
Disornamentation
Lucas Baudin1 and Didier Rémy2

1École Normale Supérieure, 2Inria

Abstract
Ornaments, which have recently been put in the spotlight, are a way to describe changes in datatype

definitions, reorganizing, adding, or dropping some pieces of data. Ornamentation is the process of
translating code operating on the original datatype to code operating on the new one. A formalization
and an implementation of ornaments has been proposed for the ML family of languages. Our work focuses
on the opposite transformation, called disornamentation. We generalize the ornamentation framework
developed for ML and based on a posteriori abstraction so that both ornamentation and disornamentation
become instances of this framework, allowing more expressive relational transformations of datatypes. We
adapt the ornamentation prototype to support such bidirectional transformations and use it to present
several typical examples using disornamentation or a combination of ornamentation and disornamentation.

1 Contributions
Disornamentation. We propose a formalization and
an implementation of a mechanism to automatically
adapt code along disornaments, which are relations
opposite to ornaments.
Mixed transformations. We actually generalize
the ornamentation framework for ML, so that both or-
namentation and disornamentation become instances
of it, allowing more expressive relational transforma-
tions of datatypes, also including addition and removal
of constructors.
A robust patch language. The previous prototype
that dealt with ornaments only allowed to fill holes us-
ing a number, which could change when the code was
modified. We propose a more robust way to specify
patches, using term patterns to select holes. This also
benefits to ornaments and helps go back and forth
between ornamented and disornamented code.
Examples. Several examples that demonstrate these
contributions are available online1, including: disorna-
mentation of red-black trees to remove the balancing
information (shown below); an example of synchro-
nization between code operating on bare expression
and on expressions ornamented with location infor-
mation; an illustration of how a new, unrelated con-
structor can be added to a datatype. A JavaScript
interface2 is also available to experiment with the
prototype and code synchronization in particular.

2 Ornaments

In the ML family of languages, datatypes are induc-
tively defined as labeled sums and products over other
datatypes. In this context, ornaments are relations
that describe changes in datatype definitions reorga-
nizing, adding, or dropping some pieces of data [Da-
gand and McBride, 2014, Ko and Gibbons, 2016].
They can be used to partially and sometimes totally
lift ML values operating on the bare definition into
values operating on the ornamented structure. This
process is called ornamentation.

These transformations are useful to do various
refactoring operations: adding new arguments to con-
structors, automatically translating code via an iso-
morphism or (more surprisingly) removing construc-
tors.

Williams and Rémy [2018] have proposed a for-
malization and a prototype to perform ornamentation.
Ornaments can be described by writing relations be-
tween values of the source and target datatypes. For
instance, we can write a relation between the datatype
which represents peano numbers and the list datatype
type nat = Z | S of nat
type α list = Nil | Cons of α ∗ α list

type relation α natlist: nat ⇒ α list with
| Z ⇒ Nil
| S n ⇒ Cons(_, n) when n : α natlist

1http://gallium.inria.fr/~remy/disornamentation/
2http://www.eleves.ens.fr/home/lbaudin/demo/

1

http://gallium.inria.fr/~remy/disornamentation/
http://www.eleves.ens.fr/home/lbaudin/demo/

We use the keyword relation instead of ornament
to include both ornamentation and disornamentation.
Values are related using patterns, for instance Z and
Nil are related. Values of the form S n− are related
with values of the form Cons(_, n+) when n− and n+

are themselves related by α natlist.
Then, values can be lifted along ornaments. For

instance, an add function can be lifted to a append
function between lists.
let rec add n m = match n with

| Z → m
| S n → S (add n m)

let append = lifting add
: _ natlist ⇒ _ natlist ⇒ _ natlist

which results in the following incomplete term:
let rec append n m = match n with

| Nil → m
| Cons(_, n) → Cons(#3, append n m)

Indeed, it contains a hole #3 whose content must be
specified by the user, using a patch in the lifting
declaration:
let append = lifting add

: _ natlist ⇒ _ natlist ⇒ _ natlist
patch #3[match n with Cons(a, _) → a]

This will fill in the hole with the corresponding code,
then simplify the code, and return the append function
as expected:

| Nil → m
| Cons(a, n) → Cons(a, append n m)

Williams and Rémy proved the lifting process correct
using a step-indexed logical relation to establish a
strong correspondence between the original and lifted
codes. Other examples of ornaments can be found
online2.

3 Disornaments
Disornaments describe relations between a source and
a target datatype that contains less information. They
are the reverse of ornaments. Like ornamentation, dis-
ornamentation is the process of adapting terms along
disornaments. Disornamentation is therefore the op-
posite transformation to ornamentation. As ornamen-
tation, it is a way to perform some code refactoring,
adapting existing code to new datatypes.

Code synchronization A typical use of orna-
ments is the addition of locations to abstract syntax
trees. For instance, we may have written an evaluator

for some language of expressions. In order to provide
meaningful error messages, we may later add location
information, by changing the expression type to a tu-
ple that also contains locations (and this recursively),
i.e., changing the type definition from

type expr = App of expr ∗ expr | ...
to

type expr' = App of expr ∗ expr | ...
and expr = expr' ∗ location

Writing an ornament from the first type to the second
one is straightforward. However, if we wish to modify
the lifted code (e.g. add let constructs), we may pre-
fer to do this first on the original code (where editing
is easier) if the modification does not involve locations
(and only on the lifted code otherwise). Disornamen-
tation makes it possible to go back and forth between
those two views of the code. The whole example is
available online.

More generally, having two views of the same code,
one operating on the base datatype and the other op-
erating on the ornamented datatype, would be useful
in many cases. For instance, it could be used to keep
a version of the code that is easier to read and modify
as long as the ornamented part is not involved, while
using it is still possible in the ornamented code.

When performing ornamentation, every construct
of the source term can be mapped to a construct in
the resulting term. Indeed, values are extended and
more code is needed to create and manipulate the new
pieces of data. On the opposite, disornamentation
typically removes parts of the source data structure,
and therefore the code used to compute pieces of data
that have been removed becomes useless and may be
garbage-collected.

For disornamentation to have good properties
(such as being the identity transformation with the
identity ornament), useless code elimination must only
be performed on code that was already useless before
the transformation. Notice that such an elimination
has no effect after ornamentation, which does not
introduce useless code.

Conversely, the new version of the code may miss
pieces of data that were obtained by pattern-matching
on the richer data structure. When this information
is still needed to build values of the disornamented
structure, the lifted code will contain holes to be filled
with user-provided patches.

A robust patch language
Code synchronization makes it possible to auto-

matically disornament code that was previously ob-

2

tained by lifting through the inverse ornamentation
relation. For this purpose, it is a key to have a robust
patch language that uses term patterns rather than
numbers to select holes (and capture variables that
can be used in the patch content). For instance, the
patch of the append function can now be written:

patch match _ with Cons(a, _) → Cons(#[a], _)

The content of the patch, a, which appears between
#[and] uses a variable captured in the term pattern
match _ with Cons(_, _) → Cons(#, _). The patch
applies wherever the term pattern appears in the code.
The term pattern is often a small suffix of the path
from the root to the hole: it should be short enough
to also apply in similar situations, but long enough
to avoid applying at other undesired occurrences.

This new language is robust in the sense that it al-
lows to write patches that usually need not be changed
when parts of the program not directly related to the
code being patched are (moderately) modified, and
similar patches may easily factorize, including new
cases that may appear when the code is extended. An
example of a patch that fills two holes is given in the
next section.

When a term is disornamented, it may be useful to
reornament it afterwards, to recover the original term:
this is the basis of code synchronization. In order to
do so, we automatically generate patches during dis-
ornamentation that will be used for reornamentation
to fill the holes corresponding to the code removed by
disornamentation. Exact patches are first generated
by comparing the incomplete, reornamented code with
a normalized version of the ornamented code. Patches
are then minimized by sharing them whenever possible
and reducing the total size of term-patterns without
changing the matching occurrences and keeping the
size of each term-pattern above a threshold to reduce
the risk of accidental capture in future changes.

Disornamentation needing patches Up to now,
we have only considered the disornamentation of pre-
viously ornamented code. In this setting, it is ex-
pected that disornamentation can be performed with-
out further user input because disornamented code
does not depend on any ornamented part. However,
disornamentation can also be performed directly on
hand-written code in which a part removed from the
datatype may be used to compute another part, still
present in the disornamented datatype. We illus-
trate several features of disornamentation on red-black
trees:
type redblack =

| Black of redblack ∗ elt ∗ redblack
| Red of redblack ∗ elt ∗ redblack
| Empty

let add x s =
let rec add_aux t = match t with

| Empty → Red(Empty, x, Empty)
| Red(l, y, r) →

begin match compare x y with
| Lt → Red(add_aux l, y, r)
| Gt → Red(l, y, add_aux r)
| Eq → t end

| Black(l, y, r) →
begin match compare x y with
| Lt → balance_l (add_aux l) y r
| Gt → balance_r l y (add_aux r)
| Eq → t end in

match add_aux s with
| Red(a, b, c) → Black(a, b, c)
| a → a

Balancing information (i.e. whether a node is red or
black) can be removed, for instance to have a simpli-
fied view of the algorithm.
type tree =

| SEmpty
| SNode of tree ∗ elt ∗ tree

type relation simplify: redblack ⇒ tree with
| Empty ⇒ SEmpty
| (Red(a, e, b) | Black(a, e, b))

⇒ SNode(a, e, b) when a b: simplify
However, the removed balancing information, which
was used to decide whether a new element had to
be added on the left or on the right of the currently
selected node, is now missing in the disornamented
code, and replaced by holes (overlayed, and not to be
confounded with code ellipses “begin ... end”):
let simple_add =

lifting add: elt → simplify → simplify

let simple_add x s =
let rec add_aux t = match t with

| SEmpty → SNode(SEmpty, x, SEmpty)
| SNode(l, y, r) →

begin match #38 with
| Left _ → begin ... end
| Right _ → begin ... end end in

let a = add_aux s in
match a with
| SEmpty → a
| SNode(a, e, b) →

begin match #8 with
| Left _ → begin ... end
| Right _ → begin ... end end

More precisely, these holes are caused by the encod-
ing of the disjunctive pattern in the definition of the

3

simplify relation: the user has to specify which of
the two alternatives must be taken when a SNode is
pattern-matched. While in the original code there is a
branch for Red and a branch for Black, a value of the
α sum type that contains two constructors, Left and
Right, must be specified to choose the branch. We
may fill in the holes using the robust patch language
described above, for example by always inserting as if
it were a Red node:

let simple_add =
lifting add : elt → simplify → simplify with
patch match #[Left ()] with Left _ → _

Here, the patch is generic enough to be used for both
holes #38 and #8. It selects the first branch every
time there is a choice to make. More details about
this patch language can be found online. After the
patch is applied, the code is automatically simplified,
returning:

let simple_add x s =
let rec add_aux t = match t with

| SEmpty → SNode(SEmpty, x, SEmpty)
| SNode(l, y, r) →

begin match compare x y with
| Lt → SNode(add_aux l, y, r)
| Gt → SNode(l, y, add_aux r)
| Eq → t

end in
let a = add_aux s in
match a with

| SEmpty → a
| SNode(a, e, b) → SNode(a, e, b)

Notice that the last three lines could easily be further
simplified to a, but this η-contraction is not currently
automatically performed. In fact, performing the
η-contraction would be a problem for reornamenta-
tion because ornamentation does not automatically
perform η-expansion, for good reasons. If disornamen-
tation were to perform η-contraction, then one would
need to add a mechanism for manually requesting
some η-expansions before ornamentation.

Interestingly, the framework previously introduced
to perform ornamentation alone in ML [Williams
and Rémy, 2018] is also well suited for disornamen-
tation: both theory (including the proof using the
step-indexed logical relation) and implementation can
be largely reused for disornamentation, and only re-
quire some small adaptation.

4 Formalization
We now sketch the formalization of ornaments and
stress out what needs to be generalized to handle
disornamentation.

Ornamentation Ornaments are encoded using a
skeleton type and two functions, a projection and
an injection. The skeleton type is an “open version”
of the original datatype, i.e., whose constructors are
abstracted over the types of their arguments (see
[Williams and Rémy, 2018] for details). The projec-
tion function maps the target datatype to the skeleton
type while the injection function takes an element of
the skeleton type and an extra argument (whose type
depends on its first argument) to generate an element
of the target datatype.

Ornamenting an ML definition is performed in
two steps. First, a generic term is elaborated indepen-
dently of any ornament. This term is parametrized
by one or several ornaments (each one described by a
tuple composed of the target type, the skeleton type,
and the projection and injection functions). Basically,
every pattern-matching construct is replaced by a call
to the projection function and a pattern matching on
the corresponding skeleton while every constructor is
replaced by a call to the injection function (leaving a
hole for the extra argument). In a second step, this
generic term can be instantiated with specific orna-
ments. The term is then reduced and simplified so
that the skeleton type disappears and only the tar-
get type remains. At every call site of the injection
function, if the extra argument does not belong to
the unit type, the resulting term has holes which have
to be filled using user-provided information given as
patches.

Generalization for disornaments We now de-
scribe extension of this framework to cover disorna-
mentation. To avoid any confusion, disornamentation
is considered as a transformation from an ornamented
type to a disornamented type. As with ornamenta-
tion, the skeleton type is an open version of the source
(i.e. the ornamented) type. We are going to describe
functions analogous to the projection and injection
function of ornaments. For the sake of clarity, we keep
those names even if they are neither projection nor
injection anymore. That is, the projection operates
from the disornamented datatype towards the skeleton
type while the injection operates from the skeleton
type to the ornamented datatype. The projection now

4

needs additional data, provided as an extra argument,
similar to the one given to the injection function in the
ornamentation case. On the opposite, the injection
function does not need this extra argument anymore.
Therefore, to cover both ornamentation and disorna-
mentation simultaneously, projection and injection
functions each take an extra argument which contains
data that is needed to construct an element of the
skeleton type (for disornamentation) or an element
of the target type (for ornamentation), and becomes
more symmetrical.

The elaboration to a generic term needs to be
updated accordingly. The rest of the transformation
proceeds as with ornamentation.

Implementation We implemented disornamenta-
tion in the existing prototype that generates ML code
from lifting declarations and which was initially writ-
ten to handle ornamentation alone. The relations
describing ornaments restricted the left patterns to
have no wildcards and no disjunctive patterns. To
allow disornamentation, we dropped those restrictions
and allowed the same patterns on both side. There-
fore, for every ornament, the associated disornament
can be written in the same language, roughly swap-
ping patterns to get the inverse relation. We also
extended projection and injection functions as previ-
ously described, and modified the elaboration of the
generic term accordingly. Then, the existing mech-
anisms to perform simplifications (which are crucial
to get code that is as close as possible to the code
that the user would have manually written) could be
reused. We only had to add a step to remove useless
code, as describe above, which was not needed for
ornamentation alone.

Interestingly, this generalization allows describing
transformations that are neither ornamentation nor
disornamentation but mixtures thereof. We also get
for free the addition of a new unrelated constructor
to an existing datatype (as a dual of constructor re-
moval, which we previously had as a pathological case
of ornamentation)—a feature already recognized as
desirable by Najd and Peyton-Jones [2016].

5 Conclusions
We have shown that disornamentation, the dual of
ornamentation, can be easily added to, and smoothly
mixed with, ornamentation, allowing both transfor-
mations to be composed in sequence or performed

simultaneously; they complement one another, allow-
ing a production version of the code to be kept in sync
with a simplified version where non essential details
have been removed.

We have only tried small examples in our current
prototype, but hopefully, disornamentation could also
be added to an ongoing implementation of a more
ambitious prototype based on a subset of OCaml and
tested on real world programs.

While ornamentation and disornamentation are
based on transforming datatype definitions, we should
also be able to remove some arguments of functions
with disornamentation by (virtually) boxing all ar-
guments, in a similar way we can add some with
ornamentation.

Disornamentation is another example of code trans-
formation based on “a posteriori code generalization”
a concept introduced for ornamentation by Williams
and Rémy which allows code reuse without the heavy
boilerplate of abstracting over all possible futures.

References
P. Dagand and C. McBride. Transporting functions

across ornaments. J. Funct. Program., 24(2-3):316–
383, 2014. doi: 10.1017/S0956796814000069. URL
http://dx.doi.org/10.1017/S0956796814000069.

H.-S. Ko and J. Gibbons. Programming with orna-
ments. Journal of Functional Programming, 27,
2016. doi: 10.1017/S0956796816000307.

S. Najd and S. Peyton-Jones. Trees that grow.
JUCS, 2016. URL https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/11/trees-
that-grow-2.pdf.

T. Williams and D. Rémy. A Principled Approach
to Ornamentation in ML. Proceedings of the ACM
on Programming Languages, pages 1–30, Jan. 2018.
doi: 10.1145/3158109. URL https://hal.inria.fr/hal-
01666104.

5

http://dx.doi.org/10.1017/S0956796814000069
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://hal.inria.fr/hal-01666104
https://hal.inria.fr/hal-01666104

	Contributions
	Ornaments
	Disornaments
	Formalization
	Conclusions

