
de-sugared into Core ML.

We omit type annotations on top of → when they are
unconstrained, anonymous type variables. Because none of

14

Values

v-Unit

C,Γ ` () : unit
v-Int

C,Γ ` k : int∗
v-Var

Γ(x) = ∀ᾱ[D].τ C
 ∃ᾱ.D
C ∧D,Γ ` x : τ

v-Abs

C, π,Γ[x 7→ τ ′][f 7→ (τ ′
π [ρ]−−−→ τ)λ] ` e : τ [ρ]

C,Γ ` fix f.λx.e : (τ ′
π [ρ]−−−→ τ)λ

v-Exn

C,Γ ` v : typexn(ε)

C,Γ ` ε v : (ε : Pre ∗; ∗) exn∗

v-Sub

C,Γ ` v : τ ′ C
 τ ′ ≤ τ
C,Γ ` v : τ

Expressions

e-Value

C,Γ ` v : τ

C, ∗,Γ ` v : τ [∗]

e-App

C,Γ ` v1 : (τ ′
πtλ [ρ]−−−−−→ τ)λ C,Γ ` v2 : τ ′ C
 λ C τ

C, π,Γ ` v1 v2 : τ [ρ]

e-Ref

C,Γ ` v : τ C
 π C τ

C, π,Γ ` ref v : τ ref∗ [∗]

e-Assign

C,Γ ` v1 : τ refλ C,Γ ` v2 : τ
C
 π t λ C τ

C, π,Γ ` v1 := v2 : unit [∗]

e-Deref

C,Γ ` v : τ ′ refλ C
 τ ′ ≤ τ C
 λ C τ

C, π,Γ ` ! v : τ [∗]

e-Raise

C,Γ ` v : ρ exnλ C
 π t λ ≤ u ρ
C, π,Γ ` raise v : ∗ [ρ]

e-Let

C ∧D,Γ ` v : τ ′ C, π,Γ[x 7→ ∀ᾱ[D].τ ′] ` e : τ [ρ] ᾱ ∩ fv(C,Γ) = ∅

C ∧ ∃ᾱ.D, π,Γ ` let x = v in e : τ [ρ]

e-Bind

C, π,Γ ` e1 : τ ′ [ρ1]
C, π t (t ρ1),Γ[x 7→ τ ′] ` e2 : τ [ρ2]

C, π,Γ ` bind x = e1 in e2 : τ [ρ1 t ρ2]

e-Handle

C, π,Γ ` e1 : τ [ε : Pre π′; ρ]
C, π t π′,Γ[x 7→ typexn(ε)] ` e2 : τ [ε : η; ρ] C
 π′ C τ

C, π,Γ ` e1 handle ε x � e2 : τ [ε : η; ρ]

e-HandleAll

C, π,Γ ` e1 : τ [ρ1]
C, π t (t ρ1),Γ[x 7→ ρ1 exn∗] ` e2 : τ [ρ2] C
 (t ρ1) C τ

C, π,Γ ` e1 handle x � e2 : τ [ρ2]

e-Sub

C, π,Γ ` e : τ ′ [ρ′] C
 τ ′ ≤ τ C
 ρ′ ≤ ρ
C, π,Γ ` e : τ [ρ]

Figure 9: The type system mlif

the type schemes below has free type variables, we omit the
universally quantified variables after ∀.

We have not explained how to include datatype declara-
tions in the language. Since we already have product and
sum types, this should be straightforward. Let us assume
the type constructor list is declared as follows:

type (’a, ’b) list = <’b>
| []
| (::) of ’a * (’a, ’b) list

In α listβ , the parameter α is the type of the list’s elements,
as usual, while β is a security level. The annotation <’b> on
the right-hand side is meant to indicate that β is the secu-
rity annotation carried by the sum type. Our first example
function computes the length of a list:

let rec length = function
| [] -> 0
| _ :: l -> 1 + length l

A valid type scheme for length is ∀[α ≤ β]. ∗ listα −→ intβ .
As expected, the result’s security annotation β does not

depend on the type of the list’s elements. The constraint
α ≤ β describes the information flow induced by the func-
tion: the length of a list contains some information about
its structure. This type scheme is in fact equivalent to
∀[].∗ listα −→ intα, a simplification which our implementation
performs automatically.

let rec iter f = function
| [] -> ()
| x :: l -> f x; iter f l

iter applies f successively to every element of a list. Its
inferred type scheme is

∀[t γ ≤ β].(α
β [γ]−−−→ ∗)β −→ α listβ

β [γ]−−−→ unit

Here, γ represents f’s effect. Because iter does not throw
any exceptions of its own, γ is also iter’s effect. β is f’s pc
parameter. It must dominate iter’s own pc parameter (be-
cause f is invoked by iter), the list’s security level (because
gaining control tells f that the list is nonempty) and t γ
(because gaining control tells f that its previous invocation
terminated normally).

15

let incr r =
r := !r + 1

incr has ∀[].intα refα
α [∗]−−−→ unit as principal type scheme.

Indeed, by e-Assign, the security level of the reference’s
contents must dominate both incr’s pc parameter and the
reference’s own security level. We now re-implement length
in imperative style:

let length’ l =
let count = ref 0 in
iter (fun () -> incr count) l;
!count

We obtain ∀[]. ∗ listα
α [∗]−−−→ intα. This appears more restric-

tive than length’s type scheme: the result’s security level
must now be greater than or equal to the function’s pc pa-
rameter. However, the difference is only superficial; it can
be checked that both types in fact have the same expressive
power. Formalizing this claim, and understanding its con-
sequences, are left for future work. We continue with a few
library functions which deal with association lists.

let rec mem_assoc x = function
| [] -> false
| (y, _) :: l ->

if x = y then true else mem_assoc x l

Because mem assoc’s result reveals information about both
the structure of the list and the keys stored in it, we obtain:

∀[α J β].α −→ (α× ∗) listβ −→ boolβ

The constraint α J β, which arises due to the use of poly-
morphic equality, specifies that β must be an upper bound
for all security annotations which occur in the type of the
keys.

let rec assoc x = function
| [] -> raise Not_found
| (y, d) :: l -> if x = y then d else assoc x l

assoc returns the piece of data associated with a given key.
If no such key exists, Not found is raised, as reflected in
assoc’s effect:

∀[α J β, β C γ, β ≤ δ].α −→ (α× γ) listβ
δ [Not found: δ; ∗]−−−−−−−−−−→ γ

Here, as in mem assoc, β represents the information associ-
ated with the list’s structure and keys. Because this infor-
mation is reflected both in assoc’s normal and exceptional
results, the type system requires β C γ and β ≤ δ.

Lastly, we re-implement mem assoc in terms of assoc,
using an exception handler:

let mem_assoc’ x l =
try

let _ = assoc x l in
true

with Not_found ->
false

As in the case of length vs. length’, the new type scheme
requires the result’s security level to be greater than or equal
to the function’s pc parameter:

∀[α J β].α −→ (α× ∗) listβ
β [∗]−−−→ boolβ

This betrays the fact that the function’s implementation
uses effects, but does not otherwise restrict its applicability.

10 Discussion

The reader may notice that normal and exceptional results
are not dealt with in a symmetric way by our type system.
Indeed, in a typing judgement pc,Γ,M ` e : t [r], the row
r associates a security level with every exception name, so
as to record how much information is gained by observing
that particular exception. However, no information level is
explicitly associated with normal termination. Instead, the
typing rule for sequential composition, namely e-Bind, uses
t r as an approximation of it.

Myers’ [10, 11] sets of path labels X, on the other hand,
record the security level associated with normal termination
under a special label n, which is then used in the sequential
composition rule. It is, however, typically an upper bound
for the value reached by pc inside every sub-expression of
the expression at hand, so this design alone would make the
type system very restrictive. To prevent that, Myers adds a
non-syntax-directed rule, the single-path rule, stating that
X[n] can be reset to ∅ if the expression at hand can be shown
to always terminate normally.

Our system doesn’t need the single-path rule: indeed,
when all entries in r1 are Abs, then t r1 is the least ele-
ment of L, and e-Bind typechecks e1 and e2 at a common
pc, as desired. Myers’ system is more precise than ours
in a few cases, which involve expressions that never termi-
nate normally; experience will tell how common they are.
The single-path rule requires counting the number of non-
Abs entries in a row; in the presence of row variables, this
requires new (and quite heavy) constraint forms, which is
why we avoid it. This difficulty does not arise in Myers’
framework because it relies on Java’s explicit, monomorphic
throws clauses.

There exists a simple monadic encoding of exceptions
into sums. Thus, it is possible, in principle, to derive a
type system for exceptions out of a type system that can
handle sums. This approach sounds interesting, because it
is systematic and promises to yield a symmetric treatment of
normal vs. exceptional results. However, some experiments
show that, in order to obtain acceptable precision in the end,
the treatment of sums that is chosen as a starting point must
be very accurate (much more so than the one given in this
paper). We leave it as a topic of future research.

Our main direction for future work is to create a full
implementation of the system on top of Caml-Light and to
assess its usability through a number of case studies. We
also plan to study a variant of Core ML where exceptions
are second-class citizens, i.e. where raise x is disallowed. In
exchange for this slight loss of expressive power, we hope to
be able to use a simpler type and constraint language.

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and
Jon G. Riecke. A core calculus of dependency. In Con-
ference Record of the 26th ACM Symposium on Prin-
ciples of Programming Languages, pages 147–160, San
Antonio, Texas, January 1999. URL: http://www.soe.ucsc.

edu/~abadi/Papers/flowpopl.ps.

[2] Mart́ın Abadi, Butler Lampson, and Jean-Jacques
Lévy. Analysis and caching of dependencies. In Pro-
ceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming, pages 83–91,

16

Philadelphia, Pennsylvania, May 1996. URL: http:

//www.soe.ucsc.edu/~abadi/Papers/make-preprint.ps.

[3] D. E. Bell and Leonard J. LaPadula. Secure com-
puter systems: Unified exposition and Multics inter-
pretation. Technical Report MTR-2997, The MITRE
Corp., Bedford, Massachusetts, July 1975. URL: http:

//www.mitre.org/resources/centers/infosec/infosec.html.

[4] Dorothy E. Denning. Cryptography and Data Security.
Addison-Wesley, Reading, Massachusetts, 1982.

[5] Manuel Fähndrich. Bane: A Library for Scalable
Constraint-Based Program Analysis. PhD thesis, Uni-
versity of California at Berkeley, 1999. URL: http:

//research.microsoft.com/~maf/diss.ps.

[6] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and
Matthias Felleisen. The essence of compiling with con-
tinuations. In Proceedings of the SIGPLAN ’93 Con-
ference on Programming Language Design and Imple-
mentation, pages 237–247, June 1993. URL: http:

//www.cs.rice.edu/CS/PLT/Publications/pldi93-fsdf.ps.gz.

[7] Joseph Goguen and José Meseguer. Security policies
and security models. In Proceedings of the 1982 IEEE
Symposium on Security and Privacy, pages 11–20, April
1982.

[8] Nevin Heintze and Jon G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Confer-
ence Record of the 25th ACM Symposium on Principles
of Programming Languages, pages 365–377, San Diego,
California, January 1998. URL: http://cm.bell-labs.com/

cm/cs/who/nch/slam.ps.

[9] Xavier Leroy, Damien Doligez, et al. The Caml Light
system, release 0.74. URL: http://caml.inria.fr/, 1997.

[10] Andrew C. Myers. JFlow: practical mostly-static in-
formation flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT on Principles of Program-
ming Languages, pages 228–241, San Antonio, Texas,
January 1999. ACM Press. URL: http://www.cs.cornell.

edu/andru/papers/popl99/myers-popl99.ps.gz.

[11] Andrew C. Myers. Mostly-Static Decentralized Infor-
mation Flow Control. PhD thesis, Massachusetts In-
stitute of Technology, January 1999. Technical Re-
port MIT/LCS/TR-783. URL: http://www.cs.cornell.edu/

andru/release/tr783.ps.gz.

[12] Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type inference with constrained types. Theory and
Practice of Object Systems, 5(1):35–55, 1999. URL:

http://www.cs.mu.oz.au/~sulzmann/publications/tapos.ps.

[13] François Pessaux and Xavier Leroy. Type-based
analysis of uncaught exceptions. ACM Transactions
on Programming Languages and Systems, 22(2):340–
377, 2000. URL: http://pauillac.inria.fr/~xleroy/publi/

exceptions-toplas.ps.gz.

[14] François Pottier. Wallace: an efficient implementation
of type inference with subtyping, February 2000. URL:

http://pauillac.inria.fr/~fpottier/wallace/.

[15] François Pottier. A semi-syntactic soundness proof
for HM(X). Research Report 4150, INRIA, March
2001. URL: ftp://ftp.inria.fr/INRIA/publication/RR/

RR-4150.ps.gz.

[16] François Pottier and Sylvain Conchon. Information
flow inference for free. In Proceedings of the the Fifth
ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’00), pages 46–57, Septem-
ber 2000. URL: http://pauillac.inria.fr/~fpottier/publis/

fpottier-conchon-icfp00.ps.gz.

[17] François Pottier and Vincent Simonet. In-
formation flow inference for ML. Full ver-
sion. URL: http://pauillac.inria.fr/~fpottier/publis/

fpottier-simonet-popl02-long.ps.gz, July 2001.

[18] Jakob Rehof. Minimal typings in atomic subtyping.
In Conference Record of the 24th ACM Symposium
on Principles of Programming Languages, pages 278–
291, Paris, France, January 1997. URL: http://research.

microsoft.com/~rehof/popl97.ps.

[19] Didier Rémy. Type inference for records in a natural ex-
tension of ML. In Carl A. Gunter and John C. Mitchell,
editors, Theoretical Aspects Of Object-Oriented Pro-
gramming. Types, Semantics and Language Design.
MIT Press, 1993. URL: ftp://ftp.inria.fr/INRIA/Projects/

cristal/Didier.Remy/taoop1.ps.gz.

[20] Martin Sulzmann, Martin Müller, and Christoph
Zenger. Hindley/Milner style type systems in con-
straint form. Research Report ACRC–99–009, Univer-
sity of South Australia, School of Computer and Infor-
mation Science, July 1999. URL: http://www.ps.uni-sb.

de/~mmueller/papers/hm-constraints.ps.gz.

[21] Dennis Volpano and Geoffrey Smith. A type-based ap-
proach to program security. Lecture Notes in Computer
Science, 1214:607–621, April 1997. URL: http://www.cs.

nps.navy.mil/people/faculty/volpano/papers/tapsoft97.ps.Z.

[22] Dennis Volpano, Geoffrey Smith, and Cynthia
Irvine. A sound type system for secure flow anal-
ysis. Journal of Computer Security, 4(3):167–187,
1996. URL: http://www.cs.nps.navy.mil/people/faculty/

volpano/papers/jcs96.ps.Z.

[23] Andrew K. Wright. Simple imperative polymor-
phism. Lisp and Symbolic Computation, 8(4):343–
356, December 1995. URL: http://www.cs.rice.edu/CS/PLT/

Publications/lasc95-w.ps.gz.

[24] Andrew K. Wright and Matthias Felleisen. A syn-
tactic approach to type soundness. Information and
Computation, 115(1):38–94, November 1994. URL:

http://www.cs.rice.edu/CS/PLT/Publications/ic94-wf.ps.gz.

[25] Steve Zdancewic and Andrew C. Myers. Secure infor-
mation flow and CPS. In David Sands, editor, Pro-
ceedings of the 2001 European Symposium on Program-
ming (ESOP’01), Lecture Notes in Computer Science.
Springer Verlag, April 2001. URL: http://www.cs.cornell.

edu/zdance/lincont.ps.

17

