MPRI, Typage

Didier Rémy
(With course material from François Pottier)

October 23, 2014

INRIA
Plan of the course

Introduction

Simply-typed λ-calculus
Introduction
Contents

- Functional programming

- Types
Choosing the meta language of this course...
Choosing the meta language of this course...
Choosing the meta language of this course. . .

English or French?

In any case, questions must be asked in the language your speak best (French by default)
Online material

Visit the page

http://gallium.inria.fr/~remy/mpri/

All course material:

- Course notes (will be updated as we progress)
- Calendar of lessons and exams
- Information on the programming task
- All useful information and pointers
Online material

Written notes v.s. copies of the slides.
Both are available online.

However, you should rather read the course notes than the slides:

- Contain more details and text than what I say during the lesson.
- Proofs:
 - often sketchy on the slides, or on the board.
 - with full details in course notes, as you should write proofs at the exam.
- Exercises:
 - Course notes contain more exercises and solutions to exercises,
 - Only very few of them are mentioned on the slides.
Questions!

Questions are welcome!

Please, ask questions...

- during the lesson
- at the end of the lesson
- by email

Didier.Remy@inria.fr

Please, don’t wait until the end of the course to tell me about any problems you may encounter.
You are there to learn and I am here to help you!

If you have any difficulties during this course:

- do the exercises, check the corrections, ask me if you can’t do them.
- discuss with me: the earlier the better.
- don’t wait until the exams...
Programming task

Reminder

- The task will be given by mid-december.
- The solution is due by the end of the course.
- It counts for about 1/3 in the final grade. (We may change this a little depending on the difficulty and amount of work needed for the programming task)
- It is fun! (according to you, i.e. your fellow students from previous years)
- It focuses on one particular topic of the course and usually helps understand it in detail.
Questions?
What is functional programming?

The term “functional programming” means various things:

- it views functions as ordinary data—which, in particular, can be passed as arguments to other functions and stored in data structures.
- it loosely or strongly discourages the use of modifiable data, in favor of effect-free transformations of data.
 (In contrast with mainstream object-oriented programming languages)
- encourages abstraction of repetitive patterns as functions that can be called multiple times so as to avoid code duplication.
What are functional programming languages?

They are usually:

- *typed* (Scheme and Erlang are exceptions), with close connections to logic.

 In this course, we focus on typed languages and types play a central role.

- given a precise *formal semantics* derived from that of the \(\lambda\)-calculus.

 Some are *strict* (ML) and some are *lazy* (Haskell) [Hughes, 1989].

 This difference has a large impact on the language design and on the programming style, but has usually little impact on typing.

- *sequential*: their model of evaluation is not concurrent, even if core languages may then be extended with primitives to support concurrency.
Contents

- Functional programming
- Types
What are types?

- Types are:

 “a concise, formal description of the behavior of a program fragment.”

- For instance:

 \(\text{int} \)
 An integer

 \(\text{int} \to \text{bool} \)
 A function that maps an integer to a Boolean

 \((\text{int} \to \text{bool}) \to (\text{list int} \to \text{list int}) \)
 A function that maps an integer predicate to an integer list transformer

- Types must be \textit{sound}.
 That is, programs must behave as prescribed by their types.

- Hence, types must be \textit{checked} and ill-typed programs must be rejected.
What are they useful for?

- Types serve as *machine-checked* documentation.
- Data types help structure programs.
- Types provide a *safety* guarantee.

 “Well-typed expressions do not go wrong.” [Milner, 1978]

 (Advanced type systems can also guarantee various forms of security, resource usage, complexity, . . .)

- Types can be used to drive *compiler optimizations*.
- Types encourage *separate compilation, modularity, and abstraction*.

 “Type structure is a syntactic discipline for enforcing levels of abstraction.” [Reynolds, 1983]

Type-checking is compositional. Types can be abstract. Even seemingly non-abstract types offer a degree of abstraction (e.g., a function type does not tell how a function is represented)
Types make sense in *low-level* programming languages as well—even *assembly languages* can be statically typed! [Morrisett et al., 1999]

In a *type-preserving* compiler, every intermediate language is typed, and every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps *debug* it, and paves the way to a *semantics preservation* proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require richer type systems than their high-level counterparts.
Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time error checking and are succinct to the point of unintelligibility, while the other side claims that typed languages preclude a variety of powerful programming techniques and are verbose to the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

A sound type system with decidable type-checking (and possibly decidable type inference) must be conservative.
Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and their arguments are the motivation for seeking type systems that are more flexible and succinct than those of existing typed languages.”

Today, the question is more whether to stay with rather simple polymorphic types (e.g. as in ML or System F) or use more sophisticated types (e.g. dependent types, affine types, capabilities and ownership, effect types, logical assertions, etc.), or even towards full program proofs!
Explicit v.s. implicit types?

Annotating programs with types can lead to redundancy. Types can even become extremely cumbersome when they have to be explicitly and repeatedly provided.

In some pathological cases, type information may be grow in square of the size of the underlying untyped expression.

This creates a need for a certain degree of type reconstruction (also called type inference), where the source program may contain some but not all type information.

In principle, types could be entirely left implicit, even if the language is typed. A well-typed program is then one that is the type erasure of a (well-typed) explicitly-typed program.

Full type reconstruction is undecidable for expressive type systems. Some type annotations are required or type reconstruction is incomplete.
Outline of the course

This course is organized in 6 topics, spread over 8 lectures.

1. Simple types
2. Polymorphism
3. Type reconstruction
4. Existential types
5. Overloading and type classes
6. Logical relations
Simply-typed lambda-calculus
Contents

- Simply-typed λ-calculus
- Type soundness
- Simple extensions: Pairs, sums, recursive functions
- Exceptions
- References
Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.

The λ-calculus supports *natural* encodings of many programming languages [Landin, 1965], and as such provides a suitable setting for studying type systems.

Following Church’s thesis, any Turing-complete language can be used to encode any programming language. However, these encodings might not be natural or simple enough to help us in understanding their typing discipline.

Using λ-calculus, most of our results can also be applied to other languages (Java, assembly language, etc.).
Why simply-typed λ-calculus, *again*?

You have probably seen it a couple of times.

But not under the same angle: our focus is on types, formal presentation, and proofs.

We introduce proof methods in the context of simply-typed λ-calculus, and will later apply them to System-F, but faster, and with fewer details.

Warning! don’t think you know how to prove properties for simply-typed λ-calculus because you have already seen its syntax several times. . .

NB: *You will see simply-typed λ-calculus again at the end of the course, which will be mechanically formalized (in the Coq proof assistant).*
Syntax

Types are:

\[\tau ::= \alpha \mid \tau \to \tau \mid \ldots \]

Terms are:

\[M ::= x \mid \lambda x : \tau . M \mid M \, M \mid \ldots \]

The dots are place holders for future extensions of the language.
Binders

$\lambda x : \tau. M$ binds variable x in M.

We write $\text{ftv}(M)$ for the set of free variables of M:

$$\text{ftv}(x) \triangleq \{ x \}$$
$$\text{ftv}(\lambda x : \tau. M) \triangleq \text{ftv}(M) \setminus \{ x \}$$
$$\text{ftv}(M_1 M_2) \triangleq \text{ftv}(M_1) \cup \text{ftv}(M_2)$$

We write $x \not\in M$ for $x \notin \text{ftv}(M)$.

Terms are considered equal up to renaming of bound variables:

- $\lambda x_1 : \tau_1. \lambda x_2 : \tau_2. x_1 \ x_2$ and $\lambda y : \tau_1. \lambda x : \tau_2. y \ x$ are really the same term!
- $\lambda x : \tau. \lambda x : \tau. M$ is equal to $\lambda y : \tau. \lambda x : \tau. M$ when $y \notin \text{ftv}(M)$.

Substitution:

$[x \mapsto N] M$ is the capture avoiding substitution of N for x in M.
Concrete \textit{v.s.} abstract syntax

For our metatheoretical study, we are interested in the abstract syntax of expressions rather than their concrete syntax. Hence, we like to think of expressions as their abstract syntax trees.

Still, we need to write expressions on paper, hence we need some concrete syntax for terms.

The compromise is to have some concrete syntax that is in one-to-one correspondence with the abstract syntax.

We may introduce syntactic sugar as short hand that should then be understood by its expansion into some primitive form.
Concrete v.s. abstract syntax

An expression in concrete notation

$$\lambda x. \lambda y. x \, y$$

must be understood as its abstract syntax tree:

![Abstract Syntax Tree](image-url)
Dynamic semantics

We use a \textit{small-step operational} semantics.

We choose a \textit{call-by-value} variant. When explaining \textit{references}, exceptions, or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name or call-by-need just as well.
Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where reduction may occur in any context. The reduction is then non-deterministic (there are many possible reduction paths) but the calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is never performed under λ-abstractions, for efficiency of reduction, to have a deterministic semantics in the presence of side effects—and a well-defined cost model.

Still, type systems of programming languages are also sound for full reduction strategies (with some care in the presence of side effects).

Type soundness for full reduction is a stronger result. In particular, it implies that potential errors may not be hidden under λ-abstractions (this is usually true—it is true for λ-calculus and System F, but not implied by type soundness for a weak reduction strategy.)
Dynamic semantics

In the pure, call-by-value \(\lambda \)-calculus, the values are the functions:

\[
V ::= \lambda x: \tau. M | \ldots
\]

The reduction relation \(M_1 \rightarrow M_2 \) is inductively defined:

\[
\beta_v
(\lambda x: \tau. M) \ V \rightarrow [x \mapsto V] M
\]

Evaluation contexts are defined as follows:

\[
E ::= [] M | V [] | \ldots
\]

We only need evaluation contexts of depth one, using repeated applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

\[
\bar{E} ::= [] | E[\bar{E}]
\]
Static semantics

Technically, the type system is a 3-place predicate, whose instances are called \textit{typing judgments}, written:

\[\Gamma \vdash M : \tau \]

where \(\Gamma \) is a typing context.
Typing context

A *typing context* (also called a *type environment*) Γ binds program variables to types.

We write \emptyset for the empty context and $\Gamma, x : \tau$ for the extension of Γ with $x \mapsto \tau$.

To avoid confusion, we require $x \notin \text{dom}(\Gamma)$ when we write $\Gamma, x : \tau$.

Bound variables in source programs can always be suitably renamed to avoid name clashes.

A typing context can then be thought of as a finite function from program variables to their types.

We write $\text{dom}(\Gamma)$ for the set of variables bound by Γ and $x : \tau \in \Gamma$ to mean $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
Static semantics

Typing judgments are defined inductively by the following set of *inferences rules*:

- **VAR**
 \[\Gamma \vdash x : \Gamma(x) \]

- **ABS**
 \[\Gamma, x : \tau_1 \vdash M : \tau_2 \]
 \[\Gamma \vdash \lambda x : \tau_1 . M : \tau_1 \rightarrow \tau_2 \]

- **APP**
 \[\Gamma \vdash M_1 : \tau_1 \rightarrow \tau_2 \]
 \[\Gamma \vdash M_2 : \tau_1 \]
 \[\Gamma \vdash M_1 M_2 : \tau_2 \]

Notice that the specification is extremely simple.

In the simply-typed \(\lambda \)-calculus, the definition is *syntax-directed*. This is not true of all type systems.
Example

The following is a valid *typing derivation*:

\[
\begin{array}{c}
\text{VAR} & \Gamma \vdash f : \tau \to \tau' & \text{VAR} & \Gamma \vdash x_1 : \tau \\
\text{APP} & \Gamma \vdash f x_1 : \tau' \\
\end{array}
\]

\(\Gamma\) stands for \((f : \tau \to \tau', x_1 : \tau, x_2 : \tau)\). Rule Pair is introduced later on.
Example

The following is a valid *typing derivation*:

Γ \vdash f : \tau \rightarrow \tau'
Γ \vdash x_1 : \tau

\hline

VAR

Γ \vdash f x_1 : \tau'

VAR

Γ \vdash x_2 : \tau

\hline

Γ \vdash f : \tau \rightarrow \tau'
Γ \vdash x_2 : \tau

\hline

VAR

Γ \vdash f x_2 : \tau'

VAR

Γ \vdash f : \tau \rightarrow \tau'

Γ \vdash f x_2 : \tau'

\hline

VAR

VAR

VAR

Γ stands for \((f : \tau \rightarrow \tau', x_1 : \tau, x_2 : \tau)\). Rule Pair is introduced later on.
Example

The following is a valid \textit{typing derivation}:

\[
\begin{array}{c}
\text{VAR} \quad \Gamma \vdash f : \tau \to \tau' \\
\text{VAR} \quad \Gamma \vdash x_1 : \tau \\
\hline
\text{APP} \quad \Gamma \vdash f \, x_1 : \tau'
\end{array}
\]

\[
\begin{array}{c}
\text{VAR} \quad \Gamma \vdash f \, x_2 : \tau' \\
\hline
\text{APP} \quad \Gamma \vdash f(x_1, f(x_2)) : \tau' \times \tau'
\end{array}
\]

Γ stands for $(f : \tau \to \tau', x_1 : \tau, x_2 : \tau)$. Rule Pair is introduced later on.
Example

The following is a valid typing derivation:

\[
\begin{align*}
\text{VAR} & \quad \Gamma \vdash f : \tau \to \tau' \\
\text{VAR} & \quad \Gamma \vdash x_1 : \tau \\
\text{APP} & \quad \Gamma \vdash f \, x_1 : \tau' \\
\text{VAR} & \quad \Gamma \vdash f : \tau \to \tau' \\
\text{VAR} & \quad \Gamma \vdash x_2 : \tau \\
\text{APP} & \quad \Gamma \vdash f \, x_2 : \tau' \\
\text{PAIR} & \quad \Gamma \vdash f \, x_1, f \, x_2 : \tau' \times \tau' \\
\text{ABS} & \quad \emptyset \vdash \lambda f : \tau \to \tau'. \lambda x_1 : \tau. \lambda x_2 : \tau. (f \, x_1, f \, x_2) : (\tau \to \tau') \to \tau \to \tau \to (\tau' \times \tau')
\end{align*}
\]

\(\Gamma\) stands for \((f : \tau \to \tau', x_1 : \tau, x_2 : \tau)\). Rule Pair is introduced later on.
Example

The following is a valid *typing derivation*:

\[
\begin{align*}
\text{VAR} & : \quad \Gamma \vdash f : \tau \rightarrow \tau' \\
\text{VAR} & : \quad \Gamma \vdash x_1 : \tau \\
\text{APP} & : \quad \Gamma \vdash f \, x_1 : \tau' \\
\text{VAR} & : \quad \Gamma \vdash x_2 : \tau \\
\text{VAR} & : \quad \Gamma \vdash f \, x_2 : \tau' \\
\text{APP} & : \quad \Gamma \vdash f \, x_2 : \tau' \\
\text{PAIR} & : \quad \Gamma \vdash (f \, x_1, f \, x_2) : \tau' \times \tau' \\
\text{ABS} & : \quad \emptyset \vdash \lambda f : \tau \rightarrow \tau'. \, \lambda x_1 : \tau. \, \lambda x_2 : \tau. \, (f \, x_1, f \, x_2) : (\tau \rightarrow \tau') \rightarrow \tau \rightarrow \tau \rightarrow (\tau' \times \tau')
\end{align*}
\]

\(\Gamma\) stands for \((f : \tau \rightarrow \tau', x_1 : \tau, x_2 : \tau)\). Rule Pair is introduced later on.

Observe that:

- this is in fact, the only typing derivation (in the empty environment).
- this derivation is valid for any choice of \(\tau\) and \(\tau'\).

Conversely, every derivation for this term must have this shape, for some \(\tau\) and \(\tau'\).
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

– If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
– If M is $M_1 \ M_2$ then

?
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \ M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \ M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
- If M is $\langle \cdot \rangle$
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \ M_2$ then $\Gamma \vdash M_1 : \tau_2 \to \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
- If M is $\lambda x : \tau_2. \ M_1$, then \triangleleft
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \; M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
- If M is $\lambda x : \tau_2. M_1$, then τ is of the form $\tau_2 \rightarrow \tau_1$ and
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

\begin{itemize}
 \item If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
 \item If M is $M_1 \ M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
 \item If M is $\lambda x : \tau_2. \ M_1$, then τ is of the form $\tau_2 \rightarrow \tau_1$ and $\Gamma, x : \tau_2 \vdash M_1 : \tau_1$.
\end{itemize}
Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \, M_2$ then $\Gamma \vdash M_1 : \tau_2 \to \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
- If M is $\lambda x : \tau_2. \, M_1$, then τ is of the form $\tau_2 \to \tau_1$ and $\Gamma, x : \tau_2 \vdash M_1 : \tau_1$.

The inversion lemma is a basic property that is used in many places when reasoning by induction on terms. Although trivial in our simple setting, stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires reorganizing typing derivations.
Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is fully determined by the shape of the term.

In our simple setting, each term has actually a unique type. Hence, typing derivations are unique, up to the typing context. The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described in the meta-language of mathematics.
Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is *explicitly typed* (we also say in *church-style*), as parameters of abstractions are annotated with their types.

Simply-typed λ-calculus can also be *implicitly typed* (we also say in *curry-style*) when parameters of abstractions are left unannotated, as in the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the amount of type information present in source terms and can be easily lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.
Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones by dropping type annotations. This is called type erasure.

We write $[M]$ for the type erasure of M, which is defined by structural induction on M:

\[
\begin{align*}
[x] & \triangleq x \\
[\lambda x : \tau. M] & \triangleq \lambda x. [M] \\
[M_1 M_2] & \triangleq [M_1] [M_2]
\end{align*}
\]
Type reconstruction

Conversely, can we convert implicitly-typed expressions back into explicitly-typed ones, that is, can we reconstruct the missing type information?

This is equivalent to finding a typing derivation for implicitly-typed terms. It is called *type reconstruction* (or *type inference*). (See the course on type reconstruction.)
Untyped semantics

Observe that although the reduction carries types at runtime, types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type erasure. We say that the semantics is *untyped* or *type-erasing*.

But how can we say that the semantics of typed and untyped terms coincide when these terms do not live in the same world?
Untyped semantics

Observe that although the reduction carries types at runtime, types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type erasure. We say that the semantics is *untyped* or *type-erasing*.

But how can we say that the semantics of typed and untyped terms coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into close correspondence.
Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If $M_1 \rightarrow M_2$ then $[M_1] \rightarrow [M_2]$.
Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If $M_1 \rightarrow M_2$ then $[M_1] \rightarrow [M_2]$.
Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If $M_1 \longrightarrow M_2$ then $[M_1] \longrightarrow [M_2]$.

Conversely, a reduction step after type erasure could also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If $[M] \longrightarrow a$ then there exists M' such that $M \longrightarrow M'$ and $[M'] = a$.
Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

\[\text{If } M_1 \to M_2 \text{ then } [M_1] \to [M_2]. \]

Conversely, a reduction step after type erasure could also have been performed on the term before type erasure.

Lemma (Inverse simulation)

\[\text{If } [M] \to a \text{ then there exists } M' \text{ such that } M \to M' \text{ and } [M'] = a. \]
Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If $M_1 \rightarrow M_2$ then $\lceil M_1 \rceil \rightarrow \lceil M_2 \rceil$.

Conversely, a reduction step after type erasure could also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If $\lceil M \rceil \rightarrow a$ then there exists M' such that $M \rightarrow M'$ and $\lceil M' \rceil = a$.

What we have established is a *bisimulation* between explicitly-typed terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved only types and have no counter-part (and disappear) on compiled terms.
Untyped semantics

It is an important property for a language to have an untyped semantics. It then has an implicitly-typed presentation.

The metatheoretical study is often easier with explicitly-typed terms, in particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.

(Once we have shown that implicit and explicit presentations coincide, we can choose whichever view is more convenient.)
Contents

- Simply-typed λ-calculus
- Type soundness
- Simple extensions: Pairs, sums, recursive functions
- Exceptions
- References
Stating type soundness

What is a formal statement of Milner’s slogan?

“\textit{Well-typed expressions do not go wrong}”

By definition, a closed term M is \textit{well-typed} if it admits some type τ in the empty environment.

By definition, a closed, irreducible term is either a value or \textit{stuck}. Thus, a closed term can only:

- \textit{diverge},
- \textit{converge} to a value, or
- \textit{go wrong} by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.
Stating type soundness

Milner’s slogan now has formal meaning:

Theorem (Type Soundness)

Well-typed expressions do not go wrong.

Proof.

By Subject Reduction and Progress.
Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994]. Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if \(M_1 \rightarrow M_2 \) *then for any type* \(\tau \) *such that* \(\emptyset \vdash M_1 : \tau \), *we also have* \(\emptyset \vdash M_2 : \tau \).

Theorem (Progress)

A (closed) well-typed term is either reducible or a value: if \(\emptyset \vdash M : \tau \) *then there exists* \(M' \) *such that* \(M \rightarrow M' \), *or* \(M \) *is a value.*

Equivalently, we may say: a closed, well-typed, irreducible term is a value.
Establishing subject reduction

Subject reduction is proved by *induction* over the hypothesis $M_1 \rightarrow M_2$. Thus, there is one case per reduction rule.

In the pure simply-typed λ-calculus, there are just two such rules: β-reduction and reduction under an evaluation context.

\[
\beta_v \\
(\lambda x: \tau. M) V \rightarrow [x \mapsto V]M
\]

Context

\[
\frac{M \rightarrow M'}{E[M] \rightarrow E[M']}
\]
Establishing subject reduction

In the β-reduction case, the first hypothesis is

$$ (\lambda x : \tau. M) \; V \longrightarrow [x \mapsto V] M $$

the second hypothesis is

$$ \emptyset \vdash (\lambda x : \tau. M) \; V : \tau_0 $$

and the goal is

$$ \emptyset \vdash [x \mapsto V] M : \tau_0 $$

How do we proceed?
Establishing subject reduction

Hyp: $(\lambda x: \tau. M)\; V \longrightarrow [x \mapsto V]M$ (1) and $\emptyset \vdash (\lambda x: \tau. M)\; V : \tau_0$ (2).

Goal: $\emptyset \vdash [x \mapsto V]M : \tau_0$ (3)

We decompose the hypothesis (2).

By inversion of the typing rules, the derivation of (2) must be:

$$
\begin{align*}
\text{ABS} & \quad x : \tau \vdash M : \tau_0 \quad (4) \\
\text{APP} & \quad \emptyset \vdash (\lambda x: \tau. M) : \tau \rightarrow \tau_0 \quad \emptyset \vdash V : \tau \quad (5) \\
& \quad \emptyset \vdash (\lambda x: \tau. M)\; V : \tau_0 \quad (2)
\end{align*}
$$

Where next?
Establishing subject reduction

Hyp: \((\lambda x:\tau. M) V \rightarrow [x \mapsto V] M\) (1) and \(\emptyset \vdash (\lambda x:\tau. M) V : \tau_0\) (2).

Goal: \(\emptyset \vdash [x \mapsto V] M : \tau_0\) (3)

We *decompose* the hypothesis (2).

By inversion of the typing rules, the derivation of (2) must be:

\[
\begin{align*}
\text{ABS} & \quad x : \tau \vdash M : \tau_0 \quad (4) \\
\text{APP} & \quad \emptyset \vdash (\lambda x:\tau. M) : \tau \rightarrow \tau_0 \quad \emptyset \vdash V : \tau \quad (5) \\
\hline
\emptyset \vdash (\lambda x:\tau. M) V : \tau_0 \quad (2)
\end{align*}
\]

Where next?

We expect (3) to follow from (4) and (5)…
Establishing subject reduction (case β) Value substitution

Hence, to conclude, we only need the following lemma:

Lemma (Value substitution)

If $x : \tau \vdash M : \tau_0$ and $\emptyset \vdash V : \tau$, then $\emptyset \vdash [x \mapsto V]M : \tau_0$.

In plain words, replacing a formal parameter with a type-compatible actual argument preserves types.

How do we prove this lemma?
Establishing subject reduction (case β) Value substitution

Hence, to conclude, we only need the following lemma:

Lemma (Value substitution)

If $x : \tau \vdash M : \tau_0$ and $\emptyset \vdash V : \tau$, then $\emptyset \vdash [x \mapsto V]M : \tau_0$.

In plain words, replacing a formal parameter with a type-compatible actual argument preserves types.

How do we prove this lemma?

—By induction on the typing derivation for M...

However, one case does not go through. Which one?
Establishing subject reduction (case β) Value substitution

The lemma must be suitably generalized so that *induction* can be applied in the case of abstraction:

Lemma (Value substitution, strengthened)

\[
\text{If } x : \tau, \Gamma \vdash M : \tau_0 \text{ and } \emptyset \vdash V : \tau, \text{ then } \Gamma \vdash [x \mapsto V]M : \tau_0.
\]

The proof is now straightforward—at variables, it uses another lemma:

Lemma (Weakening)

\[
\text{If } \emptyset \vdash V : \tau_1 \text{ then } \Gamma \vdash V : \tau_1.
\]

This closes the case of the β-reduction rule.
Establishing subject reduction \((\text{case } \beta)\)

The weakening lemma need only add one binding at a time, the general case follows as a corollary. \textit{However, . . .}
Establishing subject reduction (case β)

The weakening lemma need only add one binding at a time, the general case follows as a corollary. *However, it must be strengthened...*

Lemma (Weakening, strengthened)

If $\Gamma \vdash M : \tau$ and $y \notin \text{dom}(\Gamma)$, then $\Gamma, y : \tau' \vdash M : \tau$.

The proof is by induction and cases on M applying the inversion lemma:

Case M is x: Then, x must be bound to τ in Γ. Hence, it is also bound to τ in $(\Gamma, y : \tau')$. We conclude by rule VAR.

Case M is $\lambda x : \tau_2. M_1$: W.l.o.g, we may choose $x \notin \text{dom}(\Gamma)$ and $x \neq y$. We have $\Gamma, x : \tau_2 \vdash M_1 : \tau_1$ with $\tau_2 \rightarrow \tau_1$ equal to τ. By induction hypothesis, we have $\Gamma, x : \tau_2, y : \tau' \vdash M_1 : \tau_1$. Thanks to a *permutation* lemma, we have $\Gamma, y : \tau', x : \tau_2 \vdash M_1 : \tau_1$ and we conclude by Rule Abs.

Case M is $M_1 \ M_2$: easy.
Establishing subject reduction (case β)

Lemma (Permutation lemma)

If $\Gamma \vdash M : \tau$ and Γ' is a permutation of Γ, then $\Gamma' \vdash M : \tau$.

?
Establishing subject reduction \((\text{case } \beta)\)

Lemma (Permutation lemma)

If \(\Gamma \vdash M : \tau\) *and* \(\Gamma'\) *is a permutation of* \(\Gamma\), *then* \(\Gamma' \vdash M : \tau\).

The result is obvious since a permutation of \(\Gamma\) does not change its interpretation as a finite function, which is all what is needed in the typing rules so far (this will no longer be the case when we extend \(\Gamma\) with type variable declarations).

Formally, the proof is by induction on \(M\).
Establishing subject reduction

In the context case, the first hypothesis is

\[M \rightarrow M' \] \hspace{1cm} (1)

where, by induction hypothesis, this reduction preserves types (2).

The second hypothesis is

\[\emptyset \vdash E[M] : \tau \] \hspace{1cm} (3)

where \(E \) is an evaluation context (reminder \(E ::= [] M | V [] | \ldots \)).

The goal is

\[\emptyset \vdash E[M'] : \tau \] \hspace{1cm} (4)

\textit{How do we proceed?}
Establishing subject reduction

Type-checking is \textit{compositional}: only the type of the sub-expression \textit{in the hole} matters, not its exact form. The context case immediately follows from compositionality, which closes the proof of subject reduction.

Lemma (Compositionality)

\textit{If} $\emptyset \vdash E[M] : \tau$, \textit{then, there exists} τ' \textit{such that}:

- $\emptyset \vdash M : \tau'$,
- \textit{for every} M', $\emptyset \vdash M' : \tau'$ \textit{implies} $\emptyset \vdash E[M'] : \tau$.

The proof is straightforward, by cases over E.

Informally, τ' is the type of the hole in the pseudo judgment $\emptyset \vdash E[\tau'] : \tau$. Evaluation contexts do not bind variables, so the hole is typechecked in an empty environment as well.
Establishing progress

Progress ("A closed, well-typed, irreducible term M is a value") is proved by *structural induction* over the term M. Thus, there is one case per construct in the syntax of terms.

In the pure λ-calculus, there are just three cases:

- variable;
- λ-abstraction;
- application.

Two of these are immediate...
Establishing progress

- The case of variables is void,
Establishing progress

- The case of variables is void, because \textit{a variable is never closed} (it does not admit a type in the empty environment).
Establishing progress

- The case of variables is void, because *a variable is never closed* (it does not admit a type in the empty environment).

- The case of λ-abstractions is immediate,
Establishing progress

- The case of variables is void, because *a variable is never closed* (it does not admit a type in the empty environment).
- The case of \(\lambda\)-abstractions is immediate, because *a \(\lambda\)-abstraction is a value.*
Establishing progress

- The case of variables is void, because a variable is never closed (it does not admit a type in the empty environment).
- The case of λ-abstractions is immediate, because a λ-abstraction is a value.
- The only remaining case is that of applications.
Establishing progress

Let us show that a closed, well-typed, term $M_1 \ M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that $\emptyset \vdash M_1 : \tau_2 \rightarrow \tau_1$ (1) and $\emptyset \vdash M_2 : \tau_2$ (2).
Establishing progress

Let us show that a closed, well-typed, term $M_1 \ M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that

\[\emptyset \vdash M_1 : \tau_2 \rightarrow \tau_1 \ (1) \ 	ext{and} \ \emptyset \vdash M_2 : \tau_2 \ (2). \]

By the I.H. applied to (1), M_1 is either reducible or a value $V_1.$
Establishing progress

Let us show that a closed, well-typed, term $M_1 M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that

$$\emptyset \vdash M_1 : \tau_2 \to \tau_1 \quad (1) \quad \text{and} \quad \emptyset \vdash M_2 : \tau_2 \quad (2).$$

By the I.H. applied to (1), M_1 is either reducible or a value V_1.

If M_1 is reducible, so is M since $[] M_2$ is an evaluation context and we

are done.
Establishing progress

Let us show that a closed, well-typed, term $M_1 M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that

$\emptyset \vdash M_1 : \tau_2 \rightarrow \tau_1$ (1) and $\emptyset \vdash M_2 : \tau_2$ (2).

By the I.H. applied to (1), M_1 is either reducible or a value V_1.

If M_1 is reducible, so is M since $[] M_2$ is an evaluation context and we are done.

Otherwise, by the I.H. applied to (2), M_2 is either reducible or a value V_2.

?
Establishing progress

Let us show that a closed, well-typed, term $M_1 \ M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that

$\emptyset \vdash M_1 : \tau_2 \to \tau_1$ (1) and $\emptyset \vdash M_2 : \tau_2$ (2).

By the I.H. applied to (1), M_1 is either reducible or a value V_1.

If M_1 is reducible, so is M since $[] \ M_2$ is an evaluation context and we are done.

Otherwise, by the I.H. applied to (2), M_2 is either reducible or a value V_2.

If M_2 is reducible, so is M since $V_1 []$ is an evaluation context and we are done.

?
Establishing progress

Let us show that a closed, well-typed, term $M_1 M_2$ is always reducible.

By inversion of typing rules, there exist types τ_1 and τ_2 such that

$$\emptyset \vdash M_1 : \tau_2 \rightarrow \tau_1 \ (1) \text{ and } \emptyset \vdash M_2 : \tau_2 \ (2).$$

By the I.H. applied to (1), M_1 is either reducible or a value V_1.

If M_1 is reducible, so is M since $[] M_2$ is an evaluation context and we are done.

Otherwise, by the I.H. applied to (2), M_2 is either reducible or a value V_2.

If M_2 is reducible, so is M since $V_1 []$ is an evaluation context and we are done.

Because V_1 is a value of type $\tau_1 \rightarrow \tau_2$, it must be a λ-abstraction (see next slide), so M is a β-redex, hence reducible.
Establishing progress

Interestingly, the proof is constructive.
It corresponds to an algorithm that…

Does what?
Establishing progress

Interestingly, the proof is constructive.
It corresponds to an algorithm that...

...searches for the active redex in a well-typed term.
Classification of values

We have appealed to the following property:

Lemma (Classification)

Assume $\emptyset \vdash V : \tau$. Then,

- *if τ is an arrow type, then V is a λ-abstraction;*
- \ldots *(e.g. if τ is a product type, then V is product)*

Proof.

By cases over V:

- *if V is a λ-abstraction, then τ must be an arrow type;*
- \ldots *(e.g. if V is product, then τ must be a product type)*

Because different kinds of values receive types with different head constructors, this classification is injective, and can be inverted.
Towards more complex type systems

In the pure λ-calculus, classification is trivial, — why?
Towards more complex type systems

In the pure \(\lambda \)-calculus, classification is trivial, because *every value is a \(\lambda \)-abstraction*. Progress holds even in the absence of the well-typedness hypothesis, *i.e.* in the untyped \(\lambda \)-calculus, because *no term is ever stuck!*

As the programming language and its type system are extended with new features, however, type soundness is no longer trivial.

Warning!

Most type soundness proofs are shallow but large. Authors are tempted to skip the “easy” cases, but these may contain hidden traps!

This calls for mechanized proofs that cover all cases and should be able to treat trivial cases automatically.
Towards more complex type systems

Sometimes, the combination of two features is unsound, even though each feature, in isolation, is sound.

This is problematic, because researchers like studying each feature in isolation, and do not necessarily foresee problems with their combination.

This will be illustrated in this course by the interaction between references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and used for some time before they were found to be unsound!

- mutable records + existential quantification in Cyclone [Grossman, 2006]
Soundness versus completeness

Because the λ-calculus is a Turing-complete programming language, whether a program goes wrong is an undecidable property.

As a result, any sound, decidable type system must be incomplete, that is, must reject some valid programs.

Type systems can be compared against one another via encodings, so it is sometimes possible to prove that one system is more expressive than another.

However, whether a type system is “sufficiently expressive in practice” can only be assessed via empirical means.
Contents

- Simply-typed λ-calculus
- Type soundness
- **Simple extensions**: Pairs, sums, recursive functions
- Exceptions
- References

<table>
<thead>
<tr>
<th>Simply-typed λ-calculus</th>
<th>Type soundness</th>
<th>Simple extensions</th>
<th>Exceptions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9x266]</td>
<td>[9x266]</td>
<td>[45x266]</td>
<td>[0x0]</td>
<td>[9x242]</td>
</tr>
</tbody>
</table>
Adding a unit

The simply-typed \(\lambda \)-calculus is modified as follows. Values and expressions are extended with a nullary constructor (\(() \)) (read “unit”):

\[
M ::= \ldots | () \\
V ::= \ldots | ()
\]

No new reduction rule is introduced.

Types are extended with a new constant `unit` and a new typing rule:

\[
\tau ::= \ldots | \text{unit} \\
\Gamma \vdash () : \text{unit}
\]

Exercise

Check that type soundness is preserved by this extension.

Notice that the classification Lemma is no longer degenerate.
Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots | (M, M) | \text{proj}_i M
\]

\[
E ::= \ldots | ???
\]

\[
V ::= \ldots | (V, V)
\]

\[
i \in \{1, 2\}
\]

A new reduction rule is introduced:

???
Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots | (M, M) | \text{proj}_i M
\]
\[
E ::= \ldots | ([], M) | (V, []) | \text{proj}_i []
\]
\[
V ::= \ldots | (V, V)
\]
\[
i \in \{1, 2\}
\]

A new reduction rule is introduced:
Pairs

The simply-typed \(\lambda \)-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots | (M, M) | \text{proj}_i M
\]
\[
E ::= \ldots | ([], M) | (V, []) | \text{proj}_i []
\]
\[
V ::= \ldots | (V, V)
\]
\[\quad i \in \{1, 2\}\]

A new reduction rule is introduced:

\[
\text{proj}_i (V_1, V_2) \rightarrow V_i
\]
Pairs

Types are extended:

\[\tau ::= \ldots | \tau \times \tau \]

Two new typing rules are introduced:

\[\text{PAIR} \quad \Gamma \vdash M_1 : \tau_1 \quad \Gamma \vdash M_2 : \tau_2 \]
\[\quad \Gamma \vdash (M_1, M_2) : \tau_1 \times \tau_2 \]

\[\text{PROJ} \quad \Gamma \vdash M : \tau_1 \times \tau_2 \]
\[\quad \Gamma \vdash \text{proj}_i M : \tau_i \]

Exercise

Check that subject reduction is preserved by this extension.
Sums

Values, expressions, evaluation contexts are extended:

\[M ::= \ldots | \text{inj}_i M | \text{case } M \text{ of } V \mid V \]
\[E ::= \ldots | \text{???} \]
\[V ::= \ldots | \text{inj}_i V \]

A new reduction rule is introduced:

\[\text{???} \]
Sums

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots \mid inj_i \ M \mid case \ M \ of \ V \mid V
\]
\[
E ::= \ldots \mid inj_i \ [] \mid case \ [] \ of \ V \mid V
\]
\[
V ::= \ldots \mid inj_i \ V
\]

A new reduction rule is introduced:
Sums

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots | inj_i M \mid case\ M\ of\ V \mid V
\]

\[
E ::= \ldots | inj_i [] \mid case\ []\ of\ V \mid V
\]

\[
V ::= \ldots | inj_i V
\]

A new reduction rule is introduced:

\[
\text{case } inj_i V \text{ of } V_1 \mid V_2 \rightarrow V_i V
\]
Sums

Types are extended:

\[\tau ::= \ldots \mid \tau + \tau \]

Two new typing rules are introduced:

INJ

\[
\Gamma \vdash M : \tau_i \\
\underline{\Gamma \vdash inj_i M : \tau_1 + \tau_2}
\]

CASE

\[
\Gamma \vdash M : \tau_1 + \tau_2 \\
\Gamma \vdash V_1 : \tau_1 \rightarrow \tau \\
\Gamma \vdash V_2 : \tau_2 \rightarrow \tau \\
\Gamma \vdash \text{case } M \text{ of } V_1 \mid V_2 : \tau
\]
Sums

with unique types

Notice that a property of simply-typed \(\lambda \)-calculus is lost: expressions do not have unique types anymore, \textit{i.e.} the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered
Notice that a property of simply-typed λ-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in injections:

\[? \]
Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in injections:

\[
V ::= \ldots \mid \text{inj}_i V \text{ as } \tau
\]

and modifying the typing rules and reduction rules accordingly.

Exercise

Describe an extension with the option type.
Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;
• new expressions, to *construct* and *destruct* values of a new shape.
• new typing rules for new forms of expressions;
• new reduction rules, to specify how values of the new shape can be destructed;
• new evaluation contexts—but just to propagate reduction under the new constructors.

Subject reduction is preserved . . .
Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to *construct* and *destruct* values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts—but just to propagate reduction under the new constructors.

Subject reduction is preserved because types are preserved by the new reduction rules.

Progress is preserved . . .
Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to *construct* and *destruct* values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts—but just to propagate reduction under the new constructors.

Subject reduction is preserved because types are preserved by the new reduction rules.

Progress is preserved because the type system ensures that the new destructors can only be applied to values such that at least one of the new reduction rules applies.
Modularity of extensions

These extensions are independent: they can be added to the λ-calculus alone or mixed altogether.

Indeed, no assumption about other extensions (the “…”) is ever made, except for the classification lemma which requires, informally, that values of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of a more general extension of the λ-calculus with constants, for which type soundness can be established uniformly under reasonable assumptions relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the next chapter.
Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

$$M ::= \ldots \mid \mu f : \tau. \lambda x. M$$
$$V ::= \ldots \mid \mu f : \tau. \lambda x. M$$

A new reduction rule is introduced:

$$(\mu f : \tau. \lambda x. M) V \longrightarrow [f \mapsto \mu f : \tau. \lambda x. M][x \mapsto V]M$$
Recursive functions

Types are *not* extended. We already have function types.

What does this imply as a corollary?
Recursive functions

Types are *not* extended. We already have function types.

What does this implies as a corrolary?

— Types will not distinguish functions from recursive functions.
Recursive functions

Types are *not* extended. We already have function types.

What does this implies as a corrolary?

— Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

\[
\text{FixAbs} \\
\frac{
\Gamma, f : \tau_1 \rightarrow \tau_2 \vdash \lambda x : \tau_1. M : \tau_1 \rightarrow \tau_2}
}{
\Gamma \vdash \mu f : \tau_1 \rightarrow \tau_2. \lambda x. M : \tau_1 \rightarrow \tau_2}
\]
Recursive functions

Types are \textit{not} extended. We already have function types.

What does this implies as a corrolary?

— Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

\[
\text{FixAbs} \quad \frac{\Gamma, f : \tau_1 \to \tau_2 \vdash \lambda x : \tau_1. M : \tau_1 \to \tau_2}{\Gamma \vdash \mu f : \tau_1 \to \tau_2. \lambda x. M : \tau_1 \to \tau_2}
\]

In the premise, the type \(\tau_1 \to \tau_2 \) serves both as an assumption and a goal. This is a typical feature of recursive definitions.
A derived construct: let

The construct “let $x : \tau = M_1 \text{ in } M_2$” can be viewed as syntactic sugar for the β-redex “$(\lambda x : \tau. M_2) M_1$”.

The latter can be type-checked only by a derivation of the form:

\[
\begin{align*}
\Gamma, x : \tau_1 &\vdash M_2 : \tau_2 \\
\text{ABS} &\quad \Gamma \vdash \lambda x : \tau_1. M_2 : \tau_1 \to \tau_2 \\
\Gamma &\vdash M_1 : \tau_1 \\
\text{APP} &\quad \Gamma \vdash (\lambda x : \tau_1. M_2) M_1 : \tau_2
\end{align*}
\]

This means that the following derived rule is sound and complete:

\[
\begin{align*}
\text{LET Mono} &\quad \Gamma \vdash M_1 : \tau_1 \\
\Gamma, x : \tau_1 &\vdash M_2 : \tau_2 \\
\Gamma &\vdash \text{let } x : \tau_1 = M_1 \text{ in } M_2 : \tau_2
\end{align*}
\]

The construct “$M_1; M_2$” can in turn be viewed as syntactic sugar for … ?
A derived construct: let

The construct "let \(x : \tau = M_1 \) in \(M_2 \)" can be viewed as syntactic sugar for the \(\beta \)-redex "(\(\lambda x : \tau. M_2 \)) \(M_1 \)".

The latter can be type-checked only by a derivation of the form:

\[
\frac{\Gamma, x : \tau_1 \vdash M_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1. M_2 : \tau_1 \rightarrow \tau_2} \quad \frac{\Gamma \vdash M_1 : \tau_1}{\Gamma \vdash (\lambda x : \tau_1. M_2) \ M_1 : \tau_2}
\]

This means that the following derived rule is sound and complete:

\[
\frac{\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash M_2 : \tau_2}{\Gamma \vdash \text{let } x : \tau_1 = M_1 \text{ in } M_2 : \tau_2}
\]

The construct "\(M_1 ; M_2 \)" can in turn be viewed as syntactic sugar for let \(x : \text{unit} = M_1 \) in \(M_2 \) where \(x \notin \text{ftv}(M_2) \).
A derived construct: let or a primitive one?

In the derived form \(\textit{let } x : \tau_1 = M_1 \textit{ in } M_2 \) the type of \(M_1 \) must be explicitly given, although by uniqueness of types, it is entirely determined by the expression \(M_1 \) itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form \(\textit{let } x = M_1 \textit{ in } M_2 \) with the following primitive typing rule.

\[
\text{LetMono} \\
\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash M_2 : \tau_2 \\
\hline \\
\Gamma \vdash \textit{let } x = M_1 \textit{ in } M_2 : \tau_2
\]

This seems better...
A derived construct: let or a primitive one?

In the derived form \(\textit{let } x : \tau_1 = M_1 \textit{ in } M_2 \) the type of \(M_1 \) must be explicitly given, although by uniqueness of types, it is entirely determined by the expression \(M_1 \) itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form \(\textit{let } x = M_1 \textit{ in } M_2 \) with the following primitive typing rule.

\[
\text{LetMono} \\
\Gamma \vdash M_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash M_2 : \tau_2 \\
\Gamma \vdash \textit{let } x = M_1 \textit{ in } M_2 : \tau_2
\]

This seems better—not necessarily, because removing redundant type annotations is the task of type reconstruction and we should not bother (too much) about it in the explicitly-typed version of the language.
A derived construct: let

or a primitive one?

In the derived form \(\text{let } x : \tau_1 = M_1 \text{ in } M_2 \) the type of \(M_1 \) must be explicitly given, although by uniqueness of types, it is entirely determined by the expression \(M_1 \) itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form

\(\text{let } x = M_1 \text{ in } M_2 \)

with the following primitive typing rule.

\[
\begin{align*}
\text{LetMono} & \\
\Gamma & \vdash M_1 : \tau_1 & \Gamma, x : \tau_1 & \vdash M_2 : \tau_2 \\
\hline
\Gamma & \vdash \text{let } x = M_1 \text{ in } M_2 : \tau_2
\end{align*}
\]

This seems better—not necessarily, because removing redundant type annotations is the task of type reconstruction and we should not bother (too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as avoiding extra type annotations in an explicitly-typed language.
A derived construct: let rec

The construct “let rec \((f : \tau) \ x = M_1 in M_2\)” can be viewed as syntactic sugar for “let \(f = \mu f : \tau. \lambda x. M_1 in M_2\)”.

The latter can be type-checked only by a derivation of the form:

\[
\frac{\Gamma, f : \tau \rightarrow \tau_1; x : \tau \vdash M_1 : \tau_1}{\Gamma \vdash let f = \mu f : \tau \rightarrow \tau_1. \lambda x. M_1 in M_2 : \tau_2}
\]

This means that the following derived rule is sound and complete:

\[
\frac{\Gamma, f : \tau \rightarrow \tau_1; x : \tau \vdash M_1 : \tau_1}{\Gamma \vdash let rec (f : \tau \rightarrow \tau_1) \ x = M_1 in M_2 : \tau_2}
\]
Contents

- Simply-typed λ-calculus
- Type soundness
- Simple extensions: Pairs, sums, recursive functions
- Exceptions
- References
Exceptions

Exceptions are a mechanism for changing the normal order of evaluation usually, but not necessarily, in case something abnormal occurred.

When an exception is raised, the evaluation does not continue as usual: Shortcutting normal evaluation rules, the exception is propagated up into the evaluation context until some handler is found at which the evaluation resumes with the exceptional value received; if no handler is found, the exception had reached the toplevel and the result of the evaluation is the exception instead of a value.

We extend the language with a constructor form to raise an exception and a destructor form to catch an exception; we also extend the evaluation contexts:

\[
M ::= \ldots | \text{raise } M | \text{try } M \text{ with } M \\
E ::= \ldots | \text{raise } [] | \text{try } [] \text{ with } M
\]
Exceptions

We do not treat \(\text{raise} \ V \) as a value, . . .

Why?
Exceptions

We do not treat $raise V$ as a value, since it stops the normal order of evaluation.
We do not treat \(\text{raise } V \) as a value, since it stops the normal order of evaluation. Instead, reduction rules propagate and handle exceptions:

\[F[\text{raise } V] \rightarrow \text{raise } V \]

\[\text{try } V \text{ with } M \rightarrow V \]

\[\text{try raise } V \text{ with } M \rightarrow M \ V \]
Exceptions

We do not treat \(\text{raise } V \) as a value, since it stops the normal order of evaluation. Instead, reduction rules propagate and handle exceptions:

\[
\text{Raise} \\
F[\text{raise } V] \rightarrow \text{raise } V
\]

\[
\text{Handle-Val} \\
\text{try } V \text{ with } M \rightarrow V
\]

\[
\text{Handle-Raise} \\
\text{try } \text{raise } V \text{ with } M \rightarrow M \ V
\]

Rule \textit{Raise} uses an evaluation context \(F \) which stands for \textit{any } \(E \) \textit{other than } \text{try } [] \text{ with } M, so that it propagates an exception up the evaluation contexts, but not through a handler.

The case of the handler is treated by two specific rules:

- Rule \textit{Handle-Raise} passes an exceptional value to its handler;
- Rule \textit{Handle-Val} removes the handler around a value.
For example, assuming that K is $\lambda x. \lambda y. y$ and $M \rightarrow V$, we have the following reduction:

$\text{try } K \ (\text{raise } M) \ \text{with } \lambda x. x$
Exceptions

For example, assuming that K is $\lambda x.\lambda y.y$ and $M \rightarrow V$, we have the following reduction:

\[
\text{try } K \ (\text{raise } M) \text{ with } \lambda x. x \quad \text{by CONTEXT}
\]
\[
\rightarrow \quad \text{try } K \ (\text{raise } V) \text{ with } \lambda x. x
\]
Exceptions

For example, assuming that K is $\lambda x. \lambda y. y$ and $M \rightarrow V$, we have the following reduction:

\[
\begin{align*}
&\quad \text{try } K \ (\text{raise } M) \ 	ext{with } \lambda x. x \\
\rightarrow &\quad \text{try } K \ (\text{raise } V) \ 	ext{with } \lambda x. x \\
\rightarrow &\quad \text{try raise } V \ 	ext{with } \lambda x. x
\end{align*}
\]

by CONTEXT

by RAISE
Exceptions

For example, assuming that K is $\lambda x. \lambda y. y$ and $M \rightarrow V$, we have the following reduction:

\[
\begin{align*}
\text{try } K \ (\text{raise } M) \ & \text{ with } \lambda x. x \\
\rightarrow & \text{ try } K \ (\text{raise } V) \ & \text{ with } \lambda x. x \\
\rightarrow & \text{ try raise } V \ & \text{ with } \lambda x. x \\
\rightarrow & (\lambda x. x) \ V
\end{align*}
\]
Exceptions

For example, assuming that K is $\lambda x.\lambda y. y$ and $M \rightarrow V$, we have the following reduction:

$$
\begin{align*}
\text{try } K \text{ (raise } M \text{) with } \lambda x. \lambda y. y & \quad \text{by Context} \\
\rightarrow \text{ try } K \text{ (raise } V \text{) with } \lambda x. \lambda y. y & \quad \text{by Raise} \\
\rightarrow \text{ try raise } V \text{ with } \lambda x. \lambda y. y & \quad \text{by Handle-Raise} \\
\rightarrow (\lambda x. \lambda y. y) V & \quad \text{by } \beta_v \\
\rightarrow V &
\end{align*}
$$

In particular, we do not have the following step,

$$
\begin{align*}
\text{try } K \text{ (raise } V \text{) with } \lambda x. x & \quad \text{by } \beta_v \\
\rightarrow \text{ try } \lambda y. y \text{ with } \lambda x. x & \rightarrow \lambda y. y
\end{align*}
$$

since $\text{raise } V$ is not a value, so the first β-reduction step is not allowed.
We assume given a fixed type τ_{exn} for exceptional values.

\[
\text{Raise} \quad \frac{\Gamma \vdash M : \tau_{\text{exn}}}{\Gamma \vdash \text{raise} \ M : \tau} \\
\text{Try} \quad \frac{\Gamma \vdash M_1 : \tau \quad \Gamma \vdash M_2 : \tau_{\text{exn}} \to \tau}{\Gamma \vdash \text{try} \ M_1 \ with \ M_2 : \tau}
\]
Exceptions on the type of exception

What should we choose for τ_{exn}?
Exceptions

What should we choose for \(\tau_{exn} \)? Well, any type:

- Choosing \textit{unit}, exceptions will not carry any information.
- Choosing \textit{int}, exceptions can report some error code.
- Choosing \textit{string}, exceptions can report error messages.
Exceptions

What should we choose for τ_{exn}? Well, any type:

- Choosing \textit{unit}, exceptions will not carry any information.
- Choosing \textit{int}, exceptions can report some error code.
- Choosing \textit{string}, exceptions can report error messages.

Can you do Better?
What should we choose for τ_{exn}? Well, any type:

- Choosing `unit`, exceptions will not carry any information.
- Choosing `int`, exceptions can report some error code.
- Choosing `string`, exceptions can report error messages.
- Using a sum type or better a variant type (tagged sum), with one case to describe each exceptional situation.

This is the approach followed by ML, which declares a new extensible type `exn` for exceptions: this is a sum type, except that all cases are not declared in advance, but only as needed. (Extensible datatypes are available in OCaml since version 4.02.)
Exceptions

What should we choose for τ_{exn}? Well, any type:

- Choosing `unit`, exceptions will not carry any information.
- Choosing `int`, exceptions can report some error code.
- Choosing `string`, exceptions can report error messages.
- Using a sum type or better a variant type (tagged sum), with one case to describe each exceptional situation.

This is the approach followed by ML, which declares a new extensible type `exn` for exceptions: this is a sum type, except that all cases are not declared in advance, but only as needed. (Extensible datatypes are available in OCaml since version 4.02.)

In all cases, the type of exception must be fixed in the whole program.

This is because `raise ·` and `try · with ·` must agree beforehand on the type of exceptions as this type is not passed around by the typing rules.
Exceptions

How do we state type soundness, since exceptions may be uncaught?
How do we state type soundness, since exceptions may be uncaught?

By saying that this is the only “exception” to progress:

Theorem (Progress)

A well-typed, irreducible term is either a value or an uncaught exception. if $\emptyset \vdash M : \tau$ and $M \rightarrow^*$, then M is either V or raise V for some value V.
On uncaught exceptions

An uncaught exception is often a programming error. It may be surprising that they are not detected by the type system.

Exceptions may be detected using more expressive type systems. Unfortunately, the existing solutions are often complicated for some limited benefit, and are still not often used in practice.

The complication comes from the treatment of functions, which have some latent effect of possibly raising or catching an exception when applied. To be precise, the analysis must therefore enrich types of functions with latent effects, which is quite invasive and obfuscat ing.

Uncaught exceptions must be declared in the language Java.

See Leroy and Pessaux [2000] for a solution in ML.
Exceptions

small semantic variation

Once raised, exceptions are propagated step-by-step by Rule Raise until they reach a handler or the toplevel.

We can also describe their semantics by replacing propagation of exceptions by deep handling of exceptions inside terms.

Replace the three previous reduction rules by:

\[\text{Handle-Val'} \]
\[\text{try } V \text{ with } M \rightarrow V \]

\[\text{Handle-Raise'} \]
\[\text{try } F[\text{raise } V] \text{ with } M \rightarrow M \ V \]

where \(F \) is a sequence of \(F \) contexts, i.e. handler-free evaluation context of arbitrary depth.

This semantics is perhaps more intuitive, closer to what a compiler does, but the two presentations are equivalent.

In this case, uncaught exceptions are of the form \(F[\text{raise } V] \).
Exceptions

Benton and Kennedy [2001] have argued for merging let and try constructs into a unique form \(\text{let } x = M_1 \ \text{with } M_2 \ \text{in } M_3 \).

The expression \(M_1 \) is evaluated first and

- if it returns a value it is substituted for \(x \) in \(M_3 \), as if we had evaluated \(\text{let } x = M_1 \ \text{in } M_3 \);
- otherwise, \(\text{i.e., if it raises an exception } raise V \), then the exception is handled by \(M_2 \), as if we had evaluated \(\text{try } M_1 \ \text{with } M_2 \).

This combined form captures a common pattern in programming:

\[
\text{let rec read_config_in_path filename (dir :: dirs) } \rightarrow \\
\quad \text{let } fd = \text{open_in } (\text{Filename.concat dir filename}) \\
\quad \text{with } \text{Sys_error } - \rightarrow \text{read_config_filename dirs in} \\
\quad \text{read_config_from_fd } fd
\]

Workarounds are inelegant and inefficient. This form is also better suited for program transformations (see Benton and Kennedy [2001]).
Exceptions

small syntax variation

Encoding the new form \(\text{let } x = M_1 \text{ with } M_2 \text{ in } M_3 \) with “let” and “try” is not easy:

In particular, it is not equivalent to: \(\text{try let } x = M_1 \text{ in } M_3 \text{ with } M_2 \).

Why?
Exceptions

Encoding the new form \(\text{let } x = M_1 \text{ with } M_2 \text{ in } M_3 \) with “let” and “try” is not easy:

In particular, it is not equivalent to: \(\text{try let } x = M_1 \text{ in } M_3 \text{ with } M_2 \).

The continuation \(M_3 \) could raise an exception that would then be handled by \(M_2 \), which is not intended.

There are several encodings:

Can you find one?
Exceptions

Encoding the new form \(\text{let } x = M_1 \text{ with } M_2 \text{ in } M_3 \) with “let” and “try” is not easy:

In particular, it is not equivalent to: \(\text{try let } x = M_1 \text{ in } M_3 \text{ with } M_2 \).

The continuation \(M_3 \) could raise an exception that would then be handled by \(M_2 \), which is not intended.

There are several encodings:

- Use a sum type to know whether \(M_1 \) raised an exception:
 \[
 \text{case} \left(\text{try Val } M_1 \text{ with } \lambda y. \text{Exc } y \right) \text{ of } (\text{Val} : \lambda x. M_3 \ \square \ \text{Exc} : M_2)
 \]

- Freeze the continuation \(M_3 \) while handling the exception:
 \[
 (\text{try let } x = M_1 \text{ in } \lambda(). M_3 \text{ with } \lambda y. \lambda(). M_2 y) ()
 \]

Unfortunately, they are both hardly readable—and inefficient.
Exceptions

A similar construct has been added in OCaml version 4.02, allowing exceptions combined with pattern matching.

The previous example could be written:

```ocaml
let rec read_config_in_path filename (dir :: dirs) →
  match open_in (Filename.concat dir filename) with
  | fd → read_config_from_fd fd
  | exception Sys.error _ → read_config filename dirs
```
Contents

- Simply-typed λ-calculus
- Type soundness
- Simple extensions: Pairs, sums, recursive functions
- Exceptions
- References
References

In the ML vocabulary, a reference cell, also called a reference, is a dynamically allocated block of memory, which holds a value, and whose content can change over time.

A reference can be allocated and initialized (\texttt{ref}), written (\texttt{:=}), and read (\texttt{!}).

Expressions and evaluation contexts are extended:

\[
M ::= \ldots | \texttt{ref }M | M := M | ! M \\
E ::= \ldots | \texttt{ref }[] | [] := M | V := [] | ! []
\]
References

A reference allocation is not a value. Otherwise, by β, the program:

$$(\lambda x : \tau. (x := 1 ; ! x)) (ref 3)$$

(which intuitively should yield ?)
A reference allocation is not a value. Otherwise, by β, the program:

$$\left(\lambda x : \tau. (x := 1; ! x)\right) (\text{ref } 3)$$

(which intuitively should yield 1) would reduce to:
References

A reference allocation is not a value. Otherwise, by β, the program:

$$(\lambda x: \tau. (x := 1; ! x)) \ (\text{ref 3})$$

(which intuitively should yield 1) would reduce to:

$$(\text{ref 3}) := 1; ! (\text{ref 3})$$

(which yields 3).

How shall we solve this problem?
References

(\textit{ref}3) should first reduce to a value: the \textit{address} of a fresh cell.

Not just the \textit{content} of a cell matters, but also its address. Writing through one copy of the address should affect a future read via another copy.
We extend the simply-typed λ-calculus calculus with memory locations:

\[
V ::= \ldots | \ell \\
M ::= \ldots | \ell
\]

A memory location is just an atom (that is, a name). The value found at a location ℓ is obtained by indirection through a memory (or store).

A memory μ is a finite mapping of locations to closed values.
References

A configuration is a pair M/μ of a term and a store. The operational semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the locations that appear in M or in the image of μ are in the domain of μ.

- Initially, the store is empty, and the term contains no locations, because, by convention, memory locations cannot appear in source programs. So, the invariant holds.
- If we wish to start reduction with a non-empty store, we must check that the initial configuration satisfies the no-dangling-pointers invariant.
Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[
(\lambda x:\tau.\, M) \ V / \mu \longrightarrow [x \mapsto V] M / \mu
\]

\[
E[M] / \mu \longrightarrow E[M'] / \mu' \quad \text{if} \quad M / \mu \longrightarrow M' / \mu'
\]
Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[(\lambda x: \tau. M) V / \mu \rightarrow [x \mapsto V] M / \mu\]

\[E[M]/\mu \rightarrow E[M']/\mu' \quad \text{if} \quad M/\mu \rightarrow M'/\mu'\]
References

Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[(\lambda x:\tau. M) V / \mu \rightarrow [x \mapsto V] M / \mu\]

\[E[M] / \mu \rightarrow E[M'] / \mu' \quad \text{if } M / \mu \rightarrow M' / \mu'\]

Three new reduction rules are added:

\[\text{ref } V / \mu \rightarrow \ell / \mu[\ell \mapsto V] \quad \text{if } \ell \notin \text{dom}(\mu)\]
Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[(\lambda x: \tau. M) V / \mu \rightarrow [x \mapsto V]M / \mu\]
\[E[M] / \mu \rightarrow E[M'] / \mu' \quad \text{if } M / \mu \rightarrow M' / \mu'\]

Three new reduction rules are added:

\[\text{ref } V / \mu \rightarrow \ell / \mu[\ell \mapsto V] \quad \text{if } \ell \notin \text{dom}(\mu)\]
\[\ell := V / \mu \rightarrow () / \mu[\ell \mapsto V]\]
Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[(\lambda x: \tau. M) V / \mu \rightarrow [x \mapsto V]M / \mu\]

\[E[M] / \mu \rightarrow E[M'] / \mu' \quad \text{if} \quad M / \mu \rightarrow M' / \mu'\]

Three new reduction rules are added:

\[\text{ref } V / \mu \rightarrow \ell / \mu[\ell \mapsto V] \quad \text{if} \quad \ell \notin \text{dom}(\mu)\]

\[\ell := V / \mu \rightarrow () / \mu[\ell \mapsto V]\]

\[! \ell / \mu \rightarrow \mu(\ell) / \mu\]

Notice: In the last two rules, the no-dangling-pointers invariant guarantees \(\ell \in \text{dom}(\mu)\).
The type system is modified as follows. Types are extended:

\[\tau ::= \ldots \mid \text{ref}\ \tau \]

Three new typing rules are introduced:

\[
\text{Ref} \quad \begin{array}{c}
\Gamma \vdash M : \tau \\
\Gamma \vdash \text{ref} M : \text{ref} \tau
\end{array}
\]

\[
\text{Set} \quad \begin{array}{c}
\Gamma \vdash M_1 : \text{ref} \tau \\
\Gamma \vdash M_2 : \tau \\
\Gamma \vdash M_1 := M_2 : \text{unit}
\end{array}
\]

\[
\text{Get} \quad \begin{array}{c}
\Gamma \vdash M : \text{ref} \tau
\end{array}
\]

\[\Gamma \vdash ! M : \tau \]

Is that all we need?
The preceding setup is enough to typecheck \textit{source terms}, but does not allow stating or proving type soundness.

Indeed, we have not yet answered these questions:

- What is the type of a memory location \(\ell \)?
- When is a configuration \(M / \mu \) well-typed?
When does a location ℓ have type $\text{ref } \tau$?
References

When does a location ℓ have type $\text{ref} \, \tau$?

A possible answer is, *when it points to some value of type* τ. Intuitively, this could be formalized by a typing rule of the form:

$$
\frac{
\mu, \emptyset \vdash \mu(\ell) : \tau
}{
\mu, \Gamma \vdash \ell : \text{ref} \, \tau
}
$$

Comments?
When does a location ℓ have type $\text{ref}\,\tau$?

A possible answer is, *when it points to some value of type τ.*

Intuitively, this could be formalized by a typing rule of the form:

$$
\frac{
\mu, \emptyset \vdash \mu(\ell) : \tau
}{
\mu, \Gamma \vdash \ell : \text{ref}\,\tau
}$$

Comments?

- Typing judgments would have the form $\mu, \Gamma \vdash M : \tau$.
 However, they would no longer be *inductively* defined (or else, every cyclic structure would be ill-typed). Instead, *co-induction* would be required.
When does a location ℓ have type $\text{ref} \, \tau$?

A possible answer is, *when it points to some value of type τ.* Intuitively, this could be formalized by a typing rule of the form:

$$
\frac{
\mu, \emptyset \vdash \mu(\ell) : \tau
}{
\mu, \Gamma \vdash \ell : \text{ref} \, \tau
}
$$

Comments?

- Typing judgments would have the form $\mu, \Gamma \vdash M : \tau$. However, they would no longer be *inductively* defined (or else, every cyclic structure would be ill-typed). Instead, *co-induction* would be required.

- Moreover, if the value $\mu(\ell)$ happens to admit two distinct types τ_1 and τ_2, then ℓ admits types $\text{ref} \, \tau_1$ and $\text{ref} \, \tau_2$. So, one can write at type τ_1 and read at type τ_2: this rule is *unsound!*
A simpler and sound approach is to fix the type of a memory location when it is first allocated. To do so, we use a store typing Σ, a finite mapping of locations to types.

So, when does a location ℓ have type $\text{ref}\,\tau$? “When Σ says so.”

$$\text{Loc}$$

$$\Sigma, \Gamma \vdash \ell : \text{ref}\,\Sigma(\ell)$$

Comments:

- Typing judgments now have the form $\Sigma, \Gamma \vdash M : \tau$.
How do we know that the store typing predicts appropriate types?
How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

\[\begin{align*}
\text{Store} & : \quad \vdash \mu : \Sigma \\
\text{Config} & : \quad \vdash M / \mu : \tau
\end{align*} \]
How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

\[
\begin{array}{l}
\text{STORE} \\
\forall \ell \in \text{dom}(\mu), \quad \vdash \mu(\ell) : \Sigma(\ell) \\
\hline
\vdash \mu : \Sigma
\end{array}
\quad \quad \quad
\begin{array}{l}
\text{CONFIG} \\
\vdash M / \mu : \tau
\end{array}
\]
How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

\[
\begin{align*}
\text{Store} & \quad \forall \ell \in \text{dom}(\mu), \quad \Sigma, \emptyset \vdash \mu(\ell) : \Sigma(\ell) \\
& \quad \vdash \mu : \Sigma \\
\text{Config} & \quad \vdash M/\mu : \tau
\end{align*}
\]
How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

\[
\begin{align*}
\text{Store} & : \quad \forall \ell \in \text{dom}(\mu), \quad \Sigma, \emptyset \vdash \mu(\ell) : \Sigma(\ell) \\
\end{align*}
\]

\[
\begin{align*}
\vdash \mu : \Sigma \\
\end{align*}
\]

\[
\begin{align*}
\text{Config} & : \quad \vdash \mu : \Sigma \\
\Sigma, \emptyset \vdash M : \tau \\
\end{align*}
\]

\[
\begin{align*}
\vdash M / \mu : \tau \\
\end{align*}
\]
How do we know that the store typing predicts appropriate types? This is required by the typing rules for stores and configurations:

\[
\begin{align*}
\text{Store} & \\
\forall \ell \in \text{dom}(\mu), & \quad \Sigma, \emptyset \vdash \mu(\ell) : \Sigma(\ell) \\
\quad \vdash \mu : \Sigma
\end{align*}
\]

\[
\begin{align*}
\text{Config} & \\
\vdash \mu : \Sigma \\
\Sigma, \emptyset & \vdash M : \tau \\
\quad & \vdash M / \mu : \tau
\end{align*}
\]

Comments:

- This is an \textit{inductive} definition. The store typing Σ serves both as an assumption (Loc) and a goal (Store). Cyclic stores are not a problem.
- The store typing is used only in the definition of a “well-typed configuration” and in the typechecking of locations. Thus, it is not needed for type-checking source programs, since the store is empty and the empty-store configuration is always well-typed.
- Notice that Σ does not appear in the conclusion of \texttt{Config}.
Restating type soundness

The type soundness statements are slightly modified in the presence of the store, since we now reduce configurations:

Theorem (Subject reduction)

Reduction preserves types: if $M / \mu \rightarrow M' / \mu'$ *and* $\vdash M / \mu : \tau$, *then* $\vdash M' / \mu' : \tau$.

Theorem (Progress)

If M / μ *is a well-typed, irreducible configuration, then* M *is a value.*
Restating subject reduction

Inlining `CONFIG`, subject reduction can also be restated as:

Theorem (Subject reduction, expanded)

If \(M / \mu \longrightarrow M' / \mu' \) and \(\vdash \mu : \Sigma \) and \(\Sigma, \emptyset \vdash M : \tau \), then there exists \(\Sigma' \) such that \(\vdash \mu' : \Sigma' \) and \(\Sigma', \emptyset \vdash M' : \tau \).

This statement is correct, but too weak—it's proof by induction will fail in one case. (Which one?)
Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

\[M / \mu \rightarrow M' / \mu' \quad \text{and} \quad \vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \]
Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

\[\frac{M / \mu \rightarrow M' / \mu'}{\frac{\vdash \mu : \Sigma}{\Sigma, \emptyset \vdash E[M] : \tau}} \]

Assuming compositionality, there exists \(\tau' \) such that:

\[\frac{\Sigma, \emptyset \vdash M : \tau'}{\forall M', (\Sigma, \emptyset \vdash M' : \tau') \Rightarrow (\Sigma, \emptyset \vdash E[M'] : \tau)} \]
Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

\[M / \mu \rightarrow M' / \mu' \quad \text{and} \quad \vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \]

Assuming compositionality, there exists \(\tau' \) such that:

\[\Sigma, \emptyset \vdash M : \tau' \quad \text{and} \quad \forall M', \ (\Sigma, \emptyset \vdash M' : \tau') \Rightarrow (\Sigma, \emptyset \vdash E[M'] : \tau) \]

Then, by the induction hypothesis, there exists \(\Sigma' \) such that:

\[\vdash \mu' : \Sigma' \quad \text{and} \quad \Sigma', \emptyset \vdash M' : \tau' \]
Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

\[M / \mu \rightarrow M' / \mu' \quad \text{and} \quad \vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \]

Assuming compositionality, there exists \(\tau' \) such that:

\[\Sigma, \emptyset \vdash M : \tau' \quad \text{and} \quad \forall M', \quad (\Sigma, \emptyset \vdash M' : \tau') \Rightarrow (\Sigma, \emptyset \vdash E[M'] : \tau) \]

Then, by the induction hypothesis, there exists \(\Sigma' \) such that:

\[\vdash \mu' : \Sigma' \quad \text{and} \quad \Sigma', \emptyset \vdash M' : \tau' \]

Here, we are stuck. The context \(E \) is well-typed under \(\Sigma \), but the term \(M' \) is well-typed under \(\Sigma' \), so we cannot combine them. How could we fix this?
Establishing subject reduction

We are missing a key property: *the store typing grows with time.* That is, although new memory locations can be allocated, *the type of an existing location does not change.*

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

If $M / \mu \rightarrow M' / \mu'$ and $\vdash \mu : \Sigma$ and $\Sigma, \emptyset \vdash M : \tau$, then there exists Σ' such that $\vdash \mu' : \Sigma'$ and $\Sigma', \emptyset \vdash M' : \tau$ and $\Sigma \subseteq \Sigma'$.

At each reduction step, the new store typing Σ' extends the previous store typing Σ.
Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

If $\Sigma \subseteq \Sigma'$ and $\Sigma, \Gamma \vdash M : \tau$, then $\Sigma', \Gamma \vdash M : \tau$.

(The is a generalization of the weakening lemma.)
Establishing subject reduction

Stability under memory allocation allows establishing a strengthened version of compositionality:

Lemma (Compositionality)

Assume $\Sigma, \emptyset \vdash E[M] : \tau$. Then, there exists τ' such that:

- $\Sigma, \emptyset \vdash M : \tau'$,
- for every Σ' such that $\Sigma \subseteq \Sigma'$, for every M', $\Sigma', \emptyset \vdash M' : \tau'$ implies $\Sigma', \emptyset \vdash E[M'] : \tau$.
Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

\[\vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \quad \text{and} \quad M / \mu \rightarrow M' / \mu' \]
Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

\[\vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \quad \text{and} \quad M / \mu \rightarrow M' / \mu' \]

By compositionality, there exists \(\tau' \) such that:

\[\Sigma, \emptyset \vdash M : \tau' \]

\[\forall \Sigma', \forall M', \quad (\Sigma \subseteq \Sigma') \Rightarrow (\Sigma', \emptyset \vdash M' : \tau') \Rightarrow (\Sigma', \emptyset \vdash E[M'] : \tau') \]
Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

\[
\vdash \mu : \Sigma \quad \text{and} \quad \Sigma, \emptyset \vdash E[M] : \tau \quad \text{and} \quad M / \mu \rightarrow M' / \mu'
\]

By compositionality, there exists \(\tau' \) such that:

\[
\Sigma, \emptyset \vdash M : \tau'
\]

\[
\forall \Sigma', \forall M', \quad (\Sigma \subseteq \Sigma') \Rightarrow (\Sigma', \emptyset \vdash M' : \tau') \Rightarrow (\Sigma', \emptyset \vdash E[M'] : \tau')
\]

By the induction hypothesis, there exists \(\Sigma' \) such that:

\[
\vdash \mu' : \Sigma' \quad \text{and} \quad \Sigma', \emptyset \vdash M' : \tau' \quad \text{and} \quad \Sigma \subseteq \Sigma'
\]

The goal immediately follows.
On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious technique, implemented in the ML Kit, is compile-time region analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving type soundness, is possible, but difficult. This requires reasoning about aliasing and ownership. See Charguéraud and Pottier [2008] for citations.

See also the Mezo language [Pottier and Protzenko, 2013] designed especially for the explicit control of resources.
Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce [2002].

For more details about syntactic type soundness proofs, see Wright and Felleisen [1994].
(Most titles have a clickable mark “▷” that links to online versions.)

