
A Meta-Language for Ornamentation in ML

Thomas Williams and Didier Rémy

(Draft version of January 14, 2017)

Abstract
Ornaments are a way to describe changes in datatype defi-
nitions that preserve their recursive structure, reorganizing,
adding, or dropping some pieces of data so that functions op-
erating on the bare definition can be partially and sometimes
totally lifted into functions operating on the ornamented
structure. We propose an extension of ML with higher-
order ornaments. We introduce a meta-language above ML in
which we can elaborate a most generic lifting of bare code,
so that ornamented code can then be obtained by instantia-
tion of the generic lifting, followed by staged reduction and
some remaining simplifications. We use logical relations to
closely relate the ornamented code to the bare code.

1. Introduction
Inductive datatypes and parametric polymorphism were two
key features introduced in the ML family of languages in
the 1980’s, at the core of the two popular languages OCaml
and Haskell. Datatypes stress the algebraic structure of data
while parametric polymorphism allows to exploit universal
properties of algorithms working on algebraic structures.

Datatype definitions are inductively defined as labeled
sums and products over primitive types. This restricted lan-
guage allows the programmer to describe, on the one hand,
these recursive structures and, on the other hand, how to pop-
ulate them with data of either primitive types or types given
as parameters.

Datatypes can be factorized through their recursive struc-
tures. For example, the type of leaf binary trees and the type
of node binary trees both share a common binary-branching
structure and are isomorphic but functions operating on them
must be defined independently. Having established the struc-
tural ties between two datatypes, one soon realizes that both
admit strikingly similar functions, operating similarly over

[Copyright notice will appear here once ’preprint’ option is removed.]

their common recursive structure. Users sometimes feel they
are repeatedly programming the same operations over and
over again with only minor variations. The refactoring pro-
cess by which one adapts existing code to work on another,
similarly-structured datatype requires non-negligible efforts
from the programmer. Can this process be automated?

The strong typing discipline of ML is already very helpful
for code refactoring. When modifying a datatype definition,
it points out all the ill-typed occurrences where some rewrit-
ing ought to be performed. However, while in most cases the
adjustments are really obvious from the context, they still
have to be manually performed, one after the other. Further-
more, changes that do not lead to type errors will be left
unnoticed.

Our goal is not just that the new program typechecks, but
to carefully track all changes in datatype definitions to au-
tomate most of this process. Besides, we wish to have some
guarantee that the new version behaves consistently with the
original program except for the code that is manually added.

The recent theory of ornaments [3, 4] is the right frame-
work to tackle these challenges. It defines conditions under
which a new datatype definition can be described as an or-
nament of another. In essence, a datatype ornaments another
if they both share the same recursive skeleton.

Williams et al. have already explored the interest of
such an approach and exploited the structural ties relating
a datatype and its ornamented counterpart [14]. In particu-
lar, they have demonstrated how functions operating only on
the structure of some datatype could be semi-automatically
lifted to its ornamented version.

We build on their work, generalizing and especially for-
malizing their approach. As them, we also consider an ML
setting where ornaments are a primitive notion rather than
encoded. To be self-contained we remind a few typical uses
of ornaments in ML, mostly taken from their work, but also
propose new ones.

Our contributions are the following: we extend the defi-
nition of ornaments to the higher-order setting and give them
a semantics using logical relations, which allows to maintain
a close correspondence between the bare code and the lifted
code; we propose a principled approach to the lifting pro-
cess, introducing an intermediate meta-language above ML
in which lifted functions have a most general syntactic elab-

1 2017/1/14

orated form, before they are instantiated into concrete lift-
ings, reduced, and simplified back to ML code. Although
designed as a tool, our meta-language is a restricted form
of a dependently-typed language that keeps track of selected
branches during pattern matching and could perhaps also be
useful for other purposes.

The rest of the paper is organized as follows. In the
next section, we introduce ornaments by means of examples.
The lifting process, which is the core of our contribution is
described intuitively in section §3. We introduce the meta-
language in §4and present its meta-theoretical properties in
§5. We introduce a logical relation on meta-terms in §6 that
serves both for proving its meta-theoretical properties and
for the lifting elaboration process. In §7, we show how the
meta-construction can be eliminated by meta-reduction. In
§8, we give a formal definition of ornaments, based on a
logical relation. In §9, we describe the lifting process that
transforms a lifting declaration into actual ML code, and we
justify its correctness. We discuss a few other issues in §10
and related works in §11.

2. Examples of ornaments
Let us discover ornaments by means of examples.

2.1 Code refactoring
The most striking application is perhaps code refactoring,
which is often an annoying but necessary task when pro-
gramming. We start with an example where refactoring is
isomorphic, reorganizing a sum data structure into a sum
of sums. Assume given the following datatype representing
arithmetic expressions, together with an evaluation function.

type expr =
| Const of int
| Add of expr * expr
| Mul of expr * expr

let eval = rec eval → fun e→
match e with
| Const i → i
| Add (u, v) → eval u + eval v
| Mul (u, v) → eval u * eval v

The programmer may realize that Add and Mul are two binary
operators that can be factorized, and thus prefer the follow-
ing version expr’ using an auxiliary type of binary operators:

type binop = Add’ | Mul’
type expr’ =
| Const’ of int
| Binop’ of binop * expr’ * expr’

There is a bidirectional mapping between these two datatypes,
which may be described as an ornament:

ornament oexpr : expr→ expr’ with
| Const i → Const’ i
| Add (u, v) → Binop’ (Add’, u, v)
| Mul (u, v) → Binop’ (Mul’, u, v)

The compiler now has enough information to automatically
lift the old version of the code to the new version. We just
ask!

let eval’ = lifting eval : oexpr→

(The wild char is part of the type that may be inferred.) Here,
the compiler will automatically compile eval’ to the expected
code, without any further user interaction:

let eval’ = rec eval → fun e→ match e with
| Const’ i → i
| Binop’ (Add’, u, v) → eval u + eval v
| Binop’ (Mul’, u, v) → eval u * eval v

Not only this is well-typed, but the semantics is also preserved—
by construction.

Lifting also works with higher-order types. For example,
we could have extended arithmetic expressions with nodes
for abstraction and application:

type expr = ...
| Abs of (expr→ expr)
| App of expr * expr

and the lifting of expr into expr would also recursively lift the
type expr→ expr into expr’ → expr’, automatically.

Although, this is a very simple example of refactoring
where no information is added to the datatype, more general
refactoring can often be decomposed into similar isomorphic
transformations that do not loose any information, and other
transformations as described next that decorate an existing
node with new pieces of information.

2.2 Code refinement
As explained in the introduction, many data-structures have
the same recursive structure and only differ by the other
(non-recursive) information carried by their nodes. For in-
stance, lists can be seen as an ornament of Peano numerals:

type nat = Z | S of nat
type ’a list = Nil | Cons of ’a * ’a list

ornament ’a natlist : nat → ’a list with
| Z→ Nil
| S m→ Cons (, m)

The ornament is syntactically described as a mapping from
the bare type nat to the lifted type ’a list . However, this
mapping may be incompletely determined, as is the case
here, since we do not know which element to attach to a
Cons node coming from a successor node. The ornament
definition may also be read in the reverse direction, which
defines a projection from ’a list to nat—the length function!

The addition on numbers may have been defined as fol-
lows:

let add = rec add→ fun m n→ match m with
| Z→ n
| S m’→ S (add m’ n)

val add : nat → nat → nat

Observe, the similarity with list concatenation:

let append = rec append→ fun m n→ match m with
| Nil → n
| Cons (x, m’)→ Cons(x, append m’ n)

val add : ’a list → ’a list → ’a list

2 2017/1/14

Having already recognized an ornament between nat and
list , we expect append to be definable as a lifting of add:

let append = lifting add : natlist → natlist → natlist

However, this returns an incomplete skeleton:

let append0 = rec append→ fun m n→ match m with
| Nil → n
| Cons (, m’) → Cons ([#1], append m’ n)

Indeed, this requires to build a cons node from a successor
node, which is underdetermined. This is reported to the user
by leaving a labeled hole [#1] in the ornamented code. The
programmer may use this label to provide a patch that will
fill the hole in the skeleton. The patch may use all bindings
in context, which are the same as the bindings already in
context at the same location in the bare version. In particular,
the first argument of Cons cannot be obtained directly, but
only by pattern matching again on m:

let append = lifting add : natlist → natlist → natlist
with #1← match m with Cons(x,)→ x

The lifting is now complete, and produces exactly the code
of append given above. The superfluous pattern matching
in the patch has been automatically removed: the patch
“match m with Cons(x0,)→ x0” has not just been inserted in
the hole, but also simplified by observing that x0 is actually
equal to x and need not be extracted again from m. This sim-
plification process relies on the ability of the meta-language
to maintain equalities between terms via dependent types,
and is needed to make the lifted code as close as possible to
manually written code. This is essential, since the lifted code
may become the next version of the source code to be read
and modified by the programmer. This is a strong argument
in favor of the principled approach that we present next and
formalize in the rest of the paper.

Although the hole cannot be uniquely determined by or-
namentation alone, it is here the obvious choice: since the
append function is polymorphic we need an element of the
same type as the unnamed argument of Cons, so this is the
obvious value to pick—but not the only one, as one could
also look further in the tail of the list. Instead of giving an ex-
plicit patch, we could give a tactic that would fill in the hole
with the “obvious choice” in such cases. However, while im-
portant in practice, this is an orthogonal issue related to code
inference which is not the focus of this work. Below, we stick
to the case where patches are always explicit and we leave
holes in the skeleton when patches are missing.

While this example may seem anecdotal, and chosen here
for pedagogical purposes, there is actually a strong relation
between recursive data-structures and numerical representa-
tions at the heart of several works [7, 10].

2.3 Global compilation optimizations
Interestingly, code refactoring can also be used to enable
global compilation optimizations by changing the represen-
tation of data structures. For example, one may use sets

whose elements are members of a large sum datatype τI
△=

Σj∈JAj ∣ Σk∈K(Ak of τk) with a quite a few constant con-
structors Σj∈JAj , say τJ . One may then chose to split cases
into two sum types τJ and τK for the remaining cases. We
may then use the isomorphism τI set ≈ τJ set × τK set so
that τJ set may then be optimized, for example by repre-
sented all cases as a bit an integer—if ∣J ∣ is not too large.

2.4 Hiding administrative data
Sometimes data structures need to carry annotations, which
are useful information for certain purposes, not at the core
of the algorithms. A typical example is location information
attached to abstract syntax trees for reporting purposes. The
problem with data structure annotations is that they often
obfuscate the code. We show how ornaments can be used
to keep programming on the bare view of the data structures
and lift the code to the ornamented view with annotations. In
particular, scanning algorithms can be manually written on
the bare structure and automatically lifted to the ornamented
structure with only a few patches to describe how locations
must be used for error reporting.

Consider for example, the type of λ-expressions and its
evaluator:

type expr =
| Abs of (expr→ expr)
| App of expr * expr
| Const of int

let eval = rec eval → fun e→ match e with
| App (u, v) →

(match eval u with Some (Abs f)→ f v | → None)
| v → Some v

To add locations, we instrument the data-structure as follow,
which we declare as an ornament of ”expr”:

type expr loc = expr aux * loc
and expr aux =
| Abs’ of (expr loc → expr loc)
| App’ of expr loc * expr loc
| Const’ of int

ornament add loc : expr→ expr loc with
| Abs f → (Abs’ f ,)
| App (u, v) → (App (u, v),)
| Const i → (Const i,)

We define a datatype type for results which is an ornament
of the option type:

type (’a , ’err) result = Ok of ’a | Error of ’err
ornament (’a, ’err) optres : ’a option → (’a , ’err) error with
| Some a→ Ok a
| None→ Error

If we try to lift the function as before:

let eval’ =
lifting eval : add loc→ (add loc, (loc * string)) result

3 2017/1/14

The system will only be able to do a partial lifting

let eval’ = rec eval → fun e→ match e with
| App’ (u, v), →

match eval’ u with
| Some (Abs f)→ Ok (f v)
| → Error [#1] end

| v → Ok v

Indeed, in the erroneous case eval’ must now return a value
of the form Error (...) instead of None, but it has no way
to know which arguments to pass to the constructor, hence
the hole labeled #1. To complete the lifting, we provide the
following patch:

let eval’ =
lifting eval : add loc→ (add loc, (loc * string)) result
patch #1: let (, loc) = e in (loc , ”not a function”)

We then obtain the expected complete code:

let eval’ = rec eval → fun e→ match e with
| App’ (u, v), loc →

(match eval’ u with
| Some (Abs f)→ Ok (f v)
| → Error (loc , ”not a function”))

| v → Ok v

While this example is limited to the simple case where we
only read the abstract syntax tree, some compilation passes
often need to transform the abstract syntax tree carrying
location information around. More experiment is needed to
see how viable the ornament approach is. This might be a
case where appropriate tactics for filling the holes would be
quite helpful.

This example suggests a new use of ornaments in a pro-
gramming environment where the bare code and lifted code
would be kept in sync, and the user could switch between the
two views, using the bare code for the core of its algorithm
that need not see all the details and the lifted code only when
necessary.

We also refer to previous work [14] for other uses of
ornaments.

3. Overview of the lifting process
3.1 Encoding ornaments
Ornamentation only affects datatypes, so a program can be
lifted by simply inserting some code to translate from and to
the ornamented type at occurrences where the base datatype
is either constructed or destructed in the original program.

We now explain how this code can be automatically in-
serted by lifting. For sake of illustration, we proceed in sev-
eral incremental steps.

Intuitively, the append function should have the same
recursive schema as add, and operate on constructors Nil and
Cons similarly to the way add proceeds with constructors S
and Z. To make this correspondence explicit, we may see
a list as a nat-like structure where just the head of the list

has been transformed. For that purpose, we introduce an
hybrid open version of the datatype of Peano naturals, using
new constructors Z’ and S’ corresponding to Z and S but
remaining parameterized over the type of the tail:

type ’a nat skel = Z’ | S’ of ’a

Notice that nat skel is just the type function of which type nat
is the fix-point—up to the renaming of constructors. We may
now define the head projection of the list into ’a nat skel1

where the head looks like a number while the tail is a list:

let proj nat list = fun m #⇒ match m with
| Nil → Z’
| Cons (, m’) → S’ m’

val proj nat list : ’a list → ’a list nat skel

We have used annotated versions of abstractions fun x #⇒ a
and applications a#b called meta-functions and meta-appli-
cations to keep track of helper code and distinguish it from
the original code, but these can otherwise be read as regular
functions and applications.

Once an ’a list has been turned into ’a list nat skel with
this helper function, we can pattern match on ’a list nat skel
in the same way we matched on nat in the definition of add.
Hence, the definition of append should look like:

let append1 = rec append→ fun m n→
match proj nat list # m with
| Z’ → n
| S’ m’→ ... S’ (append m’ n) ...

In the second branch, we must return a list out of the hybrid
list-nat skeleton S’ (append m’ n). Using a helper function:

| S’ m’→ constr nat list 1 (S’(append m’ n)) ...

Of course, constr nat list requires some supplementary in-
formation x to put in the head cell of the list:

let constr nat list = fun n x #⇒ match n with
| Z’ → Nil
| S’ n’ → Cons (x, n’)

val constr nat list : ’a list nat skel → ’a → ’a list

As explained above, this supplementation information is
(match m with Cons (x,)→ x). and must be user provided
as patch [#1]. Hence, the lifting of add into lists is:

let append2 = rec append→ fun m n→
match proj nat list # m with
| Z’ → n
| S’ m’→ constr nat list # (S’(append m’ n))

(match m with Cons (x,)→ x)

This version is correct, but not final yet, as it still contains
the intermediate hybrid structure, which will eventually be
eliminated. However, before we see how to do so in the
next section, we first check that our schema extends to more
complex examples of ornaments.

1 Our naming convention is to use the suffix nat list for the functions
related to the ornament from nat to list .

4 2017/1/14

Assume, for instance, that we also attach new information
to the Z constructor to get lists with some information at the
end, which could be defined as:

type (’a , ’b) listend =
| Nilend of ’b
| Consend of ’a * (’a, ’b) listend

We may write encoding and decoding functions as above:

let proj nat listend = fun l → match l with
| Nilend → Z’
| Consend (,l’) → S’ l’

val proj nat listend : (’a , ’b) listend → (’a , ’b) listend nat skel

and

let constr nat listend = fun n x → match n with
| Z’ → Nilend x
| S’ l’ → Consend (x,l’)

However, a new problem appears: we cannot give a valid
ML type to the function constr nat listend, as the argument x
should take different types depending on whether n is zero
or a successor. This is solved by adding a form of depen-
dent types to our intermediate language—and finely tuned
restrictions to guarantee that the generated code becomes ty-
peable in ML after some simplifications. This is the purpose
of the next section.

3.2 Eliminating the encoding
The mechanical ornamentation both creates intermediate hy-
brid data structures and includes extra abstractions and ap-
plications. Fortunately, these additional computations can be
avoided, which not only removes sources of inefficiencies,
but also helps generating more natural code with fewer indi-
rections that looks similar to hand-written code.

We first perform meta-reduction of append2 which re-
moves all helper functions (we actually give different types
to ordinary and meta functions so that meta-functions can
only be applied using meta-applications and ordinary func-
tions can only be applied using ordinary applications):

let append3 = rec append→ fun m n→
match (match m with | Nil→ Z’ | Cons (x, m’)→ S’ m’) with
| Z’→ n
| S’ m’→ b

where b is (graying the dead branch):

match S’(append m’ n) with
| Z’ → Nil
| S’ r’ → Cons ((match m with Cons(x,)→ x), r’)

Still, append3 computes two extra pattern matchings that do
not appear in the manually written version append. Interest-
ingly, both of them can still be eliminated. Extruding the in-
ner match on m in append3, we get:

let append4 = rec append→ fun m n→
match m with
| Nil → (match Z’ with Z’→ n | S’ m’→ b)
| Cons (x, m’)→ (match S’ m’ with Z’→ n | S’ m’→ b)

Since we learn that m is equal to Cons(x,m’) in the Cons
branch, the expression b simplifies to Cons(x, append m’ n).
After removing all dead branches and useless pattern match-
ing, we obtain the manually-written version append:

let append = rec append→ fun m n→
match m with
| Nil → n
| Cons (a, m’)→ Cons (a, append m’ n)

3.3 Inferring a generic lifting
We have shown a specific ornamentation of add. We may in-
stead generate a generic lifting of add that is abstracted over
all possible patches, and only then specialize it to some spe-
cific ornamentation by passing the encoding and decoding
functions as arguments, as well as a set of patches describ-
ing how to generate the additional data. All liftings that fol-
low the syntactic structure of the original function can be
obtained by instantiating the same generic lifting.

Let us consider this process in more details on our run-
ning example add. There are two occurrences where add can
be generalized: the pattern matching on the first argument
m, and the construction S(add m’ n) in the successor branch.
The ornamentation constraints are analyzed using a sort of
elaborating type inference. We infer that m can be replaced
by any ornament nat ty of naturals, which will be given by
a pair of functions mproj and mconstr to destruct nat ty into a
nat skel and construct a nat ty from a nat skel; we also infer
that n and the result must be the same ornament of naturals,
hence given by the other pair of functions nproj and nconstr. We
thus obtain a description of all possible syntactic ornaments
of the base function, i.e. those ornaments that preserve the
structure of the original code:

let add gen = fun mproj mconstr nproj nconstr p1 #⇒
rec add gen’→ fun m n→ match mproj # m with

| Z’→ n
| S’ m’→ nconstr # S’(add gen’ m’ n)

(p1 # add gen’ # m # m’ # n)

Notice that since m is only destructured and n is only con-
structed, mconstr and nproj are unused in this example, but we
keep them as extra parameters for regularity of the encoding.

Finally, the patch p1 describes how to obtain the extra in-
formation from the environment, namely add gen, m, n, m’,
when rebuilding a new value of the ornamented type. While
mproj, mconstr, nproj, nconstr parameters will be automatically in-
stantiated, the code for patches will have to be user-provided.
The generalized function abstracts over all possible orna-
ments, and must now be instantiated by some specific or-
naments.

For a trivial example, we may decide to ornament noth-
ing, i.e. just lift nat to itself, which amounts to passing to

5 2017/1/14

ENVE

⊢ ∅

ENVVAR

⊢ Γ Γ ⊢ τ ∶ Sch x# Γ

⊢ Γ, x ∶ τ

ENVTVAR

⊢ Γ Γ ⊢ κ ∶ wf α# Γ

⊢ Γ, α ∶ κ

K-VAR

α ∶ Typ ∈ Γ

Γ ⊢ α ∶ Typ

K-BASE

ζ ∶ (Typ)i → Typ (Γ ⊢ τi ∶ Typ)i

Γ ⊢ ζ (τi)i ∶ Typ

K-ARR

Γ ⊢ τ1 ∶ Typ Γ ⊢ τ2 ∶ Typ

Γ ⊢ τ1 → τ2 ∶ Typ

K-SUBTYP

Γ ⊢ τ ∶ Typ

Γ ⊢ τ ∶ Sch

K-ALL

Γ, α ∶ κ ⊢ τ ∶ Sch

Γ ⊢ ∀α ∶ Typ τ ∶ Sch

Figure 1. Kinding rules for ML

add gen the following trivial functions:

let proj nat nat =
fun x #⇒ match x with
| Z→ Z’ | S x → S’ x

let constr nat nat =
fun x () #⇒ match x with
| Z’ → Z | S’ x → S x

There is no information added, so we may use this unit patch
for p1 (the information returned will be ignored anyway):

let unit patch = fun #⇒ ()
let add1 = add gen # proj nat nat # constr nat nat

proj nat nat # constr nat nat # unit patch

As expected, meta-reducing add1 and simplifying the result
returns the original program add.

Returning to the append function, we may instantiate the
generic lifting add gen with the ornament between natural
numbers and lists with the following patch:

let append patch =
fun m #⇒ match m with Cons(x,)→ x

let append5 =
add gen # proj nat list # constr nat list

proj nat list # constr nat list # append patch

Meta-reduction of append5 gives append2. which can then be
simplified to append, as explained above.

Besides sharing the same generic code for different or-
naments of the base type, the generic code also helps relate
the original code and the ornamented one: we use a para-
metricity result to prove that add1 and append5 are related
by ornamentation. Finally, we show that they can be simpli-
fied into add and append, respectively, hence respecting the
equivalence on both sides. This in turn shows that add and
append are in an ornamentation relation.

The generic lifting is not exposed as is to the user because
it is not convenient to use directly. Positional arguments are
not practical, because one must reference the generic term
to understand the role of each argument. We can solve this
problem by attaching the arguments to program locations
and exposing the correspondence in the user interface. For
example, in the lifting of add to append shown in the pre-
vious section, the location #1 corresponds to the argument
p1.

Patches can be automatically inferred in some cases:
some patches are trivial such as the unit patch in the lifting
of add to itself, and some other patches disappear because
they are located in a dead branch.

Finally, rather than specifying the ornament used at a
given program point, we also allow the user to either give

κ ∶∶= Typ ∣ Sch

τ, σ ∶∶= α ∣ τ → τ ∣ ζ τ ∣ ∀(α ∶ Typ) τ
a, b ∶∶= x ∣ let x = a in a ∣ fix (x ∶ τ) x. a ∣ a a

∣ Λ(α ∶ Typ). u ∣ a τ ∣ d τ a ∣ match a with P → a

P ∶∶= d τ x

v ∶∶= d τ v ∣ fix (x ∶ τ) x. a
u ∶∶= x ∣ d τ u ∣ fix (x ∶ τ) x. a ∣ u τ ∣ Λ(α ∶ κ). u

∣ let x = u in u ∣ match u with P → u

Γ ∶∶= ∅ ∣ Γ, x ∶ τ ∣ Γ, α ∶ Typ

ζ ∶∶= unit ∣ bool ∣ list ∣ . . .

Figure 2. Syntax of ML

an ornament specification on the inputs and outputs of a
function, or to specify that each occurrence of a given type
must be lifted along a given ornament, and generate the
instantiation arguments accordingly.

4. Meta ML
As explained above (§3), we use a meta language mML that
extends ML with dependent types and has separate meta-
abstractions and meta-applications. In this section, we de-
scribe the generalized language mML as an extension of ML
and how to translate programs of mML that do not use the
richer types of mML back to ML. We actually introduce an
intermediate language eML that has the same operations as
ML, but with equality typing constraints. This will make the
introduction of mML easier and also serve as an intermediate
step when simplifying programs, first simplifying mML pro-
grams into eML ones (§5.6), and then going from eML ones
to back to ML programs (§7). It is an important aspect of our
design that mML is only used as an intermediate to imple-
ment the lifting and that lifted programs remain in ML.

Notation
We write (Qi)i∈I for a tuple (Q1, ..Qn). We often omit the
set I in which i ranges and just write (Qi)i, using different
indices i, j, and k for ranging over different sets I , J , and
K; We also write Q if we do not have to explicitly mention
the components Qi. In particular, Q stands for (Q, ..Q) in
syntax definitions. We note Q[zi ← Qi]i the simultaneous
substitution of zi by Qi for all i in I (left implicit).

6 2017/1/14

VAR
x ∶ σ ∈ Γ

Γ ⊢ x ∶ σ

TABS
Γ, α ∶ Typ ⊢ u ∶ σ

Γ ⊢ Λ(α ∶ Typ). u ∶ ∀(α ∶ Typ) σ

TAPP
Γ ⊢ τ ∶ Typ Γ ⊢ a ∶ ∀(α ∶ Typ) σ

Γ ⊢ a τ ∶ σ[α← τ]

FIX

Γ, x ∶ τ1 → τ2, y ∶ τ1 ⊢ a ∶ τ2
Γ ⊢ fix (x ∶ τ1 → τ2) y. a ∶ τ1 → τ2

APP

Γ ⊢ b ∶ τ1 Γ ⊢ a ∶ τ1 → τ2

Γ ⊢ a b ∶ τ2

LET-MONO
Γ ⊢ τ ′ ∶ Typ

Γ ⊢ a ∶ τ ′ Γ, x ∶ τ ′ ⊢ b ∶ τ
Γ ⊢ let x = a in b ∶ τ

LET-POLY
Γ ⊢ σ ∶ Sch

Γ ⊢ u ∶ σ Γ, x ∶ σ ⊢ b ∶ τ
Γ ⊢ let x = u in b ∶ τ

CON ⊢ d ∶ ∀(αj ∶ Typ)j (τi)i → τ

(Γ ⊢ τj ∶ Typ)j (Γ ⊢ ai ∶ τi[αj ← τj]j)i

Γ ⊢ d(τj)j(ai)i ∶ τ[αj ← τj]j

MATCH (di ∶ ∀(αk ∶ Typ)k (τij)j → ζ (αk)k)i
Γ ⊢ a ∶ ζ (τk)k (Γ, (xij ∶ τij[αk ← τk]k)j ⊢ bi ∶ τ)i

Γ ⊢ match a with (di(τik)k(xij)j → bi)i ∶ τ

Figure 3. Typing rules of ML (and eML in gray)

4.1 ML
We consider an explicitly typed version of ML. In practice,
the user writes programs with implicit types that are elabo-
rated into the explicit language. The programmer’s language
is core ML with recursion and datatypes. Its syntax is de-
scribed in Figure 2, ignoring the gray which is not part of
the ML definition. To prepare for extensions, we slightly de-
part from traditional presentations. Instead of defining type
schemes as a generalization of monomorphic types, we do
the converse and introduce monotypes as a restriction of type
schemes. The reason to do so is to be able to see both ML and
eML as sublanguages of mML—the most expressive of the
three. We use kinds to distinguish between the types of the
different languages: for ML we only need a kind Typ to clas-
sify the monomorphic types and its superkind Sch to classify
type schemes. Type schemes are not first-class: polymorphic
type variables range only over monomorphic types, i.e. those
of kind Typ.

We assume given a set of type constructors, written ζ.
Each type constructor has a fixed signature of the form
(Typ, ..Typ) ⇒ Typ. We require that type expressions re-
spect the kinds of type constructors and type constructors
are always fully applied. We also assume given a set of
data constructors. Each data constructor d comes with a
type signature, which is a closed type-scheme of the form
∀(αi ∶ Typ)i (τj)j → ζ (αi)i. We assume for technical rea-
sons that all datatypes contain at least one value (note that
function types always contain as a value a function that takes
an argument and never terminates). This assumption could
be relaxed, at the cost of a more complex presentation.attern
matching is restricted to complete, shallow patterns. Instead
of having special notation for recursive functions, functions
are always defined recursively, using the construction fix (f ∶
τ1 → τ2) x. a. This avoids having two different syntactic
forms for values of function type. We still use the standard
notation λ(x ∶ τ1). a for non-recursive functions, but we just
see it as a shorthand for fix (f ∶ τ1 → τ2) x. a where f does
not appear free in a and τ2 is the function return type.

The language is equipped with a weak left-to-right, call-
by-value small-step reduction semantics. The evaluation

E ∶∶= [] ∣ E a ∣ v E ∣ d(v, .. v,E, a, .. a) ∣ Λ(α ∶ Typ). E ∣ E τ

∣ match E with P → a ∣ let x = E in a

(fix (x ∶ τ) y. a) v Ð→hβ a[x← fix (x ∶ τ) y. a, y ← v]
(Λ(α ∶ Typ). v) τ Ð→hβ v[α ← τ]

let x = v in aÐ→hβ a[x← v]
CONTEXT-BETA

aÐ→hβ b
E[a]Ð→β E[b]match dj τj (vi)i with

(dj τj (xji)i → aj)j Ð→hβ aj[xij ← vi]i

Figure 4. Reduction rules of ML

contexts E and the reduction rules are given in Figure 4.
This reduction is written Ð→β , and the corresponding head-
reduction is written Ð→hβ . Reduction must proceed under
type abstractions, so that we have a type-erasing semantics.

The typing environments Γ contain term variables x ∶ τ
and type variables α ∶ Typ. Well-formedness rules for types
and environments are given in figures 1 and 3. We use the
convention that type environments do not map the same vari-
able twice. We write z # Γ to mean that z is fresh for Γ, i.e.
it is neither in the domain nor in the image of Γ. Kinding
rules are straightforward. Rule K-SUBTYP says that any type
of the kind Typ, i.e. a simple type, can also be considered as
a type of the kind Sch, i.e. a type scheme. The typing rules
are explicitly typed version of the ML typing rules. Typing
judgments are of the form Γ ⊢ a ∶ τ where Γ ⊢ τ ∶ Sch.
Although we do not have references, we still have a form of
value restriction: Rule LET-POLY restricts polymorphic bind-
ing to a class of non-expansive terms u, defined on Figure 2,
that extends values with type abstraction, application, pat-
tern matching, and binding on non-expansive terms—whose
reduction always terminate. Binding of an expansive term is
still allowed (and is heavily used in the elaboration), but its
typing is monomorphic as described by Rule LET-MONO.

4.2 Adding equalities to ML

The intermediate language eML extends ML with term equal-
ities and type-level matches. Type-level matches may be
reduced using term equalities accumulated along pattern

7 2017/1/14

let x = u in bÐ→hι b[x← u]
(Λ(α ∶ Typ). u) τ Ð→hι u[α ← τ]

CONTEXT-IOTA

aÐ→hι b
C[a]Ð→ι C[b]match dj τj (ui)i with

(dj τj (xji)i → τj)j∈J Ð→hι τj[xji ← ui]i
match dj τj (ui)i with
(dj τj (xji)i → aj)j∈J Ð→hι aj[xji ← ui]i

Figure 5. New reduction rules of eML

matching branches. We describe the syntax and semantics
of eML below, but do not discuss its metatheory, as it is
a sublanguage of mML, whose meta-theoretical properties
will be studied in the following sections.

he syntax of eML terms is the same as that of ML terms,
except for the syntax of types, which now includes a pat-
tern matching construct that matches on values and returns
types. The new kinding and typing rules are given on Fig-
ure 6.e classify type pattern matching in Sch to prevent it
from appearing deep inside types. Typing context are ex-
tended with type equalities, which will be accumulated along
pattern matching branches:

τ ∶∶= . . . ∣ match a with P → τ

Γ ∶∶= . . . ∣ Γ, a =τ b

A let binding introduces an equality in the typing context
witnessing that the new variable is equal to its definition,
while we are typechecking the body (rules LET-EML-MONO

and LET-EML-POLY); similarly, both type-level and term-level
pattern matching introduce equalities witnessing the branch
under selection (rules K-MATCH and MATCH-EML). Type-level
pattern matching is not introduced by syntax-directed typing
rules. Instead, it is implicitly introduced through the conver-
sion rule CONV. It allows replacing one type with another in
a typing judgment as long as the types can be proved equal,
as expressed by an equality judgment Γ ⊢ τ1 ≃ τ2 defined on
Figure 7.

We define the judgment generically, as equality on kinds
and terms will intervene later: we use the metavariable X
to stand for either a term or a type (and later a kind), and
correspondingly, Y stands for respectively a type, a kind
(and later the sort of well-formed kinds). Equality is an
equivalence relation (C-REFL, C-SYM, C-TRANS) on well-typed
terms and well-kinded types. The rule C-RED-IOTA allows
the elimination of type-level matches through the reduction
Ð→ι, defined on Figure 5, but also term-level matches, let
bindings, and type abstraction and application. Since it is
used for equality proofs rather than computation, and in
possibly open terms, it is not restricted to evaluation contexts
but can be performed in an arbitrary context C and uses
a call-by-non-expansive-term strategy. It does not include
reduction of term abstractions, so as to be terminating. The
equalities introduced in the context are used through the
rule C-EQ. This rule is limited to equalities between non-
expansive terms . Conversely, C-SPLIT allows case-splitting

on a non-expansive term of a datatype, checking the equality
in each branch under the additional equality learned from the
branch selection.

Finally, we allow a strong form of congruence (C-CONTEXT):
if two terms can be proved equal, they can be substituted in
any context. The rule is stated using a general context typ-
ing: we note Γ ⊢ C[Γ′ ⊢ X ∶ Y ′] ∶ Y if there is a derivation
of Γ ⊢ C[X] ∶ Y such that the subderivation concerning X
is Γ′ ⊢ X ∶ Y ′. The context Γ′ will hold all equalities and
definitions in the branch leading up to X . This means that,
when proving an equivalence under a branch, we can use the
equalities introduced by this branch. Moreover, when C is a
term contexts C, we may write C to mean that C expects a
non-expansive term and C expects any term.

Rule C-CONTEXT could have been replaced by one con-
gruence rule for each syntactic construct of the language,
but this would have been more verbose, and would require
adding new equality rules when we extend eML to mML.
Rule C-CONTEXT enhances the power of the equality. In par-
ticular, it allows case splitting on a variable bound by an
abstraction. For instance, we can show that terms λ(x ∶
Bool). x and λ(x ∶ Bool). match x with True → True ∣
False → False are equal, by reasoning under the context
λ(x ∶ Bool). [] and case-splitting on x. This allows express-
ing a number of program transformations, among which let
extrusion and expansion, eta-expansion, etc. as equalities.
This will help with the ornamentation: the pre- and post-
processing on the terms will often preserve equality, and thus
many other useful properties (for example, they will be able
to be put in the same contexts, and interchangeable for the
logical relation we define).

Under an incoherent context, we can prove equality be-
tween any two types: if the environment contains incoherent
equalities like d1 τ1 a1 = d2 τ2 a2 , we can prove equality of
any two types σ1 and σ2 as follows: consider the two types
σ′i equal to match di τi ai with d1 τ1 a1 → σ1 ∣ d2 τ2 a2 →
σ2. By C-CONTEXT and C-EQ, they are equal. But one reduces
to σ1 and the other to σ2. Thus, the code in provably un-
reachable branches need not be well typed. When writing
eML programs, such branches can be simply ignored, for ex-
ample by replacing their content with () or any other expres-
sion. This contrasts with ML, where one needs to add a term
that fails at runtime, such as assert false.

Restricting the use of equalities to equalities non-expansive
terms is important to get subject reduction in eML: since re-
duction of beta-redexes is forbidden in equalities, the non-
expansive terms must never be affected by reduction of beta-
redexes. Consider for example the following term:

match (λ(x ∶ Unit).True) () with

∣ True→
match (λ(x ∶ Unit).True) () with

∣ True→ ()
∣ False→ 1 +True

∣ False→ ()

8 2017/1/14

CONV

Γ ⊢ τ1 ≃ τ2 Γ ⊢ a ∶ τ1
Γ ⊢ a ∶ τ2

ENVEQ

⊢ Γ Γ ⊢ τ ∶ Sch
Γ ⊢ a ∶ τ Γ ⊢ b ∶ τ

⊢ Γ, a =τ b

K-MATCH

Γ ⊢ a ∶ ζ (τk)k (di ∶ ∀(αk ∶ Typ)k (τij)j → ζ (αk)k)i
(Γ, (xij ∶ τij[αk ← τk]k)j , a =ζ (τk)k di(τik)

k(xij)j ⊢ τ ′i ∶ Sch)i

Γ ⊢ match a with (di(τik)k(xij)j → τ ′i)i ∶ Sch

LET-EML-MONO

Γ ⊢ τ ∶ Typ Γ ⊢ a ∶ τ
Γ, x ∶ τ, x =τ a ⊢ b ∶ τ ′

Γ ⊢ let x = a in b ∶ τ ′

LET-EML-POLY

Γ ⊢ τ ∶ Sch Γ ⊢ u ∶ τ
Γ, x ∶ τ, x =τ u ⊢ b ∶ τ ′

Γ ⊢ let x = u in b ∶ τ ′

MATCH-EML
Γ ⊢ τ ∶ Sch Γ ⊢ a ∶ ζ (τk)k (di ∶ ∀(αk ∶ Typ)k (τij)j → ζ (αk)k)i
(Γ, (xij ∶ τij[αk ← τk]k)j , a =ζ (τk)k di(τij)

k(xij)j ⊢ bi ∶ τ)i

Γ ⊢ match a with (di(τij)k(xij)j → bi)i ∶ τ

Figure 6. New typing rules for eML

C-REFL
Γ ⊢X ∶ Y
Γ ⊢X ≃X

C-SYM
Γ ⊢X1 ≃X2

Γ ⊢X2 ≃X1

C-TRANS
Γ ⊢X1 ≃X2 Γ ⊢X2 ≃X3

Γ ⊢X1 ≃X3

C-CONTEXT

Γ ⊢ C[Γ′ ⊢X1 ∶ Y ′] ∶ Y Γ ⊢X1 ≃X2

Γ ⊢ C[X1] ≃ C[X2]
C-RED-IOTA

X1 Ð→ι X2 Γ ⊢X1 ∶ Y1

Γ ⊢X1 ≃X2

C-EQ

(u1 =τ u2) ∈ Γ′

Γ ⊢ u1 ≃ u2

C-SPLIT Γ ⊢ u ∶ ζ (αk)k (di ∶ ∀(αk)k (τij)j → ζ (αk)k)i
(Γ, (xij ∶ τij[αk ← τk]k)j , u = di(τij)j(xij)j ⊢X1 ≃X2)i

Γ ⊢X1 ≃X2

Figure 7. Equality judgment for eML

If we allowed the elimination of equalities on expansive
terms, it would correctly typecheck: we could prove from
the equalities (λ(x ∶ Unit). True) () = True and (λ(x ∶
Unit). True) () = False that the branch containing 1 + True
is absurd. But, after one step, the first occurrence of (λ(x ∶
Unit). True) () reduces to True, and we can no longer
prove the incoherence without reducing the application in
the second occurrence. Thus we need to forbid equalities
between terms containing application in a position where it
may be evaluated.

We only limit equalities at the usage point. In mML, this
allows putting the equalities in the context, even if it is not
known at introduction time that they will reduce (by meta-
reduction) to non-expansive terms. The code that uses the
equality must still be aware of the non-expansiveness of the
terms.

We also restrict case-splitting to non-expansive terms.
Since they terminate, this greatly simplifies the metatheory
of eML.

Forbidding the reduction of application in Ð→ι makes
Ð→ι terminate (see Lemma 27). This allows the transfor-
mation from eML to ML to proceed easily: in fact, the trans-
formation can be adapted into a typechecking algorithm for
eML.

Note that full reduction would be unsound in eML: under
an incoherent context, it is possible to type expressions such

κ ∶∶= . . . ∣ Met ∣ τ → κ ∣ ∀(α ∶ κ) κ
τ, σ ∶∶= . . . ∣ ∀♯(α ∶ κ). τ ∣ Π(x ∶ τ). τ ∣ Π(◇ ∶ a =τ a). τ

∣ Λ♯(α ∶ κ). τ ∣ τ ♯ τ ∣ λ♯(x ∶ τ). τ ∣ τ ♯ a

a, b ∶∶= . . . ∣ λ♯(x ∶ τ). a ∣ a ♯u
∣ Λ♯(α ∶ κ). a ∣ a ♯ τ ∣ λ♯(◇ ∶ a =τ a). a ∣ a ♯ ◇

u ∶∶= . . . ∣ λ♯(x ∶ τ). a ∣ Λ♯(α ∶ κ). a ∣ λ♯(◇ ∶ a =τ a). a

Figure 8. Syntax of mML

(λ♯(x ∶ τ). a) ♯u Ð→h♯ a[x← u]
(Λ♯(α ∶ κ). a) ♯ τ Ð→h♯ a[α ← τ]

(λ♯(◇ ∶ b1 =τ b2). a) ♯ ◇ Ð→h♯ a

(λ♯(x ∶ τ ′). τ) ♯ u Ð→h♯ τ[x← u]
(Λ♯(α ∶ κ). τ) ♯ τ ′ Ð→h♯ τ[α ← τ ′]

CONTEXT-META

aÐ→h♯ b
C[a]Ð→♯ C[b]

Figure 9. The Ð→♯ reduction for mML

S-TYPE

Γ ⊢ Typ ∶ wf
S-SCHEME

Γ ⊢ Sch ∶ wf
S-META

Γ ⊢Met ∶ wf

S-VARR

Γ ⊢ τ ∶ Met
Γ ⊢ κ ∶ wf

Γ ⊢ τ →` κ ∶ wf

S-TARR

Γ ⊢ κ1 ∶ wf
Γ, α ∶ κ1 ⊢ κ2 ∶ wf

Γ ⊢ ∀(α ∶ κ1) κ2 ∶ wf

Figure 10. Well-formedness rules for mML

as True True, i.e. progress does not hold. However, full
reduction is not part of the dynamic semantics of eML, but
only used in its static semantics to reason about equality. It is
then unsurprising—and harmless that progress does not hold
under an incoherent context.

4.3 mML

We now add meta-abstractions and meta-applications to
mML, with two goals in mind: first, we need to abstract over
all the elements that appear in a context so that they can be
passed to patches; second, we need a form of stratification
so that a well-typed mML term whose type and typing con-
text are in eML can always be reduced to a term that can be
typed in eML, i.e. without any meta-operations. The program

9 2017/1/14

K-CONV

Γ ⊢ τ1 ∶ κ Γ ⊢ κ ≃ κ′

Γ ⊢ τ1 ∶ κ′

K-SUBEQU

Γ ⊢ τ ∶ Sch

Γ ⊢ τ ∶ Met

K-PI

Γ ⊢ τ1 ∶ Met Γ, x` ∶ τ1 ⊢ τ2 ∶ Met

Γ ⊢ Π(x` ∶ τ1). τ2 ∶ Met

K-FORALL-META

Γ, α ∶ κ ⊢ τ ∶ Met Γ ⊢ κ ∶ wf

Γ ⊢ ∀♯(α ∶ κ). τ ∶ Met

K-PI-EQ

Γ ⊢ a ∶ τ ′ Γ ⊢ b ∶ τ ′ Γ ⊢ τ ′ ∶ Sch Γ, (a =τ ′ b) ⊢ τ ∶ Met

Γ ⊢ Π(◇ ∶ a =τ ′ b). τ ∶ Met

K-TLAM

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ Λ♯(α ∶ κ1). τ ∶ ∀(α ∶ κ1) κ2

K-TAPP

Γ ⊢ τ1 ∶ ∀(α ∶ κa) κb Γ ⊢ τ2 ∶ κa
Γ ⊢ τ1 ♯ τ2 ∶ κb[α ← τ2]

K-VLAM

Γ ⊢ τ1 ∶ Met Γ, x ∶ τ1 ⊢ τ2 ∶ κ2

Γ ⊢ λ♯(x ∶ τ1). τ2 ∶ τ1 → κ2

K-VAPP

Γ ⊢ τ1 ∶ τ2 → κ2 Γ ⊢ a ∶ τ2
Γ ⊢ τ1 ♯ a ∶ κ2

Figure 11. Kinding rules for mML

TABS-META

Γ, α ∶ κ ⊢ a ∶ τ
Γ ⊢ Λ♯(α ∶ κ). a ∶ ∀♯(α ∶ κ). τ

TAPP-META

Γ ⊢ a ∶ ∀♯(α ∶ κ). τ1 Γ ⊢ τ2 ∶ κ
Γ ⊢ a ♯ τ2 ∶ τ1[α ← τ2]

EAPP

Γ ⊢ a1 ≃ a2 Γ ⊢ b ∶ Π(◇ ∶ a1 =τ ′ a2). τ
Γ ⊢ b ♯ ◇ ∶ τ

EABS Γ ⊢ τ ∶ Sch Γ ⊢ a1 ∶ τ
Γ ⊢ a2 ∶ τ Γ, (a1 =τ a2) ⊢ b ∶ τ ′

Γ ⊢ λ♯(◇ ∶ a1 =τ a2). b ∶ Π(◇ ∶ a1 =τ a2). τ ′

ABS-META

Γ ⊢ τ1 ∶ Met Γ, x ∶ τ1 ⊢ a ∶ τ2
Γ ⊢ λ♯(x ∶ τ1). a ∶ Π(x ∶ τ1). τ2

APP-META

Γ ⊢ u ∶ τ1 Γ ⊢ a ∶ Π(x ∶ τ1). τ2
Γ ⊢ a ♯u ∶ τ2[x← u]

C-EQ

(a1 =τ a2) ∈ Γ a1 Ð→∗
♯ u1 a2 Ð→∗

♯ u2

Γ ⊢ u1 ≃ u2

C-RED-META

X1 Ð→∗
♯ X2 Γ ⊢X1 ∶ Y

Γ ⊢X1 ≃X2

Figure 12. Typing and equality rules for mML

can still be read and understood as if eML and mML reduc-
tion were interleaved, i.e. as if the encoding and decodings
of ornaments were called at runtime, but may all happen at
ornamentation time.

One difficulty arises when adding meta-abstractions to
eML: both the value restriction in ML and the treatment of
equalities in eML rely on the stability of non-expansive ex-
pressions by substitution, thus on a call-by-value evalua-
tion strategy: a non-expansive term should remain expan-
sive after substitution. Therefore, we can only allow sub-
stitution by non-expansive terms. In particular, arguments
of redexes in Figure 9 must be non-expansive. To ensure
that meta-redexes can still always be reduced before other
redexes, we restrict all arguments of meta-applications in
the grammar of mML to be non-expansive. To allow some
higher-order meta-programming (as simple as taking orna-
ment encoding and decoding function as parameters), we
add meta-abstractions to the class of non-expansive terms,
but not meta-applications. The reason is that we want non-
expansive terms to be stable by reduction, but the reduction
of a meta-redexes could reveal an ML redex. A simple way
to forbid meta-redex is to forbid meta-application.

The syntax of mML is described in Figure 8. We only
present the differences with eML. Terms are extended with
(dependent) meta-abstraction on non-expansive expressions,
types, and equalities while types are extended with meta-
abstraction on non-expansive expressions and types. Meta-
abstractions are labeled with ♯ to differentiate them from nor-

mal abstractions. Symmetrically, meta-application is noted ♯,
and is syntactically restricted to take a non-expansive expres-
sion as argument. Equalities are unnamed in environments,
but we use the notation ◇ to witness the presence of an equal-
ity both in abstractions Π(◇ ∶ a =τ a).τ and λ♯(◇ ∶ a =τ a).τ
and in applications τ ♯ ◇.

The meta-reduction, written Ð→♯, is defined on Figure 9.
It is a strong reduction, allowed in arbitrary contexts C. The
corresponding head-reduction is writtenÐ→h♯ .

The introduction and elimination rules for the new term-
level abstractions are given on Figure 12. The new kinding
rules for the type-level abstraction and application are given
on Figure 11. We introduce a kind Met, superkind of Sch
(K-SUBEQU), to classify the types of meta abstractions. This
enforces a phase distinction where meta constructions can-
not be bound or returned by eML code. The grammar of
kinds is complex enough to warrant its own sorting judg-
ment, noted Γ ⊢ κ ∶ wf and defined on Figure 10.

We must revisit equality. Kinds can now contain types,
that can be converted using the K-CONV judgment. The equal-
ity judgment is enriched with closure by meta-reduction
(C-RED-META). To prevent meta-reduction from blocking
equalities, C-EQ is extended to consider equalities up to
meta-reduction. The stratification ensures that a type-level
pattern matching cannot return a meta type. This prevents
conversion from affecting the meta part of a type. Thus,
the meta-reduction of well-typed program Ð→♯ does not
get stuck, even under arbitrary contexts. Otherwise, we

10 2017/1/14

C-CONTEXT’
Γ ⊢ C[Γ′ ⊢X1 ∶ Y ′] ∶ Y Γ ⊢ C[Γ′ ⊢X2 ∶ Y ′] ∶ Y

Γ ⊢X1 ≃X2

Γ ⊢ C[X1] ≃ C[X2]
C-RED-IOTA’
X1 Ð→ι X2 Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢X1 ≃X2

C-RED-META’
X1 Ð→∗

♯ X2

Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢X1 ≃X2

Figure 13. Stricter rules for equality

would not be able to reduce the Ð→♯ part under incoher-
ent branches.

5. The metatheory of mML
Our calculus respects the usual metatheoretical properties:

Theorem 1 (Confluence). Any combination of the reduction
relations Ð→ι, Ð→β , Ð→♯ is confluent.

5.1 A temporary definition of equality
The rules for equality given previously omit some hy-
potheses that are useful when subject reduction is not yet
proved. To guarantee that both sides of an equality are well-
typed, we need to replace C-RED-META with C-RED-META’,
C-RED-IOTA with C-RED-IOTA’ and C-CONTEXT with rule C-CONTEXT’,
given on Figure 13. Admissibility of C-CONTEXT will be a
consequence of Lemma 12, and admissibility of C-RED-META

and C-RED-IOTA will be consequences of subject reduction.
Since the original rules are less constrained, they are also
complete with respect to the rules used in this section. Thus,
once the proofs are done we will be able to use the original
version.

5.2 Strong normalization for Ð→♯

Our goal in this section is to prove that meta-reduction and
type reduction are strongly normalizing. The notations used
in this proof are only used here, and will be re-used for other
purposes later in this article.

Theorem 2 (Strong normalization for meta-reduction). The
reduction Ð→♯ is strongly normalizing.

As usual, the proof will be based on reducibility sets.

Definition 1 (Reducibility set). A set S of terms is called a
reducibility set if it respects the properties C1-3 below. We
write Ca the set of reducibility sets of terms.

C1 every term a ∈ S is strongly normalizing;
C2 if a ∈ S and aÐ→♯ a

′ then a′ ∈ S;
C3 if a is not a meta-abstraction, and for all a′ such that

aÐ→♯ a
′, a′ ∈ S then a ∈ S .

⟪Typ⟫ = {Na}
⟪Sch⟫ = {Na}
⟪Met⟫ = Ca
⟪∀(α ∶ κ1) κ2⟫ = ⟪κ1⟫→ ⟪κ2⟫
⟪τ →` κ⟫ = 1→ ⟪κ⟫
⟪(a1 =τ a2)→ κ⟫ = 1→ ⟪κ⟫

Figure 14. Interpretation of kinds as sets of interpretations

Similarly, replacing terms with types and kinds, we obtain a
version of the properties C1-3 for sets of types and kinds. A
set of types or kinds is called a reducibility set if it respects
those properties, and we write Ct the set of reducbility sets
of types, and Ck the set of reducibility sets of kinds.

Let Na be the set of all strongly normalizing terms, Nt

the set of all strongly normalizing types, and Nk the set of
all strongly normalizing kinds.

Lemma 1. Na, Nt, and Nk are reducibility sets.

Proof. The properties C1-3 are immediate from the defini-
tion.

Definition 2 (Interpretation of types and kinds). We define
an interpretation ⟪κ⟫ of kinds as sets of possible interpreta-
tions of types, with 1 the set with one element ●. The inter-
pretation is given on Figure 14

We also define an interpretation JκKρ of kinds as sets
of types and an interpretation JτKρ of a type τ under an
assignment ρ of reducibility sets to type variables by mutual
induction on Figure 15.

Definition 3 (Type context). We will write ρ ⊧ Γ if for all
(α ∶ κ) ∈ Γ, ρ(α) ∈ ⟪κ⟫.

Lemma 2 (Equal kinds have the same interpretation). Con-
sider a well-formed context Γ. Suppose Γ ⊢ κ1 ≃ κ2. Then,
⟪κ1⟫ = ⟪κ2⟫.

Proof. By induction on a derivation. We can assume that all
reductions in the rules C-RED-IOTA’ and C-RED-META’
are head reductions (otherwise we simply need to compose
with C-CONTEXT.

• Reflexivity, symmetry and transitivity translate trivially
to equalities.

• There is no head-reduction on kind, and the rule C-EQ
does not apply either.

• For C-SPLIT, use the fact that every datatype is inhabited,
and conclude from applying the induction hypothesis to
any of the cases.

• For C-CONTEXT, proceed by induction on the context.
If the context is empty, use the induction hypothesis.
Otherwise, note that the interpretation of a kind only
depends on the interpretation of its (direct) subkinds, and
the interpretation of the direct subkinds are equal either
because they are equal, or by induction on the context.

11 2017/1/14

JTypKρ = Nt

JSchKρ = Nt

JMetKρ = Nt

J∀(α ∶ κ1) κ2Kρ = {τ ∈ Nt ∣ ∀τ ′ ∈ Jκ1Kρ, τ ♯ τ ′ ∈ Jκ2Kρ[α←Jτ ′Kρ]}
Jτ → κKρ = {τ ∈ Nt ∣ ∀a ∈ JτKρ, τ ♯ a ∈ JκKρ}
Jτ → κKρ = {τ ∈ Nt ∣ ∀u ∈ JτKρ, τ ♯ u ∈ JκKρ}
J(a1 =τ a2)→ κKρ = {τ ∈ Nt ∣ τ ♯ ◇ ∈ JκKρ}
JαKρ = ρ(α)
Jτ1 → τ2Kρ = Na

Jζ τKρ = Na

Jmatch a with . . .Kρ = Na

J∀(α ∶ Typ) . . .Kρ = Na

JΠ(x ∶ τ1). τ2Kρ = {a ∈ Na ∣ ∀u ∈ Jτ1Kρ, a ♯u ∈ Jτ2Kρ}
JΠ(◇ ∶ a1 =τ a2). τ ′Kρ = {a ∈ Na ∣ a ♯ ◇ ∈ Jτ ′Kρ}
J∀♯(α ∶ κ). τKρ = {a ∈ Na ∣ ∀τ ′ ∈ JκKρ,∀S ∈ ⟪κ⟫, a ♯ τ ′ ∈ JτKρ[α←S]}
Jλ♯(x ∶ τ1). τ2Kρ = λ ● . Jτ2Kρ
Jτ ♯ uKρ = JτKρ ●
JΛ♯(α ∶ κ). τKρ = λSα ∈ ⟪κ⟫. JτKρ[α←Sα]
Jτ1 ♯ τ2Kρ = Jτ1Kρ Jτ2Kρ
Jλ♯(◇ ∶ a1 =τ ′ a2). τKρ = λ ● . JτKρ
Jτ ♯ ◇Kρ = JτKρ ●

Figure 15. Interpretation of kinds and types as sets of types and terms

Lemma 3 (The interpretation of kinds and sorts is well-de-
fined). Suppose ρ ⊧ Γ. Then:

• If Γ ⊢ κ ∶ wf, then JκKρ is well-defined, and JκKρ ∈ Ct.
• If Γ ⊢ τ ∶ κ, then JτKρ is well-defined, and we have
JτKρ ∈ ⟪κ⟫.

Proof. By simultaneaous induction on the sorting and kind-
ing derivations. The case of all syntax-directed rules whose
output is interpreted as Na or Nt is trivial by Lemma 1.
The variable rule K-VAR is handled by using the definition
of ρ ⊧ Γ. For abstraction, abstract, add the interpretation
to the context and interpret. For application, use the type of
JκKρ for functions. For K-CONV, use Lemma 2 to deduce that
the interpretation of the kinds are the same. For the subkind-
ing rules (K-SUBTYP, K-SUBSCH, K-SUBEQU), use the fact that
⟪Typ⟫ = ⟪Sch⟫ = ⟪Sch⟫ ⊆ ⟪Met⟫.

The rules S-VARR, S-TARR, S-EARR, K-FORALL, K-PI, K-PI-EQ

are similar. We will only give the proof for K-PI, in the case
` =: Suppose S1 and S2 are reducibility sets. We will prove
C1-3 for S = {a ∈ Na ∣ ∀b ∈ S1, a ♯ b ∈ S2}.

C1 S is a subset of Na.
C2 Consider a ∈ S and a′ such that a Ð→♯ a

′. For a given
b ∈ S1, a ♯ b ∈ S2 Ð→♯ a

′ ♯ b. Thus, a′ ♯ b ∈ S2 by C2 for
S2. Then, a′ ∈ S.

C3 Consider a, not an abstraction, such that if a Ð→♯ a
′,

a′ ∈ S. For b ∈ S1, we’ll prove a ♯ b ∈ S2. Since a is not an
abstraction, a ♯ b reduces either to a′ ♯ bwith aÐ→♯ a

′, or

a ♯ b′ with bÐ→♯ b
′. In the first case, a′ ∈ S by hypothesis

and b ∈ S1, so a′ ♯ b ∈ S2. In the second case, b′ ∈ S1 by
C2, so a ♯ b′ ∈ S2. By C3 for S2, because a ♯ b is not an
abstraction, a ♯ b ∈ S2.

We need the following substitution lemma:

Lemma 4 (Substitution). For all τ , κ, τ ′, α, and ρ, we have:

JτKρ[α←Jτ ′Kρ] = Jτ[α ← τ ′]Kρ
JκKρ[α←Jτ ′Kρ] = Jκ[α ← τ ′]Kρ

Proof. By induction on types and kinds.

We then need to prove that conversion is sound with
respect to the relation. We start by proving soundness of
reduction:

Lemma 5 (Soundness of reduction). LetÐ→ stand forÐ→ι
∪ Ð→♯. Consider ρ ⊧ Γ, and τ , τ ′, κ, κ′ well-kinded (or
well-formed) in Γ. Then,

• if τ Ð→ τ ′, JτKρ = Jτ ′Kρ;
• if κÐ→ κ′, JκKρ = Jκ′Kρ.

Proof. By induction on the contexts. The only interesting
context is the hole []. Consider the different kinds of head-
reduction on types (the induction hypothesis is not con-
cerned with terms, and there is no head-reduction on kinds).

• The cases of all meta-reductions are similar. Consider
(Λ♯(α ∶ κ). τ) ♯ τ ′ Ð→h♯ τ[α ← τ ′]. The interpretation

12 2017/1/14

of the left-hand side is (λSα ∈ ⟪κ⟫. JτKρ[α←Sα]) Jτ ′Kρ =
JτKρ[α←Jτ ′Kρ] and the interpretation of the right-hand
side is Jτ[α ← τ ′]Kρ = JτKρ[α←Jτ ′Kρ] by substitution
(Lemma 4).

• In the case of match-reduction, the arguments of the
meta-reduction have kind Sch, thus by Lemma 3, their
interpretation is Na.

Lemma 6 (Soundness of conversion). If ρ ⊧ Γ and Γ ⊢ τ1 ≃
τ2, then Jτ1Kρ = Jτ2Kρ. If Γ ⊢ κ1 ≃ κ2, then Jκ1Kρ = Jκ2Kρ

Proof. By induction on the equality judgment.

• The rules C-REFL, C-SYM and C-TRANS respect the property
(by reflexivity, symmetry, transitivity of equality).

• The equalities are not used, thus C-SPLIT does not affect
the interpretation (just consider one of the sub-proofs).

• The rule C-EQ does not apply to types and kinds.
• For reductions (C-RED-IOTA’, C-RED-META’), use the previ-

ous lemma.
• For C-CONTEXT’, proceed by induction on the context.

The interpretation of a type/kind depends only on the
interpretation of its subterms.

Now we can prove the fundamental lemma:

Lemma 7 (Fundamental lemma). We say ρ, γ ⊧ Γ if ρ ⊧ Γ
and for all (x, τ) ∈ Γ, γ(x) ∈ JτKρ. Suppose ρ, γ ⊧ Γ. Then:

• If Γ ⊢ κ ∶ wf, then γ(κ) ∈ Nk.
• If Γ ⊢ τ ∶ κ, then γ(τ) ∈ JκKρ.
• If Γ ⊢ a ∶ τ , then γ(a) ∈ JτKρ.

Proof. By mutual induction on typing, kinding and well-
formedness derivations. We will examine a few representa-
tive rules:

• If the last rule is a conversion, use soundness of conver-
sion.

• If the last rule is APP. Consider ρ, γ ⊧ Γ, and two terms
a, b, and suppose γ(a) ∈ Jτ1 → τ2Kρ, γ(b) ∈ Jτ1Kρ. We
need to show: γ(a b) = γ(a) γ(b) ∈ Jτ2Kρ = Na (because
τ2 is necessarily of kind Typ). Consider then a′ and b′

normal forms of γ(a) and γ(b). a′ b′ is a normal form of
γ(a b). Thus, γ(a b) ∈ Na.

• If the last rule is a meta application APP-META

Γ ⊢ a ∶ Π(x ∶ τ1). τ2 Γ ⊢ b ∶ τ1
Γ ⊢ a ♯ b ∶ τ2[x ← b]

Consider ρ, γ ⊧ Γ. Then, by induction hypothesis, we
have: γ(a) ∈ JΠ(x ∶ τ1). τ2Kρ, and γ(b) ∈ Jτ1Kρ. We thus
have: γ(a ♯ b) = γ(a) ♯ γ(b) ∈ Jτ2Kρ. But the interpreta-
tion of types does not depend on terms: Jτ2Kρ = Jτ2[x ←
b]Kρ. It follows that γ(a ♯ b) ∈ Jτ2[x ← b]Kρ.

• If the last rule is a meta abstraction ABS-META:

Γ, x ∶ τ1 ⊢ a ∶ τ2
Γ ⊢ λ♯(x ∶ τ1). a ∶ Π(x ∶ τ1). τ2

Consider ρ, γ ⊧ Γ. Consider b ∈ Jτ1Kρ. We need to prove
that γ(λ♯(x ∶ τ1). a) ♯ b = (λ♯(x ∶ τ1). γ(a)) ♯ b ∈ Jτ2Kρ).
Let us use C3: consider all possible reductions. We will
proceed by induction on the reduction of γ(A) = A′, with
the hypothesis ∀ (B ∈ Jτ2Kρ) A′[x ← B] (true for γ(A)
and conserved by reduction), and on the reduction of B
(B ∈ Jτ1Kρ is conserved by reduction).

We can only reduce the type τ ′1 a finite number of
types by induction hypothesis. It is discarded after
reduction of the head redex.
If A′ Ð→♯ A

′′, (λ♯(x ∶ τ1). a′) ♯ b Ð→♯ (λ♯(x ∶
τ1). a′′) ♯ b, and we continue by induction.
If B Ð→♯ B′, (λ♯(x ∶ τ1). a′) ♯ b Ð→♯ (λ♯(x ∶
τ1). a′) ♯ b′, and we continue by induction.
If we reduce the head redex, (λ♯(x ∶ τ1). a′) ♯ b Ð→♯
a′[x← b]. But by hypothesis, a′[x← b] ∈ Jτ2Kρ.

We can now prove the main result of this section:

Proof. [Proof of Theorem 2] Consider a kind, type or term
X that is well-typed in a context Γ. We can take the iden-
tity substitution γ(x) = x for all x ∈ Γ and apply the fun-
damental lemma. All interpretations are subsets of Na, thus
X ∈ Na.

5.3 Contexts, substitution and weakening
We define a weakening judgment ⊢ Γ1 � Γ2 for typing
environments that also includes conversion on the types and
kinds in the environment.

WENV-EMPTY

⊢ ∅�∅
WENV-WEAKEN-VAR

⊢ Γ1 � Γ2

⊢ Γ1 � Γ2, x
` ∶ τ

WENV-CONV-VAR

⊢ Γ1 � Γ2 Γ2 ⊢ τ1 ≃ τ2
⊢ Γ1, x

` ∶ τ1 � Γ2, x
` ∶ τ2

WENV-WEAKEN-TVAR

⊢ Γ1 � Γ2

⊢ Γ1 � Γ2, α
` ∶ κ

WENV-CONV-TVAR

⊢ Γ1 � Γ2 Γ2 ⊢ κ1 ≃ κ2

⊢ Γ1, α ∶ κ1 � Γ2, α ∶ κ2

WENV-WEAKEN-EQ

⊢ Γ1 � Γ2

⊢ Γ1 � Γ2, (a =τ b)

WENV-CONV-EQ

⊢ Γ1 � Γ2 Γ2 ⊢ τ1 ≃ τ2
Γ2 ⊢ a1 ≃ a2 Γ2 ⊢ b1 ≃ b2

⊢ Γ1, (a1 =τ1 b1)� Γ2, (a2 =τ2 b2)

Lemma 8. Weakening is reflexive and transitive: for all
well-formed environments Γ1, Γ2 and Γ3, we have:

• ⊢ Γ1 � Γ1 and
• if ⊢ Γ1 � Γ2 and ⊢ Γ2 � Γ3, then ⊢ Γ1 � Γ3.

13 2017/1/14

Proof. Reflexivity is proved by induction on ⊢ Γ1. Transi-
tivity is proved by induction on the two weakening judg-
ments.

Lemma 9 (Weakening and conversion). Let Γ1, Γ2, Γ′1, Γ′2
be well-formed contexts. Suppose ⊢ Γ1�Γ2 and ⊢ Γ′2�Γ′1.
Then:

• If Γ1 ⊢X ∶ Y , then Γ2 ⊢X ∶ Y .
• If Γ1 ⊢X1 ≃X2, then Γ2 ⊢X1 ≃X2.
• If Γ1 ⊢ C[Γ′1 ⊢ X ∶ Y ′] ∶ Y , then Γ2 ⊢ C[Γ′2 ⊢ X ∶ Y ′] ∶
Y .

Proof. Proceed by mutual induction on the typing, kinding,
sorting, and equality judgment. All rules grow the context
only by adding elements at the end, and the elements added
will be the same in both contexts, thus preserving the weak-
ening relation. Then we can use the induction hypothesis on
subderivations.

Then, we have to consider the rules that read from the
context: they are VAR, K-VAR and C-EQ. For these rules, pro-
ceed by induction on the weakening derivation. Consider
the case of VAR on a variable x. Most rules do not influ-
ence variables. There will be no weakening on x because
the term types in the stronger context and variables are sup-
posed distinct. The variable x types in the context by hypoth-
esis, so we cannot reach WENV-EMPTY. The renaming case is
WENV-CONV-VAR. Suppose Γ1 = Γ′1, x ∶ τ1, Γ2 = Γ′2, x ∶ τ2
and Γ2 ⊢ τ1 ≃ τ2. Then, we can obtain a derivation of
Γ2 ⊢ x ∶ τ1 by using VAR, getting a type τ2 and convert-
ing.

Lemma 10 (Substitution preserves typing).
Suppose Γ ⊢ u ∶ τ . Then,

• if Γ, x ∶ τ,Γ′ ⊢ X ∶ Y , then Γ,Γ′[x ← u] ⊢ X[x ← u] ∶
Y [x ← u];

• if Γ, x ∶ τ,Γ′ ⊢ X1 ≃ X2, then Γ,Γ′[x ← u] ⊢ X1[x ←
u] ≃X2[x ← u].

Suppose Γ ⊢ τ ∶ κ. Then,

• if Γ, α ∶ κ,Γ′ ⊢ X ∶ Y , then Γ,Γ′[α ← τ] ⊢ X[α ← τ] ∶
Y [α ← τ];

• if Γ, α ∶ κ,Γ′ ⊢ X1 ≃ X2, then Γ,Γ′[α ← τ] ⊢ X1[α ←
τ] ≃X2[α ← τ].

Proof. By mutual induction. We use weakening to grow the
context on the typing/kinding judgment of the substituted
term/type.

Lemma 11 (Substituting equal terms preserves equality).

• Suppose Γ ⊢ τ1 ≃ τ2, Γ, α ∶ κ ⊢ X ∶ Y , and Γ ⊢ τi ∶ κ.
Then, Γ ⊢X[α ← τ1] ≃X[α ← τ2].

• Suppose Γ ⊢ u1 ≃ u2, Γ, x ∶ τ ⊢ X ∶ Y , and Γ ⊢ ui ∶ τ .
Then, Γ ⊢X[x← u1] ≃X[x← u2].

Lemma 12 (Substituting equal terms preserves typing).
Consider Γ ⊢ C[Γ′ ⊢ X1 ∶ Y ′] ∶ Y . Suppose Γ′ ⊢ X1 ≃ X2.
Then, Γ ⊢ C[Γ′ ⊢X2 ∶ Y ′] ∶ Y .

Proof. We prove these two results by mutual induction on,
respectively, the typing derivation of X and the typing
derivation of C[X1].

For the first lemma, for each construct, prove equality
of the subterms, and use congruence and transitivity of the
equality. Use weakening on the equality if there are intro-
ductions. Use the second lemma to get the required typing
hypotheses.

For the second lemma, the interesting cases are the depen-
dent rules, where a term or type in term-position in a premise
of a rule appears either in the context of another premise, or
in type-position in the conclusion. When a term or type ap-
pear in the context, we use context conversion. The other
type of dependency uses substitution in the result, which is
handled by the first lemma.

Note that these lemmas imply that C-CONTEXT is admissi-
ble.

In order to prove subject reduction, we will need to prove
that restricting the rule C-EQ to non-expansive terms only is
enough to preserve types, even when applying the reduction
Ð→β : this reduction should not affect any equality that is
actually used in the typing derivation.

Definition 4 (Always expansive term). A term a is said to
be always expansive if it does not reduce by Ð→♯ to a non-
expansive term.

Lemma 13 (Always expansive redexes). Let a be of the form
b1 b2. Then a is always expansive.

Proof. Meta-reduction does not change the shape of the
term.

Lemma 14 (Useless equalities). Let a1 or a2 be always
expansive, and suppose Γ ⊢ ai ∶ τ . Then Γ, (a1 =τ a2) ⊢
X ∶ Y if and only if Γ ⊢X ∶ Y .

Proof. The “only if” direction is a direct consequence of
weakening. For the other direction, proceed by induction on
the typing derivation. The only interesting rule is C-EQ. But
by definition, an equality containing an always expansive
term is not usable in equalities.

Lemma 15 (Non-dependent contexts for always expansive
terms). Consider an evaluation context E and an always
expansive term a such that Γ ⊢ E[Γ′ ⊢ a ∶ τ] ∶ Y . Then, if
Γ′ ⊢ a′ ∶ τ , we also have Γ ⊢ E[Γ′ ⊢ a′ ∶ τ] ∶ Y

Proof. We prove simultaneously that putting an always ex-
pansive term in an evaluation context gives an always expan-
sive term, and that the context is not dependent. The case of
the hole is immediate. We will examine the case of LET-POLY,
which show the important ideas: consider a non-expansive,

14 2017/1/14

and a1 = let x = a in b. a1 is always expansive: any meta-
reduction will be to something of the form let x = a2 in b2
with a Ð→∗

♯ a2, but a is always expansive, so a2 is expan-
sive, thus let x = a2 in b2 is expansive too. It also admits
the same types: suppose we have a derivation Γ, x ∶ τ, (x =τ
a) ⊢ b ∶ τ ′. Then by Lemma 14, Γ, x ∶ τ ⊢ b ∶ τ ′ and thus
by weakening Γ, x ∶ τ, (x =τ a′) ⊢ b ∶ τ ′. The hypotheses
of the rule LET-POLY are preserved, so the conclusion is too:
let x = a in b and let x = a′ in b have the same type.

5.4 Analysis of coercions and subject reduction
To prove subject reduction, we need results allowing us to
split a coercion between a compound type or kind into a
conversion into this subtypes. The easiest way to do it is
to proceed in a stratified way. We extract a subreduction
Ð→t♯ of Ð→♯ that only contains the reductions on types, and
Ð→a♯ that only contains the reductions on terms. Then, we
consider the reductions in order: first Ð→t♯, then Ð→a♯ , then
Ð→β and Ð→ι.
Lemma 16 (Equalities are between well-typed things). Let
Γ be a well-formed context. Suppose Γ ⊢ X1 ≃ X2. Then,
there exists Y1, Y2 such that Γ ⊢X1 ∶ Y1 and Γ ⊢X2 ∶ Y2.

Proof. By induction on a derivation. This is true for C-RED-META’,
C-RED-IOTA’, C-CONTEXT’, C-EQ and C-REFL. For C-SYM and
C-TRANS, apply the induction hypothesis on the subderiva-
tions.

We define a decomposition of kinds into a head and a
tuple of tails. The meta-variable h stands for a head. The
decomposition is unique up to renaming.

Typ � Typ ○ () Sch � Sch ○ () Met �Met ○ ()
τ →` κ � →`tk ○ (τ, κ)

(a =τ b)→ κ � →ek ○ (a, b, τ, κ)
∀(α ∶ κ) κ′ � ∀(α ∶) ○ (κ,κ′)

Lemma 17 (Analysis of coercions, kind-level). Suppose
Γ ⊢ κ ≃ κ′. Then, κ′ and κ′ decompose as κ � h ○ (Xi)i
and κ � h′ ○ (X ′

i)i, with h = h′ and Xi =X ′
i .

Proof. By induction on a derivation of Γ ⊢ κ ≃ κ′. We can
suppose without loss of generality that all reductions are
head-reductions by splitting a reduction into a C-CONTEXT

and the actual head-reduction.

• For C-REFL, we have κ = κ′. Moreover, all kinds decom-
pose, thus κ has a decomposition κ � h ○ (Xi)i. By hy-
pothesis, ⊢ Γκ. Invert this derivation to find that the Xi

are well-kinded or well-sorted. Thus, we can conclude by
reflexivity: Γ ⊢Xi ≃Xi.

• For C-SYM and C-TRANS, apply analysis of coercions to
the subbranch(es), then use C-SYM or C-TRANS to combine
the subderivations on the decompositions.

• For C-SPLIT, apply the lemma in each branch. There exists
at least one branch, from where we get equality of the
heads. For equality of the tails, apply C-SPLIT to combine
the subderivations.

• The rules C-RED-META’ and C-RED-IOTA’ do not apply be-
cause there is no head-reduction on kinds.

• For rule C-CONTEXT, either the context is empty and we
can apply the induction hypothesis, or the context is non-
empty. In this case, the heads are necessarily equal. We
can extract one layer from the context. Then, for the
tail where the hole is, we can apply C-CONTEXT with the
subcontext. For the other tails, by inverting the kinding
derivation we can find that they are well sorted. Thus we
can apply C-REFL to get equality.

We can then prove subject reduction for the type-level
meta-reduction.We will use the following inversion lemma:

Lemma 18 (Inversion for type-level meta reduction). Con-
sider an environment Γ.

• If Γ ⊢ λ♯(x ∶ τ ′1). τ2 ∶ τ1 → κ, then Γ, x ∶ τ1 ⊢ τ2 ∶ κ.
• If Γ ⊢ Λ♯(α ∶ κ′1). τ ∶ ∀(α ∶ κ1) κ2, then Γ, α ∶ κ1 ⊢ τ ∶
κ2.

• If Γ ⊢ λ♯(◇ ∶ a′1 =τ ′ a′2). τ ′′ ∶ (◇ ∶ a1 =τ a2) → κ, then
Γ, (a1 =τ a2) ⊢ τ ′′ ∶ κ.

Proof. We will study the first case, the two other cases are
similar. Suppose the last rule is not K-CONV. Then, it is a
syntax directed rule, so it must be K-VLAM, and we have
Γ, x ∶ τ1 ⊢ τ2 ∶ κ. Otherwise, we can collect by induction all
applications of K-CONV leading to the application of K-VLAM.
We obtain (by the previous case) a derivation of Γ, x ∶ τ ′′1 ⊢
τ2 ∶ κ′, with (combining all conversions using transitivity)
an equality Γ ⊢ τ1 → κ ≃ τ ′′1 → κ′. By the previous lemma
(Lemma 17), we have Γ ⊢ τ1 ≃ τ ′′1 and Γ ⊢ κ ≃ κ′.

Lemma 19 (Subject reduction, type-level meta reduction).
Suppose X Ð→t♯ X ′ and Γ ⊢X ∶ Y . Then, Γ ⊢X ′ ∶ Y .

Proof. The reduction is a head-reduction τ Ð→t♯ τ ′ in a
context C. If we can prove subject reduction for τ Ð→t♯
τ ′, we can conclude by Lemma 12, because the reduction
implies Γ ⊢ τ ≃ τ ′.

Let us prove subject reduction for the head-reduction:
suppose τ Ð→t♯ τ ′ and Γ ⊢ τ ∶ κ. We want to prove
Γ ⊢ τ ′ ∶ κ.

Consider a derivation of Γ ⊢ τ ∶ κ whose last rule is
not a conversion. It is thus a syntax-directed rule. We will
consider as an example the head-reduction from τ = (λ♯(x ∶
τ1). τ2) ♯ u to τ ′ = τ2[x← u].

Since the last rule of Γ ⊢ (λ♯(x ∶ τ1). τ2) ♯ u ∶ κ is
syntax-directed, we can invert it and obtain Γ ⊢ u ∶ τ1
and Γ ⊢ λ♯(x ∶ τ1). τ2 ∶ τ1 → κ, We apply inversion
(Lemma 18) and obtain Γ, x ∶ τ1 ⊢ τ2 ∶ κ. Finally, by

15 2017/1/14

substitution (Lemma 10), we obtain Γ ⊢ τ2[x ← u] ∶ κ,
i.e. Γ ⊢ τ ′ ∶ κ.

This is sufficient to prove the following lemma:

Lemma 20 (Normal derivations, type-level meta reduction).
Suppose Γ ⊢X1 ≃X2, where X1 and X2 are normal terms,
types or kinds for Ð→♯. Then, there exists a derivation of
Γ ⊢n X1 ≃ X2, where Γ ⊢n X1 ≃ X2 is a limited version of
Γ ⊢ X1 ≃ X2 where the rule C-RED-META is limited to Ð→a♯ .
More precisely, this judgment is defined from the following
rules:

C-REFL

Γ ⊢X ∶ Y
Γ ⊢n X ≃X

C-SYM

Γ ⊢n X1 ≃X2

Γ ⊢n X2 ≃X1

C-TRANS

Γ ⊢n X1 ≃X2

Γ ⊢n X2 ≃X3

Γ ⊢n X1 ≃X3

C-CONTEXT

Γ ⊢ C[Γ′ ⊢X1 ∶ Y ′] ∶ Y Γ ⊢n X1 ≃X2

Γ ⊢n C[X1] ≃ C[X2]
C-RED-IOTA’
X1 Ð→ι X2 Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢n X1 ≃X2

C-RED-META’
X1 Ð→a♯ X2 Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢n X1 ≃X2

C-EQ

a1 Ð→∗
♯ u1 a2 Ð→∗

♯ u2 (a1 =τ a2) ∈ Γ

Γ ⊢n u1 ≃ u2

C-SPLIT

Γ ⊢ u ∶ ζ (αk)k (di ∶ ∀(αk)k (τij)j → ζ (αk)k)i
(Γ, (xij ∶ τij[αk ← τk]k)j , u = di(τij)j(xij)j ⊢n X1 ≃X2)i

Γ ⊢n X1 ≃X2

Proof. We prove a stronger result: suppose Γ ⊢ X1 ≃ X2,
and X ′

1, X ′
2 are theÐ→t♯ normal forms of X1 and X2. Then,

for all context C such that Γ ⊢ Xi ∶ Yi and Γ′ ⊢ C[Γ ⊢
Xi ∶ Yi] ∶ Y ′

i , if X ′
i are the normal forms of C[Xi], then

Γ ⊢n X ′
1 ≃ X ′

2. In this proof, we’ll say “normal forms”
without further qualification forÐ→t♯ normal forms.

We proceed by induction on the derivation. We assume
all reductions are head-reductions.

• The property is symmetric, so it is preserved by C-SYM.
• For C-REFL: by subject reduction, if a term is well-typed,

its normal form is well-typed too.
• For C-TRANS, we get the result by unicity of the normal

form.
• For C-CONTEXT, we fuse the contexts and use the induc-

tion hypothesis.
• For C-RED-META’, if the reduction is a type-level meta re-

duction, it becomes a C-REFL on the (well-typed) normal
form.

• For the other rules, we follow the same pattern. We first
normalize the context to a multi-context, represented by
a term with a free variable x (or α): C[x] has a normal
form Xc. We also normalize X1 and X2 to X ′′

1 and X ′′
2 ,

and prove Γ ⊢X ′′
1 ≃X ′′

2 .
For C-EQ, we can completely normalize the terms.
For C-RED-META’ and C-RED-IOTA’, head-reduction and
normalization commute: if X1 head-reduces to X2,
then X ′′

1 head-reduces to X ′′
2 .

We now have to prove that the normal form of C[Xi] is
Xc[x←Xi].

It is immediate if the hole is a term: no type-level
meta-reduction rule depends on the shape of a term.
For type-level iota reduction, we use a typing argu-
ment: X ′′

1 is a type-level match, thus has kind Sch,
thus X ′′

2 has kind Sch by subject reduction. Then,
X ′′

2 cannot be a type-level abstraction, because by
Lemma 17 the kinds of type-level abstractions are not
convertible to Sch.

Finally, we can conclude by C-CONTEXT.

We prove a decomposition result on meta conversions:
types and kinds that start with a meta head keep their heads,
and their tails stay related. In order to prove this, we extend
the decoding into a head and tails to types. Note that not all
types have a head: applications and variables, for example,
have no head yet, but they can gain one after reduction.

∀♯(α ∶ κ). τ � ∀♯(α ∶). ○ (κ, τ)
Π(x ∶ τ). τ ′ � Π(x ∶). ○ (τ, τ ′)

Π(◇ ∶ b =τ b′). a � Π(◇ ∶ =). ○ (b, b′, τ, a)
∀(α ∶ Typ) τ � ∀(α ∶ Typ) ○ (τ)

τ1 → τ2 � →tt ○ (τ1, τ2) ζ (τi)i � ζ ○ (τi)i

The meta-heads are all heads that can not be generated by
ML reduction in well-kinded types, i.e. all except∀(α ∶ Typ) ,
→tt and ζ

The head-decomposition of types and kinds is preserved
by reduction:

Lemma 21 (Reduction preserves head-decomposition). Con-
sider a type or kind X that decomposes as X � h ○ (Xi)i.
Then, if X Ð→∗

♯ X
′, X ′ decomposes as X ′ � h ○ (X ′

i)i,
and for all i, Xi Ð→∗

♯ X
′
i .

Proof. The head never reduces.

From this we can prove a generic result of separation and
projection:

Lemma 22 (Equality preserves the head). Consider a type
or kind X that decomposes as X � h ○ (Xi)i, and X ′ that
decomposes as X ′ � h′ ○ (X ′

j)j . Then, if h or h′ is a meta
head, Γ ⊢X ≃X ′, h = h′ and for all i, Γ ⊢Xi ≃X ′

i .

16 2017/1/14

Proof. We can start by Ð→t♯-normalizing both sides. The
heads stay the same, and the tails are equivalent. Then con-
sider (using Lemma 20) a normal derivation of the result. In
the following, we assumeX andX ′ areÐ→t♯-normal and the
derivation is normalized.

We then proceed by induction on the size of the derivation
Γ ⊢n X ≃ X ′, proving a strengthened result: suppose X
decomposes as X � h ○ (Xi)i, and either Γ ⊢n X ≃ X ′ or
Γ ⊢n X ′ ≃X . Then, X ′ � h ○ (X ′

i)i, with Γ ⊢Xi ≃X ′
i .

• There is no difficulty with the rules C-REFL, C-SYM,
C-TRANS, C-SPLIT.

• For C-CONTEXT on the empty context, we apply the induc-
tion hypothesis. Otherwise, the head stays the same, and
the equality is applied in one of the tails.

• C-EQ does not apply on types.
• Since both X and X ′ are types, instances of C-RED-META’

distribute in the tails. That is also the case for instances
of C-RED-IOTA’ that do not reduce the head directly.

• For Ð→hι : X has a head, so the reduction is necessarily
X ′ Ð→hι X . X and X ′ cannot be kinds, so they are types
τ and τ ′. We have τ ′ = match dj(ui)i with (dj(xij)i →
τj)j∈J and τ = τj[xij ← ui]i. The term τj has the same
head as τ . Moreover, inverting the last syntactic rule of
a kinding derivation for τ ′, we obtain Γ ⊢ τj ∶ Sch.
We want to show that this is impossible. Consider the
last syntactic rule of this derivation. It is of the form
Γ ⊢ τj ∶ κ, with κ ≠ Sch. Moreover, we have Γ ⊢ κ ≃ Sch.
But this is absurd by Lemma 17.

Then, we get subject reduction for term-level part ofÐ→♯.
We first prove an inversion lemma:

Lemma 23 (Inversion, meta, term level). Consider an envi-
ronment Γ.

• If Γ ⊢ λ♯(x ∶ τ ′1). a ∶ Π(x ∶ τ1). τ2, then Γ, x ∶ τ1 ⊢ a ∶ τ2.
• If Γ ⊢ Λ♯(α ∶ κ′). a ∶ ∀♯(α ∶ κ). τ , then Γ, α ∶ κ ⊢ a ∶ τ .
• If Γ ⊢ λ♯(◇ ∶ b′1 =τ ′ b′2). a ∶ Π(◇ ∶ b1 =τ b2). τ ′′, then

Γ, (b1 =τ b2) ⊢ a ∶ τ ′′.

Proof. Similar to the proof of Lemma 18.

Lemma 24 (Subject reduction for Ð→♯). Let Γ be a well-
formed context. Suppose X Ð→♯ X

′. Then, if Γ ⊢ X ∶ Y ,
Γ ⊢X ′ ∶ Y .

Proof. Add the term-level part to the proof of Lemma 19

We can normalize further the coercions between twoÐ→♯
normal forms:

Lemma 25 (Normal derivations, type-level meta reduction).
Suppose Γ ⊢X1 ≃X2, where X1 and X2 are normal terms,
types or kinds for Ð→♯. Then, there exists a derivation of
Γ ⊢n X1 ≃ X2, where Γ ⊢n X1 ≃ X2 is a limited version of

Γ ⊢ X1 ≃ X2 where the rule C-RED-META is limited to Ð→a♯ .
More precisely, this judgment is defined from the following
rules:

C-REFL

Γ ⊢X ∶ Y
Γ ⊢n X ≃X

C-SYM

Γ ⊢n X1 ≃X2

Γ ⊢n X2 ≃X1

C-TRANS

Γ ⊢n X1 ≃X2 Γ ⊢n X2 ≃X3

Γ ⊢n X1 ≃X3

C-RED-IOTA’
X1 Ð→ι X2 Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢n X1 ≃X2

C-RED-META’
X1 Ð→a♯ X2 Γ ⊢X1 ∶ Y1 Γ ⊢X2 ∶ Y2

Γ ⊢n X1 ≃X2

C-CONTEXT

Γ ⊢ C[Γ′ ⊢X1 ∶ Y ′] ∶ Y Γ ⊢n X1 ≃X2

Γ ⊢n C[X1] ≃ C[X2]
C-EQ

a1 Ð→∗
♯ u1 a2 Ð→∗

♯ u2

(a1 =τ a2) ∈ Γ

Γ ⊢n u1 ≃ u2

C-SPLIT

(di ∶ ∀(αk)k (τij)j → ζ (αk)k)i
(Γ, (xij ∶ τij[(αk ← τk)k])j , (u = di(xij)) ⊢n X1 ≃X2)i

Γ ⊢ u ∶ ζ (τk)k
Γ ⊢n X1 ≃X2

Proof. Similar to Lemma 20.

We can now prove a projection result for eML. The cor-
responding separation result is more complex and will be
proved separately.

Lemma 26 (Projection for eML). Consider X and X ′ de-
composing as X � h ○ (Xi)i and X ′ � h ○ (X ′

i)i. Suppose
Γ ⊢X ≃X ′. Then, Γ ⊢Xi ≃X ′

i .

Proof. The result for non-ML heads is already implied by the
previous lemma. We can suppose that X and X ′ are types τ
and τ ′ and are normal for Ð→♯, and that we have a normal
derivation of Γ ⊢ τ ≃ τ ′.

We derive a stronger result: we define a function tails(h; τ)
that returns the tails of a type, assuming it has a given eML
head. We use Anya to stand for any well-typed term, Anyt
for a well-kinded type, and Anyk for a well-sorted kind (for
example, Anya = λ(x ∶ Anyt). x, Anyt = ∀(α ∶ Typ) α and

17 2017/1/14

Anyk = Typ).

tails(h; τ) = (Xi)i
if τ � h ○ (Xi)i

tails(h; match a with (Pi → τi)i) =
(match a with (Pi →Xij)i)j
with (Xij)j = tails(h; τi)

tails(h; τ) = (Any)i

Note that the action of taking the tail commutes with sub-
stitution of terms: tails(h; τ[x ← u]) = tails(h; τ)[x ← u].
Moreover, if τ is well-typed, its tails tails(h; τ) are well-
typed or kinded (by inversion of the last syntax-directed rule
of a kinding of τ).

Then, we show by induction on a normal derivation that
whenever Γ ⊢ τ ≃ τ ′, for any ML head h, Γ ⊢ tails(h; τ)i ≃
tails(h; τ ′)i. This is sufficient, because tails(h; τ)i =Xi and
tails(h; τ ′)i = X ′

i . We suppose that the reductions are head-
reductions, and that all applications of C-CONTEXT use only a
shallow context.

• For C-REFL, invert the typing derivation to ensure that the
tails are well-typed.

• There is no difficulty for C-SYM and C-TRANS.
• For C-SPLIT: prove the equality in each branch and merge

using C-SPLIT.
• The rule C-EQ does not apply in a typing context.
• For C-RED-IOTA’, the only possible head-reduction is

a reduction of a type-level match: suppose we have
τ = match dj(ui)i with (dk(xki)i → τk)k and τ ′ =
τj[xji ← ui]i. Then, compute the tail: tails(h; τ)l =
match dj(ui)i with (dk(xki)i → Xkl)k where Xkl =
tails(h; τk)l and tails(h; τ ′) = tails(h; τj)[xji ← ui]i.
The tails are well-typed, and reduce to one another, thus
we can conclude by C-RED-IOTA’

• For C-CONTEXT, consider the different cases:
If the context is of the formC = match C ′ with (Pi →
τi)i and is applied to X1 and X2, we have Γ ⊢
C ′[X1] = C ′[X2] ≃. Then we can substitute in the
tails.
If the context is of the form C = match a with (Pi →
τi)i ∣ Pj → C ′, we can use the induction hypothesis:
the tails of the case where the hole is are equal, so we
can substitute in the global tails.
All other contexts distribute immediately in the tails.

And we obtain subject reduction:

Theorem 3 (Subject reduction). Suppose Γ is well-formed,
X Ð→X ′ and Γ ⊢X ∶ Y . Then, Γ ⊢X ′ ∶ Y .

Proof. We need to prove subject reduction for Ð→ι and
Ð→β . We prove this for head-reduction as in the other sub-
ject reduction results (see Lemma 19). For Ð→ι, we can use

Dt ∶∶= [] ♯ a ∣ [] ♯ u ∣ [] ♯ τ ∣ [] ♯ ◇

Dv ∶∶= [] ♯ a ∣ [] ♯ u ∣ [] ♯ τ ∣ [] ♯ ◇
∣ [] a ∣ [] τ ∣ match [] with P → a

ct ∶∶= λ♯(x ∶ τ). τ ∣ λ♯(x ∶ τ). τ ∣ Λ♯(α ∶ κ). τ ∣ λ♯(◇ ∶ a =τ a). τ
cv ∶∶= λ♯(x ∶ τ). a ∣ λ♯(x ∶ τ). a ∣ Λ♯(α ∶ κ). a ∣ λ♯(◇ ∶ a =τ a). a

∣ λ(x ∶ τ). a ∣ fix (x ∶ τ) x. a ∣ Λ(α ∶ Typ). a ∣ d(a)

Figure 16. Destructors and constructors

the same technique as in the other proofs since C-RED-IOTA’
allows injecting Ð→ι in the equality.

For Ð→β , there are two cases. If we reduce an applica-
tion, the evaluation context E is not dependent according
to Lemma 15. In the other cases, the reduction is actually a
Ð→ι reduction.

Theorem 4 (Equal things have the same types, kinds, and
sorts). Consider a context Γ. Suppose Γ ⊢ X1 ≃ X2. Then,
for all Y , Γ ⊢X1 ∶ Y if and only if Γ ⊢X2 ∶ Y .

Proof. By induction on a derivation. This is immediate for
reflexivity, transitivity and symmetry. Reduction preserves
types by subject reduction. Substitution preserves types too.

We can now use the simplified version of equality (C-EQ,
C-RED-IOTA, C-RED-META).

We note Ð→ the union of Ð→β , Ð→ι and Ð→♯.

Theorem 5 (Subject reduction). Suppose Γ is well-formed,
X Ð→X ′ and Γ ⊢X ∶ Y . Then, Γ ⊢X ′ ∶ Y .

5.5 Soundness forÐ→♯

We now show that meta reductions are sound in any envi-
ronment, and ML reductions are sound in the empty environ-
ment.

We define (see Figure 16) constructors ct and cv at the
level of types and terms, and destructor contexts, or simply
destructors, Dt and Dv for types and terms. Some destruc-
tors destruct terms but return types.

Moreover, we defined the predicate meta on constructors
and destructors that do not belong to eML (hence, use a meta-
construction at the toplevel)

Theorem 6 (Soundness, meta). Let Γ be an environment.
Then:

• If Γ ⊢Dt[ct] ∶ Y , then Dt[ct]Ð→h.
• If Γ ⊢Dv[cv] ∶ Y , then Dv[cv]Ð→h.

Proof. By case analysis on the destructor. We’ll consider
the case Dt = [] ♯ τ . Consider the various cases for ct: by
separation, the only possible case is ct = Λ♯(α ∶ κ).τ ′. Then,
Dt[ct] reduces.

18 2017/1/14

5.6 Reducing mML to eML

We will now show that all mML terms that can be typed
in an environment without any meta constructs normalize by
Ð→♯ to an eML term of the same type. It does not suffice to
normalize the term and check that it does not contain any
mML syntactic construct and conclude by subject reduction:
we have to show the existence of an eML typing derivation
of the term.
Definition 5 (Meta-free context). A meta-free context is a
context where the types of all (term) variables have kind Sch,
and all type variables have kind Typ. A term is said to be
meta-closed if it admits a typing under a meta-free context.
A term is said to be eML-typed if moreover its type has kind
Sch. A type is said to be eML-kinded if moreover it has kind
Sch (or one of its subkinds).

Theorem 7 (Classification of meta-normal forms). Con-
sider a normal, meta-closed term or type. Then, it is an eML
term or type, or it is not eML-typed (or eML-kinded) and
starts with a meta abstraction.

Proof. By induction on the typing or kinding derivation.
Consider the last rule of a derivation:

• If it is a kind conversion K-CONV, by Lemma 17, it is a
trivial conversion.

• If it is a type conversion, by Theorem 4, the kind of the
type is preserved.

• If it is a construct in ML syntax: the subderivations on
terms and types are also in meta-closed environments and
eML-typed or eML-kinded, and we apply the induction
hypothesis.

• If it is a meta-abstraction, it is not eML-typed or eML-
kinded because of non-confusion of kinds.

• If it is a meta-application: let us consider the case of term-
level meta type-application. The other cases are similar.
We have a = b ♯ τ . b is typeable in a meta-closed context
but is not eML-typed. Thus, it is a meta-abstraction. By
soundness, a reduces, thus is not a normal form.

We prove that all mML derivations on eML syntax that can
be derived in mML can also be derived in eML. The difficulty
comes from equalities: transitivity allows us to make mML
terms appear in the derivation; these must be reduced to eML
while maintaining a typing valid derivation.

Theorem 8 (eML terms type in eML). In eML, consider an
environment Γ; terms (resp. types, kinds) X , X1, and X2;
and a type (resp. kind, sort) Y . Then:

• If ⊢ Γ in mML, then there is a derivation of ⊢ Γ in eML.
• If Γ ⊢ X ∶ Y in mML, then there is a derivation of

Γ ⊢X ∶ Y in eML.
• If Γ ⊢ X1 ≃ X2 in mML, then there is a derivation of

Γ ⊢X1 ≃X2 in eML.

Proof. By mutual induction.

We need to strengthen the induction for the typing deriva-
tions: we prove that, for any mML type, kind or sort Y ′,
if Γ ⊢ X ∶ Y ′, Y ′ reduces to Y in eML and Γ ⊢ X ∶ Y .
Then notice that the conversions only happen between nor-
mal eML terms, so we can apply the results on equalities.

For equalities, normalize the derivations as in Lemma 25,
but simultaneously transform the typing derivations into
eML derivations (this must be done simultaneously other-
wise we cannot control the size of the new derivations).

The main result of this section follows.

Theorem 9 (Reduction from mML to eML). Consider a
meta-free environment Γ, a and τ , and suppose Γ ⊢ a ∶ τ ,
Γ ⊢ τ ∶ Sch and τ is an eML type. Then, there exists a term
a′ such that aÐ→♯ a

′ and Γ ⊢ a′ ∶ τ holds in eML.

Note that this implies that eML also admits subject reduc-
tion.

Proof. The well-typed term a normalizes by Ð→♯ to an irre-
ducible term a′. By subject reduction, Γ ⊢ a′ ∶ τ . By classi-
fication of values, it is an eML term. By Theorem 8, there is
a derivation of Γ ⊢ a′ ∶ τ in eML.

5.7 Soundness, via a logical relation forÐ→ι
We prove that Ð→ι is normalizing, on all terms (including
ill-typed terms):

Lemma 27 (Nomalization for Ð→ι). The reduction Ð→ι is
strongly normalizing.

Proof. We will say that a term, type or kind is good if it
admits no infinite reduction sequence, and if it reduces to
Λ(α ∶ Typ). u, for all good types τ , u[α ← τ] is good.
Goodness is stable by reduction.

We will prove the following property by induction on a
term, type or kind X: suppose γ associates type and term
variables to good terms and types. Then, γ(X) is good. Let
us consider the different cases:

• If X is a variable, γ(X) is good by hypothesis.
• If X = Λ(α ∶ Typ). u: by induction hypothesis, γ(u) is

good for all γ, thus γ(X) admits no infinite reduction
sequence. Moreover, if X reduces to Λ(α ∶ Typ). u′,
u′[α ← τ] can be obtained by reduction from (γ[α ←
τ])(u), and thus is good.

• Suppose no head-reduction occurs from γ(X). Then,
since the subterms normalize, γ(X) normalizes. We will
now only consider the terms where head-reduction could
occur.

• If X = a τ , suppose γ(X) reduces to a term that head-
reduces. Then, this term is X ′ = (Λ(α ∶ Typ). u) τ , that
reduces to u[α ← τ]. Since a is good, the result is good
too.

• If X = let x = a1 in a2 has a head-reduction, it is from
let x = u in a′2 to a′2[x ← u], where γ(a1) reduces

19 2017/1/14

to u and γ(a2) reduces to a′2. The term u is good, thus
(γ[x← u])a2 is good and reduces to a′2[x← u].

• Similarly for type and term-level pattern matching.

We then prove soundness of the Ð→ι reduction. This
is done via a logical relation (essentially, implementing an
evaluator for the non-expansive terms of eML with the re-
duction Ð→ι). This then allows proving (syntactically) that
all coercions in the empty environment are between types
having the same head (up to reduction). Let us note uÐ→!

ι v
if all reduction paths from u terminate at v.

We start by defining a unary logical relation specialized
to Ð→ι on Figure 17. It includes an interpretation V[τ]γ of
values of type τ , an interpretation E[τ]γ of terms as nor-
malizing to the appropriate values, an interpretation G[γ]τ
of the typing environments as environments associating vari-
ables to non-expansive terms. We also define binary interpre-
tations (although they are interpreted in an unary environ-
ment). EqE[τ]γ of equality at type τ , via an interpretation
EqV[τ]γ of equality for values. We will omit the typing and
equality conditions in the definitions. The unary interpreta-
tion only contains terms that normalize, while the binary in-
terpretation contains both pairs of terms that normalize by
Ð→ι, and pairs of terms stuck on a beta-reduction step. We
note ⊢ γ ∶ Γ if γ is a well-typed environment that models Γ,
and ⊢ γ1 ≃ γ2 if all components of γ1 and γ2 are equal.

The definition of the interpretations is well-founded, by
induction on types, and, for datatypes, by induction on the
values (because the values appearing inside datatype con-
structors are necessarily values of a datatype, or functions
from terms).

Definition 6 (Valid environment). An environment γ is valid
if for all α such that γ(α) = (τ, S,R),

• For all u ∈ S, ∅ ⊢ u ∶ τ .
• The restriction of R to S is an equivalence relation.

Lemma 28 (Definition of the interpretations). The interpre-
tations are defined for wall-kinded terms and well-formed
environments:

• If ⊢ Γ, G[Γ] is well-defined and all its elements are valid,
and EqG[Γ] is well-defined and reflexive on G[Γ].

• If Γ ⊢ τ ∶ Sch, for all γ ∈ G[Γ], E[τ]γ is defined, all
its elements are non-expansive terms of type γ(τ), and
EqE[τ]γ is an equivalence relation on E[τ]γ .

Proof. By mutual induction on the kinding and well-formed
derivations.

As usual, we need to prove a substitution result:

Lemma 29 (Substitution). Consider a valid environment γ.
Then,

• E[τ[x← u]]γ = E[τ]γ[x←u]

• EqE[τ[x← u]]γ = EqE[τ]γ[x←u]
• E[τ[α ← τ ′]]γ = E[τ]γ[α←(γ(τ ′),E[τ ′]γ ,EqE[τ ′]γ)]
• EqE[τ[x← τ ′]]γ = EqE[τ]γ[α←(γ(τ ′),E[τ ′]γ ,EqE[τ ′]γ)]

Proof. By induction on τ .

We also need to prove that reducing a value in the envi-
ronment does not change the interpretation:

Lemma 30 (Reduction in the environment). Consider a
valid environment γ, and uÐ→ι u′. Then,

• E[τ]γ[x←u] = E[τ]γ[x←u′]
• EqE[τ]γ[x←u] = EqE[τ]γ[x←u′]

Proof. By induction on τ . The term variables in γ are used
for substituting into types for the typing side-conditions.
Since ∅ ⊢ u ≃ u′, the typing side-conditions stay true by
Lemma 11. They also occur in the interpretation of pattern
matching. But, for all terms a, (γ[x ← u])(a) and (γ[x ←
u′])(a) normalize to the same term.

Lemma 31 (Equality in the environment). Consider a valid
environment γ and τ1, S,R such that γ[α ← (τ1, S,R)] is
valid. Suppose ∅ ⊢ τ1 ≃ τ2. Then,

• γ[α ← (τ2, S,R)] is valid;
• for all types τ , E[τ]γ[α←(τ1,S,R)] = E[τ]γ[α←(τ2,S,R)];
• for all types τ , EqE[τ]γ[α←(τ1,S,R)] = EqE[τ]γ[α←(τ2,S,R)].

Proof. By induction. The type τ1 occurs only in the conclu-
sion of typing derivations. Use conversion and ∅ ⊢ τ1 ≃ τ2
to get the same derivations with τ2.

Lemma 32 (Reduction preserves interpretation). Suppose
τ Ð→ι τ ′. Then,

• E[τ]γ = E[τ ′]γ;
• EqE[τ]γ = EqE[τ ′]γ .

Proof. We will show the lemma for E[τ]γ . We eliminate
the context of the reduction by induction. If we pass to a
reduction between terms, it is in the argument of a type-level
match. Then, the two terms normalize to the same term. The
only type-level reduction is the reduction of the type-level
match:

match dj τj (ui)i with (dj τj (xji)i → τj)j∈J Ð→hι τj[xji ← ui]i

Let us show that the two types have the same interpreta-
tion. We have dj τj (ui)i Ð→!

ι dj τj (vi)i, where ui Ð→!
ι vi.

Thus, the interpretation of the left-hand side is E[τ]γ[xji←vi]i =
E[τ]γ[xji←ui]i by Lemma 30. By substitution (Lemma 29),
E[τ]γ[xji←ui]i = E[τ[xji ← ui]i]γ . This is the interpreta-
tion of the right-hand side.

Lemma 33 (Evaluation for Ð→ι). Suppose ⊢ Γ. Then:

• if Γ ⊢ u ∶ τ , then for all γ ∈G[Γ], γ(u) ∈ E[τ]γ;

20 2017/1/14

G[Γ] ⊆ {γ ∣⊢ γ ∶ Γ}
G[Γ, x ∶ τ] = {γ[x← u] ∣ γ ∈G[Γ] ∧ u ∈ E[τ]γ}
G[Γ, α ∶ Typ] = {γ[α ← (γ(τ),E[τ]γ ,EqE[τ]γ)] ∣ γ ∈G[Γ]}
G[Γ, (a1 =τ a2)] = {γ ∈G[Γ] ∣ a1, a2 non-expansive Ô⇒ (γ(a1), γ(a2)) ∈ EqE[τ]γ}
E[τ]γ ⊆ {a ∣ ∅ ⊢ a ∶ γ(τ)}
E[τ]γ = {u ∣ ∃ (v) uÐ→!

ι v ∧ v ∈V[τ]γ}
V[τ]γ ⊆ {v ∣ ∅ ⊢ v ∶ γ(τ)}
V[α]γ = γ(α)
V[τ1 → τ2]γ = {fix (x ∶ τ ′1 → τ ′2) y. a}
V[∀(α ∶ Typ) τ]γ = {(Λ(α ∶ Typ). v) ∣ ∀ (∅ ⊢ τ ′ ∶ Typ) v[α ← τ ′] ∈ E[τ]γ[α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)]}
V[ζ (τi)i]γ = {(d(vj)j) ∣ (d ∶ ∀(αi ∶ Typ)i (τj)j → ζ (αi)i) ∧ ∀ (j) vj ∈ Vk[τj[αi ← τi]i]γ}

V[match a with (di(xij)j → τi)i]γ = { V[τj]γ[xij←vj]j if γ(a)Ð→!
ι di(vj)j

∅ otherwise

EqG[Γ] ⊆ {(γ1, γ2) ∣⊢ γ1 ≃ γ2}
EqG[Γ, x ∶ τ] = {(γ1[x← u1], γ2[x← u2]) ∣ (γ1, γ2) ∈ EqG[Γ] ∧ (u1, u2) ∈ EqE[τ]γ1}

EqG[Γ, α ∶ Typ] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(γ[α ← (γ1(τ1),E[τ1]γ1 ,EqE[τ2]γ1)],
γ[α ← (γ2(τ2),E[τ1]γ2 ,EqE[τ2]γ2)]

)
RRRRRRRRRRRRR

(γ1, γ2) ∈ EqG[Γ]
∧ E[τ1]γ1

= E[τ2]γ2

∧ EqE[τ1]γ1 = EqE[τ2]γ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

EqG[Γ, (a1 =τ a2)] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(γ1, γ2) ∈G[Γ]

RRRRRRRRRRRRR

a1, a2 non-expansive Ô⇒
(γ1(a1), γ1(a2)) ∈ EqE[τ]γ1

∧(γ2(a1), γ2(a2)) ∈ EqE[τ]γ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
EqE[τ]γ ⊆ {(a1, a2) ∣ ∅ ⊢ a1 ≃ a2}

EqE[τ]γ = {(u1, u2)∣
(∃ (v1 v2) u1 Ð→!

ι v1 ∧ u2 Ð→!
ι v2 ∧ (v1, v2) ∈ EqV[τ]γ)

∨ (∀ (v1 v2) ¬(u1 Ð→!
ι v1) ∧ ¬(u2 Ð→!

ι v2))
}

EqV[τ]γ ⊆ {(v1, v2) ∣ ∅ ⊢ v1 ≃ v2}
EqV[α]γ = γ(α)
EqV[τ → τ ′]γ = {(fix (x ∶ τ1 → τ ′1) y. a1,fix (x ∶ τ2 → τ ′2) y. a2)}
EqV[∀(α ∶ Typ) τ]γ = {(Λ(α ∶ Typ). v1,Λ(α ∶ Typ). v2) ∣ ∀ (∅ ⊢ τ ∶ Typ) (v1[α ← Typ], v2[α ← Typ]) ∈V[τ]γ}
EqV[ζ (τi)i]γ = {(d(vj)j , d(wj)j) ∣ (d ∶ ∀(αi ∶ Typ)i (τj)j → ζ (αi)i) ∧ ∀ (j) (vj ,wj) ∈ EqV[τj[αi ← τi]i]γ}

EqV[match a with (di(xij)j → τi)i]γ = { EqV[τj]γ[xij←vj]j if γ(a)Ð→!
ι di(vj)j

∅ otherwise

Figure 17. Logical relation forÐ→ι

• if Γ ⊢ τ1 ≃ τ2, then for all (γ1, γ2) ∈ EqG[Γ], E[τ1]γ =
E[τ2]γ and EqE[τ1]γ1 = EqE[τ2]γ2 ;

• if Γ ⊢ a1 ≃ a2 and Γ ⊢ a1 ∶ τ , then for all (γ1, γ2) ∈
EqG[Γ], (γ1(a1), γ2(a2)) ∈ EqE[τ]γ1

;
• if Γ ⊢ τ ∶ Sch, then for all (γ1, γ2) ∈ EqG[Γ],
EqE[τ]γ1 = EqE[τ]γ2 ;

• if Γ ⊢ a ∶ τ , then for all (γ1, γ2) ∈ EqG[Γ], (γ1(a), γ2(a)) ∈
EqE[τ]γ1 .

Proof. We prove these results by mutual induction on the
derivations.

For the result on typing derivations, let us consider the
different rules:

• For VAR on x ∶ τ : by hypothesis, γ(x) ∈ E[τ]γ .
• For CONV: use the second lemma to show the interpreta-

tions of the two types are the same.

• For FIX: any two well-typed abstractions are linked at an
arrow type.

• The rule APP cannot occur as the first rule in the typing of
a non-expansive term.

• For TABS:
TABS

Γ, α ∶ Typ ⊢ u ∶ τ
Γ ⊢ Λ(α ∶ Typ). u ∶ ∀(α ∶ Typ) τ

Consider γ ∈G[Γ] and ∅ ⊢ τ ′ ∶ Typ. Λ(α ∶ Typ). u nor-
malizes to Λ(α ∶ Typ). v with uÐ→!

ι v. By induction hy-
pothesis, (γ[α ← τ ′])(u) ∈ E[τ]γ[α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)].
Moreover, it reduces to (γ[α ← τ ′])(v) = γ(v)[α ← τ ′].
Thus, γ(v)[α ← τ ′] ∈ E[τ]γ[α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)].

• For TAPP:
TAPP

Γ ⊢ τ ′ ∶ Typ Γ ⊢ u ∶ ∀(α ∶ Typ) τ
Γ ⊢ u τ ′ ∶ τ[α ← τ ′]

21 2017/1/14

Consider γ ∈G[Γ]. There exists τ ′′ such that γ(τ ′)Ð→!
ι

τ ′′. Then, ∅ ⊢ τ ′′ ∶ Typ. There exists v such that
γ(u)Ð→!

ι v. By inductive hypothesis, v ∈V[∀(α ∶ Typ)τ]γ .
Thus, there exists v′ such that v = Λ(α ∶ Typ). v′,
and v′[α ← τ ′′] ∈ E[τ]γ[α←(τ ′′,E[τ ′′]γ ,EqE[τ ′′]γ)] =
E[τ[α ← τ ′′]]γ = E[τ[α ← τ ′]]γ by Lemmas 29
and 32. We need to prove γ(u τ ′) ∈ E[τ[α ← τ ′]]γ .
But we have γ(u τ ′) Ð→∗

ι (Λ(α ∶ Typ). v′) τ ′′ Ð→ι
v′[α ← τ ′′].

• The other cases are similar.

For the result on equalities between types, by induction
on a derivation. We suppose that the context rule is always
used with a shallow context.

• For C-SYM and C-TRANS, use the induction hypothesis and
symmetry/transitivity of equality.

• For C-REFL, use reflexivity on types.
• For C-CONTEXT: apply the induction hypothesis on the

modified subterm if it is a type, and reflexivity on the
other subterms.

• Otherwise, it is the argument of a type-level pattern
matching. We have Γ ⊢ a1 ∶ ζ (τi)i, Γ ⊢ a2 ∶ ζ (τi)i,
and Γ ⊢ a1 ≃ a2. By the third result, (γ1(a1), γ2(a2)) ∈
EqE[ζ (τi)i]γ1 . If both do not normalize to a value, the
two interpretations of the pattern matching are empty.
Otherwise they normalize to d(v1j)j and d(v2j)j such
that (v1j , v2j) ∈ EqE[τj]γ1 where the τj are the types of
the arguments. Thus, (γ1[xj ← v1j]j , γ2[xj ← v2j]j) ∈
EqG[Γ, (xj ∶ τj)j], and we can interpret the selected
branch in these environments.

• For C-SPLIT on a term Γ ⊢ u ∶ τ ′, use reflexivity on types
to prove that (γ1(u), γ2(u)) ∈ EqE[τ ′]γ1 . Moreover,
γ1(u) ∈ E[τ ′]γ1 , thus the terms normalize to a value.
Then, select the case corresponding to the constructor,
construct an environment as in the previous case, and use
the induction hypothesis.

• For C-RED-IOTA, suppose we have a head-reduction (oth-
erwise, use C-CONTEXT). Then, it is the reduction of a pat-
tern matching. Proceed as in C-SPLIT.

• The rule C-EQ does not apply on types.

For the result on equalities between terms:

• The cases of C-SYM, C-TRANS and C-SPLIT are similar to
the same cases on types.

• For C-REFL, use reflexivity on terms.
• For C-RED-IOTA, proceed as in C-RED-IOTA for types.
• For C-EQ, consider the two equal terms u1, u2. From γ1

we get (γ1(u1), γ1(u2)) ∈ EqE[τ]γ1 . Moreover, by
reflexivity on u2, (γ1(u2), γ2(u2)) ∈ EqE[τ]γ1 . We
conclude by transitivity of EqE[τ]γ1 .

• For C-CONTEXT, examine the different typing rules as in
the first result, and use reflexivity when needed.

For the reflexivity results, examine the different typing
rules as in the first result. Take special care for variables. The
interpretations of the type variables are the same. For term
variables appearing in terms, they are bound to related terms.
Finally, for type-level pattern matching, the interpretations
of the term in the environments are related by reflexivity.

The following result is then a direct consequence:

Lemma 34 (Separation for Ð→ι). Suppose ∅ ⊢ τ1 ≃ τ2.
Then if τ1 and τ2 have a head, it is the same.

Proof. Apply the previous result with the empty environ-
ment. The interpretations of types with distinct heads are
distinct.

Theorem 10 (Soundness, empty environment). • If ∅ ⊢
Dt[ct] ∶ Y , then Dt[ct]Ð→h.

• If ∅ ⊢Dv[cv] ∶ Y , then Dv[cv]Ð→h.

Proof. Similar to Theorem 6, but use the separation theorem
for empty environments.

6. A step-indexed logical relation
To give a semantics to ornaments and establish the correct-
ness of elaboration, we define a step-indexed logical relation
on mML. The reduction we defined on mML is strong and
non-deterministic. We could define directly a relation com-
patible with full reduction, but we choose a more standard
presentation and define a deterministic subset of the reduc-
tion. We also ignore all reductions on types. This relation
will be used to prove soundness for eML, and that eML pro-
grams can be transformed into equivalent ML programs.

6.1 A deterministic reduction
We do not need to evaluate the type for reduction to proceed
to a value. Thus, our reduction will ignore the types appear-
ing in terms (and the terms appearing in these types, etc) and
only reduce the term part that actually computes. We force a
call-by-name reduction strategy for the meta part. The deter-
ministic meta-reduction is defined as applying only in ML
evaluation contexts. We extend the ML reduction to also oc-
cur on the left-hand side of meta-applications. This does not
change the metatheory of the language, as such terms are
necessarily ill-typed, but it allows us to use the same evalua-
tion contexts for ML reduction and meta reduction. The val-
ues are also extended to contain meta-abstractions. For the
same typing reasons, these values are not passed to any eML
construct because they have type Met. With these changes,
we get a deterministic meta-reduction ↦ defined as the ML
and meta head-reductions for terms, applied under the ex-
tended ML evaluation contexts E. We’ll note ↦h the asso-
ciated head-reduction, i.e. the union of all head-reduction of
terms.

The reduction ↦ admits the usual properties: it is deter-
ministic (and thus confluent), and the values are irreducible.

22 2017/1/14

E ∶∶= . . . ∣ E ♯u ∣ E ♯ τ ∣ E ♯ ◇
v ∶∶= . . . ∣ λ♯(x ∶ τ). a ∣ Λ♯(α ∶ κ). a ∣ λ♯(◇ ∶ a =τ a). a

CTX-DET-META

aÐ→h♯ b
E[a]↦ E[b]

CTX-BETA-META

aÐ→hβ b
E[a]↦ E[b]

Figure 18. Deterministic reduction↦

Lemma 35. Values v are irreducible for↦.

Proof. We will show a slightly more general result: values
do not decompose as v = E[a], with a not a value. This is
enough, as values do not head-reduce.

Proceed by induction on v. Suppose there v = E[a]. If
E is the empty context, a = v is a value. Otherwise, only
constructors can appear as the root of both an evaluation
context and a value. Then, the context is of the form E =
d(b,E′, v′), and v = d(v′′). Thus, E′[a] is a value, and we
use the induction hypothesis to show a is a value.

Lemma 36 (Determinism). Consider a term a. Then, there
exists at most one term a′ such that a↦ a′.

Proof. We will show, by induction on the term, that there
exists at most one decomposition a = E[b], with b head-
reducible. This suffices because head-reduction is determin-
istic. We have shown in the previous proof that values don’t
admit such a decomposition.

Consider the different cases for a.

• If a is a variable, it does not reduce and does not decom-
pose further.

• If a is an abstraction or a fixed point, it does not decom-
pose further since there is no appropriate non-empty eval-
uation context.

• If a = d(a)ii starts with a constructor, either it is a value,
or we can decompose the sequence (a)ii = (b)jj , b, (v)kk,
with b not a value. Necessarily, E = d((b)jj ,E′, (v)kk)
(becauseE cannot be empty: constructors do not reduce).
But then, b admits a unique decomposition as E′[b′].

• If a = let x = a1 in a2, consider a1. If it is a value,
it does not decompose, and the only possible context
is the empty context []. Otherwise, it admits at most
one decomposition a1 = E′[b], and a admits only the
decomposition a = let x = E′[b] in a2.

• If a = a1 a2 is a ML application, consider a2. If it is
not a value, a does not head-reduce and the only possible
evaluation context is E = a1 E

′. Since a2 decomposes
uniquely, E′ is unique, thus E is unique. If it is a value
a2 = v, consider a1. If it is not a lambda, a does not
head-reduce, and the only possible evaluation context is
E = E′ v. By induction, E′ is unique. If both are values,
the only possible evaluation context is the empty context.

• The case of all others applications is similar, except that
there is no context allowing the reduction of the right-
hand side of the application, thus it is not necessary to
check whether it is a value.

We can now link the deterministic reduction ↦ and the
full reductionÐ→.

Lemma 37. Suppose v Ð→ a. Then, the reduction is neces-
sarily a meta-reduction v Ð→♯ a, and a = v′ is a value.

Proof. The ML reduction Ð→β is included in ↦, and values
do not reduce for ↦. By induction on the values, we can
prove that redexes only occur under abstractions. Thus, the
term remains a value after reduction.

We will note Ð→λ the reduction that only reduces ML
term abstractions. It is also the set of Ð→β reductions that
are not included in Ð→ι
Lemma 38 (Commutations for well-typed terms). Suppose
X1 is a well-typed term.

• Meta-reductions can always be done first: supposeX1 Ð→ι
X2 Ð→♯ X3. Then, there exists X4 such that X1 Ð→♯
X4 Ð→∗

ι X3.
• Suppose X1 Ð→λ X2 Ð→♯ X3. Then, there exists X4

such that X1 Ð→∗
♯ X4 Ð→λ X3.

• SupposeX1 Ð→λ X2 andX1 Ð→ι X3. Then, there exists
X4 such that X2 Ð→∗

ι X4 and X3 Ð→λ X4.

Proof. For the first two commutations: a typing argument
preventsÐ→ι and Ð→λ from creating meta-redexes. For the
third property: note that Ð→ι cannot duplicate a Ð→λ redex
in an evaluation context.

Lemma 39 (Normalization forÐ→ι andÐ→♯). The union of
Ð→ι and Ð→♯ is strongly normalizing on well-typed terms.

Proof. Consider a term X . By König’s lemma (since there
is a finite number of possible reductions from one term), all
possible Ð→♯ reduction sequences from X are of length at
most k for some k. Consider an infiniteÐ→ι,Ð→♯ reduction
sequence from X . It has k Ð→♯ reductions or less. Other-
wise, we could use Lemma 38 to put k + 1 Ð→♯ reductions
at the start of the sequence. Thus, after the last Ð→♯ reduc-
tion, there is an infinite sequence ofÐ→ι reduction. But this
is impossible by the previous lemma.

Lemma 40 (Weak normalization implies strong normaliza-
tion). Consider a term a. Suppose there exists a terminating
reduction path from a. Then, all reduction sequences are fi-
nite.

Proof. We will show that all reduction sequences from a
have the same number of Ð→λ reductions. We can, without

23 2017/1/14

loss of generality (by Lemma 38) assume that a is meta-
normal and that the reduction path is meta-normal.

Consider a normalizing reduction sequence from a. We
are interested in the Ð→λ reductions. Thus, we decompose
the sequence as a = a0 Ð→∗

ι a
′
0 Ð→λ a1 Ð→∗

ι a
′
1 . . . Ð→λ

an Ð→∗
ι a

′
n. Consider a longer reduction sequence from a.

We can decompose it as an infinite sequence a = b0 Ð→∗
ι

b′0 Ð→λ b1
Let us show by induction that for all i ≤ n, there exists

ci such that a′i Ð→∗
ι ci and b′i Ð→∗

ι ci. This is true for
0. Suppose it is true for i. Then, we can use Lemma 38 to
transport the reductions at the next step, and conclude by
confluence. Finally, a′n = cn since a′n is irreducible. But,
since b′n reduces by Ð→λ, cn reduces by Ð→λ.

This suffices to show that the reductions coincide, up to
reduction under abstractions:

Lemma 41 (Equivalence of the deterministic reduction).
Consider a.

• Suppose a ↦ v, and a normalizes by Ð→ to a′. Then
v Ð→ a′.

• Suppose a reduces to a value v by Ð→. Then, there
exists v′ such that a ↦ v′. More precisely, we have the
following:

Suppose aÐ→∗ d(vi)i. Then, a↦∗ d(v′i)i and for all
i, v′i Ð→∗

♯ vi.
Suppose a Ð→∗ fix (x ∶ τ1) y. b. Then, a ↦∗ fix (x ∶
τ1) y. b and b′ Ð→∗

♯ b.
Suppose aÐ→∗ λ♯(x ∶ τ). b. Then, a↦∗ λ♯(x ∶ τ ′). b′
and b′ Ð→∗

♯ b.
Suppose a Ð→∗ Λ♯(α ∶ κ). b. Then, a ↦∗ Λ♯(α ∶
κ′). b′ and b′ Ð→∗

♯ b.
Suppose a Ð→∗ λ♯(◇ ∶ a1 =τ a2). b. Then, a ↦∗

λ♯(◇ ∶ a′1 =′τ a′2). b′ and b′ Ð→∗
♯ b.

Proof. The first result is rephrasing of Lemma 40. Consider
the second result. We start by proving that whenever a↦ v′,
v′ has the correct form. This is a consequence of confluence,
and the fact that head constructors are preserved by reduc-
tion.

Then, we only need to prove that the deterministic re-
duction does not get stuck when the full reduction does not:
suppose a Ð→ v, then either a is a value or a ↦. We will
proceed by structural induction on a.

• If a = x, a does not reduce.
• Consider a = let x = a1 in a2. The let binding cannot

be the root of a value, so Ð→ will reduce it at some
point: there exists a1 Ð→∗ v1. By induction hypothesis,
a1 reduces or is a value. If it is a value, a head-reduces,
and otherwise the subterm a1 reduces.

• Suppose a is an abstraction. Then it is a value.
• Suppose a is an application. We will only consider the

case a = a1 a2, the cases of the other applications are

(fix (x ∶ τ) y. a) v ↦h1 a[x← fix (x ∶ τ) y. a, y ← v]
(Λ(α ∶ Typ). v) τ ↦h0 v[α ← τ]

let x = v in a↦h0 a[x← v]
match dj τj (vi)i with

(dj τj (xji)i → aj)j
↦h0 aj[xij ← vi]i

(λ♯(x ∶ τ). a) ♯u↦h0 a[x← u]
(Λ♯(α ∶ κ). a) ♯ τ ↦h0 a[α ← τ]

(λ♯(◇ ∶ b1 =τ b2). a) ♯ ◇↦h0 a
CONTEXT

a↦hi b
E[a]↦i E[b]

IDENTITY

a↦0 a

COMPOSITION

a1 ↦i a2 a2 ↦j a3

a1 ↦i+j a3

Figure 19. The counting reduction ↦i

similar. A value cannot start with an application. Thus,
the application will be reduced at some points. Then,
there exists τ , b and w such that a1 Ð→∗ λ(x ∶ τ). b
and a2 Ð→∗ w. Suppose a2 is not already a value. Then,
by induction hypothesis it reduces, so a reduces by ↦.
Otherwise, suppose a1 is not already a value. Then, by
induction hypothesis it reduces by ↦, and a reduces.
Otherwise, we have a = (λ(x ∶ τ). b) v, and a is head-
reducible.

• Consider a = d(ai)i. It reduces by Ð→ to a value that
is necessarily of the form d(vi)i, with ai Ð→∗ vi. If all
ai are values, a is a value. Otherwise, consider the last
index i such that ai is not a value. Then, by induction
hypothesis, it reduces by↦. Thus, a reduces by ↦.

• Consider a = match b with (dj τj (xji)i → aj)j . A
value cannot start with a pattern matching, so Ð→ will
reduce it at some point. Thus, there exists d and (ai)i
such that bÐ→∗ d(ai)i. Thus, there exists (a′i)i such that
b ↦∗ d(a′i)i. If the reduction takes one step or more, a
reduce under the pattern matching. Otherwise, the pattern
matching itself reduces.

6.2 Counting steps
We define an indexed version of this reduction as follows:
the beta-reduction and the expansion of fixed points in ML
take one step each, and all other reductions take 0 steps.
Then, ↦i is the reduction of cost i, i.e. the composition of
i one-step reductions and an arbitrary number of zero-step
reductions. The full definition of the indexed reduction is
given on Figure 19.

Since ↦0 is a subset of the union of Ð→ι and Ð→♯, it
terminates.

6.3 Semantic types and the interpretation of kinds
We want to define a typed, binary, step-indexed logical re-
lation. The (relational) types will be interpreted as pairs of

24 2017/1/14

ENV-EMPTY

⊢ ∅ ∶ ∅
ENV-TVAR

∅ ⊢ τ ∶ γ(κ) ⊢ γ ∶ Γ
⊢ γ[α ← τ] ∶ Γ, α ∶ κ

ENV-VAR-TERM

∅ ⊢ a ∶ γ(τ) ⊢ γ ∶ Γ
⊢ γ[x ← a] ∶ Γ, x ∶ τ

ENV-VAR-NONEXP

∅ ⊢ u ∶ γ(τ) ⊢ γ ∶ Γ
⊢ γ[x ← u] ∶ Γ, x ∶ τ

ENV-EQ

∅ ⊢ γ(a) ≃ γ(b) ⊢ γ ∶ Γ
⊢ γ ∶ Γ, (a =τ b)

Figure 20. The environment typing judgment ⊢ γ ∶ Γ

(ground) types and a relation between them. This relation
is step-indexed, i.e. it is defined as the limit of a sequence
of refinement of the largest relation between these types.
The type-level functions are interpreted as function between
these representation, i.e. a pair of type-level functions for the
left- and right-hand side and a function of step-indexed rela-
tions subject to a causality constraint.

The interpretation of kinds is parameterized by a pair of
term environments for the left and right-hand side of the
relation. The environments must be well-typed: we define
a judgment ⊢ γ ∶ Γ that checks that all bindings in γ have
the right type or kind.

Then, we define by induction on kinds an interpretation
K[κ]γ1,γ2 , defined for all κ, γ1, γ2 such that there exists Γ
such that (⊢ Γ ∶ γi)i and Γ ⊢ κ ∶ wf. The interpretation is a
set of triples (τ1, (Sj)j≤i, τ2) such that (∅ ⊢ τi ∶ γi(κ))i. In
the interpretation of the base kinds Typ,Sch,Met, the Sj are
a decreasing sequence of relations on values of the correct
types. For higher-order constructs, the Sj are functions that
map interpretations of one kind to interpretations of another
kind. Equality between the interpretations is considered up
to type equality.

Lemma 42. The interpretation of kinds is well-defined.

Proof. We must prove that the types appearing in the triples
are correctly kinded. This is guaranteed by the kinding con-
ditions in each case.

Lemma 43 (Equal kinds have equal interpretations). Con-
sider ⊢ γ1, γ2 ∶ Γ. Then, if Γ ⊢ κ1 ≃ κ2, K[κ1]γ1,γ2 =
K[κ2]γ1,γ2 .

Proof. By induction on the kinds: Lemma 17 allows us to
decompose the kinds and get equality between the parts.
For the kinding conditions, note that if Γ ⊢ κ1 ≃ κ2, then
⊢ γ1(κ1) ≃ γ2(κ2).

6.4 The logical relation
We define a typed binary step-indexed logical relation on
mML equipped with ↦. The interpretation of types of terms
Ek[τ]γ goes through an interpretation of types as a relation
on values Vk[τ]γ . These interpretations depend on an envi-
ronment γ. The interpretation of a type of terms as values

is an arbitrary relation between values. The interpretation of
types of higher kind is a function from the interpretation of
its arguments to the interpretation of its result. Typing envi-
ronments Γ are interpreted as a set of environments γ that
map types variables to either relations in (for arguments of
kind Sch) or syntactic types (for higher-kinded types), and
term variables to pairs of (related) terms. Equalities are in-
terpreted as restricting the possible environments to those
where the two terms can be proved equal using the typing
rules.

Each step of the relation is a triple (τ1, (Rj)j≤i, τ2). For
compacity, we will only specify the value of Ri and leave
implicit the values of τ1 and τ2 (that are simply obtained by
applying γ1, γ2 to the type τ).

The relation Ek[τ]γ is defined so that the left-hand side
term terminates whenever the the right-hand side term, i.e.
the left-hand side program terminates more often. In partic-
ular, every program is related to the never-terminating pro-
gram at any type. This is not a problem: if we need to con-
sider termination, we can use the reverse relation, where the
left and right side are exchanged. This is what we will do
on ornaments: we will first show that, for arbitrary patches,
the ornamented program is equivalent but terminates less,
and then, assuming the patches terminate, we show that the
base program and the lifted program are linked by both the
normal and the reverse relation.

Let us justify that this definition is well-founded. The in-
terpretation of kinds is defined by structural induction on the
kind. The interpretation of contexts is defined by structural
induction on the context, and is well-founded as long as the
relation on terms and values is defined. The interpretation
of values (and terms) is defined by induction, first on the in-
dices, then on the structure of the type. The case of datatypes
is particular: then, the interpretation is defined by induction
on the term. Only datatypes and arrows can appear in the
type of a field of a constructor, and arrows decrease the in-
dex. Thus, the definition is well-founded.

We now prove that well-formed contexts and well-kinded
types have a defined interpretation.

Lemma 44 (Well-kinded types, well-formed contexts have
an interpretation). Let Γ be a context.

• Suppose ⊢ Γ. Then, for all k, Gk[Γ] is defined.
• Suppose Γ ⊢ τ ∶ κ. Then, for all k and for all γ ∈ Gk[Γ],
Vk[τ]γ is defined, and Vk[τ]γ ∈ K[κ]γ1,γ2 .

• Suppose Γ ⊢ τ ∶ Met. Then, for all k and for all γ ∈
Gk[Γ], Ek[τ]γ is defined.

Proof. By mutual induction on the kinding and well-formed-
ness relations. Use the previous lemma for K-CONV. The in-
terpretations of relational types are formed between base
types of the right kinds. It remains to check that the inter-
pretation of types of base kinds are decreasing with k. This
can be shown by the same induction that guarantees the in-
duction is well-founded: all definitions using interpretations

25 2017/1/14

K[κ ∈ {Typ,Sch,Sch,Met}]γ1,γ2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(τ1, (Rj)j≤i, τ2)

RRRRRRRRRRRRR

⊢ τ1 ∶ κ ∧ ⊢ τ2 ∶ κ
∧ ∀ (j ≤ i) ((v1, v2) ∈ Rj) ⊢ v1 ∶ τ1∧ ⊢ v2 ∶ τ2
∧ ∀ (j ≤ k ≤ i) ,Rj ⊇ Rk

⎫⎪⎪⎪⎬⎪⎪⎪⎭

K[∀(α ∶ κ1) κ2]γ1,γ2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(τ1, (Fj)j≤i, τ2)

RRRRRRRRRRRRRR

⊢ τ1 ∶ ∀(α ∶ γ1(κ1)) γ1(κ2)∧ ⊢ τ2 ∶ ∀(α ∶ γ2(κ1)) γ2(κ2)
∧ ∀j ≤ i, (τ ′1, (Sk)k≤j , τ ′2) ∈ K[κ1]γ1,γ2

(τ1 ♯ τ ′1, (Fk(Sk))k≤j , τ2 ♯ τ ′2) ∈ K[κ2]γ1[α←τ ′1],γ2[α←τ ′2]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

K[τ → κ]γ1,γ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(τ1, (fj)j≤i, τ2)

RRRRRRRRRRRRRRRRRRRRRRR

⊢ τ1 ∶ γ1(τ)→ γ1(κ)∧ ⊢ τ2 ∶ γ2(τ)→ γ2(κ)
∧ ∀ (u1, u2) (⊢ u1 ∶ γ1(τ)∧ ⊢ u2 ∶ γ2(τ))

Ô⇒ (τ1 ♯ u1, (fj(u1, u2))j≤i, τ2 ♯ u2) ∈ K[κ]γ1,γ2

∧ ∀u1, u2, u
′
1, u

′
2, (⊢ u1 ≃ u′1∧ ⊢ u2 ≃ u′2)

Ô⇒ ∀j, fj(u1, u2) = fj(u′1, u′2)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

K[(a =τ b)→ κ]γ1,γ2 = { K[κ]γ1,γ2 if ⊢ γ1(a) ≃ γ1(b)∧ ⊢ γ2(a) ≃ γ2(b)
{●} otherwise

Figure 21. Interpretation of kinds

Gk[∅] = {∅}
Gk[Γ, x ∶ τ] = {γ[x ← (u1, u2)] ∣ (u1, u2) ∈ Ek[τ]γ ∧ γ ∈ Gk[Γ]}
Gk[Γ, x ∶ τ] = {γ[x ← (a1, a2)] ∣ (a1, a2) ∈ Ek[τ]γ ∧ γ ∈ Gk[Γ]}
Gk[Γ, α ∶ κ] = {γ[α ← (τ1, (Rj)j≤k, τ2)] ∣ (τ1, (Rj)j≤k, τ2) ∈ K[κ]γ1,γ2 ∧ γ ∈ Gk[Γ]}
Gk[Γ, (a1 =τ a2)] = {γ ∈ Gk[Γ] ∣ (⊢ γ1(a1) ≃ γ1(a2)) ∧ (⊢ γ2(a1) ≃ γ2(a2))}
Ek[τ]γ = {(a1, a2) ∣ ∀i, ∀v2, a2 ↦i v2 Ô⇒ ∃v1, a1 ↦∗ v1 ∧ (v1, v2) ∈ Vk−i[τ]γ}
Vk[α]γ = γ(α)
Vk[τ1 ♯ τ2]γ = Vk[τ1]γ Vk[τ2]γ
Vk[τ ♯ u]γ = Vk[τ]γ (γ1(u), γ2(u))
Vk[τ ♯ ◇]γ = Vk[τ]γ ●
Vk[Λ♯(α ∶ κ). τ]γ = λ(R ∈ K[κ]γ1,γ2). Vk[τ]γ[α←R]
Vk[λ♯(x ∶ κ). τ]γ = λ((u1, u2) ∈ Term ×Term). Vk[τ]γ[x←(u1,u2)]
Vk[λ♯(◇ ∶ a1 =τ2 a2). τ1]γ = λ(● ∈ 1). Vk[τ1]γ

Vk[τ1 → τ2]γ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(fix (x ∶ τ ′1 → τ ′2) y. a1,

fix (x ∶ τ ′′1 → τ ′′2) y. a2
)
RRRRRRRRRRRRRR

∀ (j < k) (v1, v2) ∈ Vj[τ1]γ Ô⇒

(a1[x← (fix (x ∶ τ ′1 → τ ′2) y. a1), y ← v1],
a1[x← (fix (x ∶ τ ′′1 → τ ′′2) y. a2), y ← v2]

) ∈ Ej[τ2]γ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Vk[Π(x ∶ τ1). τ2]γ = {(λ♯(x ∶ τ ′1). a1,

λ♯(x ∶ τ ′′1). a2
) ∣ ∀ (j ≤ k) (u1, u2) ∈ Ej[τ1]γ Ô⇒

(a1[x ← u1], a2[x ← u2]) ∈ Ej[τ2]γ[x←(u1,u2)]
}

Vk[Π(◇ ∶ b1 =τ b2). τ ′]γ = {(λ♯(◇ ∶ . . .). a1,
λ♯(◇ ∶ . . .). a2

) ∣ (∅ ⊢ γ1(a1) ≃ γ1(a2)
∧ ∅ ⊢ γ2(a1) ≃ γ2(a2)

) Ô⇒ (a1, a2) ∈ Ek[τ ′]γ}

Vk[∀(α ∶ Typ) τ]γ = {(Λ(α ∶ Typ). u1,
Λ(α ∶ Typ). u2

) ∣ ∀ ((τ1, (Rj)j≤k, τ2) ∈ K[κ]γ1,γ2)
(u1, u2) ∈ Vk[τ]γ[α←(τ1,(Rj)j≤k,τ2)]

}

Vk[∀♯(α ∶ κ). τ]γ = {(Λ♯(α ∶ κ1). a1,
Λ♯(α ∶ κ2). a2

) ∣ ∀ ((τ1, (Rj)j≤k, τ2) ∈ K[κ]γ1,γ2)
(a1, a2) ∈ Ek[τ]γ[α←(τ1,(Rj)j≤k,τ2)]

}

Vk[ζ (τi)i]γ = {(d(vj)j , d(wj)j) ∣ (d ∶ ∀(αi ∶ Typ)i (τj)j → ζ (αi)i)
∧ ∀ (j) (vj ,wj) ∈ Vk[τj[αi ← τi]i]γ

}

Vk[match a with (di(xij)j → τi)i]γ = { Vk[τj]γ[xij←(vj ,v′j)]j if γ1(a)↦0 di(vj)j ∧ γ2(a)↦0 di(v′j)j
∅ otherwise

Figure 22. Definition of the logical relation

26 2017/1/14

in contravariant position are explicitly made decreasing by
quantifying on the rank.

Lemma 45 (Substitution commutes with interpretation).
For all environments γ, index k, we have:

Vk[τ[α ← τ ′]]γ = Vk[τ]γ[α←Vk[τ ′]γ]
Vk[τ[x← u]]γ = Vk[τ]γ[x←(γ1(u),γ2(u))]
K[κ[α ← τ ′]]γ1,γ2 = K[κ]γ1[α←γ1(τ ′)],γ2[α←γ2(τ ′)]
K[κ[x← u]]γ1,γ2 = K[κ]γ1[x←γ1(u)],γ2[x←γ2(u)]

Proof. By structural induction on τ , κ.

Lemma 46 (Fundamental lemma). • Suppose Γ ⊢ a ∶ τ .
Then, for all k, γ ∈ Gk[Γ], (γ1(a), γ2(a)) ∈ Ek[τ]γ .

• Suppose Γ ⊢ τ1 ≃ τ2. Then, for all k, γ ∈ Gk[Γ],
Vk[τ1]γ = Vk[τ2]γ .

Proof. By induction on the structure of the relation, and on
the typing or equality derivations.

For equality proofs:

• Reflexivity, transitivity and symmetry are immediate.
• For head-reduction, the only possible reduction is appli-

cation.
• For C-CONTEXT, proceed by induction on the context then

apply the inductive hypothesis (for types), or in the case
of match use the fact that equal terms have the same head-
constructor in empty environments (Lemma 34).

• For C-SPLIT on a term u: apply the induction hypoth-
esis on Γ ⊢ u ∶ ζ (τi)i. We have: (γ1(u), γ2(u)) ∈
Ek[ζ (τi)i]γ . Since γ1(u) and γ2(u) are closed, non-
expansive terms, they reduce in 0 steps to values (v1, v2) ∈
Vk[ζ (τi)i]γ (this is a consequence of reflexivity for the
logical relation on Ð→ι, after Ð→♯ normalization). In
particular, they have the same head-constructor and the
fields of the constructors are related. We can then add
the fields and the equality to the context, and apply the
inductive hypothesis on the appropriate constructor.

For typing derivations, we will only examine the cases of
VAR, CONV, FIX, and APP.

• The VAR rule is:
VAR

x ∶ τ ∈ Γ

Γ ⊢ x ∶ τ
Consider γ ∈ Gk[Γ]. By definition, (γ1(x), γ2(x)) ∈
Vk[Γ]γ . Thus, (γ1(x), γ2(x)) ∈ Ek[Γ]γ .

• Consider the CONV rule:

CONV

Γ ⊢ τ1 ≃ τ2 Γ ⊢ a ∶ τ1
Γ ⊢ a ∶ τ2

Let γ ∈ Gk[Γ]. By inductive hypothesis, (γ1(a), γ2(a)) ∈
Ek[τ1]γ , and Vk[τ1]γ = Vk[τ2]γ . Thus, (γ1(a), γ2(a)) ∈
Ek[τ2]γ = Ek[τ1]γ .

• Consider the FIX rule:

FIX

Γ, x ∶ τ1 → τ2, y ∶ τ1 ⊢ a ∶ τ2
Γ ⊢ fix (x ∶ τ1 → τ2) y. a ∶ τ1 → τ2

Consider γ ∈ Gk[Γ]. We want to prove (fix (x ∶ γ1(τ1)→
γ1(τ2)) y. γ1(a),fix (x ∶ γ2(τ1) → γ2(τ2)) y. γ2(a)) ∈
Vk[τ1 → τ2]γ . Consider j < k, and (v1, v2) ∈ Vj[τ1]γ .
We need to show:
(γ1(a)[x← fix (x ∶ γ1(τ1)→ γ1(τ2)) y. γ1(a), y ← v1]
γ1(a)[x← fix (x ∶ γ1(τ1)→ γ1(τ2)) y. γ1(a), y ← v1])
∈ Vj[τ2]γ Note that by weakening, γ ∈ Gj[Γ]. Moreover,
by induction hypothesis at rank j < k, (fix (x ∶ γ1(τ1) →
γ1(τ2)) y. γ1(a),fix (x ∶ γ2(τ1) → γ2(τ2)) y. γ2(a)) ∈
Vj[τ1 → τ2]γ . Consider
γ′ = γ[x← (fix (x ∶ γ1(τ1)→ γ1(τ2)) y. γ1(a),
fix (x ∶ γ2(τ1)→ γ2(τ2)) y. γ2(a)), y ← (v1, v2)]. Then,
γ′ ∈ Gj[Γ, x ∶ τ1 → τ2, y ∶ τ1]. Thus, by induction hy-
pothesis at rank j < k, (γ′1(a), γ′2(a)) =
(γ1(a)[x← fix (x ∶ γ1(τ1)→ γ1(τ2)) y. γ1(a), y ← v1]
, γ2(a)[x← fix (x ∶ γ2(τ1)→ γ2(τ2)) y. γ2(a), y ← v2])
∈ Vj[τ2]γ′ = Vj[τ2]γ .

• Consider the APP rule:

APP

Γ ⊢ b ∶ τ1 Γ ⊢ a ∶ τ1 → τ2

Γ ⊢ a b ∶ τ2
Let γ ∈ Gk[Γ]. Suppose γ2(a) γ2(b) ↦i v2. We want to
show that there exists v1 such that γ1(a) γ1(b) ↦∗ v1

and (v1, v2) ∈ Vk−i[τ2]γ .
Since γ2(a) reduces to a value, there exists w2,w

′
2

such that γ2(a) ↦i1 w2, γ2(b) ↦i1 w′
2. By induc-

tion hypothesis on a and b, there exists values w1,w
′
1

such that (w1,w2) ∈ Vk−i1[τ1 → τ2]γ and (w′
1,w

′
2) ∈

Vk−i2[τ1]γ . We can apply the first property at rank
k − i1 − i2 − 1: there exists a′1, a

′
2, τ

′
1, τ

′′
1 such that w1 =

fix (x ∶ τ ′1 → τ ′2) y. a′1 and w2 = fix (x ∶ τ ′′1 → τ ′′2) y. a′2,
and also (a′1[x← . . . , y ← w′

1], a′2[x← . . . , y ← w′
2]) ∈

Ek−i1−i2−1[τ2]γ . Then, we have: a′2[x← . . . , y ← w′
2]↦i3

v2 with i = i1+i2+i3+1, and a′1[x← . . . , y ← w′
1]↦∗ v1.

Thus, (v1, v2) ∈ Vk−i[τ2]γ .

6.5 Closure by biorthogonality
We want our relation to be compatible with substitution. We
build a closure of our relation: essentially, the relation at
a type relates all programs that cannot be distinguished by
a context that does not distinguish programs we defined to
be equivalent. To be well-typed, our notion of context must
be restricted to only allow equal programs to be substituted.
This is enough to show that it embeds contextual equivalence
and substitution.

We will assume that there exists a type Unit with a single
value (). Consider two closed terms a1 and a2. We note

27 2017/1/14

a1 ≾ a2 if and only if a1 and a2 both have type Unit, and
if a2 reduces to (), a1 reduces to () too.

We will consider the relation E[τ]γ without indices as the
limit of Ek[τ]γ .

We can then define a relation on contexts. This relation
must take equality into accounts: two unequal terms cannot
necessarily be put in the same context, because the context
might be dependent on the term we put in. Thus, our relation
on contexts only compares contexts at terms equal to a given
term.

Definition 7 (Relation on contexts). We note (C1,C2) ∈
C[τ ∣ a1, a2]γ iff:

• ∅ ⊢ C1[∅ ⊢ a1 ∶ γ1(τ)] ∶ Unit and ∅ ⊢ C2[∅ ⊢ a2 ∶
γ2(τ)] ∶ Unit

• for all a′1, a
′
2 such that ∅ ⊢ a′i ∶ γi(τ), (∅ ⊢ ai ≃ a′i) and

(a′1, a′2) ∈ E[τ]γ , we have C1[a1] ≾ C2[a2].
From this relation on context we can define a closure of

the relation:

Definition 8 (Closure of the logical relation). We note
(a1, a2) ∈ E2[τ]γ iff:

• ∅ ⊢ a1 ∶ γ1(τ) and ∅ ⊢ a2 ∶ γ2(τ)
• for all (C1,C2) ∈ C[τ ∣ a1, a2]γ , C1[a1] ≾ C2[a2].

We obtain a relation that includes the previous relation,
and allows substitution, contextual equivalence, etc. We in-
troduce a notation that includes quantification on environ-
ments:

Lemma 47 (Inclusion). Suppose (a1, a2) ∈ Ek[τ]γ . Then
(a1, a2) ∈ E2[τ]γ .

Proof. Expand the definitions.

Lemma 48 (Inclusion in contextual equivalence). Suppose
that for all γ ∈ Gk[Γ], (a1, a2) ∈ E2[τ]γ . Then, for all
contexts C such that ∅ ⊢ C[Γ ⊢ a1 ∶ τ] ∶ Unit and
∅ ⊢ C[Γ ⊢ a2 ∶ τ] ∶ Unit, we have C[a1] ≾ C[a2].

Proof. By induction on the context. As in the proof of the
fundamental lemma, each typing rule induces an equivalent
deduction rule for the logical relation. For example, the
LET-POLY rule becomes (assuming the typing conditions are
met): if (a1, a2) ∈ E2[τ0]γ , and for all (v1, v2) ∈ E[τ0]γ
such that ∅ ⊢ ai ≃ vi, we have (b1[x ← (v1, v2)], b2[x ←
(v1, v2)]) ∈ E2[τ]γ[x←(v1,v2)], then (let x = a1 in b1, let
x = a2 in b2) ∈ E2[τ]γ . We use the induction hypothesis
on the subterm that contains the hole, and the fundamental
lemma for the other subterms.

Lemma 49 (Contextual equivalence implies relation). Con-
sider a1, a2 such that Γ ⊢ ai ∶ τ and Γ ⊢ a1 ≃ a2. Moreover,
suppose that they are contextually equivalent: if ∅ ⊢ C[Γ ⊢
a1 ∶ τ] ∶ Unit, then C[a1] ≾ C[a2] and C[a2] ≾ C[a1].
Then, for all γ ∈ Gk[Γ], (γ(a1), γ(a2)) ∈ E2[τ]γ .

Proof. We have (γ(a1), γ(a1)) ∈ Ek[τ]γ . Consider C1,C2

such that C1[γ(a1)] ≾ C2[γ(a1)]. Then, by contextual
equivalence, we can substitute γ(a1) by γ(a2) in the right-
hand side.

Lemma 50 (Reduction). Suppose a1 Ð→ a2, andC[a1],C[a2]
have the same type τ in the empty environment. Then,
(C[a1],C[a2]) ∈ E2[τ]γ .

Proof. Use Lemma 48, add the context C, use Lemma 49.

These definitions give a restricted form of transitivity.
Full transitivity may hold but is not easy to prove: essen-
tially, it requires inventing out of thin air a context “between”
two contexts, that is related to the first one in a specific en-
vironment and to the second one in another specific environ-
ment. If we restrict ourselves to the sides of an environment,
then we can simply reuse the same context. a side of an envi-
ronment is, in spirit, a relational version of the left and right
environment γ1 and γ2.

Definition 9 (Sides of an environment). Consider an envi-
ronment γ. Its left and right sides δ1γ and δ2γ are defined as
follows:

• δ1γ(x) = (γ1(x), γ1(x)) and δ2γ(x) = (γ2(x), γ2(x));
• δ1γ(α) = {(v1, v2) ∣ ∀w, (v1,w) ∈ γ(α) ⇔ (v1,w) ∈
γ(α)} and δ2γ(α) = {(w1,w2) ∣ ∀v, (v,w1) ∈ γ(α)⇔
(v,w2) ∈ γ(α)} if α is interpreted by a relation;

• the sides of interpretations of types of higher-order kinds
are interpreted pointwise on the base kinds.

Lemma 51 (Properties of sides). • If an environment γ
verifies an equality a1 =τ a2, then its sides respect this
equality

• If (a1, a2) ∈ Ek[τ]γ , then (ai, ai) ∈ Ek[τ]δiγ .
• If γ ∈ Gk[Γ], then δ1γ ∈ Gk[Γ] and δ2γ ∈ Gk[Γ].

Proof. By induction on the structure of the logical relation.

Lemma 52 (Side-transitivity). Consider an environment γ,
and suppose:

• (a0, a1) ∈ E2[τ]δ1γ and ∅ ⊢ a0 ≃ a1;
• (a1, a2) ∈ E2[τ]γ;
• (a2, a3) ∈ E2[τ]δ2γ and ∅ ⊢ a2 ≃ a3.

Then, (a0, a3) ∈ E2[τ]γ .

Proof. Consider (C0,C3) ∈ C[τ ∣ a0, a3]γ . Then, we have
(C0,C0) ∈ C[τ ∣ a0, a1]δ1γ , and (C3,C3) ∈ C[τ ∣ a2, a3]δ1γ ,
and (C0,C3) ∈ C[τ ∣ a1, a3]δ1γ . Conclude by transitivity of
≾.

Lemma 53 (Equality implies relation). Suppose Γ ⊢ a1 ∶ τ
and Γ ⊢ a1 ≃ a2. Then, for all γ ∈ Gk[Γ], (γ(a1), γ(a2)) ∈
E2[τ]γ .

28 2017/1/14

Proof. By induction on an equality derivation. Since the
relation is not symmetric, we a stronger result by induction
on derivations: if Γ ⊢ a1 ≃ a2, then for all γ ∈ Gk[Γ],
(γ(a1), γ(a2)) ∈ E2[τ]γ and (γ(a2), γ(a1)) ∈ E2[τ]γ .
Then, each rule translates to one of the previous lemmas.

7. Translating from eML to ML
Consider an ML environment Γ, an ML type τ , and an eML
term a, such that Γ ⊢ a ∶ τ hold in eML. Our goal is to
find a term a′ such that Γ ⊢ a′ ∶ τ holds in ML and that
is equivalent to a: Γ ⊢ a ≃ a′. This is a good enough
definition, since all terms that are provably equal are related.
Restricting the typing derivation of a′ to ML introduces two
constraints. First, no type-level pattern matching can appear
in the types in the term. Then, we must ensure that the term
admits a typing derivation that does not involve conversion
and pattern matching.

The types appearing in the terms are only of kind Typ,
thus they cannot contain a type-level pattern matching,
and explicitly-typed bindings cannot introduce in the con-
text a variable whose kind is not Typ. There remains the
case of let bindings: they can introduce a variable of kind
Sch. We can get more information on these types by the
following lemma, that proves that “stuck” types such as
match f x with (di(yj)j → τi)i do not contain any term:

Lemma 54 (Match trees). A type τ is said to be a match tree
if the judgment Γ ⊢ τ tree defined below holds:

TREE-SCHEME

Γ ⊢ τ ∶ Sch

Γ ⊢ τ tree

TREE-MATCH

(di ∶ ∀(αk)k (τij)j → ζ (αk)k)i

Γ ⊢ a ∶ ζ (τk)k (Γ, (xij ∶ τij[αk ← τk]k)j ,
a =ζ (τk)k di(τik)

k(xij)j ⊢ τ ′i tree
)
i

Γ ⊢ match a with (di(τik)k(xij)j → τ ′i)i tree

Suppose all types of variables in Γ are match trees. If
Γ ⊢ a ∶ τ , there exists a type τ ′ such that Γ ⊢ τ ≃ τ ′ and
Γ ⊢ τ ′ tree.

Proof. By induction on the typing derivation of a. Consider
the different rules:

• By hypothesis on Γ, the output of VAR is a match tree.
• The outputs of rules TABS, TAPP, FIX, APP, and CON have

kind Sch, thus are match trees.
• Consider a conversion CONV from τ to τ ′. If τ is equal to a

match tree, then τ ′ is equal to a match tree by transitivity.
• For rule LET-POLY:

LET-POLY Γ ⊢ τ ∶ Sch
Γ ⊢ u ∶ τ Γ, x ∶ τ, (x =τ u) ⊢ b ∶ τ ′

Γ ⊢ let x = u in b ∶ τ ′

By induction hypothesis, the type of u is equal in Γ to
a match tree. Thus we can assume that τ is a match tree.
Then, all types in Γ, x ∶ τ, (x =τ u) are match trees. There
exists τ ′′ such that Γ, x ∶ τ, (x =τ u) ⊢ τ ′′ tree and Γ, x ∶
τ, (x =τ u) ⊢ τ ′ ≃ τ ′′. We can substitute using x =τ u (by
Lemma 10), and we obtain Γ, (uτu) ⊢ τ ′ ≃ τ ′′[x ← u]
and Γ, (u =τ u) ⊢ τ ′′ tree. All uses of the equality can
be replace by C-REFL so we can eliminate it.

• For rule LET-MONO:

LET-MONO Γ ⊢ τ ∶ Typ
Γ ⊢ a ∶ τ Γ, x ∶ τ, (x =τ a) ⊢ b ∶ τ ′

Γ ⊢ let x = a in b ∶ τ ′

By induction hypothesis, the type of a is equal in Γ to a
match tree. Thus we can assume that τ is a match tree.
Then, all types in Γ, x ∶ τ, (x =τ a) are match trees.
There exists τ ′′ such that Γ, x ∶ τ, (x =τ a) ⊢ τ ′′ tree
and Γ, x ∶ τ, (x =τ a) ⊢ τ ′ ≃ τ ′′. We can assume a is
expansive (otherwise we can use the same reasoning as in
the last case). Then, the equality is useless by Lemma 14.
Moreover, since τ has kind Typ, there is a value v in τ .
Then, Γ ⊢ τ ′′[x← v] tree and Γ ⊢ τ ′ ≃ τ ′′[x← v].

• For rule MATCH:

MATCH

Γ ⊢ τ ∶ Sch (di ∶ ∀(αk)k (τij)j → ζ (αk)k)i

Γ ⊢ a ∶ ζ (τk)k (Γ, (xij ∶ τij[αk ← τk]k)j ,
a =ζ (τk)k di(τij)

k(xij)j ⊢ bi ∶ τ
)
i

Γ ⊢ match a with (di(τij)k(xij)j → bi)i ∶ τ

Proceed as for LET in the case where we match on an ex-
pansive term a: we can use the default value for all the
bound variables in one branch and get the equality we
need. If a = u is non-expansive, use the induction hypoth-
esis on each branch: there exists (τi)i such that (Γ, (xij ∶
τij[αk ← τk]k)j , (u =ζ (τk)k di(τij)k(xij)j) ⊢ τ ≃ τi)i
and (Γ, (xij ∶ τij[αk ← τk]k)j , (u =ζ (τk)k di(τij)k(xij)j) ⊢
τi tree)i. Then, consider τ ′ = match u with (di(τij)k(xij)j →
τi)i. We have Γ ⊢ τ ′ ≃ match u with (di(τij)k(xij)j →
τ)i (by applying the previous equality in each branch),
and Γ ⊢ match u with (di(τij)k(xij)j → τ)i ≃ τ
by C-SPLIT and C-RED-IOTA for each case. Moreover,
Γ ⊢ τ ′ tree by TREE-MATCH.

From this lemma, we can deduce that there exists a typing
derivation where the type of all variables bound in let is a
match tree. The pattern matching in the types can then be
eliminated by lifting the pattern-matching outside of the let,
as in z→t on Figure 23. This transformation is well-typed,
and the terms are equal (the equality can be proved by case-
splitting on u). Moreover, it strictly decreases the number of
match . . . with . . . in the types of let-bindings. Thus we

29 2017/1/14

can apply it until we obtain a term with a derivation where
all bindings are of kind Typ.

In the new derivation, no variable in context has a match
type. We can transform the derivation such that all coercions
are between ML types.

Lemma 55. Suppose Γ is a context where all variables have
a ML type. Suppose Γ ⊢ a ∶ τ , where τ is a ML type and no
variables are introduced with a non-ML type in the main type
derivation. Then, there exists a derivation of Γ ⊢ a ∶ τ where
all conversions of the main type derivation are between ML
types.

Proof. We proceed by induction, pushing the conversions in
the term until they meet a syntactic construction that is not a
match or a let. If we encounter a conversion, we combine it
by transitivity with the conversion we are currently pushing.

We know (by soundness) that all equalities between ML
types are either trivial (i.e. between two identical types) or
are used in a branch of the program that will never be run
(otherwise, it would provoke an error). In order to translate
the program to ML, we must eliminate these branches from
the program. There are two possible approaches: we could
extend ML with an equivalent of assert false and in-
sert it in the unreachable branches, but the fact that the pro-
gram executes without error would not be guaranteed by the
type system anymore, and could be broken by subsequent
manual modification to the code. The other approach is to
transform the program to eliminate the unreachable branches
altogether. This sometimes requires introducing extra pat-
tern matchings and duplicating code. The downside to this
approach is that in some cases the term could grow expo-
nentially. This blowup can be limited by only doing the ex-
pansions that are strictly necessary.

The transformations of Figure 23 all preserve types and
equality. All let bindings and pattern matchings that can
be reduced by Ð→ι are reduced. When a pattern match-
ing matches on the result of another pattern matching, the
inner pattern matching is lifted around the formerly outer
pattern matching. These transformations preserve the types
and equality. These transformations terminate. After apply-
ing them, all pattern matching is done either on a variable,
or on an expansive term.

We first show that, in environments without equalities, all
conversions are trivial:

Lemma 56 (ML conversions without equality are trivial).
Consider ∅ ⊢ C[Γ ⊢ a ∶ τ] ∶ τ ′. Then, if Γ ⊢ τ1 ≃ τ2 and
τ1, τ2 are ML types, τ1 = τ2.

Proof. Suppose by contradiction that τ1 ≠ τ2. Then, there
exists a ρ that associates all type variables in τ1 and τ2 to a
type such that ρ(τ1) ≠ ρ(τ2) (for example, we can bind each
variable to a fresh new type Unitk with one constructor ()k).
If Γ ⊢ τ1 ≃ τ2, then by substitution, ρ(Γ) ⊢ ρ(τ1) ≃ ρ(τ2).

Suppose we have a model γ′ of ρ(Γ), or equivalently a
model γ of Γ such that γ(α) = ρ(α) for every type variable
α. Then, we would have E[ρ(τ1)]γ′ = E[ρ(τ2)]γ′ . Thus
we only need to prove that, for closed types, if E[τ1]γ =
E[τ2]γ , then τ1 = τ2. This is easy by induction. For universal
quantification, instantiate with a unique type.

Assume ρ given. We only have to show how to construct
an appropriate environment γ. We proceed by induction on
the context, examining the introductions in the environment.

• If we introduce a variable x of type τ , and τ has kind
Typ, it is either a function type or a datatype, thus is
inhabited: all datatypes are inhabited by hypothesis, and
fix (x ∶ τ1 → τ2) y. x y is a function of type τ1 → τ2.

• If we introduce a variable x of type scheme σ of kind σ
that is not of kind Typ, the introducing form is necessarily
a polymorphic let. Let us call γ the model until now
(of Γ). Then, we bind x to a non-expansive term u, and
Γ ⊢ u ∶ γ(σ). Thus, γ[x← u] is a model of Γ.

• If we introduce a type variable α, we can instantiate it
with ρ(α).

Then, we transform an eML term into an equivalent ML
term (i.e. where all coercions have been removed), by re-
moving all absurd branches, typing it without equalities, and
removing the conversions since they must be trivial.

Lemma 57 (Conversion elimination). Suppose ∅ ⊢ a ∶ τ ,
where all pattern matching in a is on variables or expansive
terms, and all variables introduces in the context have a type
in Sch. Then, there exists a′ such that ∅ ⊢ a′ ∶ τ in ML, and
∅ ⊢ a ≃ a′.

Proof. We generalize to an environment Γ: suppose Γ ⊢ a ∶ τ
and suppose we have a substitution γ of term variables with
non-expansive terms without match or let (i.e. values with
variables). Moreover, suppose that all substitutions in γ are
equalities provable in Γ, and γ(Γ) only has trivial equali-
ties (i.e. provable by reflexivity) or useless equalities (i.e. in-
volving an expansive term). Removing these equalities, we
obtain Γ′. Then, there exists a′ such that Γ′ ⊢ a′ ∶ τ in
ML (the type τ is in ML, and, in particular, does not ref-
erence term variables from Γ), and Γ′ ⊢ γ(a) ≃ a′. We
will also need to suppose that there is a context such that
∅ ⊢ C[Γ′ ⊢ a ∶ τ] ∶ τe.

We prove this result by induction on the typing rules. We
will examine the two interesting cases: the conversion rule
and the pattern matching rule.

• For CONV:
CONV

Γ ⊢ τ ≃ τ ′ Γ ⊢ a ∶ τ
Γ ⊢ a ∶ τ

By hypothesis, τ ′ is a ML type. Then, Γ′ ⊢ γ(τ) ≃ γ(τ ′).
Then, use Lemma 56 in the context C: τ = τ ′ and the
conversion can be eliminated. Then, apply the induction
hypothesis in the same context C with the substitution γ.

30 2017/1/14

let (x ∶ match u with (di τ (xij)j → τi)i) = a in bz→t match u with (di τ (xij)j → let (x ∶ τi) = a in b)i

match dj τj (vi)i with (dj τj (xji)i → aj)j z→ aj[xij ← vi]i let x = u in bz→ b[x← u]

match match a with (dk σ (xkj)j → ak)k with (di τ (xij)j → bi)i
z→ match a with (dk σ (xkj)j → match ak with (di τ (xij)j → bi)i)k

Figure 23. Match and let lifting

• For MATCH:

MATCH

Γ ⊢ τ ∶ Sch (di ∶ ∀(αk)k (τij)j → ζ (αk)k)i

Γ ⊢ a ∶ ζ (τk)k (Γ, (xij ∶ τij[αk ← τk]k)j ,
(a =ζ (τk)k di(τij)

k(xij)j) ⊢ bi ∶ τ
)
i

Γ ⊢ match a with (di(τij)k(xij)j → bi)i ∶ τ

If a is expansive, the equality introduced is useless, and
we can continue typing in the new context. Consider the
case where a is non-expansive. Then, a is necessarily a
variable x. Consider γ(x).

If γ(x) = y, apply the induction hypothesis in each
branch, with γ′ = γ[y ← di(τij)k(xij)j], adding
match y with . . . to the context.
If γ(x) = di(τik)k(uij)j , we can substitute and re-
duce the pattern matching. Then, apply the induction
hypothesis on the branch bi, with γ[xij ← uij]j .
The other cases are excluded by typing in the (equality-
free) environment Γ′.

We can conclude: in the empty environment, no equalities
involving variables are provable, thus γ is the identity and
Γ′ = Γ = ∅.

In practice, eliminating some branches with an absurd
context but that would type in ML is often a good idea to
make the code nicer, as long as the elimination does not
unreasonably increase the size of the term. It is also a bad
idea to do every possible eta expansion: some expansions do
not influence the typing and should be avoided to limit the
size of the output code.

8. Encoding ornaments
We now consider how ornaments are described and repre-
sented inside the system. This section bridges the gap be-
tween mML, a language for meta-programming that doesn’t
have any notion of ornament, and the interface presented to
the user for ornamentation. We need both a definition of the
base datatype ornaments, and the higher-order functional or-
naments that can be built from them.

As a running example, we consider the ornament natlist
α from natural numbers to lists defined in the overview (§3)

as:

ornament natlist α ∶ nat→ list α with
∣ Z→ Nil
∣ S w → Cons (,w)

The ornament natlist α defines for all types α a relation
between values of its base type nat which we write (natlist
α)− and its lifted type listα which we write (natlist α)+:
the first clause says that Z is related to Nil; the second clause
says that whenever w− and w+ are related by natlist α, then
for any v, S w− is related to S w+. As a notation shortcut, the
variables w− and w+ are identified in the definition above.

A higher-order ornaments ornament natlist τ → natlist τ ,
say ω relates two functions f− of type ω− equal to nat→ nat
and f+ of type ω+ equal to list τ → list τ when for related
inputs v− and v+, the outputs f− v− and f+ v+ are related.

We formalize this idea by defining a family of ornament
types corresponding to the ornamentation definitions given
by the user and giving them an interpretation in the logical
relation.Then, we say that one function is a lifting of another
if they are related at the desired ornament type. This relation
also gives us the reasoning tool to establish the ornamenta-
tion relation between the base type and the lifted type. The
syntax of ornament types, written ω, mirrors the syntax of
types:

χ ∶∶= natlist ∣ . . .
ω ∶∶= ϕ ∣ χ (ω)i ∣ ζ (ω)i ∣ ω → ω

An ornament type may be an ornament variable ϕ; a base
ornament χ (we consider the problem of defining base or-
naments below); a higher-order ornament ω1 → ω2. or an
identity ornament ζ (ω)i, which is automatically defined for
any datatype of the same name (ωi indicates how the corre-
sponding type argument of the datatype is ornamented).

An ornament type ω is interpreted as a relation between
terms of type ω− and ω+ (the projection is detailed on Fig-
ure 24). For example, the ornament list (natlist nat) de-
scribes the relation between lists whose elements have been
ornamented using the ornament natlist nat.

We will define in the next section how to interpret the base
ornaments χ, and focus here on the interpretation of higher-
order ornaments ω1 → ω2 and identity ornaments ζ (ωi)i.

The interpretation we want for higher-order ornaments
is as functions sending arguments related by ornamentation
to results related by ornamentation. But this is exactly what

31 2017/1/14

the interpretation of the arrow type τ1 → τ2 gives us, if we
replace the types τ1 and τ2 by ornament types ω1 → ω2.
Thus, we do not have to define a new interpretation for
higher-order ornament, it is already included in the logical
relation. For this reason, we will use interchangeably (when
talking about the logical relation) the function arrow and the
ornament arrow.

We have the same phenomenon for the identity ornament:
constructors are related at the identity ornament if their ar-
guments are related. Once more, we can simply take the in-
terpretation of a datatype ζ (τi)i and, by replacing the type
parameters (τi)i by ornament parameters (ωi)i, reinterpret
it as an interpretation of the identity ornament. We will show
that this choice is coherent by presenting a syntactic version
of the identity ornament and showing it is well-behaved with
respect to its interpretation.

Finally, ornament variables must be interpreted by get-
ting the corresponding relation in the relational environment.
This is exactly the interpretation of a type variable.

Thus, the common subset between types and ornament
specifications can be identified, because the interpretations
are the same. This property will play a key role in the instan-
tiation: from a relation at a type, we will deduce, by proving
the correct instantiation, a relation at an ornament.

8.1 Defining datatype ornaments
We assume that all datatypes defined in the language are
regular and at most single recursive. The extension to fam-
ilies of mutually-recursive datatypes is straightforward, but
makes the notations significantly heavier. We do not treat
the problem of non-regular datatypes. Then, each regular
datatype ζ (αi)i is defined by a family of constructors:

(dj ∶ ∀(αi ∶ Typ)i (τj)j → ζ (αi)i)j

where ζ may occur recursively in τj only as ζ (αi)i. Let α̂
be a fresh variable and τ̂j be τj where all occurrences of
ζ (αi)i have been replaced by α̂. We define the skeleton of
ζ as the new non-recursive datatype2 ζ̂(αi)iα̂ by the family
of constructors:

(d̂j ∶ ∀(αi ∶ Typ)i ∀(α̂ ∶ Typ) (τ̂j)j → ζ̂ (αi)iα̂)j

By construction ζ (τi)i is isomorphic to ζ̂ (τi)i (ζ (τi)i).
Ornament definitions match a pattern in one datatype to

a pattern in another datatype. Our syntax uses deep pattern
matching: the patterns are not limited to matching on only
one level of constructor, but can be nested. Additionally, we
allow wildcard patterns that match anything, alternative
patterns P ∣ Q that match terms that match either P or Q,
and the null pattern∅ that does not match anything. We write
deep pattern matching the same as shallow pattern matching,
with the understanding that it is implicitly desugared to
shallow pattern matching.

2 For convenience we treat ζ̂ as curried: we write ζ̂(αi)
iα̂ rather than

ζ̂((αi)
i, α̂).

In general, an ornament definition is of the form:

ornament χ (αj)j ∶ ζ (τk)k → τ+ with (Pi → Qi)i

with χ the name of the datatype ornament, ζ (τk)k the base
type, say τ− for short, and τ+ the lifted type. There are sev-
eral conditions on the patterns Pi and Qi, which we de-
scribed with a helper pattern P̂i, called the skeleton pattern,
obtained by the head constructor d by d̂. in Pi. The skeleton
patterns (P̂i)i must form an exhaustive partition of the type
∀(α̂ ∶ Typ) ζ̂ (τk)kα̂: in particular, they cannot match inside
a recursive occurrence of τ−; they must also be expressions,
i.e. in the sublanguage consisting only of variables and data
constructors. The patterns Qi must form a partition of τ+.
The free variables in P̂i and Qi must be the same and their
types must correspond: if x matches a value of type σ in P̂i,
it must match a value of type σ[α̂ ← τ+] in Qi (the recursive
part α̂ is instantiated with τ+, the type of the variable in Pi
is σ[α̂ ← τ−]).

We define the meaning of a user-provided ornament by
adding its interpretation to the logical relation on mML.
The interpretation is the union of the relations defined by
each clause of the ornament. For each clause, the values of
the variables must be related at the appropriate type. Since
the pattern on the left is also an expression, the value on
the left is uniquely defined. The pattern on the right can
still represent a set of different values (none, one, or many,
depending on whether the empty pattern, an or-pattern or a
wildcard was used). We define a function ⎧⎭ ⎫⎩ associating to
a pattern this set of values.

⎧⎭(∶ σ)⎫⎩ = Term ⎧⎭P ∣ Q⎫⎩ = ⎧⎭P⎫⎩ ∪ ⎧⎭Q⎫⎩
⎧⎪⎭d(τk)

k(Pi)i⎫⎪⎩ = d(τk)k(⎧⎭Pi⎫⎩)i

Suppose that the variables (x`)` are bound at types (τ`)`
in the skeleton P̂i of the left-hand side of the clause i. Then,

Vp[χ (ωj)j]γ = ⋃i{(Pi[x` ← v`−]`, v+)
∣ v+ ∈ ⎧⎪⎭Qi[x` ← v`+]`⎫⎪⎩
∀l, (v`−, v`+) ∈ Vp[τ`[α̂ ← χ (ωj)j]]γ}

The key point of the definition is that we instantiate the
variable α̂ recursively with our ornament so the recursive
parts are correctly ornamented.

For example, on natlist , we get the following definition
(omitting the typing conditions):

Vk[natlist τ]γ = {(Z,Nil)}
⋃ {(S(v−), Cons(, v+) ∣ (v−, v+) ∈ Vk[natlist τ]γ}

8.2 Encoding ornaments in mML

We now describe the encoding of datatype ornaments in
mML. Consider a specific instance χ (ωj)j of the datatype
ornament χ. The lifted type is then τ+[αj ← ω+j]j , say σ.

32 2017/1/14

Let τ̂− be the type ζ̂ (τk[αj ← ω+j]j)kσ of the skeleton
where the recursive parts and the type parameters have al-
ready been lifted. The ornament is encoded as a quadru-
ple (σ, ε,proj, constr) where σ ∶ Typ is the lifted type;
ε is the extension, a type-level function explained below;
proj and constr are the projection and construction func-
tions shown in §3. More precisely, proj from the lifted type
to the skeleton has type Π(x ∶ σ). τ̂− and constr has type
Π(x ∶ τ̂−). Π(y ∶ ε ♯x). σ, where the argument y is the ad-
ditional information necessary to build a value of the lifted
type, given the argument x at the skeleton type. The type of
y is given by the extension ε of kind τ̂− → Typ, which can
depend on the constructor used in the base code. The encod-
ing works inductively, i.e. one layer at a time, thus all the
functions work on τ̂−.

The extension ε is determined by computing, for each
clause Pi → Qi, the type of the information missing to
choose a branch in the alternatives in the right-hand side
pattern Qi and filling the wildcards. There are usually many
possible representations of this information, but we choose
JQiK defined as follows3:

J(∶ τ)K = τ
JxK = Unit

JP ∣ QK = JP K + JQK
Jd(P1, .. Pn)K = JP1K × .. JPnK

Then, assuming that y stands for the missing information,
the code to reconstruct the ornamented value is given by
Lift(Qi, y) defined as:

Lift(, y) = y Lift(x, y) = x

Lift(P ∣ Q,y) = match x with ∣ inl y1 → Lift(P, y1)
inr y2 → Lift(Q,y2)

Lift(d(Pi)i, y) = match y with (yi)i → d(Lift(Pi, yi))i

The components of the datatype ornament χ (ωj)j are then
defined as follows:

σχ (ωj)j = τ+[αj ← ω+j]j
εχ (ωj)j = λ♯(x ∶ τ̂−).matchx with(P̂i→JQiK)i

projχ (ωj)j = λ♯(x ∶ σχ (ωj)j).match x with (Qi → P̂i)i
constrχ (ωj)j = λ♯(x ∶ τ̂−). λ♯(y ∶ εχ (ωj)j ♯x).

match x with (P̂i → Lift(Qi, y))i

In the case of natlist , we recover the definitions given in
§3.3, with for εnatlist τ equal to
Π(x ∶ n̂at (list τ)).match x with Ẑ→ Unit ∣ Ŝ(x)→ τ .

The identity ornament corresponding to a datatype ζ de-
fined as (di ∶ ∀(αj ∶ Typ)j (τk)k → ζ (αj)j)i is automat-
ically generated and is described by the following code,
(since we do not add any information, thus extension is iso-
morphic to Unit).

ornament ζ (αj)j ∶ ζ (αj)j → ζ (αj)j
with (di((xk)k)→ di((xk)k))i

The encoding of ornaments is closely linked to the logical
relations by the following properties:

3 Formally, we translate pattern typing derivations instead of patterns

Theorem 11 (Ornaments are related). • E[χ (ωj)j]∅ is a
relation, say R, between τ− equal to ζ (τk[αj ← ω−j]j)k
and the ornamented type σχ (ωj)j (we identify τ− and the
corresponding identity ornament);

• (projτ− ,projχ (ωj)j)
∈ V[Π(x ∶ ϕ). ζ̂ (τk[αj ← ωj]j)kϕ][ϕ←R];

• (constrτ− , constrχ (ωj)j)
∈ V[Π(x ∶ ζ̂ (τk[αj ← ωj]j)kϕ).Π(y ∶ ε ♯x).ϕ]γ where
γ is [ϕ← R, εϕ ← (λ .Top)] and Top is the relation
relating any two values (of the appropriate types).

In other words, values constructed from the same skeleton
are related by the ornament, and the projection of related
values gives the same skeleton (up to ornamentation of the
recursive types).

Proof. The relation is well-defined by induction on the index
and the structure of the left-hand side term.

For the second and third point, case-split on the structure
of the arguments until the terms reduce to values, and com-
pare them using the relation.

Together, these properties allow us to take a term that uses
the encoding of a yet-unspecified ornament ϕ and relate the
terms obtained by instantiating with the identity and with
another ornament, using the ornament’s relation. We use this
technique to prove the correctness of the elaboration.

We also prove that the logical interpretation of the iden-
tity ornament is the interpretation of the base type. Let us
note (temporarily) idζ the identity ornament defined from
the datatype ζ.

Lemma 58 (Identity ornament). For all γ, Ek[idζ (ωi)i]γ =
Ek[ζ (ωi)i]γ .

Proof. The definitions are the same.

9. Elaboration
The goal of the elaboration is to transform an ML program
into an mML meta-program such that ornamentation can take
place simply by passing the appropriate meta-arguments to
the mML program. We need a way to describe how a generic
program can be instantiated, what the result is, and how it is
related to the original program.

We describe the lifting of an ML term a− to an mML term
a+ at ornament type ω under context Γ as an elaboration
judgment Γ ⊢ a− ; a+ ∶ ω. The elaboration to a generic
lifting depends only on the term, and not on the lifting spec-
ified by the user. Hence, Γ and ω may be read as an outputs
of the judgment: Γ which contains a list of ornaments and
patches needed to type the generic lifting, and that will have
to be instantiated to produce a concrete lifting; ω gives the
ornament type linking the base term to the lifted type.

The ornamentation environment Γ thus contains abstract
ornamentsϕ↦ (σ, ε,proj, constr)�τ that bind an ornament

33 2017/1/14

Γ ∶∶= ∅ ∣ Γ, (α,α,α) ∣ Γ, x ∶ ω ∣ Γ, (A =σ A)
∣ Γ, ϕ↦ (σ, ε, constr,proj)� τ ∣ Γ, x ∶♯ σ

(Γ, x ∶ ω)δ = Γδ, x ∶ ωδ
(Γ, (α−, α,α+))δ = Γδ, αs ∶ Typ
(Γ, x ∶♯ σ)− = (Γ,A =σ B)− = (Γ, ϕ↦ (. . .)� τ)− = Γ−

(Γ, x ∶♯ σ)+ = Γ+, x ∶ σ
(Γ,A =σ B)+ = Γ+,A =σ B
(Γ, ϕ↦ (σ, ε,proj, constr)� τ)+ =

Γ+, σ ∶ Typ, ε ∶ τ̂σ → Typ,proj ∶ Π(x ∶ σ). τ̂σ,
constr ∶ Π(x ∶ τ̂σ).Π(y ∶ ε ♯x). σ

αδΓ = αs if (α−, α,α+) ∈ Γ
ϕ−Γ = τ−Γ and ϕ+Γ = σ if ϕ↦ (σ, . . .)� τ ∈ Γ
(ω1 → ω2)δΓ = (ω1)δΓ → (ω2)δΓ
(ζ (ωi)i)δΓ = ζ ((ωi)δΓ)i

Figure 24. Projection of ornament environments and types

variable ϕ that can be used in ornament types, to a quadru-
ple of variable (σ, ε,proj, constr) associated to ϕ, which are
free variables in the generic lifting that will be later instan-
tiated with the components of a concrete ornament. The en-
vironment Γ also contains patch variables x ∶♯ σ that are
used to pass patches to the generic lifting. For ML paramet-
ric polymorphism, the environment also contains type vari-
ables (α−, α,α+) where α− and α+ are the base type variable
and lifted type variable associated to the ornament type vari-
able α. During the ornamentation process, the ornamentation
environment Γ also accumulates bindings corresponding to
the variables and equalities in scope. The ornamentation en-
vironment can be projected to a base environment Γ− and a
lifted environment Γ+, such that if Γ ⊢ a− ; a+ ∶ ω, we
have both Γ− ⊢ a− ∶ ω− and Γ+ ⊢ a+ ∶ ω+. The projection
is defined on Figure 24 (to avoid duplication, we write δ for
either + or −).

As an example, the generic lifting of the code a− of the
function add of §3.3 is the code a+ of the function add gen4

which verifies Γ ⊢ a− ; a+ ∶ ϕn → ϕm → ϕm where Γ is
ϕn ↦ (σn, εn, nproj , nconstr)� nat, ϕm ↦ (σm, εm,mproj ,
mconstr)�nat, p1 ∶♯ Π(ρ).εm ♯S (add+ m

′ n) and ρ binds5

add+ ∶ σm → σn → σn, m ∶ σm, m′ ∶ σm, n ∶ σn, ◇ ∶
mproj ♯m = Ŝ(m′). The genetic lifting add gen can then be
instantiated by substituting the terms and types describing an
ornament for the variables σn, εn, nproj , nconstr and similarly
for m, and by providing an appropriate patch.

9.1 Elaboration rules
To make the presentation simpler and shorter, we restrict
lifting to ML terms that do not contain polymorphism, and
where constructor and pattern matching are always applied
to variables. These two conditions can be met by expanding

4 The function add gen given in the overview abstracts over the compo-
nents of the ornamentation environment, which this version of does not.
5 The equality ◇ ∶mproj ♯m = Ŝ(m

′
) was left implicit in the overview.

all polymorphic bindings and lifting terms in constructors
and pattern matching into (monomorphic) lets.

The elaboration rules, given on Figure 25, follow closely
the syntax of the original term: variables, abstractions, ap-
plications and let bindings are ornamented to themselves. In
E-CON, the constructor is elaborated to a call to an ornament
construction function. The additional information is gener-
ated by a patch, which must come from the environment Γ,
and which receives as argument all the variables available in
the lifted projection of the context Γ+. In E-MATCH, a call to
the projection function is inserted before the pattern match-
ing and the branches are elaborated separately.

Datatype ornaments are described through an auxiliary
judgment Γ ⊢ ω ↦ (σ, ε,proj, constr)� τ that returns the
tuple containing values representing the ornament ω of the
type τ . We only allow using the identity ornament (ORN-ID)
or an abstract ornament from the environment (ORN-VAR).

We have the typing property we announced previously:

Lemma 59 (Well-typed elaboration). The generated mML
terms are well-typed: if Γ ⊢ a− ; a+ ∶ ω, then Γ− ⊢ a− ∶ ω−
and Γ+ ⊢ a+ ∶ ω+.

Proof. By induction on an elaboration, we can reconstruct a
typing derivation for the two sides.

Moreover, all well-typed terms have an elaboration:

Lemma 60 (An elaboration exists). Let a be a well-typed
ML term without polymorphism and where construction and
pattern matching are only done on variables. Suppose ∅ ⊢
a ∶ τ . Then, τ is also an ornament type, and there exists
a+ such that Γ ⊢ a ; a+ ∶ τ , with Γ an environment only
containing patches.

Proof. By induction on the typing derivation: we can imitate
the typing derivation. We only choose identity ornaments
(ORN-ID), and add the required patches to the environment.

9.2 Instantiation and correction
We have elaborated a base term a− into a generic lifting a+
using only its definition, i.e. it has not yet been specialized
to a specific lifting. To obtain a concrete lifting, we will take
into account the lifting specification given by he user: we in-
stantiate a+ with specific ornaments and patches, depending
on the instantiation strategies we choose, building an instan-
tiation γ+ of signature Γ+. The elaboration environment Γ
gives the list of ornaments and patches to supply to the term.

We give a more precise definition of the instantiation:

Definition 10 (Instantiation). An instantiation γ+ of an or-
namentation context Γ is given by:

• For an ornament binding ϕ ↦ (σ, ε,proj, constr) � τ ,
choose a concrete datatype ornament ϕ = χ (ωi)i, and
substitute σ, ε,proj, constr by the corresponding defini-
tions given in §8.

34 2017/1/14

• For a parametric binding (α−, α,α+), set an ornament ω
and γ(α+) = ω+.

• For a patch, a term of the correct type.

We have: Γ+ ⊢ γ+.

Since we restricted the elaboration to only using the
identity ornament and ornament variables, there always ex-
ists an identity instantiation γid

+ that instantiate every orna-
ment with the identity ornament. We can show that the term
γid
+ (a+) is equal (for the mML equality judgment) to a−.

Lemma 61 (Identity instantiation). Suppose Γ ⊢ a− ; a+ ∶
ω. There exists an identity instantiation γid

+ of Γ+ such that
Γ− ⊢ a− ≃ γid

+ (a+).

Proof. By induction on the derivation. The identity instanti-
ation is constructed as follows:

• Use the identity ornament for the ornament variable.
• All patches will return in the extension of an identity or-

nament. The extensions of identity ornament are isomor-
phic to Unit, thus we can construct a suitable (terminat-
ing) patch.

The equality is proved syntactically by induction, using
C-SPLIT in the case of pattern matching.

Correction of the lifting: We can then build a relation
environment γrel

+ that contains the identity ornaments and
patches on the left-hand side, and our instantiation on the
right-hand side. The ornament variables are instantiated with
the relation corresponding to the ornament. Then, γrel

+ is in
Gk[Γ+]. We conclude that (γid

+ (a+), γ+(a+)) is in Ek[ω]γrel
+

,
i.e. Ek[γrel

+ (ω)]∅. Finally, because equal terms are in the
same relations, (a−, γ+(a+)) ∈ Ek[γrel

+ (ω)]∅: the base term
is related to the lifted term at the ornament type γrel

+ (ω).

Definition 11 (Relational environment). The relational en-
vironment γrel

+ is defined as follows:

• If we used the ornament ω to instantiate ϕ, σ ← Ek[ω]∅,
ε ← λ(x). Top, constr ← (constrid, constrω), proj ←
(projid,projω).

• If we used a patch p to instantiate x, x← (γid
+ (x), p).

Then, γrel
+ 1 = γid

+ and γrel
+ 2 = γ+. We will also, as a nota-

tional convenience, say that (+ϕ) = γrel
+ (ϕ) = ω, i.e. that

ornament variables are mapped to the corresponding orna-
ment.

Lemma 62 (The relational environment interprets). We
have: γrel

+ ∈ Gk[Γ+].

Proof. For patches this is immediate (Top contains every-
thing if the left-hand side terminates). For ornaments, use
the correction theorem (Theorem 11).

Theorem 12 (Correction of the lifting). Suppose Γ ⊢
a− ; a+ ∶ ω, and let γ+ be an instantiation of Γ. Then,
(a−, γ+(a+)) ∈ Ek[γ+(ω)].

Proof. We have γrel
+ ∈ Gk[Γ+]. Thus, (γid

+ (a+), γ+(a+)) ∈
Ek[ω+]γrel

+

. We can substitute the left-hand side by a− by
stability of the relation by equality. We have a substitution
result: Ek[ω+]γrel

+

= Ek[γrel
+ (ω+)] = Ek[γ+(ω)] (syntacti-

cally for the last part: the types are simply equal).

This relation is also used in reverse by the instantiation
process to partially determine γ+: from the ornament signa-
ture given by the user, we can infer some of the ornaments
that should be used for the instantiation. The variables that
do not appear in the signature ω are determined using the
strategies given by the user (e.g. always using a given orna-
ment if possible), or instantiated manually.

In the specific case of add and append, we obtain that
(add, append) is in Ek[natlist τ→natlist τ→natlist τ]∅ for
any type τ .

These results can be extended to the case of open orna-
mentation, where a number of definitions are supposed or-
namented but their code is not available. Ornamentation is
modular: it is possible to lift a function that uses another
function using only the signature of a lifting of this func-
tion.

9.3 Termination via the inverse relation
In order to prove that, when the patches terminate, the lifted
term does not terminate less that the base term, we need to
use the relation the other way, with the base term on the right
and the lifted type on the left.

The relation is defined similarly. The only difference is
that the Top relation, in the first case, relates any term on
the base side (i.e. the left) to a non-terminating term on the
lifted side (i.e. the right), while the reversed Top relates any
terminating term on the lifted side (i.e. this time, the left) to
any term on the base side (i.e. the right). Thus, the difference
occurs at instantiation: we need to prove that the patches
terminate to inject them in the relation.

The definition is simply reversed and the properties are

10. Discussion
We are developing a prototype tool for refactoring ML pro-
grams using ornaments, closely following the structure out-
lined in this paper: the programs are first elaborated into
a generic term, then instantiated and reduced in a separate
phase.

However, some supplementary transformations are re-
quired to obtain a usable tool. Most programs use deep pat-
tern matching, while the language formalized here, as well as
the core of our prototype, only treats shallow pattern match-
ing. When compiling deep pattern matching to shallow pat-
tern matching, we annotate the generated matches with tags
that are maintained during the elaboration and we try to
merge back pattern matchings with identical tags after elab-
oration, so as to preserve the structure of the input program
whenever possible.

35 2017/1/14

E-VAR

x ∶ ω ∈ Γ

Γ ⊢ x; x ∶ ω

E-LET

Γ ⊢ a; A ∶ ω0 Γ, x ∶ ω0 ⊢ b; B ∶ ω
Γ ⊢ let x = a in b; let x = A in B ∶ ω

E-APP

Γ ⊢ a; A ∶ ω1 → ω2 Γ ⊢ b; B ∶ ω1

Γ ⊢ a b; A B ∶ ω2

E-FIX

Γ, x ∶ ω1 → ω2, y ∶ ω1 ⊢ a; A ∶ ω2

τ1 = (ω1)−Γ τ2 = (ω2)−Γ σ1 = (ω1)+Γ σ2 = (ω2)+Γ
Γ ⊢ fix (x ∶ τ1→τ2) y. a; fix (x ∶ σ1→σ2) y. A ∶ ω1→ω2

E-CON Γ ⊢ ω ↦ (σ, ε, constr,proj)� ζ (ωi)i
⊢ d̂ ∶ ∀(αi)iα̂ (τj)j → ζ (αi)i

(xj ∶ τj[(αi ← ωi)i, α̂ ← ω])j ∈ Γ (p ∶♯ Γ+→ ε ♯ d̂(xj)j) ∈ Γ

Γ ⊢ d(xj)j ; let y = p ♯Γ+ in constr ♯ d̂(xj)j ♯ y ∶ ω
E-MATCH

x ∶ ω0 ∈ Γ Γ ⊢ ω0 ↦ (σ, ε, constr,proj)� ζ (ωi)i (⊢ d̂k ∶ ∀(αi)iα̂ (τkj)j → ζ (αi)i)k
(Γ, (ykj ∶ τkj[(αi ← ωi)i, α̂ ← ω0])j , proj ♯x =ζ̂ ((ωi)+Γ)iσ dk(ykj)

j ⊢ ak ; Ak ∶ ω)k

Γ ⊢ match x with (dk(ykj)j → ak)k ; match proj ♯x with (d̂k(ykj)j → Ak)k ∶ ω

ORN-VAR

ϕ↦ (σ, ε, constr,proj)� τ ∈ Γ

Γ ⊢ ϕ↦ (σ, ε, constr,proj)� τ

ORN-ID ζ ∶ (Typ)i → Typ

Γ ⊢ ζ (ωi)i ↦ ζ ((ωi)+Γ)i, εζ (ωi)i , constrζ (ωi)i ,projζ (ωi)i � ζ (ωi)
i

Figure 25. Elaboration to a generalized term

As written, the elaboration expands all let-bindings and
generate many extra bindings. The expressions resulting
from the expansion are tagged so they can be shared after
ornamentation. Conversely, let-bindings introduced during
elaboration are expanded when they bind values or are lin-
ear. In our tests, these transformations produce easily read-
able output programs. After expansion of local let bindings,
a user has to instantiate the same code at different point.
If the instantiation at all these points is the same, one can
specify a single instantiation of the binding. It will then be
automatically folded back into a single definition at the orig-
inal definition point when possible.

As presented, ornamentation abstracts over all possible
ornamentation points, which requires to specify many iden-
tity ornaments and write corresponding trivial patches, while
many datatypes will probably never be ornamented. Instead
of specifying each ornament manually, we allow the user to
specify a strategy to select how types must be ornamented.
For example, a refactoring may need a specific ornament for
one type, and the identity ornament for all others: these or-
namentation points are then instantiated automatically.

These strategies seem to work well for small examples
it remains to see if they also scale to larger examples with
numerous patches. More exploration is certainly needed on
user interface issues. For example, one could also consider
exposing the generalized language to allow the user to write
generic patches, that could be instantiated as needed at many
program points.

When the lifting process is partial, it returns code with
holes that have to be filled manually. Our view is that fill-
ing the holes is an orthogonal issue that can be left as a
post-processing pass, with several options that can be stud-
ied independently but also combined. One possibility is to
use code inference techniques such as implicit parameters [2,
11, 13], which could return three kinds of answers: a unique

solution, a default solution, i.e. letting the user know that the
solution is perhaps not unique, or failure. In fact, it seems
that a very simple form of code inference might be pertinent
in many cases, similar to Agda’s instance arguments [5],
which only inserts variable present in the context. An alter-
native solution to code inference is an interactive tool to help
the user build patches.

In more realistic scenarios, programs are written in a
modular way. A module ornamentation description could
describe the relation between a base module and an orna-
mented module. Then, generalization would have to con-
sider functions from other modules as abstract, and sim-
ply ask for an equivalent function as an argument. Modu-
lar ornamentation could be applied to libraries: when a new
interface-incompatible version of a library appears, a main-
tainer could distribute an ornamentation specification allow-
ing clients of the library to automatically migrate their code,
leaving holes only at the crucial points requiring user input.

Our approach to ornamentation is not semantically com-
plete: we are only able to generate liftings that follow the
syntactic structure of the original program, instead of merely
following its observable behavior. Most reasonable orna-
mentations seem to follow this pattern. Syntactic lifting
seems to be rather predictable and intuitive and lead to quite
natural results. Syntactic lifting also helps with automation
by reducing the search space. Still, it would be interesting
to find a less syntactic description of what functions can be
reached by this method.

Ornamentation ignores effects, including non-termination,
as well as the runtime complexity of the resulting program.
A desirable result would be that an ornamented program
produces the same effects as the original program, save from
the effects done in patches. A problem is that effects done
in patches could influence the automatically generated code
(for example, modification of a reference). Similarly, the

36 2017/1/14

complexity of the ornamented program should be propor-
tional to the complexity of the original one, as long as the
patches run in constant time (or excluding the computation
done in those patches).

We have described ornaments as an extension of ML,
equipped a call-by-value semantics, but only to have a
fixed setting: our proposal should apply seamlessly to (core)
Haskell.

Programming with generalized abstract datatypes (GADT)
requires writing multiple definitions of the same type, but
holding different invariants. GADT definitions that only add
constraints could be considered ornaments of regulars types.
It would then be useful to automatically derive, whenever
possible, copies of the functions on the original type that
preserve the GADT’s invariants. A possible approach with
our current implementation is to generate the function, ig-
noring the constraints, and hoping it typechecks, but a more
effective strategy will probably be necessary.

The design of eML balances two contrasting goals: we
need a language powerful enough to be able to type the
ornament encoding, but we also want to be able to eliminate
the non-ML features from a term. We could encode specific
ornaments by reflecting the structure of the constructors into
GADTs, but this would only work for one given structure.
The extension function ε allows us to look arbitrarily deep
into the terms, depending on what ornament we want to
construct.

11. Related works
Ornamentation is a concept recently introduced by [3, 4] in
the context of dependently typed languages, where ornamen-
tation is not a primitive concept and can be encoded. The
only other work to consider applying ornaments to an ML-
like language we are aware of is [14].

Type-Theory in Color [1] is another way to understand
the link between a base type and a richer one. Some parts of
a datatype can be tainted with a color modality: this allows
tracing which parts of the result depend on the tainted values
and which are independent. Then, terms operating on a col-
ored type can be erased to terms operating on the uncolored
version. This is internalized in the type theory: in particu-
lar, equalities involving the erasure hold automatically. This
is the inverse direction from ornaments: once the operations
on the ornamented datatype are defined, the base functions
are automatically derived, as well as a coherence property
between the two implementations. Moreover, the range of
transformations supported is more limited: it is only possi-
ble to erase fields, but not, for example, to rearrange a prod-
ucts of sums as a sum of products. Conversely, type theory
in color also allows erasing arguments to functions, which
we do not support.

Programming with GADTs may require defining one
base structure and several structures with some additional in-
variants, along with new functions for each invariant. Ghost-

buster [8] proposes a gradual approach, by allowing as a
temporary measure to write a function against the base struc-
ture and dynamically check that it respects the invariant of
the richer structure, until the appropriate function is written.
While the theory of ornaments supports adding invariants,
we do not yet consider GADTs. Moreover, we propose or-
naments as a way to generate new code to be integrated
into the program, rather than to quickly prototype on a new
datatype.

Ornaments are building on datatype definitions, which
are a central feature of ML. Polytypic programming is a
successful concept also centered on the idea of datatypes, but
orthogonal to ornaments. Instead of lifting operations from
one datatype to another with a similar structure, it tries to
have a universal definition for an operation that applies to all
datatypes at once, the behavior being solely determined by
logical (sum or product) structure of the datatype.

Ornamentation is a form of code refactoring on which
there is a lot of literature, but based on quite different tech-
niques and rarely supported by a formal treatment.

Ornaments are building on datatype definitions, which
play a central role in ML. Polytypic programming is a suc-
cessful concept also centered on datatypes, but orthogonal to
ornaments. Instead of lifting operations from one datatype
to another with a similar structure, it tries to have a univer-
sal definition for an operation that applies to all datatypes at
once, the behavior being solely determined by logical (sum
or product) structure of the datatype.

Views, first proposed by Wadler [12] and later reformu-
lated by Okasaki [9] have some resemblance with isomor-
phic ornaments. They allow several interchangeable repre-
sentations for the same data, using isomorphism to switch
between views at runtime whenever convenient. The exam-
ple of location ornaments, which allows to program on the
bare view while the data leaves in the ornamented view, may
seem related to views, but this is a misleading intuition. In
this case, the switch between views is at editing time and
nothing happens at runtime where only the ornamented core
with location is executed. Lenses [6] also focus on switching
representations at runtime.

The ability to switch between views may also be thought
of as the existence of inverse coercions between views. Co-
ercions may be thought of as the degenerate of views in the
non-isomorphic case. But coercions are no more related to
ornaments than views—for similar reasons.

Conclusion
We have designed and formalized an extension of ML with
ornaments. We have used logical relations are a central tool
to give a meaning to ornaments, to closely relate the orna-
mented and original programs, and to guide the lifting pro-
cess. We believe that this constitutes a solid, but necessary
basis for using ornaments in programming.

37 2017/1/14

Ornaments seems to have several interesting applications
in an ML setting. Still, we have so far only explored them
on small examples and more experiment is needed to under-
stand how they behave on large scale programs. We hope
that our proof-of-concept prototype could be turned into a
useful, robust tool for refactoring ML programs. Many de-
sign issues are still open to move from a core language to a
full-fledged programming language.

A question that remains unclear is what should be the
status of ornaments: should they become a first-class con-
struct of programming languages, remain a meta-language
feature used to preprocess programs into the core language,
or a mere part of an integrated development environment?

References
[1] J.-P. Bernardy and M. Guilhem. Type-theory in color. In

International Conference on Functional Programming, pages
61–72, 2013. doi: 10.1145/2500365.2500577.

[2] P. Chambard and G. Henry. Experiments in generic
programming: runtime type representation and implicit
values. Presentation at the OCaml Users and De-
velopers meeting, Copenhagen, Denmark, sep 2012.
URL http://oud.ocaml.org/2012/slides/
oud2012-paper4-slides.pdf.

[3] P. Dagand and C. McBride. A categorical treatment of orna-
ments. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pages 530–539. IEEE Computer Society, 2013.
ISBN 978-1-4799-0413-6. doi: 10.1109/LICS.2013.60. URL
http://dx.doi.org/10.1109/LICS.2013.60.

[4] P. Dagand and C. McBride. Transporting functions across or-
naments. J. Funct. Program., 24(2-3):316–383, 2014. doi: 10.
1017/S0956796814000069. URL http://dx.doi.org/
10.1017/S0956796814000069.

[5] D. Devriese and F. Piessens. On the bright side of type
classes: Instance arguments in agda. In Proceedings of the
16th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’11, pages 143–155, 2011. doi: 10.1145/
2034773.2034796.

[6] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transforma-
tions: A linguistic approach to the view-update problem. ACM
Transactions on Programming Languages and Systems, 29(3):
17, May 2007. doi: http://portal.acm.org/citation.cfm?doid=
1232420.1232424.

[7] R. Hinze. Numerical representations as Higher-Order nested
datatypes. Technical report, 1998.

[8] T. L. McDonell, T. A. K. Zakian, M. Cimini, and R. R. New-
ton. Ghostbuster: A tool for simplifying and converting gadts.
In Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, pages 338–
350, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4219-3. doi: 10.1145/2951913.2951914. URL http://
doi.acm.org/10.1145/2951913.2951914.

[9] C. Okasaki. Views for standard ml. In In SIGPLAN Workshop
on ML, pages 14–23, 1998.

[10] C. Okasaki. Purely functional data structures. Cambridge
University Press, 1998. ISBN 978-0521663502.

[11] Scala. Implicit parameters. Scala documentation.
URL http://docs.scala-lang.org/tutorials/
tour/implicit-parameters.

[12] P. Wadler. Views: A way for pattern matching to cohabit with
data abstraction, 1986.

[13] L. White, F. Bour, and J. Yallop. Modular implicits. In
Proceedings ML Family/OCaml Users and Developers work-
shops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5,
2014., pages 22–63, 2014. doi: 10.4204/EPTCS.198.2. URL
http://dx.doi.org/10.4204/EPTCS.198.2.

[14] T. Williams, P. Dagand, and D. Rémy. Ornaments in practice.
In J. P. Magalhães and T. Rompf, editors, Proceedings of
the 10th ACM SIGPLAN workshop on Generic programming,
WGP 2014, Gothenburg, Sweden, August 31, 2014, pages
15–24. ACM, 2014. ISBN 978-1-4503-3042-8. doi: 10.
1145/2633628.2633631. URL http://doi.acm.org/
10.1145/2633628.2633631.

38 2017/1/14

http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1017/S0956796814000069
http://dx.doi.org/10.1017/S0956796814000069
http://doi.acm.org/10.1145/2951913.2951914
http://doi.acm.org/10.1145/2951913.2951914
http://docs.scala-lang.org/tutorials/tour/implicit-parameters
http://docs.scala-lang.org/tutorials/tour/implicit-parameters
http://dx.doi.org/10.4204/EPTCS.198.2
http://doi.acm.org/10.1145/2633628.2633631
http://doi.acm.org/10.1145/2633628.2633631

	Introduction
	Examples of ornaments
	Code refactoring
	Code refinement
	Global compilation optimizations
	Hiding administrative data

	Overview of the lifting process
	Encoding ornaments
	Eliminating the encoding
	Inferring a generic lifting

	Meta ML
	ML
	Adding equalities to ML
	mML

	The metatheory of mML
	A temporary definition of equality
	Strong normalization for -3.1mu
	Contexts, substitution and weakening
	Analysis of coercions and subject reduction
	Soundness for -3.1mu
	Reducing mML to eML
	Soundness, via a logical relation for -3.1mu

	A step-indexed logical relation
	A deterministic reduction
	Counting steps
	Semantic types and the interpretation of kinds
	The logical relation
	Closure by biorthogonality

	Translating from eML to ML
	Encoding ornaments
	Defining datatype ornaments
	Encoding ornaments in mML

	Elaboration
	Elaboration rules
	Instantiation and correction
	Termination via the inverse relation

	Discussion
	Related works

