Ornaments in Practice

Thomas Williams, Pierre-Évariste Dagand, Didier Rémy

Inria

August 29, 2014
Motivation

Very similar data structures expressed as algebraic data types:

- trees with values at the leaves, at the nodes, etc
- GADTs encoding different invariants

Very similar functions on these structures
Motivation

Very similar data structures expressed as algebraic data types:
 - trees with values at the leaves, at the nodes, etc
 - GADTs encoding different invariants

Very similar functions on these structures

Ornaments (McBride, 2010)
 - express the link between similar datatypes
 - between operations on these types
Naturals and lists

\[
\text{type } \text{nat} = \text{Z} \mid S \text{ of } \text{nat} \\
\text{type } \alpha \text{ list} = \text{Nil} \mid \text{Cons of } \alpha \times \alpha \text{ list}
\]
Naturals and lists

```
type nat = Z | S of nat
type α list = Nil | Cons of α × α list

S ( S ( S ( Z )))
Cons(1, Cons(2, Cons(3, Nil)))
```
Naturals and lists

```ocaml
let rec length = function
  | Nil  → Z
  | Cons(x, xs) → S(length xs)
```

ornament from length : α list → nat
Valid ornaments

Intuitively, an ornament match values from an *ornamented* datatype to values of a *bare* type.

- Project the constructors from the *ornamented* to the *bare* type
- maybe forget some information
- while keeping the recursive structure of the value

An ornament is defined by a projection function, subject to some syntactic conditions described in our paper.
Relating functions

let rec add m n = match m with
 | Z → n
 | S m' → S (add m' n)

let rec append ml nl = match ml with
 | Nil → nl
 | Cons(x,ml') → Cons(x,append ml' nl)

Coherence:
length (append ml nl) = add (length ml) (length nl)
project (f_lifted x y) = f (project x) (project y)
Lifting functions

```ocaml
define add = rec
    m n
    match m with
    | Z → n
    | S m' → S (add m' n)
```

Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}
```

Lifting functions

```ocaml
let rec add m n = match m with
    | Z → n
    | S m' → S (add m' n)

let lifting append from add with
    {length} → {length} → {length}

let rec append ml nl =
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl =

  length ml = m
  length nl = n
```
Lifting functions

\[
\text{let rec } \text{add } m \ n = \text{match } m \text{ with}
\]
\[
| Z \rightarrow n \\
| S \ m' \rightarrow S \ (\text{add } m' \ n)
\]

\[
\text{let lifting append from add with}
\]
\[
\{\text{length}\} \rightarrow \{\text{length}\} \rightarrow \{\text{length}\}
\]

\[
\text{let rec } \text{append } ml \ nl =
\]

length ml = m
length nl = n
Lifting functions

```ocaml
let rec add m n = match m with
  | Z -> n
  | S m' -> S (add m' n)

let lifting append from add with
 {length} -> {length} -> {length}

let rec append ml nl = match with

length ml = m
length nl = n
```
Lifting functions

```
let rec add m n = match m with
    | Z → n
    | S m' → S (add m' n)

let lifting append from add with
    {length} → {length} → {length}

let rec append ml nl = match ml with

    length ml = m
    length nl = n
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with

  length ml = m
  length nl = n
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl
  | Cons(x,ml') → Cons(x,append ml' nl)

length ml = m
length nl = n
```
Lifting functions

```
let rec add m n = match m with
  | Z -> n
  | S m' -> S (add m' n)

let lifting append from add with
  {length} -> {length} -> {length}

let rec append ml nl = match ml with
  | Nil ->

length ml = m
length nl = n
```
Lifting functions

```ocaml
let rec add m n = match m with
   | Z → n
   | S m' → S (add m' n)

let lifting append from add with
   {length} → {length} → {length}

let rec append ml nl = match ml with
   | Nil → nl
   | Cons(x,ml') -> Cons(x, append ml' nl)
```

length ml = m
length nl = n
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl

length ml = m
length nl = n
```
Lifting functions

```
let rec add m n = match m with
  | Z  -> n
  | S m' -> S (add m' n)

let lifting append from add with
  {length} -> {length} -> {length}

let rec append ml nl = match ml with
  | Nil  -> nl
  | Cons(x,ml') -> Cons(x, append ml' nl)

length ml = m
length nl = n
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl
  | Cons(x,ml') →

length ml = m
length nl = n
length ml' = m'
```
Lifting functions

```plaintext
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl
  | Cons(x,ml') →

  length ml = m
length nl = n
length ml' = m'
```
Lifting functions

```ocaml
let rec add m n = match m with
    | Z    → n
    | S m'  → S (add m' n)

let lifting append from add with
    {length} → {length} → {length}

let rec append ml nl = match ml with
    | Nil → nl
    | Cons(x,ml') → Cons(x,append ml' nl)

length ml = m
length nl = n
length ml' = m'
```
Lifting functions

```
let rec add m n = match m with
  | Z    -> n
  | S m'  -> S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil    -> nl
  | Cons(x,ml') -> Cons( ,
  | Cons(x,ml') -> Cons( ,

length ml = m
length nl = n
length ml' = m'
```
Lifting functions

```ocaml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl
  | Cons(x,ml') → Cons( , append ml' nl)

length ml = m
length nl = n
length ml' = m'
```
let rec add m n = match m with
 | Z → n
 | S m' → S (add m' n)

let lifting append from add with
 {length} → {length} → {length}

let rec append ml nl = match ml with
 | Nil → nl
 | Cons(x,ml') → Cons(????, append ml' nl)

length ml = m
length nl = n
length ml' = m'
Lifting functions

```ml
let rec add m n = match m with
  | Z → n
  | S m' → S (add m' n)

let lifting append from add with
  {length} → {length} → {length}

let rec append ml nl = match ml with
  | Nil → nl
  | Cons(x,ml') → Cons(x, append ml' nl)

length ml = m
length nl = n
length ml' = m'
```
let rec append ml nl = match ml with
 | Nil → nl
 | Cons(x,ml') → Cons(?, append ml' nl)

- Manually, by intervention of the programmer
- With a *patch* specifying what should be added where
- Code inference: x makes the most sense here
The other liftings

\[
\text{length } (\text{add_lifted } ml \text{ nl}) = \text{add } (\text{length } ml) \text{ (length } nl) \\
\]

\[
\textbf{let rec} \ \text{rev_append } ml \text{ nl} = \textbf{match} \ ml \text{ with} \\
\quad | \text{Nil} \rightarrow \text{nl} \\
\quad | \text{Cons}(x,ml') \rightarrow \text{rev_append } ml' \ (\text{Cons}(x,nl)) \\
\]

\[
\textbf{let rec} \ add_bis m n = \textbf{match} \ m \text{ with} \\
\quad | \text{Z} \rightarrow n \\
\quad | \text{S} \ m' \rightarrow \text{add_bis } m' \ (\text{S } n) \\
\]
Ornaments for refactoring

```ocaml

type expr =
    | Const of int
    | Add of expr × expr
    | Mul of expr × expr

let rec eval = function
    | Const(i) → i
    | Add(u, v) → eval u + eval v
    | Mul(u, v) → eval u × eval v
```

type expr =
 | Const of int
 | Add of expr × expr
 | Mul of expr × expr

let rec eval = function
 | Const(i) → i
 | Add(u, v) → eval u + eval v
 | Mul(u, v) → eval u × eval v

type binop = Add’ | Mul’
type expr’ =
 | Const’ of int
 | BinOp’ of binop × expr’ × expr’
Ornaments for refactoring (2)

let rec convert : expr' → expr = function
 | Const'(i) → Const(i)
 | BinOp(Add', u, v) → Add(convert u, convert v)
 | BinOp(Mul', u, v) → Mul(convert u, convert v)
ornament from convert : expr' → expr

let lifting eval’ from eval with {convert} → _

The projection convert is bijective: the lifting is uniquely defined.
let rec convert : expr' → expr = function
 | Const'(i) → Const(i)
 | BinOp(Add', u, v) → Add(convert u, convert v)
 | BinOp(Mul', u, v) → Mul(convert u, convert v)

ornament from convert : expr' → expr

let lifting eval' from eval with {convert} → _

The projection convert is bijective: the lifting is uniquely defined.

let rec eval' : expr' → int = function
 | Const'(i) → i
 | BinOp'(Add', u, v) → eval' u + eval' v
 | BinOp'(Mul', u, v) → eval' u × eval' v
Lifting data structures

define key
define compare : key -> key -> int
define set = Empty | Node of key x set x set

define α map =
 | MEmpty
 | MNode of key x α x α map x α map

let rec keys = function
 | MEmpty -> Empty
 | MNode(k, v, l, r) -> Node(k, keys l, keys r)
ornament from keys : α map -> set
Lifting an higher-order function

```
let rec exists (p : elt → bool) (s : set) : bool =
  match s with
  | Empty → false
  | Node(l, k, r) → p k
     || exists p l || exists p r

let lifting
  map_exists
  from
every

let rec
  map_exists p m =
  match m with
  | Empty → false
  | Node(l, k, v, r) → p k
     || map_exists p l || map_exists p r
Lifting an higher-order function

```ocaml
let rec exists (p : elt → bool) (s : set) : bool =
 match s with
 | Empty → false
 | Node(l, k, r) → p k
 || exists p l || exists p r

let lifting map_exists from exists
 with (_ → +_ → _) → {keys} → _
```
Lifting an higher-order function

```ocaml
let rec exists (p : elt → bool) (s : set) : bool =
 match s with
 | Empty → false
 | Node(l, k, r) → p k || exists p l || exists p r

let lifting map_exists from exists
 with (_ → +_ → _) → {keys} → _

let rec map_exists p m =
 match m with
 | Empty → false
 | Node(l, k, v, r) → p k ?
 || map_exists p l || map_exists p r
```
GADTs

Several data structures with the same contents but different invariants, \emph{i.e.} a constraint on the shape of the type. Lists and vectors:

\begin{verbatim}
  type α list = Nil | Cons of α × α list
  type zero = Zero
  type (_, α) vec =
    | VNil : (zero, α) vec
    | VCons : α × (n, α) vec → (n succ, α) vec

  let rec to_list : type n. (n, α) vec → α list =
    function
    | VNil → Nil
    | VCons(x, xs) → Cons(x, xs)

  ornament from to_list : (γ, α) vec → α list
\end{verbatim}

The lifting should be unambiguous.
Lifting for GADTs

Automatic for some invariants, we only need to give the expected type of the function:

```ocaml
let rec zip xs ys = match xs, ys with
 | Nil, Nil -> Nil
 | Cons(x, xs), Cons(y, ys) -> Cons((x, y), zip xs ys)
 | _ -> failwith "different length"
```

```ocaml
let lifting vzip : type n. (n, α) vec -> (n, β) vec -> (n, α × β) vec =
 fun xs ys -> match xs, ys with
 | VNil, VNil -> VNil
 | VCons(x, xs), VCons(y, ys) -> VCons((x, y), vzip xs ys)
 | _ -> failwith "different length"
```
Lifting for GADTs

Automatic for some invariants, we only need to give the expected type of the function:

```ocaml
let rec zip xs ys = match xs, ys with
 | Nil, Nil → Nil
 | Cons(x, xs), Cons(y, ys) → Cons((x, y), zip xs ys)
 | _ → failwith "different length"

let lifting vzip :
 type n. (n, α) vec → (n, β) vec → (n, α × β) vec
from zip with {to_list} → {to_list} → {to_list}
```
Lifting for GADTs

Automatic for some invariants, we only need to give the expected type of the function:

```ml
let rec zip xs ys = match xs, ys with
 | Nil, Nil → Nil
 | Cons(x, xs), Cons(y, ys) → Cons((x, y), zip xs ys)
 | _ → failwith "different length"
```

```ml
let lifting vzip :
 type n. (n, α) vec → (n, β) vec → (n, α × β) vec
from zip with {to_list} → {to_list} → {to_list}
```

```ml
let rec vzip :
 type n. (n, α) vec → (n, β) vec → (n, α × β) vec
= fun xs ys → match xs, ys with
 | VNil, VNil → VNil
 | VCons(x, xs), VCons(y, ys) →
 VCons((x, y), vzip xs ys)
 | _ → failwith "different length"
```
Conclusion

1. Describing ornaments by projection is a good fit for ML
2. There are ornaments in the wild
3. The automatic lifting is incomplete, but gives good and predictable results
Questions ?