# Module Int64

`module Int64 = `struct ... end ``
 Simple values `zero` `int64` `one` `int64` `minus_one` `int64` The 64-bit integers 0, 1, -1. `max_int` `int64` `min_int` `int64`

 Functions

 ``` neg``` : `int64 -> int64`
Unary negation.

 ``` add``` : `int64 -> int64 -> int64`

 ``` sub``` : `int64 -> int64 -> int64`
Subtraction.

 ``` mul``` : `int64 -> int64 -> int64`
Multiplication.

 ``` div``` : `int64 -> int64 -> int64`
Integer division. Raise `Division_by_zero` if the second argument is zero.

 ``` rem``` : `int64 -> int64 -> int64`
Integer remainder. If `x >= 0` and `y > 0`, the result of `Int64.rem x y` satisfies the following properties: `0 <= Int64.rem x y < y` and `x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)`. If `y = 0`, `Int64.rem x y` raises `Division_by_zero`. If `x < 0` or `y < 0`, the result of `Int64.rem x y` is not specified and depends on the platform.

 ``` succ``` : `int64 -> int64`
Successor. `Int64.succ x` is `Int64.add x Int64.one`.

 ``` pred``` : `int64 -> int64`
Predecessor. `Int64.pred x` is `Int64.sub x Int64.one`.

 ``` abs``` : `int64 -> int64`
Return the absolute value of its argument.

 ``` logand``` : `int64 -> int64 -> int64`
Bitwise logical and.

 ``` logor``` : `int64 -> int64 -> int64`
Bitwise logical or.

 ``` logxor``` : `int64 -> int64 -> int64`
Bitwise logical exclusive or.

 ``` lognot``` : `int64 -> int64`
Bitwise logical negation

 ``` shift_left``` : `int64 -> int -> int64`
`Int64.shift_left x y` shifts `x` to the left by `y` bits. The result is unspecified if `y < 0` or `y >= 64`.

 ``` shift_right``` : `int64 -> int -> int64`
`Int64.shift_right x y` shifts `x` to the right by `y` bits. This is an arithmetic shift: the sign bit of `x` is replicated and inserted in the vacated bits. The result is unspecified if `y < 0` or `y >= 64`.

 ``` shift_right_logical``` : `int64 -> int -> int64`
`Int64.shift_right_logical x y` shifts `x` to the right by `y` bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of `x`. The result is unspecified if `y < 0` or `y >= 64`.

 ``` of_int``` : `int -> int64`
Convert the given integer (type `int`) to a 64-bit integer (type `int64`).

 ``` to_int``` : `int64 -> int`

 ``` of_float``` : `float -> int64`
Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range `Int64.min_int, Int64.max_int`.

 ``` to_float``` : `int64 -> float`
Convert the given 64-bit integer to a floating-point number.

 ``` of_int32``` : `int32 -> int64`
Convert the given 32-bit integer (type `int32`) to a 64-bit integer (type `int64`).

 ``` to_int32``` : `int64 -> int32`

 ``` of_nativeint``` : `nativeint -> int64`
Convert the given native integer (type `nativeint`) to a 64-bit integer (type `int64`).

 ``` to_nativeint``` : `int64 -> nativeint`

 ``` of_string``` : `string -> int64`
Convert the given string to a 64-bit integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with `0x`, `0o` or `0b` respectively. Raise `Failure "int_of_string"` if the given string is not a valid representation of an integer.

 ``` to_string``` : `int64 -> string`
Return the string representation of its argument, in decimal.

 ``` format``` : `string -> int64 -> string`
`Int64.format fmt n` return the string representation of the 64-bit integer `n` in the format specified by `fmt`. `fmt` is a `Printf`-style format containing exactly one `%d`, `%i`, `%u`, `%x`, `%X` or `%o` conversion specification. See the documentation of the `Printf` module for more information,

 ``` bits_of_float``` : `float -> int64`
Return the internal representation of the given float according to the IEEE 754 floating-point ``double format'' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.

 ``` float_of_bits``` : `int64 -> float`
Return the floating-point number whose internal representation, according to the IEEE 754 floating-point ``double format'' bit layout, is the given `int64`.