A Meta-Language for Ornamentation in ML

Thomas Williams and Didier Rémy

(Draft version of January 14, 2017)

Abstract

Ornaments are a way to describe changes in datatype definitions that preserve their recursive structure, reorganizing, adding, or dropping some pieces of data so that functions operating on the bare definition can be partially and sometimes totally lifted into functions operating on the ornamented structure. We propose an extension of ML with higher-order ornaments. We introduce a meta-language above ML in which we can elaborate a most generic lifting of bare code, so that ornamented code can then be obtained by instantiation of the generic lifting, followed by staged reduction and some remaining simplifications. We use logical relations to closely relate the ornamented code to the bare code.

1. Introduction

Inductive datatypes and parametric polymorphism were two key features introduced in the ML family of languages in the 1980’s, at the core of the two popular languages OCaml and Haskell. Datatypes stress the algebraic structure of data while parametric polymorphism allows to exploit universal properties of algorithms working on algebraic structures.

Datatype definitions are inductively defined as labeled sums and products over primitive types. This restricted language allows the programmer to describe, on the one hand, these recursive structures and, on the other hand, how to populate them with data of either primitive types or types given as parameters.

Datatypes can be factorized through their recursive structures. For example, the type of leaf binary trees and the type of node binary trees both share a common binary-branching structure and are isomorphic but functions operating on them must be defined independently. Having established the structural ties between two datatypes, one soon realizes that both admit strikingly similar functions, operating similarly over their common recursive structure. Users sometimes feel they are repeatedly programming the same operations over and over again with only minor variations. The refactoring process by which one adapts existing code to work on another, similarly-structured datatype requires non-negligible efforts from the programmer. Can this process be automated?

The strong typing discipline of ML is already very helpful for code refactoring. When modifying a datatype definition, it points out all the ill-typed occurrences where some rewriting ought to be performed. However, while in most cases the adjustments are really obvious from the context, they still have to be manually performed, one after the other. Furthermore, changes that do not lead to type errors will be left unnoticed.

Our goal is not just that the new program typechecks, but to carefully track all changes in datatype definitions to automate most of this process. Besides, we wish to have some guarantee that the new version behaves consistently with the original program except for the code that is manually added.

The recent theory of ornaments [3, 4] is the right framework to tackle these challenges. It defines conditions under which a new datatype definition can be described as an ornament of another. In essence, a datatype ornaments another if they both share the same recursive skeleton.

Williams et al. have already explored the interest of such an approach and exploited the structural ties relating a datatype and its ornamented counterpart [14]. In particular, they have demonstrated how functions operating only on the structure of some datatype could be semi-automatically lifted to its ornamented version.

We build on their work, generalizing and especially formalizing their approach. As them, we also consider an ML setting where ornaments are a primitive notion rather than encoded. To be self-contained we remind a few typical uses of ornaments in ML, mostly taken from their work, but also propose new ones.

Our contributions are the following: we extend the definition of ornaments to the higher-order setting and give them a semantics using logical relations, which allows to maintain a close correspondence between the bare code and the lifted code; we propose a principled approach to the lifting process, introducing an intermediate meta-language above ML in which lifted functions have a most general syntactic elab-
The rest of the paper is organized as follows. In the next section, we introduce ornaments by means of examples. The lifting process, which is the core of our contribution is described intuitively in section §3. We introduce the metalinguage in §4 and present its meta-theoretical properties in §5. We introduce a logical relation on meta-terms in §6 that serves both for proving its meta-theoretical properties and for the lifting elaboration process. In §7, we show how the meta-construction can be eliminated by meta-reduction. In §8, we give a formal definition of ornaments, based on a logical relation. In §9, we describe the lifting process that transforms a lifting declaration into actual ML code, and we justify its correctness. We discuss a few other issues in §10 and related works in §11.

2. Examples of ornaments

Let us discover ornaments by means of examples.

2.1 Code refactoring

The most striking application is perhaps code refactoring, which is often an annoying but necessary task when programming. We start with an example where refactoring is isomorphic, reorganizing a sum data structure into a sum of sums. Assume given the following datatype representing arithmetic expressions, together with an evaluation function.

\[
\text{type expr} = \begin{cases}
\text{Const of int} & \text{match e with} \\
\text{Add of expr * expr} & \text{Const i \rightarrow i} \\
\text{Mul of expr * expr} & \text{Add (u, v) \rightarrow eval u + eval v} \\
\end{cases}
\]

The programmer may realize that Add and Mul are two binary operators that can be factorized, and thus prefer the following version expr' using an auxiliary type of binary operators:

\[
\text{type binop = Add' | Mul'}
\]

\[
\text{type expr'} = \begin{cases}
\text{Const' of int} \\
\text{Binop' of binop * expr' * expr'} \\
\end{cases}
\]

There is a bidirectional mapping between these two datatypes, which may be described as an ornament:

\[
\text{ornament oexpr : expr \rightarrow expr' with} \\
\begin{cases}
\text{Const i \rightarrow Const' i} \\
\text{Add (u, v) \rightarrow Binop' (Add', u, v)} \\
\text{Mul (u, v) \rightarrow Binop' (Mul', u, v)} \\
\end{cases}
\]

The compiler now has enough information to automatically lift the old version of the code to the new version. We just ask!

\[
\text{let eval' = lifting eval : oexpr \rightarrow e}
\]

(The wild char is part of the type that may be inferred.) Here, the compiler will automatically compile eval' to the expected code, without any further user interaction:

\[
\text{let eval' = rec eval \rightarrow fun e \rightarrow match e with} \\
\begin{cases}
\text{Const' i \rightarrow i} \\
\text{Binop' (Add', u, v) \rightarrow eval u + eval v} \\
\text{Binop' (Mul', u, v) \rightarrow eval u * eval v} \\
\end{cases}
\]

Not only this is well-typed, but the semantics is also preserved—by construction.

Lifting also works with higher-order types. For example, we could have extended arithmetic expressions with nodes for abstraction and application:

\[
\text{type expr = ...} \\
\begin{cases}
\text{Abs of (expr \rightarrow expr)} \\
\text{App of expr * expr} \\
\end{cases}
\]

and the lifting of expr into expr would also recursively lift the type expr -> expr into expr' -> expr', automatically.

Although, this is a very simple example of refactoring where no information is added to the datatype, more general refactoring can often be decomposed into similar isomorphic transformations that do not loose any information, and other transformations as described next that decorate an existing node with new pieces of information.

2.2 Code refinement

As explained in the introduction, many data-structures have the same recursive structure and only differ by the other (non-recursive) information carried by their nodes. For instance, lists can be seen as an ornament of Peano numerals:

\[
\text{type nat = Z | S of nat} \\
\text{type 'a list = Nil | Cons of 'a * 'a list} \\
\text{ornament 'a natlist : nat \rightarrow 'a list with} \\
\begin{cases}
\text{Z \rightarrow Nil} \\
\text{S m \rightarrow Cons (...) m} \\
\end{cases}
\]

The ornament is syntactically described as a mapping from the bare type nat to the lifted type 'a list. However, this mapping may be incompletely determined, as is the case here, since we do not know which element to attach to a Cons node coming from a successor node. The ornament definition may also be read in the reverse direction, which defines a projection from 'a list to nat—the length function! The addition on numbers may have been defined as follows:

\[
\text{let add = rec add \rightarrow fun m n \rightarrow match m with} \\
\begin{cases}
\text{Z \rightarrow n} \\
\text{S m' \rightarrow S (add m' n)} \\
\end{cases}
\]

\[
\text{val add : nat \rightarrow nat \rightarrow nat}
\]

Observe, the similarity with list concatenation:

\[
\text{let append = rec append \rightarrow fun m n \rightarrow match m with} \\
\begin{cases}
\text{Nil \rightarrow n} \\
\text{Cons (x, m') \rightarrow Cons(x, append m' n)} \\
\end{cases}
\]

\[
\text{val add : 'a list \rightarrow 'a list \rightarrow 'a list}
\]
Having already recognized an ornament between \texttt{nat} and \texttt{list}, we expect \texttt{append} to be definable as a lifting of \texttt{add}:

\begin{verbatim}
let append = lifting add : \texttt{natlist} \rightarrow \texttt{natlist} \rightarrow \texttt{natlist}
\end{verbatim}

However, this returns an incomplete skeleton:

\begin{verbatim}
let append = rec append \rightarrow \texttt{fun m n \rightarrow match m with}
 | Nil \rightarrow n
 | Cons (_ _ m') \rightarrow Cons ([\#1], append m' n)
\end{verbatim}

Indeed, this requires to build a \texttt{cons} node from a successor node, which is underdetermined. This is reported to the user by leaving a labeled hole \([\#1]\) in the ornamented code. The programmer may use this label to provide a \textit{patch} that will fill the hole in the skeleton. The patch may use all bindings in context, which are the same as the bindings already in context at the same location in the bare version. In particular, the first argument of \texttt{Cons} cannot be obtained directly, but only by pattern matching again on \texttt{m}:

\begin{verbatim}
let append = lifting add : \texttt{natlist} \rightarrow \texttt{natlist} \rightarrow \texttt{natlist}
with \#1 \leftarrow \texttt{match m with Cons(x, _ _) \rightarrow x}
\end{verbatim}

The lifting is now complete, and produces exactly the code of \texttt{append} given above. The superfluous pattern matching in the patch has been automatically removed: the patch \texttt{"match m with Cons(x, _ _) \rightarrow x\"} has not just been inserted in the hole, but also simplified by observing that \texttt{x0} is actually equal to \texttt{x} and need not be extracted again from \texttt{m}. This simplification process relies on the ability of the meta-language to maintain equalities between terms via dependent types, and is needed to make the lifted code as close as possible to manually written code. This is essential, since the lifted code may become the next version of the source code to be read and modified by the programmer. This is a strong argument in favor of the principled approach that we present next and formalize in the rest of the paper.

Although the hole cannot be uniquely determined by ornamentation alone, it is here the obvious choice: since the append function is polymorphic we need an element of the same type as the unnamed argument of \texttt{Cons}, so this is the obvious value to pick—but not the only one, as one could also look further in the tail of the list. Instead of giving an explicit patch, we could give a tactic that would fill in the hole with the “obvious choice” in such cases. However, while important in practice, this is an orthogonal issue related to code inference which is not the focus of this work. Below, we stick to the case where patches are always explicit and we leave holes in the skeleton when patches are missing.

While this example may seem anecdotal, and chosen here for pedagogical purposes, there is actually a strong relation between recursive data-structures and numerical representations at the heart of several works \cite{7, 10}.

2.3 Global compilation optimizations

Interestingly, code refactoring can also be used to enable global compilation optimizations by changing the representation of data structures. For example, one may use sets whose elements are members of a large sum datatype \(\tau_I \triangleq \Sigma^{j \in J} A_j | \Sigma^{k \in K} (A_k, \text{of } \tau_k)\) with a quite a few constant constructors \(\Sigma^{j \in J} A_j\), say \(\tau_J\). One may then chose to split cases into two sum types \(\tau_J \rightarrow \tau_K\) for the remaining cases. We may then use the isomorphism \(\tau_I \seteq \tau_J \rightarrow \tau_K\) so that \(\tau_J \seteq\) may then be optimized, for example by represented all cases as a bit an integer—if \(|J|\) is not too large.

2.4 Hiding administrative data

Sometimes data structures need to carry annotations, which are useful information for certain purposes, not at the core of the algorithms. A typical example is location information attached to abstract syntax trees for reporting purposes. The problem with data structure annotations is that they often obfuscate the code. We show how ornaments can be used to keep programming on the bare view of the data structures and lift the code to the ornamented view with annotations. In particular, scanning algorithms can be manually written on the bare structure and automatically lifted to the ornamented structure with only a few patches to describe how locations must be used for error reporting.

Consider for example, the type of \(\lambda\)-expressions and its evaluator:

\begin{verbatim}
type expr =
 | Abs of (expr \rightarrow expr)
 | App of expr * expr
 | Const of int

let eval = rec eval \rightarrow \texttt{fun e \rightarrow match e with}
 | App (u, v) \rightarrow
 \texttt{(match eval u with Some (Abs f) \rightarrow _ v \rightarrow _ None)}
 | v \rightarrow Some v
\end{verbatim}

To add locations, we instrument the data-structure as follow, which we declare as an ornament of "expr":

\begin{verbatim}
type expr_loc = expr_aux * loc
and expr_aux =
 | Abs' of (expr_loc \rightarrow expr_loc)
 | App' of expr_loc * expr_loc
 | Const' of int

ornament add_loc : expr \rightarrow expr_loc with
 | Abs f \rightarrow (Abs' f, _)
 | App (u, v) \rightarrow (App (u, v), _)
 | Const i \rightarrow (Const i, _)
\end{verbatim}

We define a datatype type for results which is an ornament of the option type:

\begin{verbatim}
type ('a, 'err) result = Ok of 'a | Error of 'err
ornament ('a, 'err) optres : 'a option \rightarrow ('a, 'err) error with
 | Some a \rightarrow Ok a
 | None \rightarrow Error '
\end{verbatim}

If we try to lift the function as before:

\begin{verbatim}
let eval' =
 lifting eval : add_loc \rightarrow (add_loc, (loc * string)) result
\end{verbatim}
The system will only be able to do a partial lifting

\[
\begin{align*}
\text{let} & \quad \text{eval} = \text{rec} \quad \text{eval} \rightarrow \text{fun} \ e \rightarrow \text{match} \ e \ \text{with} \\
& \quad \text{App' (u, v)} \rightarrow \\
& \quad \text{match} \ e \ \text{u} \ \text{with} \\
& \quad \text{Some (Abs f)} \rightarrow \text{Ok (f v)} \\
& \quad _ \rightarrow \text{Error [\#1]} \ \text{end} \\
& \quad \text{v} \rightarrow \text{Ok v}
\end{align*}
\]

Indeed, in the erroneous case eval must now return a value of the form Error (___) instead of None, but it has no way to know which arguments to pass to the constructor, hence the hole labeled \#1. To complete the lifting, we provide the following patch:

\[
\begin{align*}
\text{let} & \quad \text{eval} = \\
& \quad \text{lifting eval : add_loc \rightarrow (add_loc, (loc * string)) result} \\
& \quad \text{patch \#1: let} \quad (_, \text{loc}) = \text{e in} \quad (\text{loc, } \text{"not a function")}
\end{align*}
\]

We then obtain the expected complete code:

\[
\begin{align*}
\text{let} & \quad \text{eval} = \text{rec} \quad \text{eval} \rightarrow \text{fun} \ e \rightarrow \text{match} \ e \ \text{with} \\
& \quad \text{App' (u, v)} \rightarrow \\
& \quad (\text{match} \ e \ \text{u} \ \text{with} \\
& \quad \text{Some (Abs f)} \rightarrow \text{Ok (f v)} \\
& \quad _ \rightarrow \text{Error (loc, } \text{"not a function")}) \\
& \quad \text{v} \rightarrow \text{Ok v}
\end{align*}
\]

While this example is limited to the simple case where we only read the abstract syntax tree, some compilation passes often need to transform the abstract syntax tree carrying location information around. More experiment is needed to see how viable the ornament approach is. This might be a case where appropriate tactics for filling the holes would be quite helpful.

This example suggests a new use of ornaments in a programming environment where the bare code and lifted code would be kept in sync, and the user could switch between the two views, using the bare code for the core of its algorithm that need not see all the details and the lifted code only when necessary.

We also refer to previous work [14] for other uses of ornaments.

3. Overview of the lifting process

3.1 Encoding ornaments

Ornamentation only affects datatypes, so a program can be lifted by simply inserting some code to translate from and to the ornamented type at occurrences where the base datatype is either constructed or destructed in the original program.

We now explain how this code can be automatically inserted by lifting. For sake of illustration, we proceed in several incremental steps.

Intuitively, the append function should have the same recursive schema as add, and operate on constructors Nil and Cons similarly to the way add proceeds with constructors S and Z. To make this correspondence explicit, we may see a list as a nat-like structure where just the head of the list has been transformed. For that purpose, we introduce an hybrid open version of the datatype of Peano naturals, using new constructors \(Z' \) and \(S' \) corresponding to \(Z \) and \(S \) but now defined the head projection of the list into \(\text{nat} \) of the form Error (___) instead of None, but it has no way to know which arguments to pass to the constructor, hence the hole labeled \#1. To complete the lifting, we provide the following patch:

\[
\begin{align*}
\text{let} & \quad \text{eval} = \text{rec} \quad \text{eval} \rightarrow \text{fun} \ e \rightarrow \text{match} \ e \ \text{with} \\
& \quad \text{App' (u, v)} \rightarrow \\
& \quad \text{match} \ e \ \text{u} \ \text{with} \\
& \quad \text{Some (Abs f)} \rightarrow \text{Ok (f v)} \\
& \quad _ \rightarrow \text{Error [\#1]} \ \text{end} \\
& \quad \text{v} \rightarrow \text{Ok v}
\end{align*}
\]

Indeed, in the erroneous case eval must now return a value of the form Error (___) instead of None, but it has no way to know which arguments to pass to the constructor, hence the hole labeled \#1. To complete the lifting, we provide the following patch:

\[
\begin{align*}
\text{let} & \quad \text{eval} = \\
& \quad \text{lifting eval : add_loc \rightarrow (add_loc, (loc * string)) result} \\
& \quad \text{patch \#1: let} \quad (_, \text{loc}) = \text{e in} \quad (\text{loc, } \text{"not a function")}
\end{align*}
\]

We then obtain the expected complete code:

\[
\begin{align*}
\text{let} & \quad \text{eval} = \text{rec} \quad \text{eval} \rightarrow \text{fun} \ e \rightarrow \text{match} \ e \ \text{with} \\
& \quad \text{App' (u, v)} \rightarrow \\
& \quad (\text{match} \ e \ \text{u} \ \text{with} \\
& \quad \text{Some (Abs f)} \rightarrow \text{Ok (f v)} \\
& \quad _ \rightarrow \text{Error (loc, } \text{"not a function")}) \\
& \quad \text{v} \rightarrow \text{Ok v}
\end{align*}
\]

As explained above, this supplementation information is \(\text{match m with} \ (\text{Cons (x, _)} \rightarrow x) \), and must be user provided as patch [\#1]. Hence, the lifting of add into lists is:

\[
\begin{align*}
\text{let} & \quad \text{append} = \text{rec} \quad \text{append} \rightarrow \text{fun} \ m \ n \rightarrow \\
& \quad \text{match} \ \text{proj_nat_list} \ \text{# m with} \\
& \quad \text{Z'} \rightarrow n \\
& \quad \text{S'} m' \rightarrow ... \ S' (\text{append m' n}) ...
\end{align*}
\]

In the second branch, we must return a list out of the hybrid list-nat skeleton \(S' (\text{append m' n}) \). Using a helper function:

\[
\begin{align*}
& \quad S' m' \rightarrow \text{constr_nat_list} : (S'(\text{append m' n})) ...
\end{align*}
\]

Of course, constr_nat_list requires some supplementary information \(x \) to put in the head cell of the list:

\[
\begin{align*}
\text{let} & \quad \text{constr_nat_list} = \text{fun} \ n \ x \rightarrow \text{match} \ n \ \text{with} \\
& \quad \text{Z'} \rightarrow \text{Nil} \\
& \quad \text{S'} n' \rightarrow \text{Cons (x, n')} \\
& \quad \text{val} \ \text{constr_nat_list} : \ 'a list nat_skel \rightarrow 'a \rightarrow 'a list
\end{align*}
\]

As explained above, this supplementation information is \(\text{match m with} \ (\text{Cons (x, _)} \rightarrow x) \), and must be user provided as patch [\#1]. Hence, the lifting of add into lists is:

\[
\begin{align*}
& \quad \text{let} \quad \text{append} = \text{rec} \quad \text{append} \rightarrow \text{fun} \ m \ n \rightarrow \\
& \quad \text{match} \ \text{proj_nat_list} \ \text{# m with} \\
& \quad \text{Z'} \rightarrow n \\
& \quad \text{S'} m' \rightarrow \text{constr_nat_list} : (S'(\text{append m' n})) \ # (\text{match m with} \ (\text{Cons (x, _)} \rightarrow x))
\end{align*}
\]

This version is correct, but not final yet, as it still contains the intermediate hybrid structure, which will eventually be eliminated. However, before we see how to do so in the next section, we first check that our schema extends to more complex examples of ornaments.

1 Our naming convention is to use the suffix _nat_list for the functions related to the ornament from Nat to list.
Assume, for instance, that we also attach new information to the Z constructor to get lists with some information at the end, which could be defined as:

```plaintext
type ('a,'b) listend =
  | Nilend of 'b
  | Consend of 'a * ('a,'b) listend
```

We may write encoding and decoding functions as above:

```plaintext
let proj_nat_listend = fun l -> match l with
  | Nilend _, _ -> Z'
  | Consend (_,l') -> S' l'

val proj_nat_listend : ('a,'b) listend -> ('a,'b) listend nat_skel
```

and

```plaintext
let constr_nat_listend = fun n x -> match n with
  | Nil -> Z
  | S' l' -> Consend (x,l')
```

However, a new problem appears: we cannot give a valid ML type to the function constr_nat_listend, as the argument x should take different types depending on whether n is zero or a successor. This is solved by adding a form of dependent types to our intermediate language—and finely tuned restrictions to guarantee that the generated code becomes typeable in ML after some simplifications. This is the purpose of the next section.

3.2 Eliminating the encoding

The mechanical ornamentation both creates intermediate hybrid data structures and includes extra abstractions and applications. Fortunately, these additional computations can be avoided, which not only removes sources of inefficiencies, but also helps generating more natural code with fewer indications that looks similar to hand-written code.

We first perform meta-reduction of append₂ which removes all helper functions (we actually give different types to our intermediate language—and finely tuned types to our intermediate language—and finely tuned restrictions to guarantee that the generated code becomes typeable in ML after some simplifications. This is the purpose of the next section.

3.3 Inferring a generic lifting

We have shown a specific ornamentation of add. We may instead generate a generic lifting of add that is abstracted over all possible patches, and only then specialize it to some specific ornamentation by passing the encoding and decoding functions as arguments, as well as a set of patches describing how to generate the additional data. All liftings that follow the syntactic structure of the original function can be obtained by instantiating the same generic lifting.

Let us consider this process in more details on our running example add. There are two occurrences where add can be generalized: the pattern matching on the first argument m, and the construction S(add m’ n) in the successor branch. The ornamentation constraints are analyzed using a sort of elaborating type inference. We infer that m can be replaced by any ornament natTy of naturals, which will be given by a pair of functions mproj and mconstr to destruct natTy into a nat_skel and construct a natTy from a nat_skel; we also infer that n and the result must be the same ornament of naturals, hence given by the other pair of functions nproj and nconstr. We thus obtain a description of all possible syntactic ornaments of the base function, i.e. those ornaments that preserve the structure of the original code:

```plaintext
let add_gen  = fun mproj mconstr nproj nconstr p1 #>
  rec add_gen'  -> fun m n -> match mproj # m with
  | Z'          -> n
  | S' m'       -> nconstr # S'(add_gen' m' n)
    # (p1 # add_gen' # m # m' # n)
```

Notice that since m is only destructured and n is only constructed, mconstr and nproj are unused in this example, but we keep them as extra parameters for regularity of the encoding.

Finally, the patch p₁ describes how to obtain the extra information from the environment, namely add_gen, m, n, m’, when rebuilding a new value of the ornamented type. While mproj, mconstr, nproj, nconstr parameters will be automatically instantiated, the code for patches will have to be user-provided.

The generalized function abstracts over all possible ornaments, and must now be instantiated by some specific ornaments.

For a trivial example, we may decide to ornament nothing, i.e. just lift nat to itself, which amounts to passing to
There is no information added, so we may use this for adding append list v nat.

Meta-reduction of add example, in the lifting of problem by attaching the arguments to program locations to understand the role of each argument. We can solve this not practical, because one must reference the generic term it is not convenient to use directly. Positional arguments are metricity result to prove that the original code and the ornamented one: we use a para-

they are located in a dead branch.

Finally, rather than specifying the ornament used at a given program point, we also allow the user to either give an ornament specification on the inputs and outputs of a function, or to specify that each occurrence of a given type must be lifted along a given ornament, and generate the instantiation arguments accordingly.

4. Meta ML

As explained above (§3), we use a meta language mML that extends ML with dependent types and has separate meta-abstractions and meta-applications. In this section, we describe the generalized language mML as an extension of ML and how to translate programs of mML that do not use the richer types of mML back to ML. We actually introduce an intermediate language eML that has the same operations as ML, but with equality typing constraints. This will make the introduction of mML easier and also serve as an intermediate step when simplifying programs, first simplifying mML programs into eML ones (§5.6), and then going from eML ones to back to ML programs (§7). It is an important aspect of our design that mML is only used as an intermediate to implement the lifting and that lifted programs remain in ML.

Notation

We write \((Q_i)^{el1}\) for a tuple \((Q_1, \ldots, Q_n)\). We often omit the set \(I\) in which \(i\) ranges and just write \((Q_i)^{el}\), using different indices \(i, j, k\) for ranging over different sets \(I, J, K\); We also write \(\bar{Q}\) if we do not have to explicitly mention the components \(Q_i\). In particular, \(\bar{Q}\) stands for \((Q, \ldots, Q)\) in syntax definitions. We note \(Q[z_i \leftarrow Q_i]^{el}\) the simultaneous substitution of \(z_i\) by \(Q_i\) for all \(i\) in \(I\) (left implicit).
not appear free in by-value small-step reduction semantics. The evaluation are always defined recursively, using the construction be relaxed, at the cost of a more complex presentation.attern an argument and never terminates). This assumption could function types always contain as a value a function that takes types. Type schemes are not first-class: polymorphic classify the monomorphic types and its superkind

\[\lambda \]

forms for values of function type. We still use the standard

\[\tau \]

ML
different languages: for

\[\text{Typ} \]

given a set of type constructors, written \(\zeta \). Each type constructor has a fixed signature of the form \((\text{Typ} \ldots \text{Typ}) \Rightarrow \text{Typ} \). We require that type expressions respect the kinds of type constructors and type constructors are always fully applied. We also assume given a set of data constructors. Each data constructor \(a \) comes with a type signature, which is a closed type-scheme of the form \(\forall (\alpha_i : \text{Typ})^i (\tau_j)^j \rightarrow \zeta (\alpha_i)^i \). We assume for technical reasons that all data types contain at least one value (note that function types always contain as a value a function that takes an argument and never terminates). This assumption could be relaxed, at the cost of a more complex presentation.attern matching is restricted to complete, shallow patterns. Instead of having special notation for recursive functions, functions are always defined recursively, using the construction \(\text{fix} (f : \tau_1 \rightarrow \tau_2) \). This avoids having two different syntactic forms for values of function type. We still use the standard notation \(\lambda (x : \tau_1). a \) for non-recursive functions, but we just see it as a shorthand for \(\text{fix} (f : \tau_1 \rightarrow \tau_2) \) \(x \). \(a \) where \(f \) does not appear free in \(a \) and \(\tau_2 \) is the function return type.

The language is equipped with a weak left-to-right, call-by-value small-step reduction semantics. The evaluation contexts \(E \) and the reduction rules are given in Figure 4.

\[E \quad := \quad \emptyset \mid E \, a \mid v \, E \mid d(v, \ldots, v, E, a, \ldots, a) \mid \lambda (\alpha : \text{Typ}). E \mid E \, \tau \mid \text{match } E \text{ with } \tau \rightarrow a \mid \text{let } x = E \text{ in } a \]

\[(\text{fix} (x : \tau). y. a) \rightarrow h \beta \left[a[x \leftarrow \text{fix} (x : \tau). y. a, y \leftarrow v] \right] \]

\[(\lambda (\alpha : \text{Typ}). v). \tau \rightarrow h \beta \left[v[\alpha \leftarrow \tau] \right] \quad \text{CONTEXT-BETA} \]

\[a \rightarrow h \beta \left[a[x \leftarrow v] \right] \]

match \(d_j \tau_j (v_i)^i \) with \n
\[(d_j \tau_j (x_{ij})^i \rightarrow a_j)^j \rightarrow h \beta \left[a_j[x_{ij} \leftarrow v_i]^i \right] \]

Figure 3. Typing rules of ML (and eML in gray)

Figure 4. Reduction rules of ML

contexts \(E \) and the reduction rules are given in Figure 4.

This reduction is written \(\rightarrow h \beta \), and the corresponding head-reduction is written \(\rightarrow h \eta \). Reduction must proceed under type abstractions, so that we have a type-erasing semantics.

The typing environments \(\Gamma \) contain term variables \(x : \tau \) and type variables \(\alpha : \text{Typ} \). Well-formedness rules for types and environments are given in figures 1 and 3. We use the convention that type environments do not map the same variable twice. We write \(z \notin \Gamma \) to mean that \(z \) is fresh for \(\Gamma \), i.e. it is neither in the domain nor in the image of \(\Gamma \). Kinding rules are straightforward. Rule \(\text{K - SUB TYP} \) says that any type of the kind Typ, i.e. a simple type, can also be considered as a type of the kind Sch, i.e. a type scheme. The typing rules are explicitly typed version of the ML typing rules. Typing judgments are of the form \(\Gamma \vdash a : \tau \) where \(\Gamma \vdash \tau : \text{Sch} \). Although we do not have references, we still have a form of value restriction: Rule \(\text{LET - POLY} \) restricts polymorphic binding to a class of non-expansive terms \(u \), defined on Figure 2, that extends values with type abstraction, application, pattern matching, and binding on non-expansive terms—whose reduction always terminate. Binding of an expansive term is still allowed (and is heavily used in the elaboration), but its typing is monomorphic as described by Rule \(\text{LET - MONO} \).

4.2 Adding equalities to ML

The intermediate language eML extends ML with term equalities and type level matches. Type-level matches may be reduced using term equalities accumulated along pattern
but can be performed in an arbitrary context and uses a call-by-non-expansive-term strategy. It does not include reduction of term abstractions, so as to be terminating. The equalities introduced in the context are used through the rule C-Eq. This rule is limited to equalities between non-expansive terms. Conversely, C-Split allows case-splitting on a non-expansive term of a datatype, checking the equality in each branch under the additional equality learned from the branch selection.

Finally, we allow a strong form of congruence (C-CONTEXT): if two terms can be proved equal, they can be substituted in any context. The rule is stated using a general context typing: we note \(\Gamma \vdash C[\Gamma'] : Y \) if there is a derivation of \(\Gamma \vdash C[X] : Y \) such that the subderivation concerning \(X \) is \(\Gamma' \vdash X : Y' \). The context \(\Gamma' \) will hold all equalities and definitions in the branch leading up to \(X \). This means that, when proving an equivalence under a branch, we can use the equalities introduced by this branch. Moreover, when \(C \) is a term context \(C \), we may write \(C \) to mean that \(C \) expects a non-expansive term and \(C \) expects any term.

Rule C-CONTEXT could have been replaced by one congruence rule for each syntactic construct of the language, but this would have been more verbose, and would require adding new equality rules when we extend eML to mML. Rule C-CONTEXT enhances the power of the equality. In particular, it allows case splitting on a variable bound by an abstraction. For instance, we can show that terms \(\lambda(x : \text{Bool}). x \) and \(\lambda(x : \text{Bool}). \text{match} x \text{ with True} \rightarrow \text{True} | \text{False} \rightarrow \text{False} \) are equal, by reasoning under the context \(\lambda(x : \text{Bool}). [] \) and case-splitting on \(x \). This allows expressing a number of program transformations, among which let extrusion and expansion, eta-expansion, etc. as equalities. This will help with the ornamentation: the pre- and post-processing on the terms will often preserve equality, and thus many other useful properties (for example, they will be able to be put in the same contexts, and interchangeable for the logical relation we define).

Under an incoherent context, we can prove equality between any two types: if the environment contains incoherent equalities like \(d_1 \tau_1 \equiv \sigma_1 = d_2 \tau_2 \equiv \sigma_2 \), we can prove equality of any two types \(\sigma_1 \) and \(\sigma_2 \) as follows: consider the two types \(\sigma_1' \equiv \text{match} d_1 \tau_1 \equiv \sigma_1 | d_2 \tau_2 \equiv \sigma_2 \). By C-CONTEXT and C-Eq, they are equal. But one reduces to \(\sigma_1 \) and the other to \(\sigma_2 \). Thus, the code in provably unreachable branches need not be well typed. When writing eML programs, such branches can be simply ignored, for example by replacing their content with \(() \) or any other expression. This contrasts with ML, where one needs to add a term that fails at runtime, such as assert false.

Restricting the use of equalities to equalities non-expansive terms is important to get subject reduction in eML: since reduction of beta-redexes is forbidden in equalities, the non-expansive terms must never be affected by reduction of beta-redexes. Consider for example the following term:

\[
\text{match} \ (\lambda(x : \text{Unit}). \text{True}) () \text{ with } \begin{align*}
\text{match} \ (\lambda(x : \text{Unit}). \text{True}) () \text{ with } \\
| \text{True} \rightarrow | \text{True} \rightarrow () \\
| \text{False} \rightarrow ()
\end{align*}
\]
If we allowed the elimination of equalities on expansive terms, it would correctly typecheck: we could prove from the equalities (λ(x: Unit). True) () = True and (λ(x: Unit). False) () = False that the branch containing 1 + True is absurd. But, after one step, the first occurrence of (λ(x: Unit). True) () reduces to True, and we can no longer prove the incoherence without reducing the application in the second occurrence. Thus we need to forbid equalities between terms containing application in a position where it may be evaluated.

We only limit equalities at the usage point. In mML, this allows putting the equalities in the context, even if it is not known at introduction time that they will reduce (by meta-reduction) to non-expansive terms. The code that uses the equality must still be aware of the non-expansiveness of the terms.

We also restrict case-splitting to non-expansive terms. Since they terminate, this greatly simplifies the metatheory of eML.

Forbidding the reduction of application in →ᵣ makes →ᵣ terminate (see Lemma 27). This allows the transformation from eML to ML to proceed easily: in fact, the transformation can be adapted into a typechecking algorithm for eML.

Note that full reduction would be unsound in eML: under an incoherent context, it is possible to type expressions such as True True, i.e. progress does not hold. However, full reduction is not part of the dynamic semantics of eML, but only used in its static semantics to reason about equality. It is then unsurprising—and harmless that progress does not hold under an incoherent context.

4.3 mML

We now add meta-abstractions and meta-applications to mML, with two goals in mind: first, we need to abstract over all the elements that appear in a context so that they can be passed to patches; second, we need a form of stratification so that a well-typed mML term whose type and typing context are in eML can always be reduced to a term that can be typed in eML, i.e. without any meta-operations. The program...
can still be read and understood as if eML and mML reduction were interleaved, i.e. as if the encoding and decodings of ornaments were called at runtime, but may all happen at ornamentation time.

One difficulty arises when adding meta-abstractions to eML: both the value restriction in ML and the treatment of equalities in eML rely on the stability of non-expansive expressions by substitution, thus on a call-by-value evaluation strategy: a non-expansive term should remain expansive after substitution. Therefore, we can only allow substitution by non-expansive terms. In particular, arguments of redexes in Figure 9 must be non-expansive. To ensure that meta-redexes can still always be reduced before other redexes, we restrict all arguments of meta-applications in the grammar of mML to be non-expansive. To allow some higher-order meta-programming (as simple as taking ornament encoding and decoding function as parameters), we add meta-abstractions to the class of non-expansive terms, but not meta-applications. The reason is that we want non-expansive terms to be stable by reduction, but the reduction of a meta-redexes could reveal an ML redex. A simple way to forbid meta-redex is to forbid meta-application.

The syntax of mML is described in Figure 8. We only present the differences with eML. Terms are extended with (dependent) meta-abstraction on non-expansive expressions, types, and equalities while types are extended with meta-abstraction on non-expansive expressions and types. Meta-abstractions are labeled with to differentiate them from normal abstractions. Symmetrically, meta-application is noted and is syntactically restricted to take a non-expansive expression as argument. Equalities are unnamed in environments, but we use the notation to witness the presence of an equality both in abstractions and and in applications and in applications.

The meta-reduction, written , is defined on Figure 9. It is a strong reduction, allowed in arbitrary contexts . The corresponding head-reduction is written .

The introduction and elimination rules for the new term-level abstractions are given on Figure 12. The new kinding rules for the type-level abstraction and application are given on Figure 11. We introduce a kind Met, superkind of Sch (K-SUBEQU), to classify the types of meta abstractions. This enforces a phase distinction where meta constructions cannot be bound or returned by eML code. The grammar of kinds is complex enough to warrant its own sorting judgment, noted , and defined on Figure 10.

We must revisit equality. Kinds can now contain types, that can be converted using the K-CONV judgment. The equality judgment is enriched with closure by meta-reduction (C-RED-META). To prevent meta-reduction from blocking equalities, C-EQ is extended to consider equalities up to meta-reduction. The stratification ensures that a type-level pattern matching cannot return a meta type. This prevents conversion from affecting the meta part of a type. Thus, the meta-reduction of well-typed program does not get stuck, even under arbitrary contexts. Otherwise, we
would not be able to reduce the \(\rightarrow_1 \) part under incoherent branches.

5. The metatheory of mML

Our calculus respects the usual metatheoretical properties:

Theorem 1 (Confluence). Any combination of the reduction relations \(\rightarrow_s, \rightarrow_\beta, \rightarrow_1 \) is confluent.

5.1 A temporary definition of equality

The rules for equality given previously omit some hypotheses that are useful when subject reduction is not yet proved. To guarantee that both sides of an equality are well-typed, we need to replace C-RED-META with C-RED-META', C-RED-IOTA with C-RED-IOTA' and C-CONTEXT with rule C-CONTEXT', given on Figure 13. Admissibility of C-CONTEXT will be a consequence of Lemma 12, and admissibility of C-RED-META and C-RED-IOTA will be consequences of subject reduction. Since the original rules are less constrained, they are also complete with respect to the rules used in this section. Thus, once the proofs are done we will be able to use the original version.

5.2 Strong normalization for \(\rightarrow_1 \)

Our goal in this section is to prove that meta-reduction and type reduction are strongly normalizing. The notations used in this proof are only used here, and will be re-used for other purposes later in this article.

Theorem 2 (Strong normalization for meta-reduction). The reduction \(\rightarrow_1 \) is strongly normalizing.

As usual, the proof will be based on reducibility sets.

Definition 1 (Reducibility set). A set \(S \) of terms is called a reducibility set if it respects the properties C1-3 below. We write \(C_S \) the set of reducibility sets of terms.

C1 every term \(a \in S \) is strongly normalizing;
C2 if \(a \in S \) and \(a \rightarrow a' \) then \(a' \in S \);
C3 if \(a \) is not a meta-abstraction, and for all \(a' \) such that \(a \rightarrow a', a' \in S \) then \(a \in S \).

Similarly, replacing terms with types and kinds, we obtain a version of the properties C1-3 for sets of types and kinds. A set of types or kinds is called a reducibility set if it respects those properties, and we write \(C_T \) the set of reducibility sets of types, and \(C_K \) the set of reducibility sets of kinds.

Let \(N_a \) be the set of all strongly normalizing terms, \(N_t \) the set of all strongly normalizing types, and \(N_k \) the set of all strongly normalizing kinds.

Lemma 1. \(N_a, N_t, \) and \(N_k \) are reducibility sets.

Proof. The properties C1-3 are immediate from the definition.

Definition 2 (Interpretation of types and kinds). We define an interpretation \(\cdot(\cdot) \) of kinds as sets of possible interpretations of types, with 1 the set with one element \(\cdot \). The interpretation is given on Figure 14.

We also define an interpretation \(\cdot(\cdot)_{\rho} \) of kinds as sets of types and an interpretation \(\cdot(\cdot)_{\rho} \) of a type \(\tau \) under an assignment \(\rho \) of reducibility sets to type variables by mutual induction on Figure 15.

Definition 3 (Type context). We will write \(\rho \models \Gamma \) if for all \((\alpha : \kappa) \in \Gamma \), \(\rho(\alpha) \in \cdot(\cdot)_{\rho} \).

Lemma 2 (Equal kinds have the same interpretation). Consider a well-formed context \(\Gamma \). Suppose \(\Gamma \models \kappa_1 \equiv \kappa_2 \). Then, \(\cdot(\cdot)_{\rho} \).

Proof. By induction on a derivation. We can assume that all reductions in the rules C-RED-IOTA’ and C-RED-META’ are head reductions (otherwise we simply need to compose with C-CONTEXT.

- Reflexivity, symmetry and transitivity translate trivially to equalities.
- There is no head-reduction on kind, and the rule C-EQ does not apply either.
- For C-SPLIT, use the fact that every datatype is inhabited, and conclude from applying the induction hypothesis to any of the cases.
- For C-CONTEXT, proceed by induction on the context. If the context is empty, use the induction hypothesis. Otherwise, note that the interpretation of a kind only depends on the interpretation of its (direct) subkinds, and the interpretation of the direct subkinds are equal either because they are equal, or by induction on the context.
Lemma 3 (The interpretation of kinds and sorts is well-defined). Suppose $\rho = \Gamma$. Then:

- If $\Gamma \vdash k : \text{wf}$, then κ_ρ is well-defined, and $\kappa_\rho \in \mathbb{N}_k$.
- If $\Gamma \vdash \tau : \kappa$, then τ_ρ is well-defined, and we have $\kappa_\rho \in \kappa_\kappa$.

Proof. By simultaneous induction on the sorting and kind-derivations. The case of all syntax-directed rules whose output is interpreted as \mathbb{N}_k or \mathbb{N}_k is trivial by Lemma 1. The variable rule K-VAR is handled by using the definition of $\rho = \Gamma$. For abstraction, abstract, add the interpretation to the context and interpret. For application, use the fact that κ_ρ for functions. For K-CONV, use Lemma 2 to deduce that the interpretation of the kinds are the same. For the subkinding rules ($\text{K-SUBTYP}, \text{K-SUBSCH}, \text{K-SUBEQU}$), use the fact that $\langle \text{Typ} \rangle = \langle \text{Sch} \rangle = \langle \text{Sch} \rangle \subseteq \langle \text{Met} \rangle$.

The rules $\text{S-VA}, \text{S-TARR}, \text{S-EARR}, \text{K-FORALL}, \text{K-Pi}, \text{K-Pi-EQ}$ are similar. We will only give the proof for K-Pi, in the case $\ell =$: Suppose S_1 and S_2 are reducibility sets. We will prove C1-3 for $S = \{a \in S \cap b \in S \cap a \parallel b \in S \cap 2 \}$. C1 S is a subset of S_α. C2 Consider $a \in S$ and a' such that $a \rightarrow a'$. For a given $b \in S_1$, $a \parallel b \in S_2$. Thus, $a' \parallel b \in S_2$ by C2 for S_2. Then, $a' \in S$. C3 Consider a, not an abstraction, such that if $a \rightarrow a'$, $a' \in S$. For $b \in S_1$, we'll prove $a \parallel b \in S_2$. Since a is not an abstraction, $a \parallel b$ reduces either to $a \parallel b$ with $a \rightarrow a'$, or $a \parallel b'$ with $b \rightarrow a'$. In the first case, $a' \in S$ by hypothesis and $b \in S_1$, so $a' \parallel b \in S_2$. In the second case, $b' \in S_1$ by C2, so $a \parallel b' \in S_2$. By C3 for S_2, because $a \parallel b$ is not an abstraction, $a \parallel b \in S_2$.

We need the following substitution lemma:

Lemma 4 (Substitution). For all $\tau, \kappa, \tau', \alpha$, and ρ, we have:

$$\tau_\rho |_{\alpha : \kappa} = \tau^1_\rho$$

Proof. By induction on types and kinds.

We then need to prove that conversion is sound with respect to the relation. We start by proving soundness of reduction:

Lemma 5 (Soundness of reduction). Let \rightarrow stand for $\rightarrow_\tau \cup \rightarrow_\kappa$. Consider $\rho = \Gamma$, and τ, κ, κ' well-kinded (or well-formed) in Γ. Then,

- if $\tau \rightarrow \tau'$, $\tau_\rho = \tau^1_\rho$.
- if $\kappa \rightarrow \kappa'$, $\kappa_\rho = \kappa^1_\rho$.

Proof. By induction on the contexts. The only interesting context is the hole $[\]$. Consider the different kinds of head-reduction on types (the induction hypothesis is not concerned with terms, and there is no head-reduction on kinds).

- The cases of all meta-reductions are similar. Consider $(\lambda \alpha : \kappa). \tau' \rightarrow \lambda \alpha : \tau'$. The interpretation
of the left-hand side is $$\lambda S_\alpha \in \langle \kappa \rangle \cdot [\tau]_\rho (\alpha \rightarrow S_\alpha),$$ and the interpretation of the right-hand side is $$[\tau][\alpha \leftarrow \tau'][\rho].$$ by substitution (Lemma 4).

• In the case of match-reduction, the arguments of the meta-reduction have kind Sch, thus by Lemma 3, their interpretation is $$N_3.$$

Lemma 6 (Soundness of conversion). If $$\rho \models \Gamma$$ and $$\Gamma \vdash \tau \simeq \tau_2,$$ then $$[\tau_1]_\rho = [\tau_2]_\rho.$$ If $$\Gamma \vdash \kappa_1 \simeq \kappa_2,$$ then $$[\kappa_1]_\rho = [\kappa_2]_\rho.$$

Proof. By induction on the equality judgment.

• The rules C-REFL, C-SYM and C-TRANS respect the property (by reflexivity, symmetry, transitivity of equality).

• The equalities are not used, thus C-SPLIT does not affect the interpretation (just consider one of the sub-proofs).

• The rule C-EO does not apply to types and kinds.

• For reductions (C-RED-IOTA, C-RED-META), use the previous lemma.

• For C-CONTEXT, proceed by induction on the context.

The interpretation of a type/kind depends only on the interpretation of its subterms.

Now we can prove the fundamental lemma:

Lemma 7 (Fundamental lemma). We say $$\rho, \gamma \models \Gamma$$ if $$\rho \models \Gamma$$ and for all $$(x, \tau) \in \Gamma, \gamma(x) \in [\tau]_\rho.$$ Suppose $$\rho, \gamma \models \Gamma.$$ Then:

• If $$\Gamma \vdash \kappa : \text{wf},$$ then $$\gamma(\kappa) \in N_k.$$
• If $$\Gamma \vdash \tau : \kappa,$$ then $$\gamma(\tau) \in [\kappa]_\rho.$$
• If $$\Gamma \vdash a : \tau,$$ then $$\gamma(a) \in [\tau]_\rho.$$

Proof. By mutual induction on typing, kinding and well-formedness derivations. We will examine a few representative rules:

• If the last rule is a conversion, use soundness of conversion.

• If the last rule is APP, Consider $$\rho, \gamma \models \Gamma,$$ and two terms $$a, b,$$ and suppose $$\gamma(a) \in [\tau_1]_\rho,$$ $$\gamma(b) \in [\tau_2]_\rho.$$ We need to show: $$\gamma(a \ b) = \gamma(a) \gamma(b) \in [\tau_2]_\rho.$$ (because $$\tau_2$$ is necessarily of kind Typ). Consider then $$\alpha'$$ and $$\beta'$$ normal forms of $$\gamma(a)$$ and $$\gamma(b).$$ $$a' \ b'$$ is a normal form of $$\gamma(a \ b).$$ Thus, $$\gamma(a \ b) \in N_3.$$

• If the last rule is a meta application APP-META

\[
\begin{align*}
\Gamma \vdash a : \Pi(x : \tau_1), \tau_2 & \quad \Gamma \vdash b : \tau_1 \\
\Gamma \vdash a \ b : \tau_2[x \leftarrow b]
\end{align*}
\]

Consider $$\rho, \gamma \models \Gamma.$$ Then, by induction hypothesis, we have: $$\gamma(a) \in [\Pi(x : \tau_1), \tau_2]_\rho,$$ and $$\gamma(b) \in [\tau_1]_\rho.$$ We thus have: $$\gamma(a \ b) = \gamma(a) \gamma(b) \in [\tau_2]_\rho.$$ But the interpretation of types does not depend on terms: $$[\tau_2]_\rho = [\tau_2[x \leftarrow b]]_\rho.$$ It follows that $$\gamma(a \ b) \in [\tau_2[x \leftarrow b]]_\rho.$$

• If the last rule is a meta abstraction ABS-META:

\[
\begin{align*}
\Gamma, x : \tau_1 \vdash a : \tau_2 & \\
\Gamma \vdash \lambda x : \tau_1. \ a : \Pi(x : \tau_1), \tau_2
\end{align*}
\]

Consider $$\rho, \gamma \models \Gamma.$$ Consider $$b \in [\tau_1]_\rho.$$ We need to prove that $$\gamma(\lambda x : \tau_1. \ a)[b] = \gamma(\lambda x : \tau_1. \ a)[b] \in [\tau_2]_\rho.$$ Let us use C3: consider all possible reductions. We will proceed by induction on the reduction of $$\gamma(\lambda x : \tau_1. \ a)$$, with the hypothesis $$\forall (B \in [\tau_2]_\rho). A'[x \leftarrow B]$$ (true for $$\gamma(\lambda x : \tau_1. \ a)$$ and conserved by reduction), and on the reduction of $$B \in [\tau_1]_\rho.$$ is conserved by reduction.

• We can only reduce the type $$\tau'_1$$ a finite number of times by induction hypothesis. It is discarded after reduction of the head redex.

• If $$A' \rightarrow_\rho A'', (\lambda x : \tau_1. \ a')[b] \rightarrow_\rho (\lambda x : \tau_1. \ a'')[b],$$ and we continue by induction.

• If $$B \rightarrow_\rho B', (\lambda x : \tau_1. \ a')[b] \rightarrow_\rho (\lambda x : \tau_1. \ a')'[b'],$$ and we continue by induction.

• If we reduce the head redex, $$\gamma(\lambda x : \tau_1. \ a)[b] \rightarrow_\rho a'[x \leftarrow b].$$ But by hypothesis, $$a'[x \leftarrow b] \in [\tau_2]_\rho.$$

We can now prove the main result of this section:

Proof. [Proof of Theorem 2] Consider a kind, type or term $$X$$ that is well-typed in a context $$\Gamma.$$ We can take the identity substitution $$\gamma(x) = x$$ for all $$x \in \Gamma$$ and apply the fundamental lemma. All interpretations are subsets of $$N_3,$$ thus $$X \in N_3.$$

5.3 Contexts, substitution and weakening

We define a weakening judgment $$\vdash \Gamma_1 \triangleright \Gamma_2$$ for typing environments that also includes conversion on the types and kinds in the environment.
Proof. Reflexivity is proved by induction on \(\vdash_1 \). Transitivity is proved by induction on the two weakening judgments.

Lemma 9 (Weakening and conversion). Let \(\Gamma_1, \Gamma_2, \Gamma'_1, \Gamma'_2 \) be well-formed contexts. Suppose \(\vdash \Gamma'_1 \supset \Gamma_2 \) and \(\vdash \Gamma'_2 \supset \Gamma'_1 \). Then:

- If \(\Gamma_1 \vdash X : Y \), then \(\Gamma_2 \vdash X : Y \).
- If \(\Gamma_1 \vdash X_1 \equiv X_2 \), then \(\Gamma_2 \vdash X_1 \equiv X_2 \).
- If \(\Gamma_1 \vdash C[\Gamma'_1 \vdash X : Y'] : Y \), then \(\Gamma_2 \vdash C[\Gamma'_2 \vdash X : Y'] : Y \).

Proof. Proceed by mutual induction on the typing, kinding, sorting, and equality judgment. All rules grow the context only by adding elements at the end, and the elements added will be the same in both contexts, thus preserving the weakening relation. Then we can use the induction hypothesis on subderivations.

Then, we have to consider the rules that read from the context: they are \(\text{VAR, K-\text{VAR}} \) and \(\text{C-EQ} \). For these rules, proceed by induction on the weakening derivation. Consider the case of \(\text{VAR} \) on a variable \(x \). Most rules do not influence variables. There will be no weakening on \(x \) because the term types in the stronger context and variables are supposed distinct. The variable \(x \) types in the context by hypothesis, so we cannot reach \(\text{WENV-EMPTY} \). The renaming case is \(\text{WENV-CONV-VAR} \). Suppose \(\Gamma_1 = \Gamma'_1, x : \tau_1, \Gamma_2 = \Gamma'_2, x : \tau_2 \) and \(\Gamma_2 \vdash \tau_1 \equiv \tau_2 \). Then, we can obtain a derivation of \(\Gamma_2 \vdash x : \tau_1 \) by using \(\text{VAR} \), getting a type \(\tau_2 \) and converting.

Lemma 10 (Substitution preserves typing).

Suppose \(\Gamma \vdash u : \tau \). Then,

- If \(\Gamma, x : \tau, \Gamma' \vdash X : Y \), then \(\Gamma, \Gamma'[x \leftarrow u] \vdash X[x \leftarrow u] : Y[x \leftarrow u] \).
- If \(\Gamma, x : \tau, \Gamma' \vdash X_1 \equiv X_2 \), then \(\Gamma, \Gamma'[x \leftarrow u] \vdash X_1[x \leftarrow u] \equiv X_2[x \leftarrow u] \).

Suppose \(\Gamma \vdash \tau : \kappa \). Then,

- If \(\Gamma, \alpha \vdash \kappa, \Gamma' \vdash X : Y \), then \(\Gamma, \Gamma'[\alpha \leftarrow \tau] \vdash X[\alpha \leftarrow \tau] : Y[\alpha \leftarrow \tau] \).
- If \(\Gamma, \alpha \vdash \kappa, \Gamma' \vdash X_1 \equiv X_2 \), then \(\Gamma, \Gamma'[\alpha \leftarrow \tau] \vdash X_1[\alpha \leftarrow \tau] \equiv X_2[\alpha \leftarrow \tau] \).

Proof. By mutual induction. We use weakening to grow the context on the typing/kinding judgment of the substituted term/type.

Lemma 11 (Substituting equal terms preserves equality).

- Suppose \(\Gamma \vdash \tau_1 \equiv \tau_2 \), \(\Gamma, \alpha : \kappa \vdash X : Y \), and \(\Gamma \vdash \tau_1 : \kappa \). Then, \(\Gamma \vdash X[\alpha \leftarrow \tau_1] \equiv X[\alpha \leftarrow \tau_2] \).
- Suppose \(\Gamma \vdash u_1 \equiv u_2 \), \(\Gamma, x : \tau \vdash X : Y \), and \(\Gamma \vdash u_1 : \tau \). Then, \(\Gamma \vdash X[x \leftarrow u_1] \equiv X[x \leftarrow u_2] \).

Lemma 12 (Substituting equal terms preserves typing).

Consider \(\Gamma \vdash C[\Gamma' \vdash X_1 : Y'] : Y \). Suppose \(\Gamma' \vdash X_1 \equiv X_2 \). Then, \(\Gamma \vdash C[\Gamma' \vdash X_2 : Y'] : Y \).

Proof. We prove these two results by mutual induction on, respectively, the typing derivation of \(X \) and the typing derivation of \(C[X_1] \).

For the first lemma, for each construct, prove equality of the subterms, and use congruence and transitivity of the equality. Use weakening on the equality if there are introductions. Use the second lemma to get the required typing hypotheses.

For the second lemma, the interesting cases are the dependent rules, where a term or type in term-position in a premise of a rule appears either in the context of another premise, or in type-position in the conclusion. When a term or type appear in the context, we use context conversion. The other type of dependency uses substitution in the result, which is handled by the first lemma.

Note that these lemmas imply that \(\text{C-CONTEXT} \) is admissible.

In order to prove subject reduction, we will need to prove that restricting the rule \(\text{C-EQ} \) to non-expansive terms only is enough to preserve types, even when applying the reduction \(\beta \) : this reduction should not affect any equality that is actually used in the typing derivation.

Definition 4 (Always expansive term). A term \(\alpha \) is said to be always expansive if it does not reduce by \(\rightarrow_1 \) to a non-expansive term.

Lemma 13 (Always expansive redexes). Let \(\alpha \) be of the form \(b_1 b_2 \). Then \(\alpha \) is always expansive.

Proof. Meta-reduction does not change the shape of the term.

Lemma 14 (Useless equalities). Let \(\alpha_1 \) or \(\alpha_2 \) be always expansive, and suppose \(\Gamma \vdash \alpha_1 : \tau \). Then \(\Gamma, (\alpha_1 \equiv \alpha_2) \vdash X : Y \) if and only if \(\Gamma \vdash X : Y \).

Proof. The “only if” direction is a direct consequence of weakening. For the other direction, proceed by induction on the typing derivation. The only interesting rule is \(\text{C-EQ} \). But by definition, an equality containing an always expansive term is not usable in equalities.

Lemma 15 (Non-dependent contexts for always expansive terms). Consider an evaluation context \(E \) and an always expansive term \(\alpha \) such that \(\Gamma \vdash E[\Gamma' \vdash \alpha : \tau] : Y \). Then, if \(\Gamma' \vdash \alpha' : \tau \), we also have \(\Gamma \vdash E[\Gamma' \vdash \alpha' : \tau] : Y \).

Proof. We prove simultaneously that putting an always expansive term in an evaluation context gives an always expansive term, and that the context is not dependent. The case of the hole is immediate. We will examine the case of \(\text{LET-Poly} \), which show the important ideas: consider a non-expansive,
and \(a_1 = \text{let } x = a \text{ in } b, a_2\) is always expansive: any meta-reduction will be to something of the form \(let x = a_2 \text{ in } b_2\) with \(a \rightarrow a_2\), but \(a\) is always expansive, so \(a_2\) is expansive, thus \(let x = a_2 \text{ in } b_2\) is expansive too. It also admits the same types: suppose we have a derivation \(\Gamma, x : \tau, (x =_\tau a) \vdash b : \tau\). Then by Lemma 14, \(\Gamma, x : \tau \vdash b : \tau\) and thus by weakening \(\Gamma, x : \tau, (x =_\tau a') \vdash b : \tau\). The hypotheses of the rule \textit{LET-POLY} are preserved, so the conclusion is too: \(let x = a \text{ in } b\) and \(let x = a' \text{ in } b\) have the same type.

5.4 Analysis of coercions and subject reduction

To prove subject reduction, we need results allowing us to split a coercion between a compound type or kind into a conversion into this subtypes. The easiest way to do it is to proceed in a stratified way. We extract a subreduction \(\rightarrow^1\) of \(\rightarrow\) that only contains the reductions on types, and \(\rightarrow^1\) that only contains the reductions on terms. Then, we consider the reductions in order: \(\rightarrow^1\), then \(\rightarrow^0\), then \(\rightarrow^\beta\) and \(\rightarrow\).

Lemma 16 (Equalities are between well-typed things). Let \(\Gamma\) be a well-formed context. Suppose \(\Gamma \vdash X_1 \simeq X_2\). Then, there exists \(Y_1, Y_2\) such that \(\Gamma \vdash X_1 : Y_1\) and \(\Gamma \vdash X_2 : Y_2\).

Proof. By induction on a derivation. This is true for \textit{C-META}, \textit{C-IOTA}, \textit{C-CONTEXT}, \textit{C-EQ} and \textit{C-REFL}. For \textit{C-SYM} and \textit{C-TRANS}, apply the induction hypothesis on the subderivations.

We define a decomposition of kinds into a head and a tuple of tails. The meta-variable \(h\) stands for a head. The decomposition is unique up to renaming.

\[
\begin{align*}
\text{Typ} & \triangleright \text{Typ} \circ () & \text{Sch} & \triangleright \text{Sch} \circ () & \text{Met} & \triangleright \text{Met} \circ () \\
\tau & \rightarrow^\ell \kappa & \rightarrow & -t_h \circ (\tau, \kappa) \\
(a =_\tau b) & \rightarrow \kappa & \rightarrow & -t_h \circ (a, b, \tau, \kappa) \\
\forall (\alpha : \kappa) & \kappa' & \rightarrow & \forall (\alpha : _ \circ (\kappa, \kappa'))
\end{align*}
\]

Lemma 17 (Analysis of coercions, kind-level). Suppose \(\Gamma \vdash \kappa \simeq \kappa'\). Then, \(\kappa'\) and \(\kappa\) decompose as \(\kappa \triangleright h \circ (X_1)^i\) and \(\kappa \triangleright h' \circ (X'_1)^i\), with \(h = h'\) and \(X_i = X_i'\).

Proof. By induction on a derivation of \(\Gamma \vdash \kappa \simeq \kappa'\). We can suppose without loss of generality that all reductions are head-reductions by splitting a reduction into a \textit{C-CONTEXT} and the actual head-reduction.

- For \textit{C-REFL}, we have \(\kappa = \kappa'\). Moreover, all kinds decompose, thus \(\kappa\) has a decomposition \(\kappa \triangleright h \circ (X)^i\). By hypothesis, \(\Gamma \vdash \kappa\). Invert this derivation to find that the \(X_i\) are well-kindred or well-sorted. Thus, we can conclude by reflexivity: \(\Gamma \vdash X_i \simeq X_i\).

- For \textit{C-SYM} and \textit{C-TRANS}, apply analysis of coercions to the subbranch(es), then use \textit{C-SYM} or \textit{C-TRANS} to combine the subderivations on the decompositions.

- For \textit{C-SPLIT}, apply the lemma in each branch. There exists at least one branch, from where we get equality of the heads. For equality of the tails, apply \textit{C-SPLIT} to combine the subderivations.

- The rules \textit{C-META} and \textit{C-IOTA} do not apply because there is no head-reduction on kinds.

- For rule \textit{C-CONTEXT}, either the context is empty and we can apply the induction hypothesis, or the context is non-empty. In this case, the heads are necessarily equal. We can extract one layer from the context. Then, for the tail where the hole is, we can apply \textit{C-CONTEXT} with the subcontext. For the other tails, by inverting the kinding derivation we can find that they are well sorted. Thus we can apply \textit{C-REFL} to get equality.

We can then prove subject reduction for the type-level meta-reduction. We will use the following inversion lemma:

Lemma 18 (Inversion for type-level meta-reduction). Consider an environment \(\Gamma\).

- If \(\Gamma \vdash \lambda^i(x : \tau_1). \tau_2 : \tau_1 \rightarrow \kappa\), then \(\Gamma, x : \tau_1 \vdash \tau_2 : \kappa\).
- If \(\Gamma \vdash \Lambda(\alpha : \kappa_1^{i'}). \tau : \forall \alpha (\alpha : \kappa_1^{i'}), \kappa_2\), then \(\Gamma, \alpha : \kappa_1 \vdash \tau : \kappa_2\).
- If \(\Gamma \vdash \Lambda(\alpha : \tau, \kappa)^{i''} \circ (\alpha : \tau, \kappa_2) \rightarrow \tau'' : \kappa\), then \(\Gamma, (\alpha_1 =_\tau \alpha_2) \vdash \tau'' : \kappa\).

Proof. We will study the first case, the two other cases are similar. Suppose the last rule is not \textit{K-CONV}. Then, it is a syntax directed rule, so it must be \textit{K-VLAM}, and we have \(\Gamma, x : \tau_1 \vdash \tau_2 : \kappa\). Otherwise, we can collect by induction all applications of \textit{K-CONV} leading to the application of \textit{K-VLAM}. We obtain (by the previous case) a derivation of \(\Gamma, x : \tau_1^{i''} \rightarrow \tau_2 : \kappa'\), with (combining all conversions us transitivity) an equality \(\Gamma \vdash \tau_1 \rightarrow \tau_1' \simeq \tau_1' \rightarrow \kappa'\). By the previous lemma (Lemma 17), we have \(\Gamma \vdash \tau_1 \simeq \tau_1''\) and \(\Gamma \vdash \kappa \simeq \kappa''\).

Lemma 19 (Subject reduction, type-level meta-reduction). Suppose \(X \rightarrow^i X'\) and \(\Gamma \vdash X : Y\). Then, \(\Gamma \vdash X' : Y\).

Proof. The reduction is a head-reduction \(\tau \rightarrow^i \tau'\) in a context \(C\). If we can prove subject reduction for \(\tau \rightarrow^i \tau'\), we can conclude by Lemma 12, because the reduction implies \(\Gamma \vdash \tau \rightarrow \tau'\).

Let us prove subject reduction for the head-reduction: suppose \(\tau \rightarrow^i \tau'\) and \(\Gamma \vdash \tau : \kappa\). We want to prove \(\Gamma \vdash \tau' : \kappa\).

Consider a derivation of \(\Gamma \vdash \tau : \kappa\) whose last rule is not a conversion. It is thus a syntax-directed rule. We will consider as an example the head-reduction from \(\tau = (\lambda^i(x : \tau_1), \tau_2) \parallel u\) to \(\tau' = \tau_2(x \leftarrow u)\).

Since the last rule of \(\Gamma \vdash (\lambda^i(x : \tau_1), \tau_2) \parallel u : \kappa\) is syntax-directed, we can invert it and obtain \(\Gamma \vdash u : \tau_1\) and \(\Gamma \vdash \lambda^i(x : \tau_1), \tau_2 : \tau_1 \rightarrow \kappa\). We apply inversion (Lemma 18) and obtain \(\Gamma, x : \tau_1 \vdash \tau_2 : \kappa\). Finally, by
This is sufficient to prove the following lemma:

Lemma 20 (Normal derivations, type-level meta reduction). Suppose $\Gamma \vdash X_1 \approx X_2$, where X_1 and X_2 are normal terms, types or kinds for \longrightarrow^i. Then, there exists a derivation of $\Gamma \vdash^i X_1 \approx X_2$, where $\Gamma \vdash^i X_1 \approx X_2$ is a limited version of $\Gamma \vdash X_1 \approx X_2$ where the rule $\text{C-RED-META}'$ is limited to \longrightarrow^i.

More precisely, this judgment is defined from the following rules:

- **C-REFL**
 \[
 \Gamma \vdash X \quad \Gamma \vdash X' \quad X = X'
 \]
- **C-SYM**
 \[
 \Gamma \vdash X_1 \approx X_2 \quad \Gamma \vdash X_2 \approx X_1
 \]
- **C-TRANS**
 \[
 \Gamma \vdash X \quad \Gamma \vdash X \approx X'
 \]
- **C-CONTEXT**
 \[
 \Gamma \vdash C[Y'] : Y'
 \Gamma \vdash C \Gamma \vdash^i X \approx X'
 \]
- **C-RED-IOTA'**
 \[
 X_1 \longrightarrow_i X_2
 \Gamma \vdash X_1 : Y_1
 \Gamma \vdash X_2 : Y_2
 \]
- **C-RED-META'**
 \[
 X_1 \longrightarrow^i X_2
 \Gamma \vdash X_1 : Y_1
 \Gamma \vdash X_2 : Y_2
 \]
- **C-EQ**
 \[
 a_1 \longrightarrow^i u_1
 a_2 \longrightarrow^i u_2
 (a_1 =_\Gamma a_2) \in \Gamma
 \]

Proof: We prove a stronger result: suppose $\Gamma \vdash X_1 \approx X_2$, and X_1', X_2' are the \longrightarrow^i normal forms of X_1 and X_2. Then, for all context C such that $\Gamma \vdash X_1 : Y_1$ and $\Gamma' \vdash C[\Gamma \vdash X_1 : Y_1] : Y_1'$, if X_1' are the normal forms of $C[X_1]$, then $\Gamma \vdash^i X_1' \approx X_2'$. In this proof, we’ll say “normal forms” without further qualification for \longrightarrow^i normal forms.

We proceed by induction on the derivation. We assume all reductions are head-reductions.

- The property is symmetric, so it is preserved by **C-SYM**.
- For **C-REFL**, by subject reduction, if a term is well-typed, its normal form is well-typed too.
- For **C-TRANS**, we get the result by unicity of the normal form.
- For **C-CONTEXT**, we fuse the contexts and use the induction hypothesis.
- For **C-RED-META'**, if the reduction is a type-level meta reduction, it becomes a **C-REFL** on the (well-typed) normal form.

- For the other rules, we follow the same pattern. We first normalize the context to a multi-context, represented by a term with a free variable x (or α): $C[x]$ has a normal form X_c. We also normalize X_1 and X_2 to X_1'' and X_2'', and prove $\Gamma \vdash X_1'' \approx X_2''$.
- For **C-EQ**, we can completely normalize the terms.
- For **C-RED-META'** and **C-RED-IOTA'**, head-reduction and normalization commute: if X_1 head-reduces to X_2, then X_1'' head-reduces to X_2''.

We now have to prove that the normal form of $C[X_1]$ is $X_c[x \leftarrow X_1]$.

- It is immediate if the hole is a term: no type-level meta-reduction rule depends on the shape of a term.
- For type-level iota reduction, we use a typing argument: X_1'' is a type-level match, thus has kind Sch, thus X_2'' has kind Sch by subject reduction. Then, X_2'' cannot be a type-level abstraction, because by Lemma 17 the kinds of type-level abstractions are not convertible to Sch.

Finally, we can conclude by **C-CONTEXT**.

\[\square\]

We prove a decomposition result on meta conversions: types and kinds that start with a *meta head* keep their heads, and their *tails* stay related. In order to prove this, we extend the decoding into a head and tails to types. Note that not all types have a head: applications and variables, for example, have no head yet, but they can gain one after reduction.

\[
\begin{align*}
\forall (x: \kappa), \tau & \triangleright \forall (\alpha: \kappa \rightarrow \tau) \\
\Pi(x: \tau), \tau' & \triangleright \Pi(x: \eta), \tau \rightarrow (\kappa, \eta) \\
\Pi(\circ : b = b'), \alpha & \triangleright \Pi(\circ : b = b', \alpha) \\
\forall (\alpha : \text{Typ}), \tau & \triangleright \forall (\alpha : \text{Typ}), \tau \rightarrow (\tau, \tau)
\end{align*}
\]

The meta-heads are all heads that can not be generated by ML reduction in well-kinded types, i.e. all except $\forall (\alpha : \text{Typ}) \circ \rightarrow (\tau, \tau)$ and $\tau \rightarrow (\tau, \tau)$.

The head-decomposition of types and kinds is preserved by reduction:

Lemma 21 (Reduction preserves head-decomposition). Consider a type or kind X that decomposes as $X \rightarrow h \circ (X_i)^i$. Then, if $X \rightarrow^i X_i'$, X_i' decomposes as $X_i' \rightarrow h \circ (X_i')^i$, and for all i, $X_i \rightarrow^i X_i'$.

Proof. The head never reduces. \[\square\]

From this we can prove a generic result of separation and projection:

Lemma 22 (Equality preserves the head). Consider a type or kind X that decomposes as $X \rightarrow h \circ (X_i)^i$, and X' that decomposes as $X' \rightarrow h' \circ (X_i')^i$. Then, if h or h' is a meta head, $\Gamma \vdash X \approx X'$, $h = h'$ and for all i, $\Gamma \vdash X_i \approx X_i'$.
Proof. We can start by \(\rightarrow_1 \)-normalizing both sides. The heads stay the same, and the tails are equivalent. Then consider (using Lemma 20) a normal derivation of the result. In the following, we assume \(X \) and \(X' \) are \(\rightarrow_1 \)-normal and the derivation is normalized.

We then proceed by induction on the size of the derivation \(\Gamma \vdash X \cong X' \), proving a strengthened result: suppose \(X \) decomposes as \(X \triangleright h \circ (X_i)_i \), and either \(\Gamma \vdash X \cong X' \) or \(\Gamma \vdash X' \cong X \). Then, \(X' \triangleright h \circ (X_i')_i \), with \(\Gamma \vdash X_i \cong X_i' \).

- There is no difficulty with the rules C-REFL, C-SYM, C-TRANS, C-SPLIT.
- For C-CONTEXT on the empty context, we apply the induction hypothesis. Otherwise, the head stays the same, and the equality is applied in one of the tails.
- C-EQ does not apply on types.
- Since both \(X \) and \(X' \) are types, instances of C-RED-META distribute in the tails. That is also the case for instances of C-RED-IOTA that do not reduce the head directly.

For \(\rightarrow_1^h : X \) has a head, so the reduction is necessarily \(X' \rightarrow_1^h X \). \(X \) and \(X' \) cannot be kinds, so they are types \(\tau \) and \(\tau' \). We have \(\tau' \) match \(d_j((u_i)_i) \) with \((d_j(x_{ij})_i \rightarrow \tau_j)_j \) and \(\tau = \tau_j[x_{ij} \leftarrow u_i]_i \). The term \(\tau_j \) has the same head as \(\tau \). Moreover, inverting the last syntactic rule of a kinding derivation for \(\tau' \), we obtain \(\Gamma \vdash \tau_j : \text{Sch} \). We want to show that this is impossible. Consider the last syntactic rule of this derivation. It is of the form \(\Gamma \vdash \tau_j : \kappa \), with \(\kappa \neq \text{Sch} \). Moreover, we have \(\Gamma \vdash \kappa \neq \text{Sch} \). But this is absurd by Lemma 17.

\[\square \]

Then, we get subject reduction for term-level part of \(\rightarrow_1 \). We first prove an inversion lemma:

Lemma 23 (Inversion, meta, term level). Consider an environment \(\Gamma \).

- If \(\Gamma \vdash \lambda x : \tau_1 (x : \tau_1). \; a : \Pi (x : \tau_1). \; \tau_2 \), then \(\Gamma, x : \tau_1 \vdash a : \tau_2 \).
- If \(\Gamma \vdash \lambda \alpha : \kappa . \; a : \Pi \alpha : \kappa . \; \tau \), then \(\Gamma, \alpha : \kappa \vdash a : \tau \).
- If \(\Gamma \vdash \lambda \alpha : \kappa . \; b_1 \leftarrow \tau_1, \; b_2 \leftarrow \tau_2 . \; a : \Pi \alpha : \kappa . \; \tau \), then \(\Gamma, b_1 \leftarrow \tau_1, \; b_2 \leftarrow \tau_2 \vdash a : \tau'' \).

Proof. Similar to the proof of Lemma 18. \(\square \)

Lemma 24 (Subject reduction for \(\rightarrow_1 \)). Let \(\Gamma \) be a well-formed context. Suppose \(X \rightarrow_1 X' \). Then, if \(\Gamma \vdash X : Y \), \(\Gamma \vdash X' : Y \).

Proof. Add the term-level part to the proof of Lemma 19. \(\square \)

We can normalize further the coercions between two \(\rightarrow_1 \) normal forms:

Lemma 25 (Normal derivations, type-level meta reduction). Suppose \(\Gamma \vdash X_1 \cong X_2 \), where \(X_1 \) and \(X_2 \) are normal terms, types or kinds for \(\rightarrow_1 \). Then, there exists a derivation of \(\Gamma \vdash X_1 \cong X_2 \), where \(\Gamma \vdash X_1 \cong X_2 \) is a limited version of \(\Gamma \vdash X_1 \cong X_2 \) where the rule C-RED-META is limited to \(\rightarrow_1^0 \).

More precisely, this judgment is defined from the following rules:

\[
\begin{align*}
\text{C-REFL} & : \quad \Gamma \vdash X : Y \\
\text{C-SYM} & : \quad \Gamma \vdash X \cong Y \\
\text{C-TRANS} & : \quad \Gamma \vdash X \cong Z \\
\text{C-RED-META}\' & : \quad X_1 \rightarrow_1 X_2 \quad \Gamma \vdash X_1 : Y_1 \quad \Gamma \vdash X_2 : Y_2 \\
\quad \vdash \Gamma \vdash X_1 \cong X_2 \\
\text{C-RED-IOTA}\' & : \quad X \rightarrow_1 X' \quad \Gamma \vdash X : Y \\
\quad \vdash \Gamma \vdash X' \cong X \\
\text{C-CONTEXT} & : \quad \Gamma \vdash \text{C}[\Gamma'] : \tau \quad \Gamma \vdash \text{C}[X_1] \cong \text{C}[X_2] \\
\quad \vdash \Gamma \vdash \text{C}[X_1] \cong \text{C}[X_2] \\
\text{C-EQ} & : \quad a_1 \rightarrow_1^a u_1 \quad a_2 \rightarrow_1^a u_2 \\
\quad \vdash (a_1 = a_2) \in \Gamma \\
\quad \vdash \Gamma \vdash u_1 \cong u_2 \\
\text{C-SPLIT} & : \quad (d_i : \forall (\alpha_k) \circ (\tau_j)_j \rightarrow \zeta (\alpha_k)_k)_i \\
\quad (\chi (x_{ij}) : \tau_j)_j \rightarrow (u = d_i(x_{ij})) \rightarrow_1^0 X_1 \cong X_2 \iota) \\
\quad \vdash \Gamma \vdash \zeta (\tau_j)_k \\
\quad \vdash \Gamma \vdash X_1 \cong X_2 \\
\end{align*}
\]

Proof. Similar to Lemma 20. \(\square \)

We can now prove a projection result for eML. The corresponding separation result is more complex and will be proved separately.

Lemma 26 (Projection for eML). Consider \(X \) and \(X' \) decomposing as \(X \triangleright h \circ (X_i)_i \) and \(X' \triangleright h \circ (X'_i)_i \). Suppose \(\Gamma \vdash X \cong X' \). Then, \(\Gamma \vdash X_i \cong X'_i \).

Proof. The result for non-ML heads is already implied by the previous lemma. We can suppose that \(X \) and \(X' \) are types \(\tau \) and \(\tau' \) and are normal for \(\rightarrow_1 \), and that we have a normal derivation of \(\Gamma \vdash \tau \cong \tau' \).

We derive a stronger result: we define a function \(\text{tails}(h; \tau) \) that returns the tails of a type, assuming it has a given eML head. We use \(\text{Any}_{\alpha} \) to stand for any well-typed term, \(\text{Any}_{\kappa} \) for a well-kindred type, and \(\text{Any}_{\text{sort}} \) for a well-sorted kind (for example, \(\text{Any}_{\alpha} = \lambda (x : \text{Any}_{\alpha}). x, \text{Any}_{\kappa} = \forall (\alpha : \text{Typ}) \alpha \) and
Any

\[
\text{tails}(h; \tau) = (X_i)^i \\
\text{if } \tau = h \circ (X_i)^i \\
\text{ tails}(h; \text{match } a \text{ with } (P_i \rightarrow \tau_i)^i) = \\
\text{(match } a \text{ with } (P_i \rightarrow X_j)^j)^i \\
\text{ tails}(h; \tau) = (\text{Any})^i
\]

Note that the action of taking the tail commutes with substitution of terms: tails(h; \tau[x \leftarrow u]) = tails(h; \tau)[x \leftarrow u]. Moreover, if \tau is well-typed, its tails tails(h; \tau) are well-typed or kinded (by inversion of the last syntax-directed rule of a kinding of \tau).

Then, we show by induction on a normal derivation that whenever \Gamma \vdash \tau \equiv \tau', for any ML head h, \Gamma \vdash \text{tails}(h; \tau) \equiv \text{tails}(h; \tau'). This is sufficient, because tails(h; \tau_x = X_i and tails(h; \tau') = X'_i. We suppose that the reductions are head-reductions, and that all applications of C-CONTEXT use only a shallow context.

- For C-REFL, invert the typing derivation to ensure that the tails are well-typed.
- There is no difficulty for C-SYM and C-TRANS.
- For C-SPLIT, prove the equality in each branch and merge using C-SPLIT.
- The rule C-EQ does not apply in a typing context.
- For C-RED-IOTA', the only possible head-reduction is a reduction of a type-level match: suppose we have \tau = \text{match } d_i(u_i)^i \text{ with } (d_k(x_k)^i)^k and \tau' = \tau_j[x_ji \leftarrow u_j]^j. Then, compute the tail: tails(h; \tau_j) = \text{match } d_i(u_i)^i \text{ with } (d_k(x_k)^i \rightarrow X_k)^k where X_k is tails(h; \tau_k) and tails(h; \tau') = tails(h; \tau_j)[x_ji \leftarrow u_j]^j. The tails are well-typed, and reduce to one another, thus we can conclude by C-RED-IOTA'.
- For C-CONTEXT, consider the different cases:
 - If the context is of the form C = \text{match } C' with (P_i \rightarrow \tau_i)^i and is applied to X_1 and X_2, we have \Gamma \vdash C'[X_1] = C'[X_2]. Then we can substitute in the tails.
 - If the context is of the form C = \text{match } a with (P_i \rightarrow \tau_i)^i \mid P_j \rightarrow C', we can use the induction hypothesis: the tails of the case where the hole is are equal, so we can substitute in the global tails.
 - All other contexts distribute immediately in the tails.

And we obtain subject reduction:

Theorem 3 (Subject reduction). Suppose \Gamma is well-formed, X \rightarrow X' and \Gamma \vdash X : Y. Then, \Gamma \vdash X' : Y.

Proof. We need to prove subject reduction for \rightarrow_e and \rightarrow_\beta. We prove this for head-reduction as in the other subject reduction results (see Lemma 19). For \rightarrow_e, we can use D_k := \emptyset \# a | \emptyset \# u | \emptyset \# \tau | \emptyset \# \circ \\
D_a := \emptyset \# a | \emptyset \# u | \emptyset \# \tau | \emptyset \# \circ \\
\mid \emptyset \# \circ | [\emptyset \# \tau \mid \text{match } []] \mid \text{with } P \rightarrow a \\
c_k := \lambda(x : \tau). \tau | \lambda(x : \tau). \tau | \lambda(\alpha : \kappa). \tau | \lambda(\phi : \sigma \rightarrow r. a). \tau \\
c_v := \lambda(x : \tau). a | \lambda(x : \tau). a | \lambda(\alpha : \kappa). a | \lambda(\phi : \sigma \rightarrow r. a). a \\
\mid \lambda(x : \tau). a | \text{fix } (x : \tau). x | a | \Lambda(\alpha : \text{Typ}). a | d(\pi)

Figure 16. Constructors and destructors

...we continue...
5.6 Reducing mML to eML

We will now show that all mML terms that can be typed in an environment without any meta constructs normalize by \(\rightarrow_1 \) to an eML term of the same type. It does not suffice to normalize the term and check that it does not contain any mML syntactic construct and conclude by subject reduction: we have to show the existence of an eML typing derivation of the term.

Definition 5 (Meta-free context). A meta-free context is a context where the types of all (term) variables have kind Sch, and all type variables have kind Typ. A term is said to be meta-closed if it admits a typing under a meta-free context.

A term is said to be eML-typed if moreover its type has kind Sch. A type is said to be eML-kind if moreover it has kind Sch (or one of its subkinds).

Theorem 7 (Classification of meta-normal forms). Consider a normal, meta-closed term or type. Then, it is an eML term or type, or it is not eML-typed (or eML-kind) and starts with a meta abstraction.

Proof. By induction on the typing or kinding derivation. Consider the last rule of a derivation:

- • If it is a kind conversion K-CONV, by Lemma 17, it is a trivial conversion.
- • If it is a type conversion, by Theorem 4, the kind of the type is preserved.
- • If it is a construct in ML syntax: the subderivations on terms and types are also in meta-closed environments and eML-typed or eML-kind, and we apply the induction hypothesis.
- • If it is a meta-abstraction, it is not eML-typed or eML-kind because of non-confusion of kinds.
- • If it is a meta-application: let us consider the case of term-level meta-type-application. The other cases are similar. We have \(a = \beta \gamma \tau \), \(b \) is typeable in a meta-closed context but is not eML-typed. Thus, it is a meta-abstraction. By soundness, \(a \) reduces, thus is not a normal form.

We prove that all mML derivations on eML syntax that can be derived in mML can also be derived in eML. The difficulty comes from equalities: transitivity allows us to make mML terms appear in the derivation; these must be reduced to eML while maintaining a typing valid derivation.

Theorem 8 (eML terms type in eML). In eML, consider an environment \(\Gamma; \) terms (resp. types, kinds) \(X_1, X_2 \); and a type (resp. kind, sort) \(Y \). Then:

- • If \(\Gamma \vdash \) mML, then there is a derivation of \(\rightarrow \Gamma \) in eML.
- • If \(\Gamma \vdash X : Y \) in mML, then there is a derivation of \(\Gamma \vdash X : Y \) in eML.
- • If \(\Gamma \vdash X_1 \equiv X_2 \) in mML, then there is a derivation of \(\Gamma \vdash X_1 \equiv X_2 \) in eML.

Proof. By mutual induction.

We need to strengthen the induction for the typing derivations: we prove that, for any mML type, kind or sort \(Y' \), if \(\Gamma \vdash X : Y \), \(Y' \) reduces to \(Y \) in eML and \(\Gamma \vdash X : Y \). Then notice that the conversions only happen between normal eML terms, so we can apply the results on equalities.

For equalities, normalize the derivations as in Lemma 25, but simultaneously transform the typing derivations into eML derivations (this must be done simultaneously otherwise we cannot control the size of the new derivations).

The main result of this section follows.

Theorem 9 (Reduction from mML to eML). Consider a meta-free environment \(\Gamma \), \(a \) and \(\tau \), and suppose \(\Gamma \vdash a : \tau \). \(\Gamma \vdash \tau : \text{Sch} \) and \(\tau \) is an eML type. Then, there exists a term \(a' \) such that \(a \rightarrow_1 a' \) and \(\Gamma \vdash a' : \tau \) holds in eML.

Note that this implies that eML also admits subject reduction.

Proof. The well-typed term \(a \) normalizes by \(\rightarrow_1 \) to an irreducible term \(a' \). By subject reduction, \(\Gamma \vdash a' : \tau \). By classification of values, it is an eML term. By Theorem 8, there is a derivation of \(\Gamma \vdash a' : \tau \) in eML.

5.7 Soundness, via a logical relation for \(\rightarrow_1 \)

We prove that \(\rightarrow_1 \) is normalizing, on all terms (including ill-typed terms):

Lemma 27 (Normalization for \(\rightarrow_1 \)). The reduction \(\rightarrow_1 \) is strongly normalizing.

Proof. We will say that a term, type or kind is good if it admits no infinite reduction sequence, and if it reduces to \(\Lambda(\alpha : \text{Typ}) \). \(u \), for all good types \(\tau \), \(u[\alpha \leftarrow \tau] \) is good. Goodness is stable by reduction.

We will prove the following property by induction on a term, type or kind \(X \): suppose \(\gamma \) associates type and term variables to good terms and types. Then, \(\gamma(X) \) is good.

Let us consider the different cases:

- • If \(X \) is a variable, \(\gamma(X) \) is good by hypothesis.
- • If \(X = \Lambda(\alpha : \text{Typ}) \). \(u \); by induction hypothesis, \(\gamma(u) \) is good for all \(\gamma \), thus \(\gamma(X) \) admits no infinite reduction sequence. Moreover, if \(X \) reduces to \(\Lambda(\alpha : \text{Typ}) \). \(u' \), \(u'[\alpha \leftarrow \tau] \) can be obtained by reduction from \(\gamma[\alpha \leftarrow \tau] \)(\(u \)), and thus is good.
- • Suppose no head-reduction occurs from \(\gamma(X) \). Then, since the subterms normalize, \(\gamma(X) \) normalizes. We will now only consider the terms where head-reduction could occur.
- • If \(X = \alpha \tau \), suppose \(\gamma(X) \) reduces to a term that head-reduces. Then, this term is \(X' = \Lambda(\alpha : \text{Typ}) \). \(u \) \(\tau \), that reduces to \(u[\alpha \leftarrow \tau] \). Since \(a \) is good, the result is good too.

- • If \(X = \text{let} \ x = a_1 \ in \ a_2 \) has a head-reduction, it is from \(\text{let} \ x = u \ in \ a_2' \) to \(a_2'[x \leftarrow u] \), where \(\gamma(a_1) \) reduces
to u and $\gamma(a_2)$ reduces to a'_2. The term u is good, thus
$(\gamma(x \leftarrow u)a_2$ is good and reduces to $a'_2[x \leftarrow u]$.

• Similarly for type and term-level pattern matching.

We then prove soundness of the \rightarrow_τ reduction. This is done via a logical relation (essentially, implementing an evaluator for the non-expansive terms of eML with the reduction \rightarrow_τ). This then allows proving (syntactically) that all coercions in the empty environment are between types having the same head (up to reduction). Let us note $u \rightarrow_\tau v$ if all reduction paths from u terminate at v.

We start by defining a unary logical relation specialized to \rightarrow_τ, on Figure 17. It includes an interpretation $V[\tau]_\gamma$ of values of type τ, an interpretation $E[\tau]_\gamma$ of terms as normalizing to the appropriate values, an interpretation $G[\gamma]_\tau$ of the typing environments as environments associating variables to non-expansive terms. We also define binary interpretations (although they are interpreted in an unary environment). $EqE[\tau]_\gamma$, of equality at type τ, is an interpretation $EqV[\tau]_\gamma$ of equality for values. We will omit the typing and equality conditions in the definitions. The unary interpretation only contains terms that normalize, while the binary interpretation contains both pairs of terms that normalize by \rightarrow_τ, and pairs of terms stuck on a beta-reduction step. We note $\tau \vdash \gamma : \Gamma$ if γ is a well-typed environment that models Γ, and $\tau \vdash \gamma_1 \equiv \gamma_2$ if all components of γ_1 and γ_2 are equal.

The definition of the interpretations is well-founded, by induction on types, and, for datatypes, by induction on the values (because the values appearing inside datatype constructors are necessarily values of a datatype, or functions from terms).

Definition 6 (Valid environment). An environment γ is valid if for all α such that $\gamma(\alpha) = (\tau, S, R)$,

• For all $u \in S$, $\emptyset \vdash u : \tau$.

• The restriction of R to S is an equivalence relation.

Lemma 28 (Definition of the interpretations). The interpretations are defined for well-kindred terms and well-formed environments:

• If $\vdash \Gamma, G[\Gamma]$ is well-defined and all its elements are valid, and $EqG[\Gamma]$ is well-defined and reflexive on $G[\Gamma]$.

• If $\vdash \Gamma : Sch$, for all $\gamma \in G[\Gamma]$, $E[\tau]_\gamma$ is defined, all its elements are non-expansive terms $\gamma(\tau)$, and $EqE[\tau]_\gamma$ is an equivalence relation on $E[\tau]_\gamma$.

Proof. By mutual induction on the kinding and well-formed derivations.

As usual, we need to prove a substitution result:

Lemma 29 (Substitution). Consider a valid environment γ. Then,

• $E[\tau[x \leftarrow u]]_\gamma = E[\tau]_{\gamma[x \leftarrow u]}$

• $EqE[\tau[x \leftarrow u]]_\gamma = EqE[\tau]_{\gamma[x \leftarrow u]}$

• $E[\tau[\alpha \leftarrow \tau']]_\gamma = E[\tau]_{\gamma[\alpha \leftarrow (\tau', E[\tau'], EqE[\tau']_\gamma)]}$

• $EqE[\tau[x \leftarrow \tau']]_\gamma = EqE[\tau]_{\gamma[\alpha \leftarrow (\tau, E[\tau'], EqE[\tau']_\gamma)]}$

Proof. By induction on τ.

We also need to prove that reducing a value in the environment does not change the interpretation:

Lemma 30 (Reduction in the environment). Consider a valid environment γ, and $u \rightarrow_\tau u'$. Then,

• $E[\tau]_{\gamma[x \leftarrow u]} = E[\tau]_{\gamma[x \leftarrow u']}$

• $EqE[\tau]_{\gamma[x \leftarrow u]} = EqE[\tau]_{\gamma[x \leftarrow u']}$

Proof. By induction on τ. The term variables in γ are used for substituting into types for the typing side-conditions. Since $\emptyset \vdash u \equiv u'$, the typing side-conditions stay true by Lemma 11. They also occur in the interpretation of pattern matching. But, for all terms u, $(\gamma(x \leftarrow u))(u)$ and $(\gamma(x \leftarrow u'))(u)$ normalize to the same term.

Lemma 31 (Equality in the environment). Consider a valid environment γ and τ_1, S, R such that $\gamma[\alpha \leftarrow (\tau_1, S, R)]$ is valid. Suppose $\emptyset \vdash \tau_1 \equiv \tau_2$. Then,

• $\gamma[\alpha \leftarrow (\tau_2, S, R)]$ is valid;

• for all types τ, $E[\tau]_{\gamma[\alpha \leftarrow (\tau_1, S, R)]} = E[\tau]_{\gamma[\alpha \leftarrow (\tau_2, S, R)]}$;

• for all types τ, $EqE[\tau]_{\gamma[\alpha \leftarrow (\tau_1, S, R)]} = EqE[\tau]_{\gamma[\alpha \leftarrow (\tau_2, S, R)]}$;

Proof. By induction. The type τ_1 occurs only in the conclusion of typing derivations. Use conversion and $\emptyset \vdash \tau_1 \equiv \tau_2$ to get the same derivations with τ_2.

Lemma 32 (Reduction preserves interpretation). Suppose $\tau \rightarrow_\tau \tau'$. Then,

• $E[\tau]_\gamma = E[\tau']_\gamma$;

• $EqE[\tau]_\gamma = EqE[\tau']_\gamma$.

Proof. We will show the lemma for $E[\tau]_\gamma$. We eliminate the context of the reduction by induction. If we pass to a reduction between terms, it is in the argument of a type-level match. Then, the two terms normalize to the same term. The only type-level reduction is the reduction of the type-level match:

match $d_j\tau_j(u_i)_i$ with $(d_j\tau_j(x_{ji})_i \rightarrow \tau_j)_i^x^x^j \rightarrow^h \tau_j[x_{ji} \leftarrow u_i]_i$.

Let us show that the two types have the same interpretation. We have $d_j\tau_j(u_i)_i \rightarrow^e d_j\tau_j(v_i)_i$, where $u_i \rightarrow^e v_i$.

Thus, the interpretation of the left-hand side is $E[\tau]_{\gamma[x_{ji} \leftarrow v_i]} = E[\tau]_{\gamma[x_{ji} \leftarrow u_i]}$ by Lemma 30. By substitution (Lemma 29), $E[\tau]_{\gamma[x_{ji} \leftarrow v_i]} = E[\tau]_{\gamma[x_{ji} \leftarrow u_i]}$. This is the interpretation of the right-hand side.

Lemma 33 (Evaluation for \rightarrow_τ). Suppose $\vdash \Gamma$. Then,

• if $\Gamma \vdash u : \tau$, then for all $\gamma \in G[\Gamma]$, $\gamma(u) \in E[\tau]_\gamma$.
Proof. We prove these results by mutual induction on the derivations. For the result on typing derivations, let us consider the different rules:

• For **VAR** on \(x : \tau \): by hypothesis, \((\gamma(x) \in E[\tau])_\gamma \).

• For **Conv** use the second lemma to show the interpretations of the two types are the same.

• For **Fix**: any two well-typed abstractions are linked at an arrow type.

• The rule **App** cannot occur as the first rule in the typing of a non-expansive term.

• For **Tabs**:

\[
\begin{align*}
\Gamma, \alpha : \text{Typ} & \vdash u : \tau \\
\Gamma & \vdash \Lambda(\alpha : \text{Typ}) \:: \lambda u : \text{Typ} . u
\end{align*}
\]

Consider \(\gamma \in G[\Gamma] \) and \(\emptyset \vdash \tau' : \text{Typ}, \Lambda(\alpha : \text{Typ}). u \) normalizes to \(\Lambda(\alpha : \text{Typ}). v \) with \(u \rightarrow_1 \eta v \). By induction hypothesis, \((\gamma(\alpha \rightarrow \tau'))(u) \in E[\tau] \gamma_\{\alpha \rightarrow \tau', E[\tau'], E[\tau'] \} \). Moreover, it reduces to \((\gamma(\alpha \rightarrow \tau'))(v) = (\gamma(v) \alpha \rightarrow \tau') \). Thus, \((\gamma(v) \alpha \rightarrow \tau') \in E[\tau] \gamma_\{\alpha \rightarrow \tau', E[\tau'], E[\tau'] \} \).

• For **Tapp**:

\[
\begin{align*}
\Gamma \vdash \tau' : \text{Typ} & \quad \Gamma \vdash u : \forall(\alpha : \text{Typ}) \tau \\
\Gamma & \vdash u : \tau' \rightarrow \tau(\alpha \rightarrow \tau')
\end{align*}
\]
Consider $\gamma \in G[\Gamma]$. There exists τ'' such that $\gamma(\tau') \rightarrow^*_c \tau''$. Then, $\emptyset \vdash \tau'' : \text{Typ}$. There exists v such that $\gamma(u) \rightarrow^*_c \tau''$. By inductive hypothesis, $v \in V[\forall (\alpha : \text{Typ}) \tau']_{\gamma}$. Thus, there exists v' such that $v = \Lambda (\alpha : \text{Typ}). \text{v'}$. and $v' [\alpha \leftarrow \tau''] \in E[\tau]_{\gamma}$. $\text{EqE}[\tau'']_{\gamma} = E[\tau[\alpha \leftarrow \tau'']_{\gamma}] = E[\tau[\alpha \leftarrow \tau']_{\gamma})_{\gamma}$, by Lemmas 29 and 32. We need to prove $\gamma(u \tau') \in E[\tau[\alpha \leftarrow \tau']_{\gamma}]$. But we have $\gamma(u \tau') \rightarrow^*_c (\Lambda (\alpha : \text{Typ}). \text{v'} \tau'' \rightarrow^*_c v' [\alpha \leftarrow \tau'']$.

• The other cases are similar.

For the result on equalities between types, by induction on a derivation. We suppose that the context rule is always used with a shallow context.

• For C-SYM and C-TRANS, use the induction hypothesis and symmetry/transitivity of equality.

• For C-REFL, use reflexivity on types.

• For C-CONTEXT: apply the induction hypothesis on the modified subterm if it is a type, and reflexivity on the other subterms.

• Otherwise, it is the argument of a type-level pattern matching. We have $\Gamma \vdash a_1 : \zeta(\tau_1)_{\gamma}$, $\Gamma \vdash a_2 : \zeta(\tau_2)_{\gamma}$, and $\Gamma \vdash a_1 \equiv a_2$. By the third result, $(\gamma_1(a_1), \gamma_2(a_2)) \in \text{EqE}[\zeta(\tau_1)_{\gamma}]$. If both do not normalize to a value, the two interpretations of the pattern matching are empty. Otherwise they normalize to $d(v_{1j})$ and $d(v_{2j})$ such that $(v_{1j}, v_{2j}) \in \text{EqE}[\tau_j]_{\gamma_j}$, where the τ_j are the types of the arguments. Thus, $(\gamma_1(x_j \leftarrow v_{1j}), \gamma_2(x_j \leftarrow v_{2j})) \in \text{EqE}[\zeta(\tau_j)_{\gamma_j}]$ and we can interpret the selected branch in these environments.

• For C-SPLIT on a term $\Gamma \vdash u : \tau'$, use reflexivity on types to prove that $(\gamma_1(u), \gamma_2(u)) \in \text{EqE}[\tau']_{\gamma_1}$. Moreover, $\gamma_1(u) \in E[\tau']_{\gamma_1}$, thus the terms normalize to a value. Then, select the case corresponding to the constructor, construct an environment as in the previous case, and use the induction hypothesis.

• For C-RED-IOTA, suppose we have a head-reduction (otherwise, use C-CONTEXT). Then, it is the reduction of a pattern matching. Proceed as in C-SPLIT.

• The rule C-EQ does not apply on types.

For the result on equalities between terms:

• The cases of C-SYM, C-TRANS and C-SPLIT are similar to the same cases on types.

• For C-REFL, use reflexivity on terms.

• For C-RED-IOTA, proceed as in C-RED-IOTA for types.

• For C-EQ, consider the two equal terms u_1, u_2. From γ_1 we get $(\gamma_1(u_1), \gamma_2(u_2)) \in \text{EqE}[\tau]_{\gamma_1}$. Moreover, by reflexivity on u_2, $(\gamma_1(u_2), \gamma_2(u_2)) \in \text{EqE}^1 [\tau]_{\gamma_1}$. We conclude by transitivity of $\text{EqE}[\tau]_{\gamma_1}$.

• For C-CONTEXT, examine the different typing rules as in the first result, and use reflexivity when needed.

For the reflexivity results, examine the different typing rules as in the first result. Take special care for variables. The interpretations of the type variables are the same. For term variables appearing in terms, they are bound to related terms. Finally, for type-level pattern matching, the interpretations of the term in the environments are related by reflexivity.

The following result is then a direct consequence:

Lemma 34 (Separation for \rightarrow). Suppose $\emptyset \vdash \tau_1 \equiv \tau_2$. Then if τ_1 and τ_2 have a head, it is the same.

Proof. Apply the previous result with the empty environment. The interpretations of types with distinct heads are distinct.

Theorem 10 (Soundness, empty environment). • If $\emptyset \vdash D_\epsilon[c] : Y$, then $D_\epsilon[c] \rightarrow^h$.

• If $\emptyset \vdash D_\epsilon[c] : Y$, then $D_\epsilon[c] \rightarrow^h$.

Proof. Similar to Theorem 6, but use the separation theorem for empty environments.

6. A step-indexed logical relation

To give a semantics to ornaments and establish the correctness of elaboration, we define a step-indexed logical relation on mML. The reduction we defined on mML is strong and non-deterministic. We could define directly a relation compatible with full reduction, but we choose a more standard presentation and define a deterministic subset of the reduction. We also ignore all reductions on types. This relation will be used to prove soundness for eML, and that eML programs can be transformed into equivalent ML programs.

6.1 A deterministic reduction

We do not need to evaluate the type for reduction to proceed to a value. Thus, our reduction will ignore the types appearing in terms (and the terms appearing in these types, etc) and only reduce the term part that actually computes. We force a call-by-name reduction strategy for the meta part. The deterministic meta-reduction is defined as applying only in ML evaluation contexts. We extend the ML reduction to also occur on the left-hand side of meta-applications. This does not change the metatheory of the language, as such terms are necessarily ill-typed, but it allows us to use the same evaluation contexts for ML reduction and meta reduction. The values are also extended to contain meta-abstractions. For the same typing reasons, these values are not passed to any eML construct because they have type Met. With these changes, we get a deterministic meta-reduction \rightarrow defined as the ML and meta head-reductions for terms, applied under the extended ML evaluation contexts E. We’ll note \rightarrow^h the associated head-reduction, i.e. the union of all head-reduction of terms.

The reduction \rightarrow admits the usual properties: it is deterministic (and thus confluent), and the values are irreducible.
Let $E ::= \ldots | E \downarrow u | E \uparrow \tau | E \circ$

$v ::= \ldots | \lambda(x : \tau).a | \lambda(\alpha : \kappa).a | \lambda(\alpha : =, a).a$

<table>
<thead>
<tr>
<th>CTX-DE-TA</th>
<th>CTX-BETA-META</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \rightarrow^1 b$</td>
<td>$a \rightarrow^b b$</td>
</tr>
<tr>
<td>$E(a) \rightarrow E(b)$</td>
<td>$E(a) \rightarrow E(b)$</td>
</tr>
</tbody>
</table>

Figure 18. Deterministic reduction \Rightarrow

Lemma 35. Values v are irreducible for \Rightarrow.

Proof. We will show a slightly more general result: values do not decompose as $v = E[a]$, with a not a value. This is enough, as values do not head-reduce.

Proceed by induction on v. Suppose there $v = E[a]$. If E is the empty context, $a = v$ is a value. Otherwise, only constructors can appear as the root of both an evaluation context and a value. Then, the context is of the form $E = d(b, E', v')$, and $v = d(\tau')$. Thus, $E'[a]$ is a value, and we use the induction hypothesis to show a is a value.

Lemma 36 (Determinism). Consider a term a. Then, there exists at most one term a' such that $a \Rightarrow a'$.

Proof. We will show, by induction on the term, that there exists at most one decomposition $a = E[b]$, with b head-reducible. This suffices because head-reduction is deterministic. We have shown in the previous proof that values don’t admit such a decomposition.

Consider the different cases for a.

- If a is a variable, it does not reduce and does not decompose further.
- If a is an abstraction or a fixed point, it does not decompose further since there is no appropriate non-empty evaluation context.
- If $a = d(a)_k^j$ starts with a constructor, either it is a value, or we can decompose the sequence $(a)_k^j = (b)_j^p, b, (v)_k^j$ with b not a value. Necessarily, $E = d((b)_j^p, E', (v)_k^j)$ (because E cannot be empty: constructors do not reduce). But then, b admits a unique decomposition as $E'[b]$.
- If $a = \text{let } x = a_1$ in a_2, consider a_1. If it is a value, it does not decompose, and the only possible context is the empty context $[]$. Otherwise, it admits at most one decomposition $a_1 = E'[b]$, and a admits only the decomposition $a = \text{let } x = E'[b]$ in a_2.
- If $a = a_1 a_2$ is a ML application, consider a_2. If it is not a value, a does not head-reduce and the only possible evaluation context is $E = a_1 E'$. Since a_2 decomposes uniquely, E' is unique, thus E is unique. If it is a value $a_2 = v$, consider a_1. If it is not a lambda, a does not head-reduce, and the only possible evaluation context is $E = E' v$. By induction, E' is unique. If both are values, the only possible evaluation context is the empty context.

- The case of all other applications is similar, except that there is no context allowing the reduction of the right-hand side of the application, thus it is not necessary to check whether it is a value.

Lemma 37. Suppose $v \rightarrow a$. Then, the reduction is necessarily a meta-reduction $v \rightarrow^\beta a$, and $a = v'$ is a value.

Proof. The ML reduction \rightarrow^β is included in \Rightarrow, and values do not reduce for \Rightarrow. By induction on the values, we can prove that redexes only occur under abstractions. Thus, the term remains a value after reduction.

We will note \rightarrow^λ, the reduction that only reduces ML terms. It is also the set of \rightarrow^β reductions that are not included in \rightarrow.

Lemma 38 (Commutations for well-typed terms). Suppose X_3 is a well-typed term.

- Meta-reductions can always be done first: suppose $X_1 \rightarrow^\iota X_2 \rightarrow^\iota X_3$. Then, there exists X_4 such that $X_1 \rightarrow^\iota X_4 \rightarrow^\iota X_3$.
- Suppose $X_1 \rightarrow^\lambda X_2 \rightarrow^\iota X_3$. Then, there exists X_4 such that $X_1 \rightarrow^\iota X_4 \rightarrow^\lambda X_3$.
- Suppose $X_1 \rightarrow^\lambda X_2$ and $X_1 \rightarrow^\iota X_3$. Then, there exists X_4 such that $X_2 \rightarrow^\iota X_4$ and $X_3 \rightarrow^\lambda X_4$.

Proof. For the first two commutations: a typing argument prevents \rightarrow^ι and \rightarrow^λ from creating meta-redexes. For the third property: note that \rightarrow^ι, cannot duplicate a \rightarrow^λ redex in an evaluation context.

Lemma 39 (Normalization for \rightarrow^ι and \rightarrow^ι). The union of \rightarrow^ι and \rightarrow^ι is strongly normalizing on well-typed terms.

Proof. Consider a term X. By König’s lemma (since there is a finite number of possible reductions from one term), all possible \rightarrow^ι reduction sequences from X are of length at most k for some k. Consider an infinite \rightarrow^ι, \rightarrow^ι reduction sequence from X. It has $k \rightarrow^\iota$ reductions or less. Otherwise, we could use Lemma 38 to put $k + 1 \rightarrow^\iota$ reductions at the start of the sequence. Thus, after the last \rightarrow^ι reduction, there is an infinite sequence of \rightarrow^ι reduction. But this is impossible by the previous lemma.

Lemma 40 (Weak normalization implies strong normalization). Consider a term a. Suppose there exists a terminating reduction path from a. Then, all reduction sequences are finite.

Proof. We will show that all reduction sequences from a have the same number of \rightarrow^λ reductions. We can, without
loss of generality (by Lemma 38) assume that \(a \) is meta-normal and that the reduction path is meta-normal.

Consider a normalizing reduction sequence from \(a \). We are interested in the \(\rightarrow_\lambda \) reductions. Thus, we decompose the sequence as \(a = a_0 \rightarrow^{*} a'_0 \rightarrow_\lambda a_1 \rightarrow^{*} a'_1 \ldots \rightarrow_\lambda a_n \rightarrow^{*} a'_n \). Consider a longer reduction sequence from \(a \).

We can decompose it as an infinite sequence \(a = b_0 \rightarrow^{*} b'_0 \rightarrow_\lambda b_1 \ldots \).

Let us show by induction that for all \(i \leq n \), there exists \(c_i \) such that \(a'_i \rightarrow^{*} c_i \) and \(b'_i \rightarrow^{*} c_i \). This is true for 0. Suppose it is true for \(i \). Then, we can use Lemma 38 to transport the reductions at the next step, and conclude by confluence. Finally, \(a_n = c_n \) since \(a'_n \) is irreducible. But, since \(b'_n \) reduces by \(\rightarrow_\lambda \), \(c_n \) reduces by \(\rightarrow_\lambda \).

This suffices to show that the reductions coincide, up to reduction under abstractions:

Lemma 41 (Equivalence of the deterministic reduction).

Consider \(a \).

- Suppose \(a \rightarrow v \), and \(a \) normalizes by \(\rightarrow \) to \(a' \). Then \(v \rightarrow a' \).
- Suppose \(a \rightarrow \) a value \(v \) by \(\rightarrow \). Then, there exists \(v' \) such that \(a \rightarrow v' \). More precisely, we have the following:
 - Suppose \(a \rightarrow^{*} d(v_i)^i \). Then, \(a \rightarrow^{*} d(v'_i)^i \) and for all \(i \), \(v'_i \rightarrow^{*} v_i \).
 - Suppose \(a \rightarrow^{*} \text{fix}(x : \tau_i) y_i b_i \). Then, \(a \rightarrow^{*} \text{fix}(x : \tau_i) y_i b_i \rightarrow^{*} b_i \).
 - Suppose \(a \rightarrow^{*} \lambda(x : \tau) b \). Then, \(a \rightarrow^{*} \lambda(x : \tau) b \rightarrow^{*} b \).
 - Suppose \(a \rightarrow^{*} \lambda(x : \tau) b \). Then, \(a \rightarrow^{*} \lambda(x : \tau) b \rightarrow^{*} b \).
 - Suppose \(a \rightarrow^{*} \lambda(x : \tau) b \). Then, \(a \rightarrow^{*} \lambda(x : \tau) b \rightarrow^{*} b \).
 - Suppose \(a \rightarrow^{*} \lambda(x : \tau) b \). Then, \(a \rightarrow^{*} \lambda(x : \tau) b \rightarrow^{*} b \).

Proof. The first result is rephrasing of Lemma 40. Consider the second result. We start by proving that whenever \(a \rightarrow v' \), \(v' \) has the correct form. This is a consequence of confluence, and the fact that head constructors are preserved by reduction.

Then, we only need to prove that the deterministic reduction does not get stuck when the full reduction does not: suppose \(a \rightarrow^{*} v \), then either \(a \) is a value or \(a \rightarrow \). We will proceed by structural induction on \(a \).

- If \(a = x \), \(a \) does not reduce.
- Consider \(a = \text{let } x = a_1 \text{ in } a_2 \). The let binding cannot be the root of a value, so \(\rightarrow \) will reduce it at some point: there exists \(a_1 \rightarrow^{*} v_1 \). By induction hypothesis, \(a_1 \) reduces or is a value. It if is a value, \(a \) head-reduces, and otherwise the subterm \(a_1 \) reduces.
- Suppose \(a \) is an abstraction. Then it is a value.
- Suppose \(a \) is an application. We will only consider the case \(a = a_1 a_2 \), the cases of the other applications are similar. A value cannot start with an application. Thus, the application will be reduced at some points. Then, there exists \(\tau \), \(b \) and \(w \) such that \(a_1 \rightarrow^{*} \lambda(x : \tau) b \) and \(a_2 \rightarrow^{*} w \). Suppose \(a_2 \) is not already a value. Then, by induction hypothesis it reduces, so \(a \) reduces by \(\rightarrow \). Otherwise, suppose \(a_1 \) is not already a value. Then, by induction hypothesis it reduces by \(\rightarrow \), and \(a \) reduces. Otherwise, we have \(a = (\lambda(x : \tau) b) v \), and \(a \) is head-reducible.
- Suppose \(a = d(a_i)^i \). It reduces by \(\rightarrow \) to a value that is necessarily of the form \(d(v_i)^i \), with \(a_i \rightarrow^{*} v_i \). If all \(a_i \) are values, \(a \) is a value. Otherwise, consider the last index \(i \) such that \(a_i \) is not a value. Then, by induction hypothesis, it reduces by \(\rightarrow \). Thus, \(a \) reduces by \(\rightarrow \).
- Consider \(a = \text{match } b \text{ with } (d_j \text{ }\overline{\tau}_j(x_{ji})^j \rightarrow a_j)^j \). A value cannot start with a pattern matching, so \(\rightarrow \) will reduce it at some point. Thus, there exists \(d \) and \((a_i)^i \) such that \(b \rightarrow^{*} d(a_i)^i \). Thus, there exists \((a_i)^i \) such that \(b \rightarrow^{*} d(a_i)^i \). If the reduction takes one step or more, \(a \) reduce under the pattern matching. Otherwise, the pattern matching itself reduces.

\[\begin{array}{ccc}
\text{CONTEXT} & \text{IDENTITY} & \text{COMPOSITION} \\
E[a] \rightarrow_i E[b] & a \rightarrow_0 a & a_1 \rightarrow_{i+j} a_3
\end{array} \]

Figure 19. The counting reduction \(\rightarrow_i \).

6.2 Counting steps

We define an indexed version of this reduction as follows: the beta-reduction and the expansion of fixed points in ML take one step each, and all other reductions take 0 steps. Then, \(\rightarrow_i \) is the reduction of cost \(i \), i.e. the composition of \(i \) one-step reductions and an arbitrary number of zero-step reductions. The full definition of the indexed reduction is given on Figure 19.

Since \(\rightarrow_0 \) is a subset of the union of \(\rightarrow \), and \(\rightarrow_1 \), it terminates.

6.3 Semantic types and the interpretation of kinds

We want to define a typed, binary, step-indexed logical relation. The (relational) types will be interpreted as pairs of
The interpretation of kinds is parameterized by a pair of types.

Lemma 44 (Well-formed contexts and well-kinded types have a defined interpretation). Let \(\Gamma \) be a context.

- Suppose \(\Gamma \vdash \tau \). Then, for all \(k \), \(G_k[\Gamma] \) is defined.
- Suppose \(\Gamma \vdash \tau : \kappa \). Then, for all \(k \) and for all \(\gamma \in G_k[\Gamma] \), \(\nu_k[\tau]_\gamma \) is defined, and \(\nu_k[\tau]_\gamma \in \mathbb{K}[\kappa]_{\gamma_1,\gamma_2} \).
- Suppose \(\Gamma \vdash \tau : \mathsf{M} = \mathsf{E} \). Then, for all \(k \) and for all \(\gamma \in G_k[\Gamma] \), \(E_k[\tau]_\gamma \) is defined.

Proof. By mutual induction on the kind and well-formedness relations. Use the previous lemma for \(\mathsf{K-Conv} \). The interpretations of relational types are defined between base types of the right kinds. It remains to check that the interpretation of types of base kinds is decreasing with \(k \). This can be shown by the same induction that guarantees the induction is well-founded: all definitions using interpretations
\[K[\kappa \in \{ \text{Typ, Sch, Sch, Met}\}]_{\gamma_1, \gamma_2} = \begin{cases} (\tau_1, (R_j)^{jsk}, \tau_2) & \wedge (\forall (j < k) (u_1, u_2) \in K[\tau_2]_{\gamma_2} \implies (a_1, u_1) \in \mathcal{E}_k[\tau_2]_{\gamma_1} \wedge \gamma \in \mathcal{G}_k[\Gamma]) \\
\end{cases} \]

\[K[\forall (\alpha : \kappa_1) \kappa_2]_{\gamma_1, \gamma_2} = \begin{cases} (\tau_1, (F_j)^{jsk}, \tau_2) & \wedge (\forall (j \leq i) ((u_1, u_2) \in R_j) \implies (\forall (j \leq k \leq i) R_j \subseteq \mathcal{R}_k) \\
\end{cases} \]

\[K[\tau \implies \kappa]_{\gamma_1, \gamma_2} = \begin{cases} (\tau_1, (f_j)^{jsk}, \tau_2) & \wedge (\forall (u_1, u_2) ((\forall (\tau_1, (f_j(u_1, u_2))^{jsk}, \tau_2) \subseteq \mathcal{K}[\tau_1, \gamma_2] \implies (\forall (u_1, u_2) \in \mathcal{K}[\tau_1, \gamma_2] \implies (\forall (u_1, u_2) \in \mathcal{K}[\tau_1, \gamma_2]) \\
\end{cases} \]

\[K[(a = b) \implies \kappa]_{\gamma_1, \gamma_2} = \begin{cases} K[\kappa]_{\gamma_1, \gamma_2} & \text{if } (\forall (\gamma_1(a) \equiv \gamma_1(b)) \implies (\forall (\gamma_2(a) \equiv \gamma_2(b)) \\
\end{cases} \]

Figure 21. Interpretation of kinds

\[G_k[\varnothing] = \{ \varnothing \} \]

\[G_k[\Gamma, x : \tau] = \{ \gamma[x \leftarrow (u_1, u_2)] \mid (u_1, u_2) \in E_k[\tau]_{\gamma_1} \wedge \gamma \in G_k[\Gamma] \} \]

\[G_k[\Gamma, x : \tau] = \{ \gamma[x \leftarrow (a_1, a_2)] \mid (a_1, a_2) \in E_k[\tau]_{\gamma_1} \wedge \gamma \in G_k[\Gamma] \} \]

\[G_k[\Gamma, \alpha : \kappa] = \{ \gamma[\alpha \leftarrow (\tau_1, (R_j)^{jsk}, \tau_2)] \mid (\tau_1, (R_j)^{jsk}, \tau_2) \in K[\kappa]_{\gamma_1, \gamma_2} \wedge \gamma \in G_k[\Gamma] \} \]

\[G_k[\Gamma, (a_1 = a_2)] = \{ \gamma \in G_k[\Gamma] \mid (\forall (\gamma_1(a_1) \equiv \gamma_1(a_2)) \implies (\forall (\gamma_2(a_1) \equiv \gamma_2(a_2)) \} \]

\[E_k[\tau]_{\gamma_1} = \{ (a_1, a_2) \mid \forall i, \forall (v_1, v_2) \in E_k[\tau]_{\gamma_1} \implies (\exists v_1, a_1 \mapsto v_1 \wedge (v_1, v_2) \in E_k[\tau]_{\gamma_1}) \}

\[V_k[\alpha]_{\gamma_1} = \{ \gamma(\alpha) \}

\[V_k[\tau_1 \Rightarrow \tau_2]_{\gamma_1} = \{ \gamma[\tau_1]_{\gamma_1} \wedge \gamma[\tau_2]_{\gamma_1} \}

\[V_k[\cdot]_{\gamma_1} = \{ \gamma \in E_k[\Gamma] \}

\[V_k[\lambda[\alpha : \kappa]. \tau]_{\gamma_1} = \lambda(\gamma \in K[\kappa]_{\gamma_1, \gamma_2} \wedge V_k[\tau]_{\gamma_1} \mapsto \gamma[\tau]_{\gamma_1} \}

\[V_k[\lambda[(x : \kappa) . \tau]_{\gamma_1} = \lambda[(u_1, u_2) \in \text{Term \times Term}] \wedge V_k[\tau]_{\gamma_1} \mapsto \gamma[\tau]_{\gamma_1} \}

\[V_k[\lambda[\cdot : a_1 = a_2] . \tau]_{\gamma_1} = \lambda[\cdot \in \text{1}] \wedge V_k[\tau]_{\gamma_1} \]

\[V_k[\tau_1 \Rightarrow \tau_2]_{\gamma_1} = \{ \text{fix}(x : \tau_1^1 \Rightarrow \tau_2^1, y_{a_1}, \text{fix}(x : \tau_1^2 \Rightarrow \tau_2^2, y_{a_2})) \mid \forall (j < k) (u_1, u_2) \in V_k[\tau_2]_{\gamma_1} \implies (\forall (j < k) \forall (u_1, u_2) \in V_k[\tau_2]_{\gamma_1} \implies (\forall (j < k) \forall (u_1, u_2) \in V_k[\tau_2]_{\gamma_1}) \}

\[V_k[\Pi(\alpha : \kappa). \tau]_{\gamma_1} = \{ \lambda(x : \tau_1, a_1) \mid (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1} \implies (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1} \implies (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1}) \}

\[V_k[\Pi(b : a_1 = a_2) . \tau]_{\gamma_1} = \{ \lambda(\cdot : \cdot, a_1) \mid (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1} \implies (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1} \implies (\forall (j \leq k) \forall (u_1, u_2) \in E_k[\tau_1]_{\gamma_1}) \}

Figure 22. Definition of the logical relation
in contravariant position are explicitly made decreasing by quantifying on the rank.

Lemma 45 (Substitution commutes with interpretation). For all environments γ, index k, we have:

\[
\begin{align*}
V_k[\tau(a \rightarrow \tau')]_\gamma &= V_k[\tau]_{\gamma[\alpha \leftarrow V_k[\tau']_\gamma]}, \\
V_k[\tau[x \leftarrow u]]_\gamma &= V_k[\tau[x \leftarrow \gamma[\tau(u)]_\gamma]], \\
K[k[a \leftarrow \tau']]_{\gamma, \tau_2} &= K[k]_{\gamma, \gamma[\tau(a) \leftarrow \tau([a \leftarrow \tau']_\gamma)]}, \\
K[k[x \leftarrow u]]_{\gamma, \tau_2} &= K[k]_{\gamma, \gamma[x \leftarrow \gamma[\tau(u)]_\gamma]},
\end{align*}
\]

Proof. By structural induction on τ, κ.

Lemma 46 (Fundamental lemma). • Suppose $\Gamma \vdash a : \tau$. Then, for all $k, \gamma \in G_k[\Gamma]$, $(\gamma_1(a), \gamma_2(a)) \in E_k[\tau]_\gamma$.

• Suppose $\Gamma \vdash \tau_1 \equiv \tau_2$. Then, for all $k, \gamma \in G_k[\Gamma]$, $V_k[\tau_1]_\gamma = V_k[\tau_2]_\gamma$.

Proof. By induction on the structure of the relation, and on the typing or equality derivations.

For equality proofs:

• Reflexivity, transitivity and symmetry are immediate.

• For head-reduction, the only possible reduction is application.

• For C-CONTEXT, proceed by induction on the context then apply the inductive hypothesis (for types), or in the case of match use the fact that equal terms have the same head- constructor in empty environments (Lemma 34).

• For C-SPLIT on a term u: apply the induction hypothesis on $\Gamma \vdash u : \zeta[\tau(i)]$. We have: $(\gamma_1(u), \gamma_2(u)) \in E_k[\zeta(\tau(i))]_\gamma$. Since $\gamma_1(u)$ and $\gamma_2(u)$ are closed, non-expansive terms, they reduce in 0 steps to values $(v_1, v_2) \in V_k[\zeta(\tau(i))]_\gamma$ (this is a consequence of reflexivity for the logical relation on \rightarrow_a, after \rightarrow_1 normalization). In particular, they have the same head-constructor and the fields of the constructors are related. We can then add the fields and the equality to the context, and apply the inductive hypothesis on the appropriate constructor.

For typing derivations, we will only examine the cases of VAR, CONV, FIX, and APP.

• The VAR rule is:

\[
\begin{align*}
\Gamma &\vdash a : \tau \\
\Gamma &\vdash x : \pi \\
\Gamma &\vdash \tau \in \Gamma
\end{align*}
\]

Consider $\gamma \in G_k[\Gamma]$. By definition, $(\gamma_1(x), \gamma_2(x)) \in V_k[G_k[\Gamma]]$. Thus, $(\gamma_1(x), \gamma_2(x)) \in E_k[G_k[\Gamma]]$.

• Consider the CONV rule:

\[
\begin{align*}
\Gamma &\vdash \tau_1 \equiv \tau_2 \\
\Gamma &\vdash a : \tau_1 \\
\Gamma &\vdash a : \tau_2
\end{align*}
\]

Let $\gamma \in G_k[\Gamma]$. By inductive hypothesis, $(\gamma_1(a), \gamma_2(a)) \in E_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$. Thus, $(\gamma_1(a), \gamma_2(a)) \in E_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$.

• Consider the FIX rule:

\[
\begin{align*}
\Gamma, x : \tau_1 &\vdash \tau_2 \\
\Gamma &\vdash x : \tau_1 \rightarrow \tau_2 \ y : \gamma_1 \vdash a : \tau_2 \\
\Gamma &\vdash \text{fix} (x : \tau_1 \rightarrow \tau_2, y : \gamma_1, a : \tau_2) \ y : \gamma_2 \vdash \tau_2
\end{align*}
\]

Consider $\gamma \in G_k[\Gamma]$. We want to prove $(\text{fix} (x : \gamma_1(\tau_1) \rightarrow \gamma_1(\tau_2)), y : \gamma_2(\tau_1), a : \gamma_2(\tau_2)) \in V_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$. Consider $j < k$, and $(v_1, v_2) \in V_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$. We need to show:

\[
\begin{align*}
(\gamma_1(a)[x \leftarrow \text{fix} (x : \gamma_1(\tau_1) \rightarrow \gamma_1(\tau_2)) y : \gamma_1(a), y \leftarrow v_1] \gamma_1(a)[x \leftarrow \text{fix} (x : \gamma_1(\tau_1) \rightarrow \gamma_1(\tau_2)) y : \gamma_1(a), y \leftarrow v_1]) &\in V_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}
\end{align*}
\]

By definition, $\gamma_1(\tau) \rightarrow \gamma_1(\tau)$, $\gamma_2(\tau) \rightarrow \gamma_2(\tau)$, $\gamma_1(a) \rightarrow \gamma_1(a)$, $\gamma_2(a) \rightarrow \gamma_2(a)$, $y \leftarrow v_1$, $y \leftarrow v_2$.

• Consider the APP rule:

\[
\begin{align*}
\text{APP} \\
\Gamma &\vdash b : \tau_1 \\
\Gamma &\vdash a : \tau_1 \rightarrow \tau_2 \\
\Gamma &\vdash a : \tau_2
\end{align*}
\]

Let $\gamma \in G_k[\Gamma]$. Suppose $\gamma_2(a)(\tau_2(b) \rightarrow v_2)$. We want to show that there exists v_1 such that $\gamma_1(a) \gamma_1(b) \rightarrow^* v_1$ and $(v_1, v_2) \in V_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$.

Since $\gamma_2(a)$ reduces to a value, there exists w_2, w'_2 such that $\gamma_2(a) \rightarrow_i w_2, \gamma_2(b) \rightarrow_i w'_2$. By induction hypothesis on a and b, there exists values w_i, w'_i such that $(w_1, w_2) \in V_k[\tau_1]_{\gamma_1, \gamma_2}$, and $(w'_1, w'_2) \in V_k[\tau_2]_{\gamma_1, \gamma_2}$.

We can apply the first property at rank $k - i_1 - i_2 - 1$: there exists $a_1, a'_1, r_1, r'_1, r''_1$ such that $w_i = \text{fix} (x : r''_i \rightarrow r'_i) y : a'_1$ and $w' = \text{fix} (x : r''_i \rightarrow r'_i) y : a'_2$, and also $(a_1[x \leftarrow \ldots, y \leftarrow w_1], a'_2[x \leftarrow \ldots, y \leftarrow w_2]) \in E_k[\tau_1]_{\gamma_1, \gamma_2}$, and then we have: $(w'_2[x \leftarrow \ldots, y \leftarrow w_2]) \rightarrow_{i_3} v_2$ with $i = i_1 + i_2 + i_3 + 1$, and $a'_2[x \leftarrow \ldots, y \leftarrow w_1] \rightarrow^* v_1$.

Thus, $(v_1, v_2) \in V_k[G_k[\Gamma]]_{\gamma_1, \gamma_2}$.

6.5 Closure by biorthogonality

We want our relation to be compatible with substitution. We build a closure of our relation: essentially, the relation at a type relates all programs that cannot be distinguished by a context that does not distinguish programs we defined to be equivalent. To be well-typed, our notion of context must be restricted to only allow equal programs to be substituted. This is enough to show that it embeds contextual equivalence and substitution.

We will assume that there exists a type Unit with a single value (). Consider two closed terms a_1 and a_2. We note
$a_1 \preceq a_2$ if and only if a_1 and a_2 both have type Unit, and if a_2 reduces to (\cdot), a_1 reduces to (\cdot) too.

We will consider the relation $\mathcal{E}[\tau]_\gamma$ without indices as the limit of $\mathcal{E}_k[\tau]_\gamma$.

We can then define a relation on contexts. This relation must take equality into accounts: two unequal terms cannot necessarily be put in the same context, because the context might be dependent on the term we put in. Thus, our relation on contexts only compares contexts at terms equal to a given term.

Definition 7 (Relation on contexts). We note $(C_1, C_2) \in C[\tau \mid a_1, a_2]_\gamma$, iff:

- $\varnothing \vdash C_1[\varnothing \vdash a_1 : \gamma_1(\tau)]:$ Unit and $\varnothing \vdash C_2[\varnothing \vdash a_2 : \gamma_2(\tau)]:$ Unit
- for all a_1', a_2' such that $\varnothing \vdash a_1' : \gamma_1(\tau)$, $(\varnothing \vdash a_1 \equiv a_1')$ and $(a_1', a_2') \in \mathcal{E}[\tau]_\gamma$, we have $C_1[a_1] \preceq C_2[a_2]$.

From this relation on context we can define a closure of the relation:

Definition 8 (Closure of the logical relation). We note $(a_1, a_2) \in \mathcal{E}^2[\tau]_\gamma$, iff:

- $\varnothing \vdash a_1 : \gamma_1(\tau)$ and $\varnothing \vdash a_2 : \gamma_2(\tau)$
- for all $(C_1, C_2) \in C[\tau \mid a_1, a_2]_\gamma$, $C_1[a_1] \preceq C_2[a_2]$.

We obtain a relation that includes the previous relation, and allows substitution, contextual equivalence, etc. We introduce a notation that includes quantification on environments:

Lemma 47 (Inclusion). Suppose $(a_1, a_2) \in \mathcal{E}_k[\tau]_\gamma$. Then $(a_1, a_2) \in \mathcal{E}^2[\tau]_\gamma$.

Proof. Expand the definitions.

Lemma 48 (Inclusion in contextual equivalence). Suppose that for all $\gamma \in \mathcal{G}_k[\Gamma]$, $(a_1, a_2) \in \mathcal{E}^2[\tau]_\gamma$. Then, for all contexts C such that $\varnothing \vdash C[\Gamma \vdash a_1 : \tau] :$ Unit and $\varnothing \vdash C[\Gamma \vdash a_2 : \tau] :$ Unit, we have $C[a_1] \preceq C[a_2]$.

Proof. By induction on the context. As in the proof of the fundamental lemma, each typing rule induces an equivalent deduction rule for the logical relation. For example, the LET-POLY rule becomes (assuming the typing conditions are met): if $(a_1, a_2) \in \mathcal{E}^2[\tau_0]_\gamma$, and for all $(v_1, v_2) \in \mathcal{E}[\tau_0]_\gamma$, such that $\varnothing \vdash a_1 \equiv v_1$, we have $(b_1[x \leftarrow (v_1, v_2)], b_2[x \leftarrow (v_1, v_2)]) \in \mathcal{E}^2[\tau_2]_\gamma$, then $(\lambda x : a_1 \text{ in } b_1, \lambda x : a_2 \text{ in } b_2) \in \mathcal{E}^2[\tau]_\gamma$. We use the induction hypothesis on the subterm that contains the hole, and the fundamental lemma for the other subterms.

Lemma 49 (Contextual equivalence implies relation). Consider a_1, a_2 such that $\Gamma \vdash a_1 : \tau$ and $\Gamma \vdash a_2 \equiv a_2$. Moreover, suppose that they are contextually equivalent: if $\varnothing \vdash C[\Gamma \vdash a_1 : \tau] :$ Unit, then $C[a_1] \preceq C[a_2]$ and $C[a_2] \preceq C[a_1]$. Then, for all $\gamma \in \mathcal{G}_k[\Gamma]$, $(\gamma(a_1), \gamma(a_2)) \in \mathcal{E}^2[\tau]_\gamma$.

Proof. We have $(\gamma(a_1), \gamma(a_2)) \in \mathcal{E}_k[\tau]_\gamma$. Consider C_1, C_2 such that $C_1[\gamma(a_1)] \preceq C_2[\gamma(a_1)]$. Then, by contextual equivalence, we can substitute $\gamma(a_1)$ by $\gamma(a_2)$ in the right-hand side.

Lemma 50 (Reduction). Suppose $a_1 \rightarrow a_2$, and $C[a_1], C[a_2]$ have the same type τ in the empty environment. Then, $(C[a_1], C[a_2]) \in \mathcal{E}^2[\tau]_\gamma$.

Proof. Use Lemma 48, add the context C, use Lemma 49.

These definitions give a restricted form of transitivity. Full transitivity may hold but is not easy to prove: essentially, it requires inventing out of thin air a context “between” two contexts, that is related to the first one in a specific environment and to the second one in another specific environment. If we restrict ourselves to the sides of an environment, then we can simply reuse the same context. a side of an environment is, in spirit, a relational version of the left and right environment γ_1 and γ_2.

Definition 9 (Sides of an environment). Consider an environment γ. Its left and right sides $\delta_1 \gamma$ and $\delta_2 \gamma$ are defined as follows:

- $\delta_1 \gamma(x) = (\gamma_1(x), \gamma_1(x))$ and $\delta_2 \gamma(x) = (\gamma_2(x), \gamma_2(x))$;
- $\delta_1 \gamma(\alpha) = \{(v_1, v_2) \mid \forall w, (v_1, w) \in \gamma(\alpha) \Rightarrow (v_1, w) \in \gamma_1(\alpha)\}$ and $\delta_2 \gamma(\alpha) = \{(v_1, v_2) \mid \forall w, (v, w_1) \in \gamma(\alpha) \Rightarrow (v, w_2) \in \gamma(\alpha)\}$ if α is interpreted by a relation;
- the sides of interpretations of types of higher-order kinds are interpreted pointwise on the base kinds.

Lemma 51 (Properties of sides). If an environment γ verifies an equality $a_1 = a_2$, then its sides respect this equality

- If $(a_1, a_2) \in \mathcal{E}_k[\tau]_\gamma$, then $a_1, a_2 \in \mathcal{E}_k[\tau]_{\delta_1 \gamma}$;
- If $\gamma \in \mathcal{G}_k[\Gamma]$, then $\delta_1 \gamma \in \mathcal{G}_k[\Gamma]$ and $\delta_2 \gamma \in \mathcal{G}_k[\Gamma]$.

Proof. By induction on the structure of the logical relation.

Lemma 52 (Side-transitivity). Consider an environment γ, and suppose:

- $(a_0, a_1) \in \mathcal{E}_k[\tau]_{\delta_1 \gamma}$ and $\varnothing \vdash a_0 \equiv a_1$;
- $(a_1, a_2) \in \mathcal{E}_k[\tau]_{\delta_2 \gamma}$;
- $(a_2, a_3) \in \mathcal{E}_k[\tau]_{\delta_2 \gamma}$ and $\varnothing \vdash a_2 \equiv a_3$.

Then, $(a_0, a_3) \in \mathcal{E}_k[\tau]_{\delta_1 \gamma}$.

Proof. Consider $(C_0, C_3) \in C[\tau \mid a_0, a_3]_\gamma$. Then, we have $(C_0, C_0) \in C[\tau \mid a_0, a_1]_{\delta_1 \gamma}$ and $(C_3, C_3) \in C[\tau \mid a_2, a_3]_{\delta_2 \gamma}$, and $(C_0, C_3) \in C[\tau \mid a_1, a_3]_{\delta_1 \gamma}$. Conclude by transitivity of \preceq.

Lemma 53 (Equivalence implies relation). Suppose $\Gamma \vdash a_1 : \tau$ and $\Gamma \vdash a_1 \equiv a_2$. Then, for all $\gamma \in \mathcal{G}_k[\Gamma]$, $(\gamma(a_1), \gamma(a_2)) \in \mathcal{E}_k[\tau]_\gamma$.
Proof. By induction on an equality derivation. Since the relation is not symmetric, we a stronger result by induction on derivations: if \(\Gamma \vdash a_1 \simeq a_2 \), then for all \(\gamma \in \mathcal{G}_k[\Gamma] \), \((\gamma(a_1), \gamma(a_2)) \in \mathcal{E}^2[\tau]_\gamma \), and \((\gamma(a_2), \gamma(a_1)) \in \mathcal{E}^2[\tau]_\gamma \). Then, each rule translates to one of the previous lemmas.

7. Translating from eML to ML

Consider an ML environment \(\Gamma \), an ML type \(\tau \), and an eML term \(a \), such that \(\Gamma \vdash a : \tau \) hold in eML. Our goal is to find a term \(a' \) such that \(\Gamma \vdash a' : \tau \) holds in ML and that is equivalent to \(a \): \(\Gamma \vdash a \simeq a' \). This is a good enough definition, since all terms that are provably equal are related. Restricting the typing derivation of \(a' \) to ML introduces two constraints. First, no type-level pattern matching can appear in the types in the term. Then, we must ensure that the term admits a typing derivation that does not involve conversion and pattern matching.

The types appearing in the terms are only of kind Typ, thus they cannot contain a type-level pattern matching, and explicitly-typed bindings cannot introduce in the context a variable whose kind is not Typ. There remains the case of let bindings: they can introduce a variable of kind Sch. We can get more information on these types by the following lemma, that proves that “stuck” types such as match \(f x \) with \((d_i(y_j)^j \rightarrow \tau_i)^i \) do not contain any term:

Lemma 54 (Match trees). A type \(\tau \) is said to be a match tree if the judgment \(\Gamma \vdash \tau \) tree defined below holds:

\[
\begin{align*}
\text{TREE-SCHMIE} & : \Gamma \vdash \tau : \text{Sch} \\
\text{TREE-MATCH} \quad (d_i : \forall (\alpha_k^k)^k (\tau_{ij})^j \rightarrow \zeta(\alpha_k)^k) ^i \\
\Gamma \vdash a : \zeta(\tau_k)^k \\
(\Gamma, (x_{ij} : \tau_{ij} [\alpha_k \leftarrow \tau_k]^k)^j, \\ a \rightarrow (\alpha_k) d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) \text{tree} \\
\Gamma \vdash \text{match a with } (d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) ^i \text{ tree}
\end{align*}
\]

Suppose all types of variables in \(\Gamma \) are match trees. If \(\Gamma \vdash a : \tau \), there exists a type \(\tau' \) such that \(\Gamma \vdash \tau \simeq \tau' \) and \(\Gamma \vdash \tau' \) tree.

Proof. By induction on the typing derivation of \(a \). Consider the different rules:

- By hypothesis on \(\Gamma \), the output of \text{VAR} is a match tree.
- The outputs of rules \text{TABs}, \text{TAPP}, \text{FIX}, \text{APP}, and \text{CON} have kind \text{Sch}, thus are match trees.
- Consider a conversion \text{CONV} from \(\tau \) to \(\tau' \). If \(\tau \) is equal to a match tree, then \(\tau' \) is equal to a match tree by transitivity.
- For rule \text{LET-POLY}:

\[
\begin{align*}
\text{LET-POLY} \quad \Gamma \vdash \tau : \text{Sch} \\
\Gamma \vdash u : \tau \\
(\Gamma, x : \tau, (x \rightarrow u) \vdash b : \tau') \\
\Gamma \vdash \text{let } x = u \text{ in } b : \tau'
\end{align*}
\]

By induction hypothesis, the type of \(u \) is equal in \(\Gamma \) to a match tree. Thus we can assume that \(\tau \) is a match tree. Then, all types in \(\Gamma, x : \tau, (x \rightarrow u) \) are match trees. There exists \(\tau'' \) such that \(\Gamma, x : \tau, (x = u) \vdash \tau'' \) tree and \(\Gamma, x : \tau, (x = u) \vdash \tau' \simeq \tau'' \). We can substitute using \(x = u \) by Lemma 10, and we obtain \(\Gamma, u \vdash u \vdash \tau' \simeq \tau''[x \leftarrow u] \) and \(\Gamma, (u = u) \vdash \tau'' \) tree. All uses of the equality can be replace by \text{C-REFL} so we can eliminate it.

- For rule \text{LET-MONO}:

\[
\begin{align*}
\text{LET-MONO} \quad \Gamma \vdash \tau : \text{Typ} \\
\Gamma \vdash a : \tau \\
\Gamma, x : \tau, (x =_\tau a) \vdash b : \tau' \\
\Gamma \vdash \text{let } x = u \text{ in } b : \tau'
\end{align*}
\]

By induction hypothesis, the type of \(u \) is equal in \(\Gamma \) to a match tree. Thus we can assume that \(\tau \) is a match tree. Then, all types in \(\Gamma, x : \tau, (x = \tau a) \) are match trees. There exists \(\tau'' \) such that \(\Gamma, x : \tau, (x = \tau a) \vdash \tau'' \) tree and \(\Gamma, x : \tau, (x = \tau a) \vdash \tau' \simeq \tau'' \). We can assume \(a = \text{expansive} \) (otherwise we can use the same reasoning as in the last case). Then, the equality is useless by Lemma 14. Moreover, since \(\tau \) has kind Typ, there is a value \(u \) in \(\tau \). Then, \(\Gamma \vdash \tau''[x \leftarrow v] \) tree and \(\Gamma \vdash \tau' \simeq \tau''[x \leftarrow v] \).

- For rule \text{MATCH}:

\[
\begin{align*}
\text{MATCH} \quad \Gamma \vdash \tau : \text{Sch} \\
(\Gamma, (x_{ij} : \tau_{ij} [\alpha_k \leftarrow \tau_k]^k)^j, \\
(\tau = (\alpha_k) d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) \text{tree}) \\
\Gamma \vdash \text{match a with } (d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) ^i \text{ tree}
\end{align*}
\]

Proceed as for \text{LET} in the case where we match on an expansive term \(a \): we can use the default value for all the bound variables in one branch and get the equality we need. If \(a = u \) is non-expansive, use the induction hypothesis on each branch: there exists \(\gamma_i \) such that \((\Gamma, (x_{ij} : \tau_{ij} [\alpha_k \leftarrow \tau_k]^k)^j, (u = (\alpha_k) d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) \text{tree}) \). Then, consider \(\gamma' = \text{match u with } (d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) ^i \). We have \(\gamma' \simeq \gamma \) match \(u \) with \((d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) ^i \) (by applying the previous equality in each branch), and \(\Gamma \vdash \text{match u with } (d_i (\tau_k)^k (x_{ij})^j \rightarrow \tau_i) ^i \simeq \tau' \) by \text{C-SPLIT} and \text{C-RED-OTA} for each case. Moreover, \(\Gamma \vdash \tau' \) tree by \text{TREE-MATCH}.

From this lemma, we can deduce that there exists a typing derivation where the type of all variables bound in let is a match tree. The pattern matching in the types can then be eliminated by lifting the pattern-matching outside of the let, as in \(\rightarrow \), on Figure 23. This transformation is well-typed, and the terms are equal (the equality can be proved by case-splitting on \(u \)). Moreover, it strictly decreases the number of match \ldots with \ldots in the types of let-bindings. Thus we
can apply it until we obtain a term with a derivation where all bindings are of kind \(\text{Typ}\).

In the new derivation, no variable in context has a match type. We can transform the derivation such that all coercions are between ML types.

Lemma 55. Suppose \(\Gamma\) is a context where all variables have a ML type. Suppose \(\Gamma \vdash a : \tau\), where \(\tau\) is a ML type and no variables are introduced with a non-ML type in the main type derivation. Then, there exists a derivation of \(\Gamma \vdash a : \tau\) where all conversions of the main type derivation are between ML types.

Proof. We proceed by induction, pushing the conversions in the term until they meet a syntactic construction that is not a match or a let. If we encounter a conversion, we combine it by transitivity with the conversion we are currently pushing.

We know (by soundness) that all equalities between ML types are either trivial (i.e. between two identical types) or are used in a branch of the program that will never be run (otherwise, it would provoke an error). In order to translate the program to ML, we must eliminate these branches from the program. There are two possible approaches: we could extend ML with an equivalent of `assert false` and insert it in the unreachable branches, but the fact that the program executes without error would not be guaranteed by the type system anymore, and could be broken by subsequent manual modification to the code. The other approach is to transform the program to eliminate the unreachable branches altogether. This sometimes requires introducing extra pattern matchings and duplicating code. The downside to this approach is that in some cases the term could grow exponentially. This blowup can be limited by only doing the expansions that are strictly necessary.

The transformations of Figure 23 all preserve types and equality. All let bindings and pattern matchings that can be reduced by \(\rightarrow_s\), are reduced. When a pattern matching matches on the result of another pattern matching, the inner pattern matching is lifted around the formerly outer pattern matching. These transformations preserve the types and equality. These transformations terminate. After applying them, all pattern matching is done either on a variable, or on an expansive term.

We first show that, in environments without equalities, all conversions are trivial:

Lemma 56 (ML conversions without equality are trivial). Consider \(\emptyset \vdash C[\Gamma \vdash a : \tau] : \tau'\). Then, if \(\Gamma \vdash \tau_1 \equiv \tau_2 \text{ and } \tau_1, \tau_2 \text{ are ML types, } \tau_1 \equiv \tau_2\).

Proof. Suppose by contradiction that \(\tau_1 \neq \tau_2\). Then, there exists a \(\rho\) that associates all type variables in \(\tau_1\) and \(\tau_2\) to a type such that \(\rho(\tau_1) \neq \rho(\tau_2)\) (for example, we can bind each variable to a fresh new type Unit\(_k\), with one constructor \(()_k\). If \(\Gamma \vdash \tau_1 \equiv \tau_2\), then by substitution, \(\rho(\Gamma) \vdash \rho(\tau_1) \equiv \rho(\tau_2)\).

Suppose we have a model \(\gamma\) of \(\rho(\Gamma)\), or equivalently a model \(\gamma\) of \(\Gamma\) such that \(\gamma(\alpha) = \rho(\alpha)\) for every type variable \(\alpha\). Then, we would have \(E[\rho(\tau_1)]_{\gamma'} = E[\rho(\tau_2)]_{\gamma'}\). Thus we only need to prove that, for closed types, if \(E[\tau_1]_{\gamma} = E[\tau_2]_{\gamma}\), then \(\tau_1 = \tau_2\). This is easy by induction. For universal quantification, instantiate with a unique type.

Assume \(\rho\) given. We only have to show how to construct an appropriate environment \(\gamma\). We proceed by induction on the context, examining the introductions in the environment.

- If we introduce a variable \(x\) of type \(\tau\), and \(\tau\) has kind Typ, it is either a function type or a datatype, thus is inhabited: all datatypes are inhabited by hypothesis, and \(\text{fix } (x : \tau_1 \rightarrow \tau_2) y. x\ y\) is a function of type \(\tau_1 \rightarrow \tau_2\).
- If we introduce a variable \(x\) of type scheme \(\sigma\) of kind \(\sigma\) that is not of kind Typ, the introducing form is necessarily a polymorphic let. Let us call \(\gamma\) the model until now (of \(\Gamma\)). Then, we bind \(x\) to a non-expansive term \(u\), and \(\Gamma \vdash u : \gamma(\sigma)\). Thus, \(\gamma[x \leftarrow u]\) is a model of \(\Gamma\).
- If we introduce a type variable \(\alpha\), we can instantiate it with \(\rho(\alpha)\).

Then, we transform an \(\epsilon\)ML term into an equivalent ML term (i.e. where all coercions have been removed), by removing all absurd branches, typing it without equalities, and removing the conversions since they must be trivial.

Lemma 57 (Conversion elimination). Suppose \(\emptyset \vdash a : \tau\), where all pattern matching in \(a\) is on variables or expansive terms, and all variables introduces in the context have a type in Sch. Then, there exists \(a'\) such that \(\emptyset \vdash a' : \tau\) in ML, and \(\emptyset \vdash a \equiv a'\).

Proof. We generalize to an environment \(\Gamma\): suppose \(\Gamma \vdash a : \tau\) and suppose we have a substitution \(\gamma\) of term variables with non-expansive terms without match or let (i.e. values with variables). Moreover, suppose that all substitutions in \(\gamma\) are equalities provable in \(\Gamma\), and \(\gamma(\Gamma)\) only has trivial equalities (i.e. provable by reflexivity) or useless equalities (i.e. involving an expansive term). Removing these equalities, we obtain \(\Gamma'\). Then, there exists \(a'\) such that \(\Gamma' \vdash a' : \tau\) in ML (the type \(\tau\) is in ML, and, in particular, does not reference term variables from \(\Gamma\)), and \(\Gamma' \vdash \gamma(a) \equiv a'\). We will also need to suppose that there is a context such that \(\emptyset \vdash C[\Gamma' \vdash a : \tau] : \tau_e\).

We prove this result by induction on the typing rules. We will examine the two interesting cases: the conversion rule and the pattern matching rule.

- For \(\text{Conv}\):

\[
\Gamma \vdash \tau \equiv \tau' \quad \Gamma \vdash a : \tau \\
\frac{}{\Gamma \vdash a : \tau}
\]

By hypothesis, \(\tau'\) is a ML type. Then, \(\Gamma' \vdash \gamma(\tau) \equiv \gamma(\tau')\). Then, use Lemma 56 in the context \(C : \tau = \tau'\) and the conversion can be eliminated. Then, apply the induction hypothesis in the same context \(C\) with the substitution \(\gamma\).
let \((x : \text{match } u \text{ with } (d_i \tau (x_{ij})^j \rightarrow \tau_i)^i) = a \text{ in } b \mapsto\), match \(u \text{ with } (d_i \tau (x_{ij})^j \rightarrow \text{let } (x : \tau_i) = a \text{ in } b)^i\)

match \(d_j \tau_j (v_i)^j\) with \((d_j \tau_j (x_{ji})^j \rightarrow a_j)^j \mapsto a_j[x_{ij} \leftarrow v_i]^i\) \(\text{let } x = u \text{ in } b \mapsto b[x \leftarrow u]\)

match match \(a\) with \((d_k \tau (x_{kj})^j \rightarrow a_k)^k\) with \((d_i \tau (x_{ij})^j \rightarrow b_i)^i\)

\(\mapsto\) match \(a\) with \((d_k \tau (x_{kj})^j \rightarrow \text{match } a_k \text{ with } (d_i \tau (x_{ij})^j \rightarrow b_i)^i)^k\)

\(\text{Figure 23. Match and let lifting}\)

\(\text{• For MATCH:\)}\)

\[
\text{MATCH} \\
\Gamma \vdash \tau : \text{Sch} \quad (d_i : \forall (\alpha_k)^k \rightarrow \zeta_k)^k \rightarrow \zeta_k)^i \\
\Gamma \vdash a : \zeta_k^k \\
\Gamma \vdash \text{match } a \text{ with } (d_i (\tau_{ij})^j \rightarrow b_i)^i : \tau
\]

If \(a\) is expansive, the equality introduced is useless, and we can continue typing in the new context. Consider the case where \(a\) is non-expansive. Then, \(a\) is necessarily a variable \(x\). Consider \(\gamma(x)\).

\(\text{• If } \gamma(x) = y, \text{ apply the induction hypothesis in each branch, with } \gamma' = \gamma[y \leftarrow d_i (\tau_{ij})^j (x_{ij})^j], \text{ adding match } y \text{ with } \ldots \text{ to the context.}\)

\(\text{• If } \gamma(x) = d_i (\tau_{ik})^k (u_{ij})^j, \text{ we can substitute and reduce the pattern matching. Then, apply the induction hypothesis on the branch } b_i, \text{ with } \gamma[x_{ij} \leftarrow u_{ij}]^j.\)

\(\text{• The other cases are excluded by typing in the (equality-free) environment } \Gamma'.\)

We can conclude: in the empty environment, no equalities involving variables are provable, thus \(\gamma\) is the identity and \(\Gamma' = \Gamma = \emptyset.\)

In practice, eliminating some branches with an absurd context but that would type in ML is often a good idea to make the code nicer, as long as the elimination does not unreasonably increase the size of the term. It is also a bad idea to do every possible

8. Encoding ornaments

We now consider how ornaments are described and represented inside the system. This section bridges the gap between \(m\)ML, a language for meta-programming that doesn’t have any notion of ornament, and the interface presented to the user for ornamentation. We need both a definition of the base datatype ornaments, and the higher-order functional ornaments that can be built from them.

As a running example, we consider the ornament natlist \(\alpha\) from natural numbers to lists defined in the overview (§3) as:

\[
\text{ornament natlist } \alpha : \text{nat } \rightarrow \text{list } \alpha \text{ with } \\
\mid \text{Z } \rightarrow \text{Nil} \\
\mid \text{S } w \rightarrow \text{Cons } (\cdot, w)
\]

The ornament natlist \(\alpha\) defines for all types \(\alpha\) a relation between values of its base type nat which we write \((\text{natlist } \alpha)^*\) and its lifted type list \(\alpha\) which we write \((\text{natlist } \alpha)^+\): the first clause says that \(\text{Z}\) is related to \(\text{Nil}\); the second clause says that whenever \(w_\cdot\) and \(w_\cdot\) are related by natlist \(\alpha\), then for any \(v, S\ w_\cdot\) is related to \(S\ w_\cdot\). As a notation shortcut, the variables \(w_\cdot\) and \(w_\cdot\) are identified in the definition above.

A higher-order ornaments ornament natlist \(\tau \rightarrow \text{natlist } \tau\), say \(\omega\) relates two functions \(f_-\) of type \(\omega^-\) equal to \(\text{nat } \rightarrow \text{nat}\) and \(f_+\) of type \(\omega^+\) equal to \(\text{list } \tau \rightarrow \text{list } \tau\) when for related inputs \(v_-\) and \(v_+\), the outputs \(f_- v_-\) and \(f_+ v_+\) are related.

We formalize this idea by defining a family of ornament types corresponding to the ornamentation definitions given by the user and giving them an interpretation in the logical relation. Then, we say that one function is a lifting of another if they are related at the desired ornament type. This relation also gives us the reasoning tool to establish the ornamentation relation between the base type and the lifted type. The syntax of ornament types, written \(\omega\), mirrors the syntax of types:

\[
\chi ::= \text{natlist } | \ldots \\
\omega ::= \varphi | \chi(\omega)^i | \zeta(\omega)^i | \omega \rightarrow \omega
\]

An ornament type may be an ornament variable \(\varphi\); a base ornament \(\chi\) (we consider the problem of defining base ornaments below); a higher-order ornament \(\omega_1 \rightarrow \omega_2\), or an identity ornament \(\zeta(\omega)^i\), which is automatically defined for any datatype of the same name (\(\omega_i\) indicates how the corresponding type argument of the datatype is ornamented).

An ornament type \(\omega\) is interpreted as a relation between terms of type \(\omega^-\) and \(\omega^+\) (the projection is detailed on Figure 24). For example, the ornament list (natlist nat) describes the relation between lists whose elements have been ornamented using the ornament natlist nat.

We will define in the next section how to interpret the base ornaments \(\chi\), and focus here on the interpretation of higher-order ornaments \(\omega_1 \rightarrow \omega_2\) and identity ornaments \(\zeta(\omega_i)^i\).

The interpretation we want for higher-order ornaments is as functions sending arguments related by ornamentation to results related by ornamentation. But this is exactly what
the interpretation of the arrow type \(\tau_1 \to \tau_2 \) gives us, if we replace the types \(\tau_1 \) and \(\tau_2 \) by ornament types \(\omega_1 \to \omega_2 \).

Thus, we do not have to define a new interpretation for higher-order ornaments, it is already included in the logical relation. For this reason, we will use interchangeably (when talking about the logical relation) the function arrow and the ornament arrow.

We have the same phenomenon for the identity ornament: constructors are related at the identity ornament if their arguments are related. Once more, we can simply take the interpretation of a datatype \(\zeta (\tau_i)^i \) and, by replacing the type parameters \((\tau_i)^i \) by ornament parameters \((\omega_i)^i \), reinterpret it as an interpretation of the identity ornament. We will show that this choice is coherent by presenting a syntactic version of the identity ornament and showing it is well-behaved with respect to its interpretation.

Finally, ornament variables must be interpreted by getting the corresponding relation in the relational environment. This is exactly the interpretation of a type variable.

Thus, the common subset between types and ornament specifications can be identified, because the interpretations are the same. This property will play a key role in the instantiation: from a relation at a type, we will deduce, by proving the correct instantiation, a relation at an ornament.

8.1 Defining datatype ornaments

We assume that all datatypes defined in the language are regular and at most single recursive. The extension to families of mutually-recursive datatypes is straightforward, but makes the notations significantly heavier. We do not treat the problem of non-regular datatypes. Then, each regular datatype \(\zeta (\alpha_i)^i \) is defined by a family of constructors:

\[
(d_j : \forall (\alpha_i : \text{Typ})^i (\tau_j)^i \to \zeta (\alpha_i)^i)^j
\]

where \(\zeta \) may occur recursively in \(\tau_j \) only as \(\zeta (\alpha_i)^i \). Let \(\hat{\alpha} \) be a fresh variable and \(\hat{\tau}_j \) be where all occurrences of \(\zeta (\alpha_i)^i \) have been replaced by \(\hat{\alpha} \). We define the skeleton of \(\zeta \) as the new non-recursive datatype \(\zeta (\alpha_i)^i \hat{\alpha} \) by the family of constructors:

\[
(\hat{d}_j : \forall (\alpha_i : \text{Typ})^i (\hat{\alpha} : \text{Typ})(\hat{\tau}_j)^i \to \hat{\zeta}(\alpha_i)^i \hat{\alpha})^j
\]

By construction \(\zeta (\tau_j)^i \) is isomorphic to \(\hat{\zeta}(\tau_j)^i (\zeta (\tau_j)^i) \).

Ornament definitions match a pattern in one datatype to a pattern in another datatype. Our syntax uses deep pattern matching: the patterns are not limited to matching on only one level of constructor, but can be nested. Additionally, we allow wildcard patterns \(_- \) that match anything, alternative patterns \(P \mid Q \) that match terms that match either \(P \) or \(Q \), and the null pattern \(\emptyset \) that does not match anything. We write deep pattern matching the same as shallow pattern matching, with the understanding that it is implicitly desugared to shallow pattern matching.

In general, an ornament definition is of the form:

\[
\text{ornament } \chi (\alpha_j)^j : \zeta (\tau_k)^k \to \tau_\sigma, \text{ with } (P_i \to Q_i)^i
\]

with \(\chi \) the name of the datatype ornament, \(\zeta (\tau_k)^k \) the base type, say \(\tau_i \) for short, and \(\tau_\sigma \) the lifted type. There are several conditions on the patterns \(P_i \) and \(Q_i \), which we described with a helper pattern \(\hat{P}_i \), called the skeleton pattern, obtained by the head constructor \(d \) by \(\hat{d} \), in \(\hat{P}_i \). The skeleton patterns \((\hat{P}_i)^i \) must form an exhaustive partition of the type \(\forall (\hat{\alpha} : \text{Typ}) (\zeta (\tau_k)^k \hat{\alpha} : \text{in} \text{ condition, they cannot match inside a recursive occurrence of } \tau_i; \text{ they must also be expressions, i.e. in the sublanguage consisting only of variables and data constructors.} \]

The patterns \(Q_i \) must form a partition of \(\tau_\sigma \). The free variables in \(P_i \) and \(Q_i \) must be the same and their types correspond: if \(x \) matches a value of type \(\sigma \) in \(P_i \), it must match a value of type \(\sigma[\hat{\alpha} \leftarrow \tau_\sigma] \) in \(Q_i \) (the recursive part \(\hat{\alpha} \) is instantiated with \(\tau_\sigma \), the type of the variable in \(P_i \) is \(\sigma[\hat{\alpha} \leftarrow \tau_\sigma] \)).

We define the meaning of a user-provided ornament by adding its interpretation to the logical relation on \(\text{mML} \). The interpretation is the union of the relations defined by each clause of the ornament. For each clause, the values of the variables must be related at the appropriate type. Since the pattern on the left is also an expression, the value on the left is uniquely determined. The pattern on the right can still represent a set of different values (none, one, or many, depending on whether the empty pattern, an or-pattern or a wildcard was used). We define a function \(f__ \) associating to a pattern this set of values:

\[
f__ (_ : \sigma) = \begin{cases} \text{Term} & f P | Q _ = f P _ \cup f Q _ _ \\ d(\tau_k)^k (P_i)^i = d(\tau_k)^k (f P_i)^i \end{cases}
\]

Suppose that the variables \((x_i)^i \) are bound at types \((\tau_i)^i \) in the skeleton \(\hat{P}_i \) of the left-hand side of the clause \(i \). Then,

\[
\forall P[\chi (\omega_j)^j]_i = \bigcup \{(P[i[x_\ell \leftarrow v_\ell]^i, v_\ell])_i \mid v_\ell \in \bigcup Q[i[x_\ell \leftarrow v_\ell]^i, v_\ell]_i \}
\]

The key point of the definition is that we instantiate the variable \(\hat{\alpha} \) recursively with our ornament so the recursive parts are correctly ornamented.

For example, on \(\text{natlist} \), we get the following definition (omitting the typing conditions):

\[
\forall k[\text{natlist } \tau]_i = \{ (\text{Z, Nil}) \cup \{(S(v_\ell), \text{Cons}(v_\ell, v_\ell)) \mid (v_\ell, v_\ell) \in \forall P[\chi (\omega_j)^j]_i \}
\]

8.2 Encoding ornaments in \(\text{mML} \)

We now describe the encoding of datatype ornaments in \(\text{mML} \). Consider a specific instance \(\chi (\omega_j)^j \) of the datatype ornament \(\chi \). The lifted type is then \(\tau_i[\alpha_j \leftarrow \omega_j]^j \), say \(\sigma \).
Let \(\hat{\tau} \) be the type \(\hat{\zeta}(\tau_k[\alpha_j \leftarrow \omega_j^0])^k \sigma \) of the skeleton where the recursive parts and the type parameters have already been lifted. The ornament is encoded as a quadruple \((\varepsilon, \varepsilon, \text{proj}, \text{constr})\) where \(\varepsilon : \text{typ} \) is the lifted type; \(\varepsilon \) is the extension, a type-level function explained below; proj and constr are the projection and construction functions shown in §3. More precisely, proj from the lifted type to the skeleton has type \(\Pi(x : \sigma). \hat{\tau} \). proj and constr has type \(\Pi(x : \hat{\tau}). \Pi(y : \varepsilon x). \sigma \), where the argument \(y \) is the additional information necessary to build a value of the lifted type, given the argument \(x \) at the skeleton type. The type of \(y \) is given by the extension \(\varepsilon \) of kind \(\hat{\tau} \to \text{typ} \), which can depend on the constructor used in the base code. The encoding works inductively, i.e. one layer at a time, thus all the functions work on \(\hat{\tau} \).

The extension \(\varepsilon \) is determined by computing, for each clause \(P_i \to Q_i \), the type of the information missing to choose a branch in the alternatives in the right-hand side pattern \(Q_i \) and filling the wildcards. There are usually many possible representations of this information, but we choose \([Q_i]\) defined as follows:\(^3\):

\[
\begin{align*}
 [(_ : \tau)] &= \tau \\
 [x] &= \text{Unit} \\
 [d(P_1, \ldots P_n)] &= [P_1] \times \ldots \times [P_n]
\end{align*}
\]

Then, assuming that \(y \) stands for the missing information, the code to reconstruct the ornamented value is given by Lift\((Q_i, y)\) defined as:

\[
\text{Lift}(_ , y) = y \quad \text{Lift}(x, y) = x
\]

\[
\text{Lift}(P \mid Q, y) = \text{match } x \text{ with } \begin{align*}
 \text{inl } y_1 &\to \text{Lift}(P, y_1) \\
 \text{inr } y_2 &\to \text{Lift}(Q, y_2)
\end{align*}
\]

\[
\text{Lift}(d(P_i)^i, y) = \text{match } y \text{ with } (y_i)^i \to d(\text{Lift}(P_i, y_i))^i
\]

The components of the datatype ornament \(\chi(\omega_j)^j \) are then defined as follows:

\[
\begin{align*}
 \sigma_{\chi(\omega_j)^j} &= \tau_k[\alpha_j \leftarrow \omega_j^0]^j \\
 \varepsilon_{\chi(\omega_j)^j} &= \lambda \chi(x : \hat{\tau}). \text{match } x \text{ with } (\hat{P}_i \to [Q_i])^i \\
 \text{proj}_{\chi(\omega_j)^j} &= \lambda \chi(x : \sigma_{\chi(\omega_j)^j}). \text{match } x \text{ with } (Q_i \to \hat{P}_i)^i \\
 \text{constr}_{\chi(\omega_j)^j} &= \lambda \chi(x : \hat{\tau}). \lambda \chi(y : \varepsilon x). \hat{\psi}(x) \\
 &\quad \text{match } x \text{ with } (\hat{P}_i \to \text{Lift}(Q_i, y))^i
\end{align*}
\]

In the case of natlist, we recover the definitions given in §3.3, with for \(\varepsilon_{\text{natlist}} \tau \) equal to

\[
\Pi(x : \text{nat}(\text{list } \tau)). \text{match } x \text{ with } \hat{Z} \to \text{Unit} \mid \hat{S}(x) \to \tau.
\]

The identity ornament corresponding to a datatype \(\zeta \) defined as \((d_i : \forall (\alpha_j : \text{typ}) \otimes (\hat{\tau}_k)^k \to \zeta(\alpha_j)^j)^i\) is automatically generated and is described by the following code, (since we do not add any information, thus extension is isomorphic to Unit).

\[
\begin{align*}
 \text{ornament } \zeta(\alpha_j)^j : \zeta(\alpha_j)^j &\to \zeta(\alpha_j)^j \\
 &\text{with } (d_i((x_k)^k) \to d_i((x_k)^k))^i
\end{align*}
\]

The encoding of ornaments is closely linked to the logical relations by the following properties:

\(^3\)Formally, we translate pattern typing derivations instead of patterns
\[\Gamma ::= \emptyset \mid \Gamma, \alpha, \alpha, \alpha \mid \Gamma, x : \omega \mid \Gamma, (A =_\sigma A) \mid \Gamma, \varphi \mapsto (\sigma, \varepsilon, \text{const}, \text{proj}) \prec \tau \mid \Gamma, x : \sigma \]

\[
\begin{align*}
(\Gamma, x : \omega) & = \Gamma^\delta, x : \omega^\delta, \\
(\Gamma, (\alpha, \alpha, \alpha)) & = \Gamma^\delta, \alpha, : \text{Typ} \\
(\Gamma, x : \sigma) & \prec (\Gamma, A =_\sigma B) \prec (\Gamma, \varphi \mapsto (\ldots) \prec \tau) \prec \Gamma^- \\
(\Gamma, x : \sigma) & \prec \Gamma^+, x : \sigma \\
(\Gamma, A =_\sigma B) & \prec \Gamma^+, A =_\sigma B \\
(\Gamma, \varphi \mapsto (\sigma, \varepsilon, \text{proj}, \text{const}) & \prec \tau) \prec \\
\Gamma^+, \sigma : \text{Typ}, \varepsilon : \tau \sigma & \rightarrow \text{Typ}, \text{proj} : \Pi(x : \sigma). \tau \sigma, \\
& \text{constr} : \Pi(x : \tau \sigma). \Pi(y : \varepsilon \parallel x). \sigma \\
\alpha^\delta & = \alpha, \text{if } (\alpha, \alpha, \alpha) \in \Gamma \\
\varphi^\Gamma & = \tau^\Gamma \text{ and } \varphi^\sigma = \sigma & \text{if } \varphi \mapsto (\ldots) \prec \tau \in \Gamma \\
(\omega_1 \rightarrow \omega_2)^\delta & = (\omega_1)^\delta \rightarrow (\omega_2)^\delta \\
(\zeta(\omega_1)^\delta) & = \zeta((\omega_1)^\delta)
\end{align*}
\]

Figure 24. Projection of ornament environments and types

variable \(\varphi \) that can be used in ornament types, to a quadruple of variable \((\sigma, \varepsilon, \text{proj}, \text{const})\) associated to \(\varphi \), which are free variables in the generic lifting that will be later instantiated with the components of a concrete ornament. The environment \(\Gamma \) also contains patch variables \(x : \sigma \) that are used to pass patches to the generic lifting. For ML parametric polymorphism, the environment also contains type variables \((\alpha, \alpha, \alpha)\) where \(\alpha \) and \(\alpha_+ \) are the base type variable and lifted type variable associated to the ornament type variable \(\alpha \). During the ornamentation process, the ornamentation environment \(\Gamma \) accumulates bindings corresponding to the variables and equalities in scope. The ornamentation environment can be projected to a base environment \(\Gamma^- \) and a lifted environment \(\Gamma^+ \), such that if \(\Gamma \vdash a_\rightarrow a_+ : \omega, \) we have both \(\Gamma^- \vdash a_\rightarrow a_+ : \omega^- \) and \(\Gamma^+ \vdash a_+ : \omega^+ \). The projection is defined on Figure 24 (to avoid duplication, we write \(\delta \) for either \(\sigma \) or \(\tau \)).

As an example, the generic lifting of the code \(a_\rightarrow \) of the function add of §3.3 is the code \(a_+ \) of the function add_gen\(^4\) which verifies \(\Gamma \vdash a_\rightarrow a_+ \vdash \varphi_n \vdash \varphi_m \vdash \varphi_m \) where \(\Gamma \) is \(\varphi_n \vdash (\sigma_n, \varepsilon_n, n_{\text{proj}}, n_{\text{const}}) \prec \text{nat}, \varphi_m \vdash (\sigma_m, \varepsilon_m, m_{\text{proj}}, m_{\text{const}}) \prec \text{nat}, \rho_1 \vdash \Pi(\rho), \varepsilon m \parallel S(\text{add}, \text{m}$n))\) and \(\rho \) binds\(^5\) add, \(: \sigma_m \rightarrow \sigma_n \rightarrow \sigma_n, m : \sigma_m, m' : \sigma_m, n : \sigma_n, o : m_{\text{proj}} \parallel m = S(m') \). The genetic lifting add_gen can then be instantiated by substituting the terms and types describing an ornament for the variables \(\sigma_n, \varepsilon_n, n_{\text{proj}}, n_{\text{const}} \) and similarly for \(m \), and by providing an appropriate patch.

9.1 Elaboration rules

To make the presentation simpler and shorter, we restrict lifting to ML terms that do not contain polymorphism, and where constructor and pattern matching are always applied to variables. These two conditions can be met by expanding all polymorphic bindings and lifting terms in constructors and pattern matching into (monomorphic) lets.

The elaboration rules, given on Figure 25, follow closely the syntax of the original term: variables, abstractions, applications and let bindings are ornamented to themselves. In E-Con, the constructor is elaborated to a call to an ornament construction function. The additional information is generated by a patch, which must come from the environment \(\Gamma \), and which receives as argument all the variables available in the lifted projection of the context \(\Gamma^+ \). In E-MATCH, a call to the projection function is inserted before the pattern matching and the branches are elaborated separately.

Datatype ornaments are described through an auxiliary judgment \(\Gamma \vdash \omega \rightarrow (\sigma, \varepsilon, \text{proj}, \text{const}) \prec \tau \) that returns the tuple containing values representing the ornament \(\omega \) of the type \(\tau \). We only allow using the identity ornament (ORN-Id) or an abstract ornament from the environment (ORN-Var).

We have the typing property we announced previously:

Lemma 59 (Well-typed elaboration). The generated nML terms are well-typed: if \(\Gamma \vdash a_\rightarrow a_+ : \omega, \) then \(\Gamma^- \vdash a_\rightarrow a_+ : \omega^- \) and \(\Gamma^+ \vdash a_+ : \omega^+ \).

Proof. By induction on an elaboration, we can reconstruct a typing derivation for the two sides.

Moreover, all well-typed terms have an elaboration:

Lemma 60 (An elaboration exists). Let \(a \) be a well-typed ML term without polymorphism and where construction and pattern matching are only done on variables. Suppose \(\emptyset \vdash a : \tau \). Then, \(\tau \) is also an ornament type, and there exists \(a_+ \) such that \(\Gamma \vdash a \rightarrow a_+ : \tau, \) with \(\Gamma \) an environment only containing patches.

Proof. By induction on the typing derivation: we can imitate the typing derivation. We only choose identity ornaments (ORN-Id), and add the required patches to the environment.

9.2 Instantiation and correction

We have elaborated a base term \(a_\rightarrow \) into a generic lifting \(a_+ \) using only its definition, \(i.e. \) it has not yet been specialized to a specific lifting. To obtain a concrete lifting, we will take into account the lifting specification given by he user: we instantiate \(a_+ \) with specific ornaments and patches, depending on the instantiation strategies we choose, building an instantiation \(\gamma_+ \) of signature \(\Gamma^+ \). The elaboration environment \(\Gamma \) gives the list of ornaments and patches to supply to the term.

We give a more precise definition of the instantiation:

Definition 10 (Instantiation). An instantiation \(\gamma_+ \) of an ornamentation context \(\Gamma \) is given by:

- For an ornament binding \(\varphi \rightarrow (\sigma, \varepsilon, \text{proj}, \text{const}) \prec \tau \), choose a concrete datatype ornament \(\varphi = \chi(\omega_1)^\delta \), and substitute \(\sigma, \varepsilon, \text{proj}, \text{const} \) by the corresponding definitions given in §8.
Lemma 62

ornament variables are mapped to the corresponding ornament with the ornament variable. We can show that the term \(\gamma^+_{\text{id}}(a_+) \) is equal (for the \(m \)ML equality judgment) to \(a_- \).

Lemma 61 (Identity instantiation). Suppose \(\Gamma \vdash a_- \sim a_+ : \omega \). There exists an identity instantiation \(\gamma^+_{\text{id}} \) of \(\Gamma^+ \) such that \(\Gamma^+ \vdash a_- \sim \gamma^+_{\text{id}}(a_+) \).

Proof. By induction on the derivation. The identity instantiation is constructed as follows:

- Use the identity ornament for the ornament variable.
- All patches will return in the extension of an identity ornament. The extensions of identity ornament are isomorphic to Unit, thus we can construct a suitable (terminating) patch.

The equality is proved syntactically by induction, using C-SPLIT in the case of pattern matching.

Correction of the lifting: We can then build a relation environment \(\gamma^+_{\text{rel}} \) that contains the identity ornaments and patches on the left-hand side, and our instantiation on the right-hand side. The ornament variables are instantiated with the relation corresponding to the ornament. Then, \(\gamma^+_{\text{rel}} \) is in \(\mathcal{G}_k[\Gamma^+] \). We conclude that \((\gamma^+_{\text{id}}(a_+), \gamma_+((a_+))) \in \mathcal{E}_k[\omega^-] \). Finally, because equal terms are in the same relations, \((a_-, \gamma_+(a_+)) \in \mathcal{E}_k[\gamma^+_{\text{id}}(\omega)] \); the base term is related to the lifted term at the ornament type \(\gamma^+_{\text{rel}}(\omega) \).

Definition 11 (Relational environment). The relational environment \(\gamma^+_{\text{rel}} \) is defined as follows:

- If we used the ornament \(\omega \) to instantiate \(\varphi \), \(\sigma \leftarrow \mathcal{E}_k[\omega] \), \(\varepsilon \leftarrow \lambda(x). \) Top, constr \(\leftarrow \text{constr}_{\text{id}} \), constr_\varphi \(\leftarrow \text{constr}_{\text{id}} \), proj \(\leftarrow \) proj_{\text{id}}, proj_{\varphi}.
- If we used a patch \(p \) to instantiate \(x \), \(x \leftarrow \gamma^+_{\text{id}}(x), p \).

Then, \(\gamma^+_{\text{rel}} = \gamma^+_{\text{id}} \) and \(\gamma^+_{\text{rel}} = \gamma_+ \). We will also, as a notational convenience, say that \((\varphi, \sigma) = \gamma^+_{\text{id}}(\varphi) = \omega \), i.e. that ornament variables are mapped to the corresponding ornament.

Lemma 62 (The relational environment interprets). We have: \(\gamma^+_{\text{rel}} \in \mathcal{G}_k[\Gamma^+] \).

Proof. For patches this is immediate (Top contains everything if the left-hand side terminates). For ornaments, use the correction theorem (Theorem 11).

Theorem 12 (Correction of the lifting). Suppose \(\Gamma \vdash a_- \sim a_+ : \omega \), and let \(\gamma_+ \) be an instantiation of \(\Gamma \). Then, \((a_-, \gamma_+(a_+)) \in \mathcal{E}_k[\gamma_+(\omega)] \).

Proof. We have \(\gamma^+_{\text{rel}} \in \mathcal{G}_k[\Gamma^+] \). Thus, \((\gamma^+_{\text{id}}(a_+), \gamma_+(a_+)) \in \mathcal{E}_k[\omega^-] \). We can substitute the left-hand side by \(a_- \) by stability of the relation by equality. We have a substitution result: \(\mathcal{E}_k[\omega^-](\gamma^+_{\text{rel}}) = \mathcal{E}_k[\gamma^+_{\text{id}}(\omega)] \) (syntactically for the last part: the types are simply equal).

This relation is also used in reverse by the instantiation process to partially determine \(\gamma_+ \) from the ornament signature given by the user, we can infer some of the ornaments that should be used for the instantiation. The variables that do not appear in the signature \(\omega \) are determined using the strategies given by the user (e.g. always using a given ornament if possible), or instantiated manually.

In the specific case of add and append, we obtain that (add, append) is in \(\mathcal{E}_k[\text{natlist} \rightarrow \text{natlist} \rightarrow \text{natlist} \rightarrow \text{natlist} \sigma] \) for any type \(\tau \).

These results can be extended to the case of open ornamentation, where a number of definitions are supposed ornamented but their code is not available. Ornamentation is modular: it is possible to lift a function that uses another function using only the signature of a lifting of this function.

9.3 Termination via the inverse relation

In order to prove that, when the patches terminate, the lifted term does not terminate less that the base term, we need to use the relation the other way, with the base term on the right and the lifted type on the left.

The relation is defined similarly. The only difference is that the top relation, in the first case, relates any term on the base side (i.e. the left) to a non-terminating term on the lifted side (i.e. the right), while the reversed Top relates any terminating term on the lifted side (i.e. this time, the left) to any term on the base side (i.e. the right). Thus, the difference occurs at instantiation: we need to prove that the patches terminate to inject them in the relation.

The definition is simply reversed and the properties are

10. Discussion

We are developing a prototype tool for refactoring ML programs using ornaments, closely following the structure outlined in this paper: the programs are first elaborated into a generic term, then instantiated and reduced in a separate phase.

However, some supplementary transformations are required to obtain a usable tool. Most programs use deep pattern matching, while the language formalized here, as well as the core of our prototype, only treats shallow pattern matching. When compiling deep pattern matching to shallow pattern matching, we annotate the generated matches with tags that are maintained during the elaboration and we try to merge back pattern matchings with identical tags after elaboration, so as to preserve the structure of the input program whenever possible.
As written, the elaboration expands all let-bindings and generate many extra bindings. The expressions resulting from the expansion are tagged so they can be shared after ornamentation. Conversely, let-bindings introduced during elaboration are expanded when they bind values or are linear. In our tests, these transformations produce easily readable output programs. After expansion of local let bindings, a user has to instantiate the same code at different point. If the instantiation at all these points is the same, one can specify a single instantiation of the binding. It will then be automatically folded back into a single definition at the original definition point when possible.

As presented, ornamentation abstracts over all possible ornamentation points, which requires to specify many identity ornaments and write corresponding trivial patches, while many datatypes will probably never be ornamented. Instead of specifying each ornament manually, we allow the user to describe the relation between a base module and an ornamented module. Then, generalization would have to consider functions from other modules as abstract, and sim-ularly, the effects done in patches. A problem is that effects done in patches could influence the automatically generated code (for example, modification of a reference). Similarly, the solution, a default solution, *i.e.* letting the user know that the solution is perhaps not unique, or failure. In fact, it seems that a very simple form of code inference might be pertinent in many cases, similar to Agda’s instance arguments [5], which only inserts variable present in the context. An alternative solution to code inference is an interactive tool to help the user build patches.

In more realistic scenarios, programs are written in a modular way. A module ornamentation description could describe the relation between a base module and an ornamented module. Then, generalization would have to consider functions from other modules as abstract, and simply ask for an equivalent function as an argument. Modular ornamentation could be applied to libraries: when a new interface-incompatible version of a library appears, a maintainer could distribute an ornamentation specification allowing clients of the library to automatically migrate their code, leaving holes only at the crucial points requiring user input.

Our approach to ornamentation is not *semantically* complete: we are only able to generate liftings that follow the syntactic structure of the original program, instead of merely following its observable behavior. Most reasonable ornamentations seem to follow this pattern. Syntactic lifting seems to be rather predictable and intuitive and lead to quite natural results. Syntactic lifting also helps with automation by reducing the search space. Still, it would be interesting to find a less syntactic description of what functions can be reached by this method.

Ornamentation ignores effects, including non-termination, as well as the runtime complexity of the resulting program. A desirable result would be that an ornamented program produces the same effects as the original program, save from the effects done in patches. A problem is that effects done in patches could influence the automatically generated code (for example, modification of a reference). Similarly, the

As presented, ornamentation abstracts over all possible ornamentation points, which requires to specify many identity ornaments and write corresponding trivial patches, while many datatypes will probably never be ornamented. Instead of specifying each ornament manually, we allow the user to describe the relation between a base module and an ornamented module. Then, generalization would have to consider functions from other modules as abstract, and simply ask for an equivalent function as an argument. Modular ornamentation could be applied to libraries: when a new interface-incompatible version of a library appears, a maintainer could distribute an ornamentation specification allowing clients of the library to automatically migrate their code, leaving holes only at the crucial points requiring user input.

Our approach to ornamentation is not *semantically* complete: we are only able to generate liftings that follow the syntactic structure of the original program, instead of merely following its observable behavior. Most reasonable ornamentations seem to follow this pattern. Syntactic lifting seems to be rather predictable and intuitive and lead to quite natural results. Syntactic lifting also helps with automation by reducing the search space. Still, it would be interesting to find a less syntactic description of what functions can be reached by this method.

Ornamentation ignores effects, including non-termination, as well as the runtime complexity of the resulting program. A desirable result would be that an ornamented program produces the same effects as the original program, save from the effects done in patches. A problem is that effects done in patches could influence the automatically generated code (for example, modification of a reference). Similarly, the

As presented, ornamentation abstracts over all possible ornamentation points, which requires to specify many identity ornaments and write corresponding trivial patches, while many datatypes will probably never be ornamented. Instead of specifying each ornament manually, we allow the user to describe the relation between a base module and an ornamented module. Then, generalization would have to consider functions from other modules as abstract, and simply ask for an equivalent function as an argument. Modular ornamentation could be applied to libraries: when a new interface-incompatible version of a library appears, a maintainer could distribute an ornamentation specification allowing clients of the library to automatically migrate their code, leaving holes only at the crucial points requiring user input.

Our approach to ornamentation is not *semantically* complete: we are only able to generate liftings that follow the syntactic structure of the original program, instead of merely following its observable behavior. Most reasonable ornamentations seem to follow this pattern. Syntactic lifting seems to be rather predictable and intuitive and lead to quite natural results. Syntactic lifting also helps with automation by reducing the search space. Still, it would be interesting to find a less syntactic description of what functions can be reached by this method.

Ornamentation ignores effects, including non-termination, as well as the runtime complexity of the resulting program. A desirable result would be that an ornamented program produces the same effects as the original program, save from the effects done in patches. A problem is that effects done in patches could influence the automatically generated code (for example, modification of a reference). Similarly, the

As written, the elaboration expands all let-bindings and generate many extra bindings. The expressions resulting from the expansion are tagged so they can be shared after ornamentation. Conversely, let-bindings introduced during elaboration are expanded when they bind values or are linear. In our tests, these transformations produce easily readable output programs. After expansion of local let bindings, a user has to instantiate the same code at different point. If the instantiation at all these points is the same, one can specify a single instantiation of the binding. It will then be automatically folded back into a single definition at the original definition point when possible.

As presented, ornamentation abstracts over all possible ornamentation points, which requires to specify many identity ornaments and write corresponding trivial patches, while many datatypes will probably never be ornamented. Instead of specifying each ornament manually, we allow the user to specify a strategy to select how types must be ornamented. For example, a refactoring may need a specific ornament for one type, and the identity ornament for all others: these ornamentations points are then instantiated automatically.

These strategies seem to work well for small examples it remains to see if they also scale to larger examples with numerous patches. More exploration is certainly needed on user interface issues. For example, one could also consider exposing the generalized language to allow the user to write generic patches, that could be instantiated as needed at many program points.

When the lifting process is partial, it returns code with holes that have to be filled manually. Our view is that filling the holes is an orthogonal issue that can be left as a post-processing pass, with several options that can be studied independently but also combined. One possibility is to use code inference techniques such as implicit parameters [2, 11, 13], which could return three kinds of answers: a unique

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x : \omega \in \Gamma)</td>
<td>(\Gamma \vdash a \sim A : \omega_0)</td>
<td>(\Gamma \vdash a \sim A : \omega_1 \rightarrow \omega_2)</td>
</tr>
<tr>
<td>(\Gamma \vdash x \sim x : \omega)</td>
<td>(\Gamma \vdash \text{let } x = a \text{ in } b \sim \text{let } x = A \text{ in } B : \omega)</td>
<td>(\Gamma \vdash b \sim B : \omega_1 \rightarrow \omega_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x : \omega_1 \rightarrow \omega_2, y : \omega_1 \vdash a \sim A : \omega_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x : \omega_0 \in \Gamma \vdash x : \omega_0 \rightarrow (\sigma, \varepsilon, \text{constr, proj}) \sim \omega_i (\omega_i) \rightarrow \omega_j (\omega_j) \rightarrow \gamma \sim \text{match } { x : \omega_0 \rightarrow (\sigma, \varepsilon, \text{constr, proj}) \rightarrow \gamma \text{ with } (d_k (y_k) \rightarrow A_k) } : \omega)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Var</th>
<th>E-Let</th>
<th>E-App</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
<td>(\phi \vdash (\sigma, \varepsilon, \text{constr, proj}) \sim \tau \in \Gamma)</td>
</tr>
</tbody>
</table>
complexity of the ornamented program should be proportional to the complexity of the original one, as long as the patches run in constant time (or excluding the computation done in those patches).

We have described ornaments as an extension of ML, equipped a call-by-value semantics, but only to have a fixed setting: our proposal should apply seamlessly to (core) Haskell.

Programming with generalized abstract datatypes (GADT) requires writing multiple definitions of the same type, but holding different invariants. GADT definitions that only add constraints could be considered ornaments of regulars types. It would then be useful to automatically derive, whenever possible, copies of the functions on the original type that preserve the GADT’s invariants. A possible approach with our current implementation is to generate the function, ignoring the constraints, and hoping it typechecks, but a more effective strategy will probably be necessary.

The design of eML balances two contrasting goals: we need a language powerful enough to be able to type the ornament encoding, but we also want to be able to eliminate the non-ML features from a term. We could encode specific ornaments by reflecting the structure of the constructors into GADTs, but this would only work for one given structure. The extension function \(e \) allows us to look arbitrarily deep into the terms, depending on what ornament we want to construct.

11. Related works

Ornamentation is a concept recently introduced by [3, 4] in the context of dependently typed languages, where ornamentation is not a primitive concept and can be encoded. The only other work to consider applying ornaments to an ML-like language we are aware of is [14].

Type-Theory in Color [1] is another way to understand the link between a base type and a richer one. Some parts of a datatype can be tainted with a color modality: this allows tracing which parts of the result depend on the tainted values and which are independent. Then, terms operating on a colored type can be erased to terms operating on the uncolored version. This is internalized in the type theory: in particular, equalities involving the erasure hold automatically. This is the inverse direction from ornaments: once the operations on the ornamented datatype are defined, the base functions are automatically derived, as well as a coherence property between the two implementations. Moreover, the range of transformations supported is more limited: it is only possible to erase fields, but not, for example, to rearrange a product of sums as a sum of products. Conversely, type theory in color also allows erasing arguments to functions, which we do not support.

Programming with GADTs may require defining one base structure and several structures with some additional invariants, along with new functions for each invariant. Ghostbuster [8] proposes a gradual approach, by allowing as a temporary measure to write a function against the base structure and dynamically check that it respects the invariant of the richer structure, until the appropriate function is written. While the theory of ornaments supports adding invariants, we do not yet consider GADTs. Moreover, we propose ornaments as a way to generate new code to be integrated into the program, rather than to quickly prototype on a new datatype.

Ornaments are building on datatype definitions, which are a central feature of ML. Polytypic programming is a successful concept also centered on the idea of datatypes, but orthogonal to ornaments. Instead of lifting operations from one datatype to another with a similar structure, it tries to have a universal definition for an operation that applies to all datatypes at once, the behavior being solely determined by logical (sum or product) structure of the datatype.

Ornamentation is a form of code refactoring on which there is a lot of literature, but based on quite different techniques and rarely supported by a formal treatment.

Ornaments are building on datatype definitions, which play a central role in ML. Polytypic programming is a successful concept also centered on datatypes, but orthogonal to ornaments. Instead of lifting operations from one datatype to another with a similar structure, it tries to have a universal definition for an operation that applies to all datatypes at once, the behavior being solely determined by logical (sum or product) structure of the datatype.

Views, first proposed by Wadler [12] and later reformulated by Okasaki [9] have some resemblance with isomorphic ornaments. They allow several interchangeable representations for the same data, using isomorphism to switch between views at runtime whenever convenient. The example of location ornaments, which allows to program on the bare view while the data leaves in the ornamented view, may seem related to views, but this is a misleading intuition. In this case, the switch between views is at editing time and nothing happens at runtime where only the ornamented core with location is executed. Lenses [6] also focus on switching representations at runtime.

The ability to switch between views may also be thought of as the existence of inverse coercions between views. Coercions may be thought of as the degenerate of views in the non-isomorphic case. But coercions are no more related to ornaments than views—for similar reasons.

Conclusion

We have designed and formalized an extension of ML with ornaments. We have used logical relations as a central tool to give a meaning to ornaments, to closely relate the ornamented and original programs, and to guide the lifting process. We believe that this constitutes a solid, but necessary basis for using ornaments in programming.
Ornaments seems to have several interesting applications in an ML setting. Still, we have so far only explored them on small examples and more experiment is needed to understand how they behave on large scale programs. We hope that our proof-of-concept prototype could be turned into a useful, robust tool for refactoring ML programs. Many design issues are still open to move from a core language to a full-fledged programming language.

A question that remains unclear is what should be the status of ornaments: should they become a first-class construct of programming languages, remain a meta-language feature used to preprocess programs into the core language, or a mere part of an integrated development environment?

References

