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Presentation Expressiveness Beyond Fω

Polymorphism in System F

Simply-typed λ-calculus

● no polymorphism
● many functions must be duplicated at different types

Via ML style (let-binding) polymorphism

● Considerable improvement by avoiding most of code duplication.
● ML has also local let-polymorphism (less critical).
● Still, ML is lacking existential types—compensated by modules
and sometimes lacking higher-rank polymorphism

System F brings much more expressiveness

● Existential types—allows for type abstraction
● First-class universal types
● Allows for encoding of data structures and more programming patterns

Still, limited...
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following types:
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following types:

∀α1.∀α2.(α1 → α2) → α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following types:

∀α1.∀α2.(α1 → α2) → α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following incompatible types:

∀α1.∀α2.(α1 → α2) → α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following incompatible types:

∀α1.∀α2.(α1 → α2) → α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

● that are polymorphic in one parameter
● but whose domain and codomain are otherwise arbitrary

i.e. of the form ∀α. τ[α] → σ[α] for arbitrary one-hole types τ and σ.
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Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following incompatible types:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

● that are polymorphic in one parameter
● but whose domain and codomain are otherwise arbitrary

i.e. of the form ∀α. τ[α] → σ[α] for arbitrary one-hole types τ and σ.

We just need to abstract over such contexts, i.e., over type functions:

∀ϕ .∀ψ . ∀α1.∀α2. (∀α. ϕ α → ψ α )→ ϕ α1 → ϕ α2 → ψ α1 ×ψ α2
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Presentation Expressiveness Beyond Fω

From System F to System Fω Kinds

We introduce kinds κ for types (with a single kind ∗ to stay in System F)

Well-formedness of types becomes Γ ⊢ τ ∶ ∗:

⊢ Γ α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶κ . τ ∶ ∗

⊢ ∅
⊢ Γ α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗ x ∉ dom(Γ)

⊢ Γ, x ∶ τ

We add and check kinds on type abstractions and type applications:

Tabs

Γ, α ∶ κ ⊢M ∶ τ

Γ ⊢ Λα ∶∶κ .M ∶ ∀α ∶∶κ . τ

Tapp

Γ ⊢M ∶ ∀α ∶∶κ . τ Γ ⊢ τ ′ ∶ κ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

So far, this is an equivalent formalization of System F
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Presentation Expressiveness Beyond Fω

From System F to System Fω Type functions

Redefine kinds as κ ∶∶= ∗ ∣ κ⇒ κ

New types τ ∶∶= . . . ∣ λα ∶∶ κ. τ ∣ τ τ

WfTypeApp

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

WfTypeAbs

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Typing of expressions is up to type equivalence:

TConv

Γ ⊢M ∶ τ τ ≡β τ
′

Γ ⊢M ∶ τ ′
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Presentation Expressiveness Beyond Fω

From System F to System Fω Type functions

Redefine kinds as κ ∶∶= ∗ ∣ κ⇒ κ

New types τ ∶∶= . . . ∣ λα ∶∶ κ. τ ∣ τ τ

WfTypeApp

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

WfTypeAbs

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Typing of expressions is up to type equivalence:

TConv

Γ ⊢M ∶ τ τ ≡β τ
′

Γ ⊢M ∶ τ ′
Remark

Γ ⊢M ∶ τ Ô⇒ Γ ⊢ τ ∶ ∗
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Presentation Expressiveness Beyond Fω

F ω, static semantics (altogether on one slide)

Syntax κ ∶∶= ∗ ∣ κ⇒ κ

τ ∶∶= α ∣ τ → τ ∣ ∀α ∶∶ κ.τ ∣ λα ∶∶ κ. τ ∣ τ τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα ∶∶ κ.M ∣M τ

Kinding rules

⊢ ∅

⊢ Γ

α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗
x ∉ dom(Γ)

⊢ Γ, x ∶ τ

α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶ κ. τ ∶ ∗

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

Typing rules

Var

x ∶ τ ∈ Γ

Γ ⊢ x ∶ τ

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢ M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α∶ κ ⊢M ∶ τ

Γ ⊢ Λα ∶∶ κ.M ∶ ∀α ∶∶ κ.τ

Tapp

Γ ⊢ M ∶ ∀α ∶∶ κ.τ Γ ⊢ τ ′ ∶ κ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

TEquiv

Γ ⊢M ∶ τ Γ ⊢ τ ≡β τ
′

Γ ⊢ M ∶ τ ′
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Presentation Expressiveness Beyond Fω

F ω, static semantics (altogether on one slide)

With implicit kindsSyntax κ ∶∶= ∗ ∣ κ⇒ κ

τ ∶∶= α ∣ τ → τ ∣ ∀α.τ ∣ λα. τ ∣ τ τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Kinding rules

⊢ ∅

⊢ Γ

α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗
x ∉ dom(Γ)

⊢ Γ, x ∶ τ

α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α. τ ∶ ∗

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα. τ ∶ κ1 ⇒ κ2

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

Typing rules

Var

x ∶ τ ∈ Γ

Γ ⊢ x ∶ τ

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢ M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α∶ κ ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′ ∶ κ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

TEquiv

Γ ⊢ M ∶ τ Γ ⊢ τ ≡β τ
′

Γ ⊢ M ∶ τ ′
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Presentation Expressiveness Beyond Fω

F ω, dynamic semantics

The semantics is unchanged (modulo kind annotations in terms)

V ∶∶= λx ∶τ.M ∣ Λα ∶∶ κ.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα ∶∶ κ. []

(λx ∶τ.M) V Ð→ [x ↦ V ]M
(Λα ∶∶ κ.V ) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]

No type reduction

● We need not reduce types inside terms.

● β reduction on types is needed for type conversion (i.e. for typing)
but such reduction need not be performed during term reduction.

Kinds are erasable

● Kinds are preserved by type and term reduction.

● Kinds may be ignored during reduction—or erased prior to reduction.
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Presentation Expressiveness Beyond Fω

Properties

Main properties are preserved. Proofs are similar to those for System F.

Type soundness

● Subject reduction

● Progress

Termination of reduction

(In the absence of construct for recursion.)

Typechecking is decidable

● This requires reduction at the level of types to check type equality

● Can be done by putting types in normal forms using full reduction
(on types only), or just head normal forms.
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Presentation Expressiveness Beyond Fω

Type reduction

Used for typechecking to check type equivalence ≡

Full reduction of the simply typed λ-calculus

(λα. τ) σ Ð→ [α ↦ τ]σ

applicable in any type context.

Type reduction preserve types: this is subject reduction for simply-typed
λ-calculus (when terms are now used as types), but for full reduction

(we have only proved it for CBV).

It is a key that reduction terminates.
(which again, we have only proved for CBV.)
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Presentation Expressiveness Beyond Fω

Expressiveness

More polymorphism

● pair map

Abstraction over type operators

● monads

● encoding of existentials

Other encodings

● non regular datatypes

● equality

● modules

14 35 ◁



Presentation Expressiveness Beyond Fω

Pair map in F ω λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆ → ⋆)

Λϕ ∶∶ ∗ ⇒ ∗.Λψ ∶∶ ∗ ⇒ ∗.Λα1 ∶∶ ∗.Λα2 ∶∶ ∗.
λ(f ∶ ∀α ∶∶ ∗. ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)

call it pair map of type:

∀ϕ ∶∶ ∗ ⇒ ∗.∀ψ ∶∶ ∗ ⇒ ∗.∀α1 ∶∶ ∗.∀α2 ∶∶ ∗.
(∀α ∶∶ ∗. ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 × ψα2

We may recover, in particular, the two types it has in System F:

Λα1 ∶∶ ∗.Λα2 ∶∶ ∗.pair map (λα ∶∶ ∗. α1) (λα ∶∶ ∗. α2) α1 α2

∶ ∀α1 ∶∶ ∗.∀α2 ∶∶ ∗. ( ∀γ. α1 → α2)→ α1 → α1 → α2 × α2

pair map (λα ∶∶ ∗.α) (λα ∶∶ ∗.α)
∶ ∀α1 ∶∶ ∗.∀α2. (∀α ∶∶ ∗. α → α)→ α1 → α2 → α1 × α2
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Presentation Expressiveness Beyond Fω

Pair map in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆ → ⋆)

Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)

call it pair map of type:

∀ϕ.∀ψ.∀α1.∀α2.

(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it has in System F:

Λα1.Λα2.pair map (λα.α1) (λα.α2) α1 α2

∶ ∀α1.∀α2. ( ∀γ. α1 → α2)→ α1 → α1 → α2 × α2

pair map (λα.α) (λα.α)
∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2
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Pair map in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆ → ⋆)

Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)

call it pair map of type:

∀ϕ.∀ψ.∀α1.∀α2.

(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it has in System F:

Λα1.Λα2. λf ∶α1 → α2.pair map (λα.α1) (λα.α2) α1 α2 (Λγ. f)
∶ ∀α1.∀α2. (α1 → α2)→ α1 → α1 → α2 ×α2

pair map (λα.α) (λα.α)
∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2
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Pair map in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆ → ⋆)

Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)

call it pair map of type:

∀ϕ.∀ψ.∀α1.∀α2.

(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it has in System F:

Λα1.Λα2. λf ∶α1 → α2.pair map (λα.α1) (λα.α2) α1 α2 (Λγ. f)
∶ ∀α1.∀α2. (α1 → α2)→ α1 → α1 → α2 ×α2

pair map (λα.α) (λα.α)
∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2

Still, the type of pair map is not principal: ϕ and ψ could depend on two
variables, i.e. be of kind ∗ ⇒ ∗⇒ ∗, or many other kinds...
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Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λ (ϕ ∶∶ ∗ ⇒ ∗) .
{ ret ∶ ∀ (α ∶∶ ∗) . α → ϕα;
bind ∶ ∀ (α ∶∶ ∗) .∀ (β ∶∶ ∗) . ϕα → (α → ϕβ)→ ϕβ }

∶ (∗ ⇒ ∗)⇒ ∗

(Notice thatM is itself of higher kind)

16⟨1⟩ 35 ◁



Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λ (ϕ ∶∶ ∗ ⇒ ∗) .
{ ret ∶ ∀ (α ∶∶ ∗) . α → ϕα;
bind ∶ ∀ (α ∶∶ ∗) .∀ (β ∶∶ ∗) . ϕα → (α → ϕβ)→ ϕβ }

∶ (∗ ⇒ ∗)⇒ ∗

(Notice thatM is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== Λ (ϕ ∶∶ ∗ ⇒ ∗) . λm ∶Mϕ.

Λ (α ∶∶ ∗) .Λ (β ∶∶ ∗) . λf ∶ (α → β). λx ∶ ϕα.
m.bind α β x (λx ∶ α.m.ret β (f x))

∶ ∀ (ϕ ∶∶ ∗ ⇒ ∗) .Mϕ→ ∀ (α ∶∶ ∗) .∀ (β ∶∶ ∗) . (α → β)→ ϕα →ϕβ
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Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λϕ.

{ ret ∶ ∀α.α → ϕα;
bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }

∶ (∗ ⇒ ∗)⇒ ∗

(Notice thatM is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== Λϕ.λm ∶Mϕ.

Λα.Λβ.λf ∶ (α → β). λx ∶ ϕα.
m.bind α β x (λx ∶ α.m.ret β (f x))

∶ ∀ϕ.Mϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ
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Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λϕ.

{ ret ∶ ∀α.α → ϕα;
bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }

∶ (∗ ⇒ ∗)⇒ ∗

(Notice thatM is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== λm.

λf.λx.

m.bind x (λx.m.ret (f x))
∶ ∀ϕ.Mϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ

16⟨4⟩ 35 ◁



Presentation Expressiveness Beyond Fω

Abstracting over type operators

Available in Haskell —without β-reduction

● ϕα is treated as a type app(ϕ,α) where app ∶ (κ1 ⇒ κ2)⇒ κ1 ⇒ κ2

● No β-reduction at the level of types: ϕα = ψβ ⇐⇒ ϕ = ψ ∧α = β

● Compatible with type inference (first-order unification)

● Since there is no type β-reduction, this is not Fω.

Encodable in OCaml with modules

● See [Yallop and White, 2014] (and also [Kiselyov])

● As in Haskell, the encoding does not handle type β-reduction

● As a counterpart, this allows for type inference at higher kinds
(as in Haskell).
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Encoding of existentials Limits of System F

We saw
J∃α. τK = ?
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Presentation Expressiveness Beyond Fω

Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β
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Presentation Expressiveness Beyond Fω

Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

18⟨3⟩ 35 ◁



Presentation Expressiveness Beyond Fω

Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:
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Encoding of existentials in System F ω

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

Jpack K = ?
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Presentation Expressiveness Beyond Fω

Encoding of existentials in System F ω

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

Jpack K = Λ (ϕ ∶∶ ∗ ⇒ ∗) .?
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Presentation Expressiveness Beyond Fω

Encoding of existentials in System F ω

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

Jpack K = Λ (ϕ ∶∶ ∗ ⇒ ∗) .Λ (α ∶∶ ∗) .
λx ∶ ϕ α.Λ (β ∶∶ ∗) . λk ∶ ∀ (α ∶∶ ∗) . (ϕ α → β). k α x
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Presentation Expressiveness Beyond Fω

Encoding of existentials in System F ω

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

(omitting kinds)Jpack K = Λϕ.Λα.
λx ∶ ϕ α.Λβ.λk ∶ ∀α. (ϕ α → β). k α x
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Presentation Expressiveness Beyond Fω

Encoding of existentials in System F ω

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

JpackκK = Λ (ϕ ∶∶ κ⇒ ∗) .Λ (α ∶∶ κ) .
λx ∶ ϕ α.Λ (β ∶∶ ∗) . λk ∶ ∀ (α ∶∶ κ) . (ϕ α → β). k α x

Allows existentials at higher kinds!
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Exploiting kinds

Once we have type functions, the language of types could be reduced to
λ-calculus with constants (plus arrow types kept as primitive):

τ = α ∣ λα ∶κ. τ ∣ τ τ ∣ τ → τ ∣ g

where type constants g ∈ G are given with their kind and syntactic sugar:

× ∶∶ ∗ ⇒ ∗ ⇒ ∗
+ ∶∶ ∗ ⇒ ∗ ⇒ κ

∀κ ∶∶ (κ⇒ ∗)⇒ ∗
∃κ ∶∶ (κ⇒ ∗)⇒ ∗

(τ × τ)
△
== (×) τ1 τ2

(τ + τ)
△
== (+) τ1 τ2

∀ϕ ∶ κ. τ
△
== ∀κ(λϕ ∶κ⇒ ∗. τ)

∃ϕ ∶ κ. τ
△
== ∃κ(λϕ ∶κ⇒ ∗. τ)

In fact Fω could be extended with kind abdstraction:

∀̂ ∶∶ ∀κ.(κ⇒ ∗)⇒ ∗

∃̂ ∶∶ ∀κ.(κ⇒ ∗)⇒ ∗

∀ϕ ∶ κ. τ
△
== ∀̂κ (λϕ ∶ κ⇒ ∗. τ)

∃ϕ ∶ κ. τ
△
== ∃̂κ (λϕ ∶ κ⇒ ∗. τ)

When kinds are inferred: ∀ϕ. τ
△
== ∀̂ (λϕ. τ)

∃ϕ. τ
△
== ∃̂ (λϕ. τ)
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Church encoding of regular ADT List

type List α =
∣ Nil ∶ ∀α.List α
∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c)

fold
△
== λn.λc.λℓ. ℓ β n c
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Church encoding of regular ADT List

type List α =
∣ Nil ∶ ∀α.List α
∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n ∶ ∀α.List α

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c) ∶ ∀α.α → List α → List α

fold
△
== λn.λc.λℓ. ℓ β n c
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Church encoding of regular ADT List

type List α =
∣ Nil ∶ ∀α.List α
∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== Λα.Λβ.λn ∶ β.λc ∶ (α → β → β). n

Cons
△
== Λα.λx ∶ α.λℓ ∶ List α.

Λβ.λn ∶ β.λc ∶ (α → β → β). c x (ℓ β n c)

fold
△
== Λα.Λβ.λn ∶ β.λc ∶ (α → β → β). λℓ ∶ List α. ℓ β n c
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Church encoding of regular ADT List

type List α =
∣ Nil ∶ ∀α.List α
∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) enhanced in Fω ?

List
△
== λα.∀ϕ.ϕα → (α → ϕα → ϕα)→ ϕα

Nil
△
== Λα.Λϕ.λn ∶ ϕα.λc ∶ (α → ϕα → ϕα). n

Cons
△
== Λα.λx ∶ α.λℓ ∶ List α.

Λϕ.λn ∶ ϕα.λc ∶ (α → ϕα → ϕα). c x (ℓ ϕ n c)

fold
△
== Λα.Λϕ.λn ∶ ϕα.λc ∶ (α → ϕα → ϕα). λℓ ∶ List α. ℓ ϕ n c

Actually not enhanced ! Be aware of useless over-generalization!
For regular ADTs, all uses of ϕ are ϕα.
Hence, ∀α.∀ϕ. τ[ϕα] is not more general than ∀α.∀β. τ[β]
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =
∣ Nil ∶ ∀α.Seq α
∣ Zero ∶ ∀α.Seq (α×α)→ Seq α
∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== λn.λz.λs.n

Zero
△
== λℓ.λn.λz.λs. z (ℓ n z s)

One
△
== λx.λℓ.λn.λz.λs. s x (ℓ n z s)

fold
△
== λn.λz.λs.λℓ. ℓ n z s
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =
∣ Nil ∶ ∀α.Seq α
∣ Zero ∶ ∀α.Seq (α×α)→ Seq α
∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== λn.λz.λs.n ∶ ∀α. Seq α

Zero
△
== λℓ.λn.λz.λs. z (ℓ n z s) ∶ ∀α. Seq (α×α) → Seq α

One
△
== λx.λℓ.λn.λz.λs. s x (ℓ n z s) ∶ ∀α. α→ Seq (α×α) → Seq α

fold
△
== λn.λz.λs.λℓ. ℓ n z s
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =
∣ Nil ∶ ∀α.Seq α
∣ Zero ∶ ∀α.Seq (α×α)→ Seq α
∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== Λα.Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.n

Zero
△
== Λα.λℓ ∶ Seq (α ×α). ⋯

One
△
== Λα.λx ∶ α.λℓ ∶ Seq (α × α).

Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.

s x (ℓ ϕ n z s)

fold
△
== Λα.Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.

λℓ ∶ Seq α. ℓ ϕ n z s
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =
∣ Nil ∶ ∀α.Seq α
∣ Zero ∶ ∀α.Seq (α×α)→ Seq α
∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== Λα.Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.n

Zero
△
== Λα.λℓ ∶ Seq (α ×α). ⋯

One
△
== Λα.λx ∶ α.λℓ ∶ Seq (α × α).

Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.

s x (ℓ ϕ n z s)

fold
△
== Λα.Λϕ.λn ∶ ∀α. ϕα.λz ∶ ∀α. ϕ(α×α) → ϕα.λs ∶ ∀α.α → ϕ(α×α) → ϕα.

λℓ ∶ Seq α. ℓ ϕ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α ×α.
Non regular ADTs cannot be encoded in System F.
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Equality Encoded with GADT

module Eq : EQ = struct
type (α, β) eq = Eq : (α, α) eq

let coerce (type a) (type b) (ab : (a,b) eq) (x : a) : b = let Eq = ab in x

let refl : (α, α) eq = Eq

(∗ all these are propagation and automatic with GADTs ∗)
let symm (type a) (type b) (ab : (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c)

(ab : (a,b) eq) (bc : (b,c) eq) : (a,c) eq = let Eq = ab in bc

let lift (type a) (type b) (ab : (a,b) eq) : (a list, b list ) eq =
let Eq = ab in Eq

end
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== λp. p (refl)

∶ ∀α.∀β.Eq α β → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ

lift
△
== λp. p (refl)

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ)
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== Λα.Λβ.λp ∶ Eq α β.λx ∶ α. p (λγ. γ) x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== Λα.Λϕ.λx ∶ ϕα. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== Λα.Λβ.λp ∶ Eq α β. p (λγ.Eq γ α) (refl α)

∶ ∀α.∀β.Eq α β → Eq β α

trans
△
== Λα.Λβ.Λγ.λp ∶ Eq α β.λq ∶ Eq β γ. q (Eq α) p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ

lift
△
== Λα.Λβ.Λϕ.λp ∶ Eq α β. p (λγ.Eq (ϕα) (ϕγ)) (refl (ϕα))

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ)
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== Λα.Λβ.λp ∶ Eq α β.λx ∶ α. p (λγ. γ) x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== Λα.Λϕ.λx ∶ ϕα. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== Λα.Λβ.λp ∶ Eq α β. p (λγ.Eq γ α) (refl α)

∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== Λα.Λβ.Λγ.λp ∶ Eq α β.λq ∶ Eq β γ. q (Eq α) p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ

lift
△
== Λα.Λβ.Λϕ.λp ∶ Eq α β. p (λγ.Eq (ϕα) (ϕγ)) (refl (ϕα))

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ)
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== Λα.Λβ.λp ∶ Eq α β.λx ∶ α. p (λγ. γ) x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== Λα.Λϕ.λx ∶ ϕα. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== Λα.Λβ.λp ∶ Eq α β. p (λγ.Eq γ α) (refl α)

∶ ∀α.∀β.Eq α β → Eq β α

trans
△
== Λα.Λβ.Λγ.λp ∶ Eq α β.λq ∶ Eq β γ. q (Eq α) p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ ∶ Eq α β → Eq α γ

lift
△
== Λα.Λβ.Λϕ.λp ∶ Eq α β. p (λγ.Eq (ϕα) (ϕγ)) (refl (ϕα))

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ)
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== Λα.Λβ.λp ∶ Eq α β.λx ∶ α. p (λγ. γ) x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== Λα.Λϕ.λx ∶ ϕα. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== Λα.Λβ.λp ∶ Eq α β. p (λγ.Eq γ α) (refl α)

∶ ∀α.∀β.Eq α β → Eq β α

trans
△
== Λα.Λβ.Λγ.λp ∶ Eq α β.λq ∶ Eq β γ. q (Eq α) p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ

lift
△
== Λα.Λβ.Λϕ.λp ∶ Eq α β. p (λγ.Eq (ϕα) (ϕγ)) (refl (ϕα))

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα) (ϕα)→Eq (ϕα)(ϕβ)
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Equality Leibnitz equality in F ω

We implemented parts of the coercions of System Fc.

● We do not have decomposition of equalities (the inverse of Lift).

● This requires injectivity of type operators, which is not given.

● Equivalences and liftings must be written explicitly, while they are
implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.
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A hierarchy of type systems

Kinds have a rank:

● the base kind ∗ is of rank 1

● kinds ∗ ⇒ ∗ and ∗ ⇒ ∗ ⇒ ∗ have rank 2. They are the kinds of type
functions taking type parameters of base kind.

● kind (∗ ⇒ ∗)⇒ ∗ has rank 3—it is a type function whose
parameter is itself a simple type function (of rank 1).

● more generally, rank (κ1 ⇒ κ2) =max(1 + rank κ1, rank κ2)

This defines a sequence F 1
⊆ F 2

⊆ F 3 . . . ⊆ Fω of type systems of
increasing expressiveness, where Fn only uses kinds of rank n, whose
limit is Fω and where System F is F 1.

(Ranks are sometimes shifted by one, starting with F = F 2.)

Most examples in practice (and those we wrote) are in F 2, just above F .
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F ω with several base kinds

We could have several base kinds, e.g. ∗ and field with type constructors:

filled ∶ ∗ ⇒ field
empty ∶ field

box ∶ field⇒ ∗

Prevents ill-formed types such as box (α → filled α).

This allows to build values v of type box θ where θ of kind field statically
tells whether v is filled with a value of type τ or empty.

Application:

This is used in OCaml for rows of object types, but kinds are hidden to
the user:

let get (x : ⟨ get : α; .. ⟩) : α = x#get

The dots “ .. ” here stand for a variable of another base kind
(representing a row of types).
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System F ω with equirecursive types

Checking equality of equirecursive types in System F is already non
obvious, since unfolding may require α-conversion to avoid variable
capture. (See also [Gauthier and Pottier, 2004].)

With higher-order types, it is even trickier, since unfolding at functional
kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with
a fix-point operator: type reduction would not terminate.

Therefore type equality would be undecidable, as well as type checking.

A solution is to restrict to recursion at the base kind ∗. This allows to
define recursive types but not recursive type functions.

Such an extension has been proven sound and and decidable, but only for
the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see [Cai et al., 2016].
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System F ω with equirecursive kinds

Instead, recursion could also occur just at the level of kinds, allowing
kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive
types, equivalent to the untyped λ-calculus—every term is typable.
Reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier [2011] is to force recursive kinds to be
productive, reusing an idea from an [Nakano, 2000, 2001] for controlling
recursion on terms, but pushing it one level up. Type equality becomes
well-defined and semi-decidable.

The extension has been used to show that references in System F can be
translated away in Fω with guarded recursive kinds.
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Encoding ML modules with generative functors

Generative functors can be encoded with existential types.

A functor F has a type of the form:

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

Where:

● τ[ᾱ] represents the signature of the argument with some abstract types ᾱ.
● ∃β̄. σ[ᾱ, β̄] represents the signature of the result of the functor application.
● That is, the abstract types ᾱ are those taken from and shared with the

argument.
● Conversely β̄ are the abstract types created by the application, and have

fresh identities independent of the argument.
● Two successive applications with the same argument (hence the same α)

will create two signatures with incompatible abstract types β̄1 and β̄2,
once the existential is open.
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Encoding ML modules with generative functors

Generative functors can be encoded with existential types.

A functor F has a type of the form:

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

Two applications of F
with the same argument:

let module Z1 = F(X) in
let module Z2 = F(X) in ...

must be understood as:

let β̄1, Z1 = unpack (F(X)) in
let β̄2, Z2 = unpack (F(X)) in ...

creating two structures Z1 and Z2 with incompatible abstract types β̄1
and β̄2 that cannot interoperate.

(Typically, they contain a field ℓ of respective types β1 and β2 so that
Z.ℓ = Z ′.ℓ is ill-typed.)
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Encoding ML modules with generative functors

Generative functors can be encoded with existential types.

A functor F has a type of the form:

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

In the absence of parametric types (such as list α), the encoding can be
done in System F.
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

Compared with:
∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

Compared with:
∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

That is:

● σ[ᾱ, ϕ̄ᾱ] represents the signature of the result of the functor application.
● ϕ̄ᾱ are the abstract types created by the application. Each ϕᾱ is a new

abstract type—one we know nothing about, as it is the application of an
abstract type to ᾱ.

● However, two successive applications with the same argument (hence the
same ᾱ) will create two compatible structures whose signatures have the
same shared abstract types ϕ̄ᾱ.
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

Compared with:
∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

The two applications of F :

let β̄1, Z1 = unpack (F(X)) in
let β̄2, Z2 = unpack (F(X)) in ...

becomes:

let ϕ̄, F = unpack F in

let Z1 = F(X) in
let Z2 = F(X) in ...
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

More generally:
∃ϕ̄.∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, ϕ̄ᾱ, β̄]

Where we can have

● applicative abstract types

● generative abstract types

simultaneously.
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

Or we may just alternate between generative and applicative functors.
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Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ σ[ᾱ, ϕ̄ᾱ]

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]

Summary:

● An abstract type of higher-order kind can be used to generate new
(partially) abstract types !

● Fω may encode of applicative functors using this mechanism to
generate abstract types that can be shared.

See [Rossberg et al., 2014] and [Rossberg, 2018], and

also [Blaudeau, 2021] for ongoing work.
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System F ω in OCaml

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : α. α → α = fun x → x end
let y (x : ⟨f : α. α → α⟩) = x#f x in y id

32⟨1⟩ 35 ◁



Presentation Expressiveness Beyond Fω

System F ω in OCaml

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : α. α → α = fun x → x end
let y (x : ⟨f : α. α → α⟩) = x#f x in y id

● Via first-class modules
module type S = sig val f : α → α end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id
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System F ω in OCaml

Second-order polymorphism in OCaml

● Via polymorphic methods

● Via first-class modules

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.
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System F ω in OCaml . . . with modular explicits

Available at git@github.com:mrmr1993/ocaml.git

module type s = sig type t end
module type op = functor (A:s) → s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} → F(C).t → G(C).t)
(x : F(A).t) (y : F(B).t) : G(A).t ∗ G(B).t = f {A} x, f {B} y

And its two specialized versions:

let dp1 (type a) (type b) (f : {C:s} → C.t → C.t) : a → b → a ∗ b =
let module F(C:s) = C in let module G = F in

let module A = struct type t = a end in

let module B = struct type t = b end in

dp {F} {G} {A} {B} f

let dp2 (type a) (type b) (f : a → b) : a → a → b ∗ b =
let module A = struct type t = a end in

let module B = struct type t = b end in

let module F(C:s) = A in let module G(C:s) = B in

dp {F} {G} {A} {B} (fun {C:s} → f)
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System F ω in Scala-3

Higher-order polymorphism a la System Fω is available in Scala-3.

The monad example (with some variation on the signature) is:

trait Monad [F[ ]] {
def pure [A] (x: A) : F[A]
def flatMap [A, B] (fa: F[A]) (f: A ⇒ F[B]) : F[B]

}

See https://www.baeldung.com/scala/dotty-scala-3

Still, this feature of Scala-3 is not emphasized

● It was not directly available in previous versions of Scala.

● Scala’s syntax and other complex features of Scala are obfuscating.
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What’s next? Dependent types!

Barendregt’s λ-cube

Fω = λω λΠω

F = λ2 λΠ2

λω λΠω

λst λΠ

(1)

(2)

(3)
(1) Term abstraction on Types (example: System F)

(2) Type abstraction on Types (example: Fω)

(3) Type abstraction on Terms (dependent types)
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