
MPRI 2.4, Functional programming and type systems
Metatheory of System F

Didier Rémy

Plan of the course

Simply typed lambda-calculus

Metatheory of System F

ADTs, Recursive types, Existential types, GATDs

Going higher order with Fω!

Logical relations

Side effects, References, Value restriction

Type reconstruction

Overloading

Metatheory of System F

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proofs

Since 2017-2018, this course is shorter: you can see extra material in
courses notes (and in slides of year 2016).

Detailed proofs of main results are not shown in class anymore, but are
still part of the course:

You are supposed to read, understand them.

and be able to reproduce them.

Formalization of System F is a basic. You must master it.

Some of the metatheory will be done in Coq, by François, Pottier,
—for your help or curiosity,

4 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What are types? ▷⋅

– Types are:
“a concise, formal description of the behavior of a program fragment.”

– Types must be sound:
programs must behave as prescribed by their types.

– Hence, types must be checked and ill-typed programs must be rejected.

5 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What are they useful for? ▷⋅

– Types serve as machine-checked documentation.

– Data types help structure programs.

– Types provide a safety guarantee.

– Types can be used to drive compiler optimizations.

– Types encourage separate compilation, modularity, and abstraction.

6 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-preserving compilation ▷⋅

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.

7 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typed or untyped? ▷⋅

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time error
checking and are succinct to the point of unintelligibility, while the other
side claims that typed languages preclude a variety of powerful
programming techniques and are verbose to the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

8 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typed, Sir! with better types. ▷⋅

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and their
arguments are the motivation for seeking type systems that are more
flexible and succinct than those of existing typed languages.”

Today, the question is more whether

● to stay with rather simple polymorphic types (ML, System F, or Fω).

● use more sophisticated types (dependent types, afine types,
capabililties and ownership, effects, logical assertions, etc.), or

● even towards full program proofs!

The community is still between programming with dependent types to
capture fine invariants, or programming with simpler types and
developing program proofs on the side that these invariants hold
—with often a preference for the latter.

9 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

10 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.

The λ-calculus supports natural encodings of many programming
languages [Landin, 1965], and as such provides a suitable setting for
studying type systems.

Following Church’s thesis, any Turing-complete language can be used to
encode any programming language. However, these encodings might not
be natural or simple enough to help us in understanding their typing
discipline.

Using λ-calculus, most of our results can also be applied to other
languages (Java, assembly language, etc.).

11 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Simply typed λ-calculus

Why?

● used to introduce the main ideas, in a simple setting

● we will then move to System F

● still used in some theoretical studies

● is the language of kinds for Fω

Types are:
τ ∶∶= α ∣ τ → τ ∣ . . .

Terms are:
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .

The dots are place holders for future extensions of the language.

12 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Binders, α-conversion, and substitutions

λx ∶τ.M binds variable x in M .

We write fv(M) for the set of free (term) variables of M :

fv(x)
△
== {x}

fv(λx ∶τ.M)
△
== fv(M) ∖ {x}

fv(M1 M2)
△
== fv(M1) ∪ fv(M2)

We write x#M for x ∉ fv(M).

Terms are considered equal up to renaming of bound variables:

● λx1 ∶τ1. λx2 ∶τ2. x1 x2 and λy ∶τ1. λx ∶τ2. y x are really the same term!

● λx ∶τ. λx ∶τ.M is equal to λy ∶τ. λx ∶τ.M when y ∉ fv(M).

Substitution:

[x ↦ N]M is the capture avoiding substitution of N for x in M .

13 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When adding references, exceptions,
or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name
or call-by-need just as well.

14 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where
reduction may occur in any context. The reduction is then
non-deterministic (there are many possible reduction paths) but the
calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is
never performed under λ-abstractions, for efficiency of reduction, to have
a deterministic semantics in the presence of side effects—and a
well-defined cost model.

Still, type systems are usually also sound for full reduction strategies
(with some care in the presence of side effects or empty types).

Type soundness for full reduction is a stronger result.

It implies that potential errors may not be hidden under λ-abstractions

(this is usually true—it is true for λ-calculus and System F—but not
implied by type soundness for a weak reduction strategy.)

15 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Dynamic semantics

In the pure, explicitly-typed call-by-value λ-calculus, the values are the
functions:

V ∶∶= λx ∶τ.M ∣ . . .
The reduction relation M1 Ð→M2 is inductively defined:

βv(λx ∶τ.M) V Ð→ [x ↦ V]M
Context

M Ð→M ′

E[M]Ð→ E[M ′]
Evaluation contexts are defined as follows:

E ∶∶= []M ∣ V [] ∣ . . .
We only need evaluation contexts of depth one, using repeated
applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

Ē ∶∶= [] ∣ E[Ē]
16 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Static semantics

Technically, the type system is a 3-place predicate, whose instances are
called typing judgments, written:

Γ ⊢M ∶ τ

where Γ is a typing context.

17 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typing context, notations

A typing context (also called a type environment) Γ binds program
variables to types.

We write ∅ for the empty context and Γ, x ∶ τ for the extension of Γ with
x ↦ τ .

To avoid confusion, we require x ∉ dom(Γ) when we write Γ, x ∶ τ .

Bound variables in source programs can always be suitably renamed to
avoid name clashes.

A typing context can then be thought of as a finite function from
program variables to their types.

We write dom(Γ) for the set of variables bound by Γ and x ∶ τ ∈ Γ to
mean x ∈ dom(Γ) and Γ(x) = τ .

18 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Static semantics

Typing judgments are defined inductively by the following set of
inferences rules:

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢ M1 M2 ∶ τ2

Notice that the specification is extremely simple.

In the simply-typed λ-calculus, the definition is syntax-directed.
This is not true of all type systems.

19 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example

The following is a valid typing derivation:

App

Var
Γ ⊢ f ∶ τ → τ ′

Var
Γ ⊢ x1 ∶ τ

Γ ⊢ f x1 ∶ τ ′
Γ ⊢ f ∶ τ → τ ′

Var
Γ ⊢ x2 ∶ τ Var

Γ ⊢ f x2 ∶ τ ′ App

f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ ⊢ (f x1, f x2) ∶ τ ′ × τ ′ Pair

∅ ⊢ λf ∶ τ → τ ′. λx1 ∶ τ. λx2 ∶ τ. (f x1, f x2) ∶ (τ → τ ′) → τ → τ → (τ ′ × τ ′) Abs

Γ stands for (f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ). Rule Pair is introduced later on.

Observe that:

– this is in fact, the only typing derivation (in the empty environment).

– this derivation is valid for any choice of τ and τ ′

(which in our setting are part of the source term)

Conversely, every derivation for this term must have this shape, actually
be exactly this one, up to the name of variables.

20⟨4⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning.
It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .
– If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
– If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

– If M is λx ∶τ2.M1, then τ is of the form τ2 → τ1 and Γ, x ∶ τ2 ⊢ M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. Although trivial in our simple setting,
stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.

21⟨6⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is
fully determined by the shape of the term.

In our simple setting, each term has actually a unique type.
Hence, typing derivations are unique, up to the typing context.
The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate
typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing
derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described
in the meta-language of mathematics.

22 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also
say in church-style), as parameters of abstractions are annotated with
their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in
curry-style) when parameters of abstractions are left unannotated, as in
the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the
amount of type information present in source terms and can be easily
lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.

23 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones
by dropping type annotations. This is called type erasure.

We write ⌈M⌉ for the type erasure of M , which is defined by structural
induction on M :

⌈x⌉ △
== x

⌈λx ∶ τ .M⌉ △
== λx. ⌈M⌉

⌈M1 M2⌉ △
== ⌈M1⌉ ⌈M2⌉

24 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type reconstruction

Conversely, can we convert implicitly-typed expressions back into
explicitly-typed ones, that is, can we reconstruct the missing type
information?

This is equivalent to finding a typing derivation for implicitly-typed
terms. It is called type reconstruction (or type inference).
(See the course on type reconstruction.)

25 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type reconstruction . . . may be partial

Annotating programs with types can lead to redundancy.

Types can even become extremely cumbersome when they have to be
explicitly and repeatedly provided. In some pathological cases, type
information may grow in square of the size of the underlying untyped
expression.

This creates a need for a certain degree of type reconstruction (also called
type inference), even when the language is meant to be explicitly typed,
where the source program may contain some but not all type information.

Full type reconstruction is undecidable for expressive type systems.

Some type annotations are required or type reconstruction is incomplete.

26 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

Observe that although the reduction carries types at runtime,
types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasures. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms
coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into
close correspondence.

27 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

Obsviously, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.
M1 M2

a1 a2

β

⌈⌉ ⌈⌉
βConversely, a reduction step after type erasure could

also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1 M2

a1 a2

⌈⌉
β

β

⌈⌉

What we have established is a bisimulation between explicitly-typed
terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved
only types and have no counter-part (and disappear) on compiled terms.

28 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

It is an important property for a language to have an untyped semantics.

It then has an implicitly-typed presentation.

The metatheoretical study is often easier with explicitly-typed terms, in
particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly
proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.

(Once we have shown that implicit and explicit presentations coincide,
we can choose whichever view is more convenient.)

29 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

30 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Stating type soundness

What is a formal statement of the slogan

“Well-typed expressions do not go wrong”

By definition, a closed term M is well-typed if it admits some type τ in
the empty environment.

By definition, a closed, irreducible term is either a value or stuck.
Thus, a closed term can only:

● diverge,

● converge to a value, or

● go wrong by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.

31 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Stating type soundness

The slogan now has a formal meaning:

Theorem (Type soundness)

Well-typed expressions do not go wrong.

Proof.
By Subject Reduction and Progress.

Note We only give the proof schema here, as the same proof will be
carried again with more details in the (more complex) case of System F.
—See the course notes for detailed proofs.

32 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994].
Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any type τ such that
∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem (Progress)

A (closed) well-typed term is either a value or reducible:
if ∅ ⊢M ∶ τ then there exists M ′ such that M Ð→M ′, or M is a value.

Equivalently, we may say: closed, well-typed, irreducible terms are values.

33 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

34 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Adding a unit

The simply-typed λ-calculus is modified as follows. Values and
expressions are extended with a nullary constructor () (read “unit”):

M ∶∶= . . . ∣ () V ∶∶= . . . ∣ ()
No new reduction rule is introduced.

Types are extended with a new constant unit and a new typing rule:

τ ∶∶= . . . ∣ unit Unit

Γ ⊢ () ∶ unit

35 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M
E ∶∶= . . . ∣ ([],M) ∣ (V, []) ∣ proji []
V ∶∶= . . . ∣ (V,V)
i ∈ {1,2}

A new reduction rule is introduced:

proji (V1, V2)Ð→ Vi

36 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Pairs

Types are extended:
τ ∶∶= . . . ∣ τ × τ

Two new typing rules are introduced:

Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1,M2) ∶ τ1 × τ2
Proj

Γ ⊢M ∶ τ1 × τ2
Γ ⊢ proji M ∶ τi

37 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V
E ∶∶= . . . ∣ inji [] ∣ case [] of V 8 V
V ∶∶= . . . ∣ inji V
i ∈ {1,2}

A new reduction rule is introduced:

case inji V of V1 8 V2 Ð→ Vi V

38 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums

Types are extended:
τ ∶∶= . . . ∣ τ + τ

Two new typing rules are introduced:

Inj

Γ ⊢M ∶ τi
Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2
Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 8 V2 ∶ τ

39 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly.

Exercise
Describe an extension with the option type.

40 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

● a new type constructor, to classify values of a new shape;

● new expressions, to construct and destruct values of a new shape.

● new typing rules for new forms of expressions;

● new reduction rules, to specify how values of the new shape can be
destructed;

● new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved because types are preserved by the new
reduction rules.

Progress is preserved because the type system ensures that the new
destructors can only be applied to values such that at least one of the
new reduction rules applies.

41 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Modularity of extensions

These extensions are independent: they can be added to the λ-calculus
alone or mixed altogether.

Indeed, no assumption about other extensions (the “. . .”) is ever made,
except for the classification lemma which requires, informally, that values
of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has
the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of
a more general extension of the λ-calculus with constants, for which type
soundness can be established uniformly under reasonable assumptions
relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the following section.

42 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

M ∶∶= . . . ∣ µf ∶τ. λx.M
V ∶∶= . . . ∣ µf ∶τ. λx.M

A new reduction rule is introduced:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V]M

43 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Recursive functions

Types are not extended. We already have function types.

What does this imply as a corollary?

— Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves both as an assumption and a
goal. This is a typical feature of recursive definitions.

44 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let

The construct “let x ∶ τ =M1 inM2” can be viewed as syntactic sugar for
the β-redex “(λx ∶τ.M2)M1”.

The latter can be type-checked only by a derivation of the form:

App

Abs
Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete:

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

The construct “M1;M2” can in turn be viewed as syntactic sugar for
let x ∶ unit =M1 inM2 where x ∉ ftv(M2).

45 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better—not necessarily, because removing redundant type
annotations is the task of type reconstruction and we should not bother
(too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as
avoiding extra type annotations in an explicitly-typed language.

46 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let rec

The construct “let rec (f ∶ τ) x =M1 inM2” can be viewed as syntactic
sugar for “let f = µf ∶τ. λx.M1 inM2”. The latter can be type-checked
only by a derivation of the form:

LetMono

FixAbs
Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:

LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2

47 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

48 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several
distinct types.

49 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that sorts a
list is independent of the type of the list elements, then it should be
directly applicable to lists of integers, lists of booleans, etc.

In short, it should have polymorphic type:

∀α. (α → α → bool)→ list α → list α

which instantiates to the monomorphic types:

(int → int→ bool)→ list int→ list int(bool→ bool→ bool)→ list bool→ list bool
. . .

50 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

● to manually duplicate the list sorting function at every type (no-no!);

● to use subtyping and claim that the function sorts lists of values of
any type: (⊺ → ⊺→ bool)→ list ⊺→ list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.)

Why isn’t this so good? This leads to loss of information and
subsequently requires introducing an unsafe downcast operation.
This was the approach followed in Java before generics were
introduced in 1.5.

51 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus.
Indeed, we have checked that the type:

(α1 → α2)→ α1 → α1 → α2 × α2

is a principal type for the term λfxy. (f x, f y).
By saying that this term admits the polymorphic type:

∀α1α2. (α1 → α2)→ α1 → α1 → α2 × α2

we make polymorphism internal to the type system.

52 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Towards type abstraction

Polymorphism is a step on the road towards type abstraction.

Intuitively, if a function that sorts a list has polymorphic type:

∀α. (α → α → bool)→ list α → list α

then it knows nothing about α—it is parametric in α—so it must
manipulate the list elements abstractly: it can copy them around, pass
them as arguments to the comparison function, but it cannot directly
inspect their structure.

In short, within the code of the list sorting function, the variable α is an
abstract type.

53 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only one inhabitant,
up to βη-equivalence, namely the identity.

Similarly, the type of the list sorting function

∀α. (α → α → bool)→ list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem (including, e.g., a function that sorts in reverse order, or a
function that removes duplicates)

54⟨9⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only one inhabitant,
up to βη-equivalence, namely the identity.

Similarly, the type of the list sorting function

∀α. (α → α → bool)→ list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem (including, e.g., a function that sorts in reverse order, or a
function that removes duplicates)

54⟨8⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc v.s. parametric polymorphism

The term “polymorphism” dates back to a 1967 paper by
Strachey [2000], where ad hoc polymorphism and parametric
polymorphism were distinguished.

There are two different (and sometimes incompatible) ways of defining
this distinction...

55 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc v.s. parametric polymorphism: first definition

With parametric polymorphism, a term can admit several types, all of
which are instances of a single polymorphic type:

int→ int,
bool→ bool,

. . .

∀α.α → α

With ad hoc polymorphism, a term can admit a collection of unrelated
types:

int→ int→ int,
string→ string→ string,

. . .

but not
∀α.α → α → α

56 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc v.s. parametric polymorphism: second definition

With parametric polymorphism, untyped programs have a well-defined
semantics. (Think of the identity function.) Types are used only to rule
out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics:
the meaning of a term can depend upon its type (e.g. 2 + 2), or, even
worse, upon its type derivation (e.g. λx. show (read x)).

57 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc v.s. parametric polymorphism: type classes

By the first definition, Haskell’s type classes [Hudak et al., 2007] are a
form of (bounded) parametric polymorphism: terms have principal
(qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc
polymorphism: untyped programs do not have a semantics.

In the case of Haskell type classes, the two views can be reconciled.
(See the course on overloading.)

In this course, we are mostly interested in the simplest form of
parametric polymorphism.

58 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

59 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

System F

The System F, (also known as: the polymorphic λ-calculus, the
second-order λ-calculus; F 2) was independently defined by Girard (1972)
and Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended with
universal quantification:

τ ∶∶= . . . ∣ ∀α.τ
How are the syntax and semantics of terms extended?

There are several variants, depending on whether one adopts an

● implicitly-typed or explicitly-typed (syntactic) presentation of terms

● and a type-passing or a type-erasing semantics.

60 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly-typed System F

In the explicitly-typed variant [Reynolds, 1974], there are term-level
constructs for introducing and eliminating the universal quantifier:

Tabs

Γ, α ⊢M ∶ τ
Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ
Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

Terms are extended accordingly:

M ∶∶= . . . ∣ Λα.M ∣M τ

Type variables are explicitly bound and appear in type environments.

Γ ∶∶= . . . ∣ Γ, α

61 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environment

Mandatory: We extend our previous convention to form environments:
Γ, α requires α # Γ, i.e. α is neither in the domain nor in the image of Γ.

Optional: We also require that environments be closed with respect to
type variables, that is, we require ftv(τ) ⊆ dom(Γ) to form Γ, x ∶ τ .

However, a looser style would also be possible.

● Our stricter definition allows fewer judgments, since judgments with
open contexts are not allowed.

● However, these judgments can always be closed by adding a prefix
composed of a sequence of its free type variables to be well-formed.

The stricter presentation is easier to manipulate in proofs;
it is also easier to mechanize.

62 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environments and types

Well-formedness of environments, written ⊢ Γ and well-formedness of
types, written Γ ⊢ τ , may also be defined recursively by inference rules:

WfEnv
-Empty⊢ ∅

WfEnvTvar⊢ Γ α ∉ dom(Γ)
⊢ Γ, α

WfEnvVar

Γ ⊢ τ x ∉ dom(Γ)
⊢ Γ, x ∶ τ

WfTypeVar⊢ Γ α ∈ Γ

Γ ⊢ α
WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2
Γ ⊢ τ1 → τ2

WfTypeForall

Γ, α ⊢ τ
Γ ⊢ ∀α. τ

Note

Rule WfEnvVar need not the premise ⊢ Γ , which follows from Γ ⊢ τ
63 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environments and types

There is a choice whether well-formedness of environments should be
made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to
every rule where the environment or some type that appears in the
conclusion does not appear in any premise.

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ
Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′
Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

Explicit well-formedness is more precise and better suited for mechanized
proofs. Explicit well-formedness is recommended.

However, we choose to leave well-formedness conditions implicit in this
course, as it is a bit verbose and sometimes distracting. (Still, we will
remind implicit well-formedness premises in the definition of typing rules.)

64 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)
Then, there is a choice.

Historically, in most presentations of System F, type abstraction stops
the evaluation. It is described by:

V ∶∶= . . . ∣ Λα.M E ∶∶= . . . ∣ [] τ
However, this defines a type-passing semantics!

Indeed, Λα. ((λy ∶ α.y) V) is then a value while its type erasure(λy. y) ⌈V ⌉ is not—and can be further reduced.

65 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

V ∶∶= . . . ∣ Λα.V E ∶∶= . . . ∣ [] τ ∣ Λα. []
Then, we only need a weaker version of ι-reduction:

(Λα.V) τ Ð→ [α ↦ τ]V (ι)

We now have:
Λα. ((λy ∶ α.y) V)Ð→ Λα.V

We verify below that this defines a type-erasing semantics, indeed.

66 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

● because it alters the semantics, it does not fit our view that
the untyped semantics should pre-exist and that a type system is
only a predicate that selects a subset of the well-behaved terms.

● it blocks reduction of polymorphic expressions:

if f is list flattening of type ∀α. list (list α) → list α, the monomorphic
function (f int) ○ (f (list int)) reduces to Λx. f (f x), while its more
general polymorphic version Λα. (f α) ○ (f (list α)) is irreducible.

● because it requires both values and types to exist at runtime, it can
lead to a duplication of machinery. Compare type-preserving closure
conversion in type-passing [Minamide et al., 1996] and in
type-erasing [Morrisett et al., 1999] styles.

67 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing versus type-erasing: pros and cons

An apparent advantage of the type-passing interpretation is to allow
typecase; however, typecase can be simulated in a type-erasing system by
viewing runtime type descriptions as values [Crary et al., 2002].

The type-erasing semantics

● does not alter the semantics of untyped terms.

● for this very reason, it also coincides with the semantics of ML—and,
more generally, with the semantics of most programming languages.

● It also exhibits difficulties when adding side effects while the
type-passing semantics does not.

In the following, we choose a type-erasing semantics.

Notice that we allow evaluation under a type abstraction as a
consequence of choosing a type-erasing semantics—and not the converse.

68 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Reconciling type-passing and type-erasing views

If we restrict type abstraction to value-forms (which include values and
variables), that is, we only allow Λα.M when M is a value-form, then
the type-passing and type-erasing semantics coincide.

Indeed, under this restriction, closed type abstractions will always be type
abstractions of values, and evaluation under type abstraction will never
be used, even if allowed.

This restriction is chosen when adding side-effects as a way to preserve
type-soundness.

69 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly-typed System F

We study the explicitly-typed presentation of System F first because it is
simpler.

Once, we have verified that the semantics is indeed type-preserving,
many properties can be transferred back to the implicitly-typed version,
and in particular, to its ML subset.

Then, both presentations can be used, interchangeably.

70 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

System F, full definition (on one slide) To remember!

Syntax τ ∶∶= α ∣ τ → τ ∣ ∀α.τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Typing rules

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

Tabs

Γ, α ⊢M ∶ τ
Γ ⊢ Λα.M ∶ ∀α.τ

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tapp

Γ ⊢M ∶ ∀α.τ
Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

Semantics

V ∶∶= λx ∶τ.M ∣ Λα.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα. []
(λx ∶τ.M) V Ð→ [x ↦ V]M(Λα.V) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]

71 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Encoding data-structures

System F is quite expressive: it enables the encoding of data structures.

For instance, the church encoding of pairs is well-typed:

pair
△
== Λα1.Λα2.λx1 ∶ α1. λx2 ∶ α2.Λβ.λy ∶ α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶ ∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)

⌈pair⌉ △== λx1. λx2. λy. y x1 x2⌈proji⌉ △== λy. y (λx1. λx2. xi)
Sum and inductive types such as Natural numbers, List, etc. can also be
encoded.

72 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Primitive data-structures as constructors and destructors

Unit, Pairs, Sums, etc. can also be added to System F as primitives.

We can then proceed as for simply-typed λ-calculus.

However, we may take advantage of the expressiveness of System F to
deal with such extensions in a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension.

We may instead add one typing rule for constants that is parametrized by
an initial typing environment.

This allows sharing the meta-theoretical developments between the
different extensions.

Let us first illustrate an extension of System F with primitive pairs.
(We will then generalize it to arbitrary constructors and destructors.)

73 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

Types are extended with a type constructor × of arity 2:

τ ∶∶= . . . ∣ τ × τ
Expressions are extended with a constructor (⋅, ⋅) and two destructors
proj1 and proj2 with the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 × α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

which represent an initial environment ∆. We need not add any new
typing rule, but instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and
destructors (all cases but one). Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V∣ proji ∣ proji τ ∣ proji τ τ
74 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δpair)
Comments?

● For well-typed programs, τi and τ
′
i will always be equal, but the

reduction will not check this at runtime.

Instead, one could have defined the rule:

proji τ1 τ2 (pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)
The two semantics are equivalent on well-typed terms, but differ on
ill-typed terms where δ′pair may block when rule δpair would
progress, ignoring type errors.

Interestingly, with δ′pair, the proof obligation is simpler for subject
reduction but replaced by a stronger proof obligation for progress.

75⟨3⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δpair)
Comments?

● This presentation forces the programmer to specify the types of the
components of the pair.

However, since this is an explicitly type presentation, these types are
already known from the arguments of the pair (when present)

This should not be considered as a problem: explicitly-typed
presentations are always verbose. Removing redundant type
annotations is the task of type reconstruction.

75⟨3⟩ 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors General case

Assume given a collection of type constructors G ∈ G, with their arity
arity (G). We assume that types respect the arities of type constructors.

Given G, a type of the form G (τ⃗) is called a G-type.
A type τ is called a datatype if it is a G-type for some type constructor G.

For instance G is {unit, int,bool, (×), list , . . .}
Let ∆ be an initial environment binding constants c of arity n (split into
constructors C and destructors d) to closed types of the form:

c ∶ ∀α1. . . .∀αk. τ1 → . . . τn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
arity(c)

→ τ

We require that

● τ be a datatype whenever c is a constructor (key for progress);

● the arity of destructors be strictly positive
(nullary destructors introduce pathological cases for little benefit).

76 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors General case

Expressions are extended with constants: Constants are typed as
variables, but their types are looked up in the initial environment ∆:

M ∶∶= . . . ∣ c
c ∶∶= C ∣ d

Cst

c ∶ τ ∈∆
Γ ⊢ c ∶ τ

Values are extended with partial or full applications of constructors and
partial applications of destructors:

V ∶∶= . . .

∣ C τ1 . . . τp V1 . . . Vq q ≤ arity (C)
∣ d τ1 . . . τp V1 . . . Vq q < arity (d)

For each destructor d of arity n, we assume given a set of δ-rules of the
form

d τ1 . . . τk V1 . . . Vn Ð→M (δd)
77 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Soundness requirements

Of course, we need assumptions to relate typing and reduction of
constants:

Subject-reduction for constants:

● δ-rules preserve typings for well-typed terms

If α⃗ ⊢M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢ M2 ∶ τ .
Progress for constants:

● Well-typed full applications of destructors can be reduced

If α⃗ ⊢M1 ∶ τ and M1 is of the form d τ1 . . . τk V1 . . . Varity(d)
then there exists M2 such that M1 Ð→ M2.

Intuitively, progress for constants means that the domain of destructors is
at least as large as specified by their type in ∆.

78 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example Unit

Adding units:

● Introduce a type constant unit

● Introduce a constructor () of arity 0 of type unit.

● No primitive and no reduction rule is added.

The assumptions obviously hold in the absence of destructors.

The previous example of pairs also perfectly fits in this framework.

79 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)
It is straightforward to check the assumptions:

● Progress is obvious, since δfix works for any values V1 and V2.● Subject reduction is also straightforward
(by inspection of the typing derivation)

Assume that Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ . By inversion of typing rules, τ must be
equal to τ2, V1 and V2 must be of types (τ1 → τ2)→ τ1 → τ2 and τ1 in the
typing context Γ. We may then easily build a derivation of the judgment
Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ

80 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Exercise Lists

1) Formulate the extension of System F with lists as constants.

2) Check that this extension is sound.

Solution

1) We introduce a new unary type constructor list ; two constructors Nil ⋅
and Cons of types ∀α. list α and ∀α.α → list α→ list α; and one
destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α → β)→ β

with the two reduction rules:

matchlist τ1 τ2 (Nil τ) Vn Vc Ð→ Vn
matchlist τ1 τ2 (Cons τ Vh Vt) Vn Vc Ð→ Vc Vh Vt

2) See the case of pairs in the course.

81 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

82 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness

The structure of the proof is similar to the case of simply-typed
λ-calculus and follows from subject reduction and progress.

Subject reduction uses the following lemmas:

● inversion of typing judgments

● permutation and weakening

● expression substitution

● type substitution (new)

● compositionality

83 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Inversion of typing judgements

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .
● If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
● If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and
Γ, x ∶ τ0 ⊢M1 ∶ τ1.● If M is M1 M2,
then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.● If M is a constant c, then c ∈ dom(∆) and ∆(x) = τ .

● If M is M1 τ2 then τ is of the form [α ↦ τ2]τ1 and Γ ⊢M1 ∶ ∀α. τ1.● If M is Λα.M1, then τ is of the form ∀α. τ1 and Γ, α ⊢ M1 ∶ τ1.
The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. It may not always be as trivial as in our
simple setting: stating it explicitly avoids informal reasoning in proofs.

84 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Weakening

Lemma (Weakening)

Assume Γ ⊢M ∶ τ .
1) If x# Γ and Γ ⊢ τ ′, then Γ, x ∶ τ ′ ⊢M ∶ τ
2) If β # Γ, then Γ, β ⊢ M ∶ τ .
That is, if ⊢ Γ,Γ′, then Γ,Γ′ ⊢ M ∶ τ .
The proof is by induction on M , then by cases on M applying the
inversion lemma.

Cases for value and type abstraction appeal to the permutation lemma:

Lemma (Permutation)

If Γ,Γ1,Γ2,Γ
′ ⊢M ∶ τ and Γ1 # Γ2 then Γ,Γ2,Γ1,Γ

′ ⊢M ∶ τ .

85 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Type substitution

Lemma (Expression substitution, strengthened)

If Γ, x ∶ τ0,Γ′ ⊢M ∶ τ and Γ ⊢ M0 ∶ τ0 then Γ,Γ′ ⊢ [x ↦M0]M ∶ τ .
The proof is by induction on M .

The case for type and value abstraction requires the strengthened version
with an arbitrary context Γ′. The proof is then straightforward—using
the weakening lemma at variables.

86 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Type substitution

Lemma (Type substitition, strengthened)

If Γ, α,Γ′ ⊢M ∶ τ ′ and Γ ⊢ τ then Γ, [α ↦ τ]Γ′ ⊢ [α ↦ τ]M ∶ [α ↦ τ]τ ′.
The proof is by induction on M .

The interesting cases are for type and value abstraction, which require
the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward.

87 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Compositionality

Lemma (Compositionality)

If ∅ ⊢ E[M] ∶ τ , then there exists τ ′ such that ∅ ⊢M ∶ τ ′ and
all M ′ verifying ∅ ⊢M ′ ∶ τ ′ also verify ∅ ⊢ E[M ′] ∶ τ .

Remarks

● We need to state compositionality under a context Γ that may at
least contain type variables. We allow program variables as well, as
it does not complicate the proof.

● Extension of Γ by type variables is needed because evaluation
proceeds under type abstractions, hence the evaluation context may
need to bind new type variables.

88 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Subject reduction

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any context α⃗ and
type τ such that α⃗ ⊢M1 ∶ τ , we also have α⃗ ⊢M2 ∶ τ .
The proof is by induction on M .
Using the previous lemmas it is straightforward.

Interestingly, the case for δ-rules follows from the subject-reduction
assumption for constants (slide 78).

89 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Progress

Progress is restated as follows:

Theorem (Progress, strengthened)

A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem must be been stated using a sequence of type variables α⃗
for the typing context instead of the empty environment. A closed term
does not have free program variables, but may have free type variables
(in particular under the value restriction).

The theorem is proved by induction and case analysis on M .

It relies mainly on the classification lemma (given below) and
the progress assumption for destructors (slide 78).

90 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Classification

Beware! We must take care of partial applications of constants

Lemma (Classification)

Assume α⃗ ⊢ V ∶ τ
● If τ is an arrow type, then V is either a function or a partial
application of a constant.

● If τ is a polymorphic type, then V is either a type abstraction of a
value or a partial application of a constant to types.

● If τ is a constructed type, then V is a constructed value.

This must be refined by partitioning constructors according to their
associated type-constructor:

If τ is a G-constructed type (e.g. int, τ1 × τ2, or τ list),
then V is a value constructed with a G-constructor
(e.g. an integer n, a pair (V1, V2), a list Nil or Cons(V1, V2))

91 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Normalization

Theorem
Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value
reduction.

This is a difficult proof, due to Girard [1972]; Girard et al. [1990]).

See the lesson on logical relations.

92 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics

93 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F

The syntax and dynamic semantics of terms are that of the untyped
λ-calculus. We use letters a, v, and e to range over implicitly-typed
terms, values, and evaluation contexts. We write F and ⌈F ⌉ for the
explicitly-typed and implicit-typed versions of System F.

Definition 1 A closed term a is in ⌈F ⌉ if it is the type erasure of a closed
(with respect to term variables) term M in F .

We rewrite the typing rules to operate directly on unannotated terms by
dropping all type information in terms:

Definition 2 (equivalent) Typing rules for ⌈F ⌉ are those of the
implicitlty-typed simply-typed λ-calculus with two new rules:

if-Tabs

Γ, α ⊢ a ∶ τ
Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ
Γ ⊢ a ∶ [α ↦ τ0]τ

Notice that these rules are not syntax directed.
94 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

Notice that the explicit introduction of variable α in the premise of Rule
Tabs contains an implicit side condition α # Γ due to the global
assumption on the formation of Γ, α:

if-Tabs

Γ, α ⊢ a ∶ τ
Γ ⊢ a ∶ ∀α.τ

if-Tabs-Bis

Γ ⊢ a ∶ τ α # Γ

Γ ⊢ a ∶ ∀α.τ
In implicitly-typed System F, we could also omit type declarations from
the typing environment. (Although, in some extensions of System F, type
variables may carry a kind or a bound and must be explicitly introduced.)

Then, we would need an explicit side-condition as in if-Tabs-Bis:

The side condition is important to avoid unsoundness by violation of the
scoping rules.

95 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

Omitting the side condition leads to unsoundness:

Broken Tabs

Var
x ∶ α1 ⊢ x ∶ α1 α1 ∈ ftv(x ∶ α1)

Tapp
∅, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs
∅, x ∶ α1 ⊢ x ∶ α2

Tabs-Bis
∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

95 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

This is equivalent to using an ill-formed typing environment :

Broken Tabs

Broken Var
α1, α2, x ∶ α1, α1 ⊢ x ∶ α1 α1, α2, x ∶ α1, α1 ill-formed

Tapp
α1, α2, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs
α1, α2, x ∶ α1 ⊢ x ∶ α2

Tabs
α1, α2 ⊢ λx ∶α1. x ∶ α1 → α2

∅ ⊢ Λα1.Λα2. λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

95 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

A good intuition is: a judgment Γ ⊢ a ∶ τ corresponds to the logical
assertion ∀α⃗.(Γ⇒ τ), where α⃗ are the free type variables of the
judgment.

In that view, Tabs-Bis corresponds to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P

96 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-erasing typechecking

Type systems for implicitly-typed and explicitly-type System F coincide.

Lemma
Γ ⊢ a ∶ τ holds in implicitly-typed System F if and only if there exists an
explicitly-typed expression M whose erasure is a such that Γ ⊢M ∶ τ .
Trivial.

One could write judgements of the form Γ ⊢ a⇒M ∶ τ to mean that the
explicitly typed term M witnesses that the implicitly typed term a has
type τ in the environment Γ.

97 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2. λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)
This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right? Perhaps more surprising is the fact that this
untyped term can be decorated in a different way:

Λα1.Λα2. λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)
This term admits the polymorphic type:

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

This begs the question: ...

98 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

Neither type is an instance of the other, for any reasonable definition of
the word instance, because each one has an inhabitant that does not
admit the other as a type.

Take, for instance,
λf.λx.λy. (f y, f x)

and
λf.λx.λy. (f (f x), f (f y))

99 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Distrib pair in F ω (parenthesis)

In Fω, one can abstract over type functions (e.g. of kind ⋆→ ⋆) and
write:

ΛF.ΛG.
Λα1.Λα2. λ(f ∶ ∀α.Fα → Gα). λx ∶ Fα1. λy ∶ Fα2. (f α1 x, f α2 y)

call it “dp” of type:

∀F.∀G.∀α1.∀α2.(∀α.Fα → Gα)→ Fα1 → Fα2 → Gα1 ×Gα2

Then

dp (λα.α)(λα.α)∶ ∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

Λα1.Λα2. dp (λα.α1) (λα.α2) α1 α2∶ ∀α1.∀α2.(∀α.α1 → α2)→ α1 → α1 → α2 ×α2

100 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Notions of instance in ⌈F ⌉

It seems plausible that the untyped term λfxy. (f x, f y) does not admit
a type τ0 of which the two previous types are instances.

But, in order to prove this, one must fix what it means for τ2 to be an
instance of τ1—or, equivalently, for τ1 to be more general than τ2.

Several definitions are possible...

101 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Syntactic notions of instance in ⌈F ⌉

In System F, to be an instance is usually defined by the rule:

Inst-Gen

β⃗ # ∀α⃗.τ
∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗]τ

One can show that, if τ1 ≤ τ2, then any term that has type τ1 also has
type τ2; that is, the following rule is admissible:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2
Perhaps surprisingly, the rule is not derivable in our presentation of
System F as the proof of admissibility requires weakening.
(It would be derivable if we had left type variables implicit in contexts.)

102 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, τ1 and τ2 must be of the form ∀α⃗. τ and ∀β⃗. [α⃗ ↦ τ⃗]τ where
β⃗ # ∀α⃗. τ . W.l.o.g, we may assume that β⃗ # Γ.

We can wrap M with a retyping context, as follows.

Weak.
Γ ⊢M ∶ ∀α⃗. τ β⃗ # Γ (1)

Tapp∗
Γ, β⃗ ⊢ M ∶ ∀α⃗. τ

Tabs∗
Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub

β⃗ # ∀α⃗. τ (2)
Γ ⊢M ∶ ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ
If condition (2) holds, condition (1) may always be satisfied up to a
renaming of β⃗.

103 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Retyping contexts in F

In F , subtyping is a judgment Γ ⊢ τ1 ≤ τ2, rather than a binary relation,
where the context Γ keeps track of well-formedness of types. Subtyping
relations can be witnessed by retyping contexts.

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣ R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Let us write Γ ⊢ R[τ1] ∶ τ2 iff Γ, x ∶ τ1 ⊢ R[x] ∶ τ2 (where x# R)
If Γ ⊢M ∶ τ1 and Γ ⊢ R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2,
Then Γ ⊢ τ1 ≤ τ2 iff Γ ⊢ R[τ1] ∶ τ2. for some retyping context R.
In System F, retyping contexts can only change toplevel polymorphism:
they cannot operate under arrow types to weaken the return type or
strengthen the domain of functions.

104 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Another syntactic notion of instance: Fη

Mitchell [1988] defined Fη , a version of ⌈F ⌉ extended with a richer
instance relation as:

Inst-Gen

β⃗ # ∀α⃗.τ
∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗]τ

Distributivity∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
Congruence-→

τ2 ≤ τ1 τ ′1 ≤ τ
′
2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2
Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

In Fη , Rule Sub must be primitive as it is not admissible (but still sound).

Fη can also be defined as the closure of System F under η-equality.

Why is a rich notion of instance potentially interesting?

● More polymorphism.● More hope of having principal types.

105 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ .
Ideally, a type system should have principal typings [Wells, 2002]:

Every well-typed term M admits a principal typing – one whose
instances are exactly the typings of M .

Whether this property holds depends on a definition of instance. The
more liberal the instance relation, the more hope there is of having
principal typings.

106 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A semantic notion of instance

Wells [2002] notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every
term that admits θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the
largest relation such that a subtyping principle (for typings) is admissible.

This definition can be used to prove that a system does not have
principal typings, under any reasonable definition of “instance”.

107 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Which systems have principal typings?

The simply-typed λ-calculus has principal typings, with respect to a
substitution-based notion of instance. (See course notes on type
inference.)

Wells [2002] shows that neither System F nor Fη have principal typings.

It was shown earlier that Fη’s instance relation is
undecidable [Wells, 1995; Tiuryn and Urzyczyn, 2002] and that type
inference for both System F and Fη is undecidable [Wells, 1999].

108 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Which systems have principal typings?

There are still a few positive results...

Some systems of intersection types have principal typings [Wells, 2002] –
but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ
and an expression M , is there a type τ for M in Γ such that all other
types of M in Γ are instances of τ .

Damas and Milner’s type system (coming up next) does not have
principal typings but it has principal types and decidable type inference.

109 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Other approaches to type inference in System F

In System F, one can still perform bottom-up type checking, provided
type abstractions and type applications are explicit.

One can perform incomplete forms of type inference, such as local type
inference [Pierce and Turner, 2000; Odersky et al., 2001].

Finally, one can design restrictions or variants of the system that have
decidable type inference. Damas and Milner’s type system is one
example; MLF [Le Botlan and Rémy, 2003] is a more expressive, and
more complex, approach.

109 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness for ⌈F ⌉

Subject reduction and progress imply the soundness of the
explicitly-typed System F. What about the implicitly-typed version?

Can we reuse the soundness proof for the explicitly-typed version? Can
we pull back subject reduction and progress from F to ⌈F ⌉?
Progress? Given a well-typed term a ∈ ⌈F ⌉, can we find a term M ∈ F
whose erasure is a and since M is a value or reduces, conclude that a is
a value or reduces?

Subject reduction? Given a well-typed term a1 ∈ ⌈F ⌉ of type τ that
reduces to a2, can we find a term M1 ∈ F whose erasure is a1 and show
that M1 reduces to a term M2 whose erasure is a2 to conclude that the
type of a2 is the same as the type of a1?

In both cases, this reasoning requires a type-erasing semantics.

110 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗
. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗
. . .

Mn V

an = v /

/
ι

∗

111 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Direct simulation

Type erasure simulates in ⌈F ⌉ the reduction in F upto ι-steps:

Lemma (Direct simulation)

Assume Γ ⊢M1 ∶ τ .
1) If M1 Ð→ι M2, then ⌈M1⌉ = ⌈M2⌉
2) If M1 Ð→βδ M2, then ⌈M1⌉Ð→βδ ⌈M2⌉
Both parts are easy by definition of type erasure.

112 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Inverse simulation

The inverse direction is more delicate to state, since there are usually
many expressions of F whose erasure is a given expression in ⌈F ⌉,
as ⌈⋅⌉ is not injective.
Lemma (Inverse simulation)

Assume Γ ⊢M1 ∶ τ and ⌈M1⌉Ð→ a.
Then, there exists a term M2 such that M1 Ð→∗ιÐ→βδ M2 and ⌈M2⌉ = a.

113 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Assumption on δ-reduction

Of course, the semantics can only be type erasing if δ-rules do not
themselves depend on type information.

We first need δ-reduction to be defined on type erasures.

● We may prove the theorem directly for some concrete examples of
δ-reduction.
However, keeping δ-reduction abstract is preferable to avoid
repeating the same reasoning again and again.

● We assume that it is such that type erasure establishes a
bisimulation for δ-reduction taken alone.

114 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Assumption on δ-reduction

We assume that for any explicitly-typed term M of the form
d τ1. . . τj V1. . . Vk such that Γ ⊢M ∶ τ , the following properties hold:

(1) If M Ð→δ M
′, then ⌈M⌉Ð→δ ⌈M ′⌉.

(2) If ⌈M⌉Ð→δ a, then there exists M ′ such that M Ð→δ M
′ and a is

the type-erasure of M ′.

Remarks

● In most cases, the assumption on δ-reduction is obvious to check.

● In general the δ-reduction on untyped terms is larger than the
projection of δ-reduction on typed terms.

● If we restrict δ-reduction to implicitly-typed terms, then it usually
coincides with the projection of δ-reduction of explicitly-typed terms.

115 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness for implicitly-typed System F

We may now easily transpose subject reduction and progress from the
implicitly-typed version to the implicitly-typed version of System F.

Progress Well-typed expressions in ⌈F ⌉ have a well-typed antecedent in
ι-normal form in F , which, by progress in F , either βδ-reduces or is a
value; then, its type erasure βδ-reduces (by direct simulation) or is a
value (by observation).

Subject reduction Assume that Γ ⊢ a1 ∶ τ and a1 Ð→ a2.

● By well-typedness of a1, there exists a term M1 that erases to a1
such that Γ ⊢M1 ∶ τ .● By inverse simulation in F , there exists M2 such that
M1 Ð→∗ιÐ→βδ M2 and ⌈M2⌉ is a2.● By subject reduction in F , Γ ⊢M2 ∶ τ , which implies Γ ⊢ a2 ∶ τ .

116 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics

The design of advanced typed systems for programming languages is
usually done in explicitly-typed versions, with a type-erasing semantics in
mind, but this is not always checked in details.

While the direct simulation is usually straightforward, the inverse
simulation is often harder. As type systems get more complicated,
reduction at the level of types also gets more complicated.

It is important and not always obvious that type reduction terminates
and is rich enough to never block reductions that could occur in the type
erasure.

117 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics On bisimulations

Using bisimulations to show that compilation preserves the semantics
given in small-step style is a classical technique.

For example, this technique is heavily used in the CompCert project to
prove the correctness of a C-compiler to assembly code in Coq, using a
dozen of successive intermediate languages.

It is also used in program proofs by refinement, proving some properties
on a high-level abstract version of a program and using bisimulation to
show that the properties also hold for the real concrete version of the
program.

118 671 ◁

http://compcert.inria.fr/

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proof of inverse simulation

The inverse simulation can first be shown assuming that M1 is ι-normal.

The general case follows, since then M1 ι-reduces to a normal form M ′
1

preserving typings; then, the lemma can be applied to M ′
1 instead of M1.

Notice that this argument relies on the termination of ι-reduction alone.

The termination of ι-reduction is easy for System F , since it strictly
decreases the number of type abstractions. (In Fω, it requires
termination of simply-typed λ-calculus.)

The proof of inverse simulation in the case M is ι-normal is by induction
on the reduction in ⌈F ⌉, using a few helper lemmas, to deal with the fact
that type-erasure is not injective.

119 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proof of inverse simulation Helper lemmas

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣ R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Lemma

1) A term that erases to ē[a] can be put in the form Ē[M] where ⌈Ē⌉
is ē and ⌈M⌉ is a, and moreover, M does not start with a type
abstraction nor a type application.

2) An evaluation context Ē whose erasure is the empty context is a
retyping context R.

3) If R[M] is in ι-normal form, then R is of the form Λα⃗. [] τ⃗ .

120 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proof of inverse simulation Helper lemmas

Lemma (inversion of type erasure)

Assume ⌈M⌉ = a
● If a is x, then M is of the form R[x]
● If a is c, then M is of the form R[c]
● If a is λx.a1, then M is of the form R[λx ∶τ.M1] with ⌈M1⌉ = a1● If a is a1 a2, then M is of the form R[M1 M2] with ⌈Mi⌉ = ai

The proof is by induction on M .

121 671 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proof of inverse simulation Helper lemmas

Lemma (Inversion of type erasure for well-typed values)
Assume Γ ⊢M ∶ τ and M is ι-normal. If ⌈M⌉ is a value v, then M is a value V .
Moreover,

● If v is λx. a1, then V is Λα⃗. λx ∶τ.M1 with ⌈M1⌉ = a1.● If v is a partial application c v1 . . . vn
then V is R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.

The proof is by induction on M . It uses the inversion of type erasure and
analysis of the typing derivation to restrict the form of retyping contexts.

Corollary
Let M be a well-typed term in ι-normal form whose erasure is a.

● If a is (λx. a1) v,
then M if of the form R[(λx ∶τ.M1) V], with ⌈M1⌉ = a1 and ⌈V ⌉ = v.

● If a is a full application (d v1 . . . vn),
then M is of the form R[d τ⃗ V1 . . . Vn] and ⌈Vi⌉ is vi.

122 671 ◁

Abstract Data types, Existential
types, GADTs

Algebraic Data Types Existential types GADTs Typed closure conversion

Contents

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

124 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Datatypes Types Examples

In OCaml:

type ’a list =
| Nil : ’a list
| Cons : ’a ∗ ’a list → ’a list

or

type (’leaf, ’node) tree =
| Leaf : ’leaf → (’leaf , ’node) tree
| Node : (’leaf, ’node) tree ∗ ’node ∗ (’leaf, ’node) tree → (’leaf , ’node) tree

125 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)
In System F, this amounts to declaring:

● a new type constructor G,

● n constructors Ci ∶ ∀α⃗. τi → G α⃗

● one destructor dG ∶ ∀α⃗, γ.G α⃗ → (τ1 → γ) . . . (τn → γ)→ γ

● n reduction rules dG τ̄ (Ci τ̄
′ v) v1 . . . vn −↝ vi v

Exercise
Show that this extension verifies the subject reduction and progress
axioms for constants.

126 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Datatypes Types

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)
Notice that

● All constructors build values of the same type G α⃗ and are
surjective (all types can be reached)

● The definition may be recursive, i.e. G may appear in τi

Algebraic datatypes introduce isorecursive types.

127 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

128 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Recursive Types

Product and sum types alone do not allow describing data structures of
unbounded size, such as lists and trees.

Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this
grammar. However, the type of lists of unbounded length is not.

129 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equi- versus isorecursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list α ◇ unit +α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?

There are two standard approaches to recursive types:

● equirecursive approach:
a recursive type is equal to its unfolding.

● isorecursive approach:
a recursive type and its unfolding are related via explicit coercions.

130 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types

In the equirecursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗ ∣ ∀β. τ
is no longer interpreted inductively. Instead, types are the regular infinite
trees built on top of this grammar.

Finite syntax for recursive types

τ ∶∶= α ∣ µα.(F τ⃗) ∣ µα.(∀β. τ)
We do not allow the seemingly more general form µα.τ , because
µα.α is meaningless, and µα.β or µα.µβ.τ are useless. If we write
µα.τ , it should be understood that τ is contractive, that is, τ is a
type constructor application or a forall introduction.

For instance, the type of lists of elements of type α is:

µβ.(unit + α × β)
131 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Equality

Inductive definition [Brandt and Henglein, 1998] show that equality is
the least congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

Co-inductive definition

α = α
[α ↦ µα.Fτ⃗]τ⃗ = [α ↦ µα.Fτ⃗ ′]τ⃗ ′

µα.Fτ⃗ = µα.Fτ⃗ ′
[α ↦ µα.∀β. τ]τ = [α ↦ µα.∀β. τ ′]τ ′

µα.∀β. τ = µα.∀β. τ ′

132 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Equality

In the absence of quantifiers

Each type in this syntax denotes a unique regular tree, sometimes known
as its infinite unfolding. Conversely, every regular tree can be expressed
in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be
able to decide whether two types are equal, that is, have identical infinite
unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or better, by unification. (The latter approach is simpler, faster,
and extends to the type inference problem.)

Exercise
Show that µα.Aα = µα.AAα and µα.ABα = Aµα.BAα with both
inductive and co-inductive definitions. Can you do it without the
Uniqueness rule?

133 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Without quantifiers

Proof of µαAAα = µαAAAα

By coinduction
Let u be µαAAα

v be µαAAAα

(1)
Au = Av

u = AAv

Au = v

u = Av

Au = AAv

u = v (1)
By unification

Equivalent classes, using small terms To do:

u ∼ Au1 ∧ u1 ∼ Au ∧ v ∼ Av1 ∧ v1 ∼ Av2 ∧ v2 ∼ Av u ∼ v
u ∼ Au1 ∼ v ∼ Av1 ∧ u1 ∼ Au ∧ v1 ∼ Av2 ∧ v2 ∼ Av u1 ∼ v1
u ∼ v ∼ Av1 ∧ u1 ∼ Au ∼ v1 ∼ Av2 ∧ v2 ∼ Av u ∼ v2∼ ∼ ∼ ∼ ∧ ∼ ∼ ∼134 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Equality

In the presence of quantifiers

The situation is more subtle because of α-conversion.

A (somewhat involved) canonical form can still be found, so that
checking equality and first-order unification on types can still be done in
O(n logn). See [Gauthier and Pottier, 2004].

Otherwise, without the use of such canonical forms, the best known
algorithm is in O(n2) [Glew, 2002] testing equality of automatons with
binders.

135 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types With quantifiers

Example of unfolding with canonical forms [Gauthier and Pottier, 2004].

● the letter in green, is just any name, subject to α-conversion

● the number is the canonical name: it is the number of free variables
under the binder—including recursive occurrences.

∀a1. µℓ.a1→ ∀a2. (a2→ ℓ) (1)∀a1. µℓ.a1→ ∀b2. (b2→ ℓ) (α)
= ∀a1. a1→ ∀b2. (b2→ µℓ.a1→ ∀b2. (b2→ ℓ)) (µ)
= ∀a1. a1→ ∀b2. (b2→ µℓ.a1→ ∀c2. (c2→ ℓ)) (α)

With the canonical representation,

● Syntactic unfolding (i.e. without any renaming) avoids name
capture and is also a correct semantical unfolding

● It shares free variables and can reuse the same name for the new
bound variables without name capture.

136 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Type soundness

In the presence of equirecursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.

We only need it to prove the termination of reduction, which does not
hold any longer.

It remains true that

● F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2 (symbols are injective)—this is used in
the proof of Subject Reduction.

● F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this is used in the proof of Progress.

So, the reasoning that leads to type soundness is unaffected.

Exercise
Prove type soundness for the simply-typed λ-calculus in Coq. Then,
change the syntax of types from Inductive to CoInductive.

137 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types break termination, indeed!

That is no a surprise, but...

What is the expressiveness of simply-typed λ-calculus with equirecursive
types alone (no other constructs and/or constants)?

All terms of the untyped λ-calculus are typable!

● define the universal type U as µα.α → α

● we have U = U → U , hence all terms are typable with type U .

Notce that one can emulate recursive types U = U → U by defining two
functions fold and unfold of respective types (U → U)→ U and
U → (U → U) with side effects, such as:

● references, or

● exceptions

138 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types in OCaml

OCaml has both isorecursive and equirecursive types.

● equirecursive types are restricted by default to objects or datatypes.

● unrestricted equirecursive types are available upon explicit request.

Quiz: why so?

139 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Isorecursive types

The folding/unfolding is witnessed by an explicit coercion.

The uniqueness rule is often omitted
(hence, the equality relation is weaker)

Encoding isorecursive types with ADT

The recursive type µβ.τ can be represented in System F by introducing a
datatype with a unique constructor:

type G α⃗ = Σ(C ∶ ∀α⃗. [β ↦ G α⃗]τ → G α⃗) where α⃗ = ftv(τ) ∖ {β}
For any α⃗, the constructor Cα⃗ coerces [β ↦ G α⃗]τ to G α⃗ and the
reverse coercion is the function λx ∶G α⃗. dG α⃗ x (λy. y).
Since this datatype has a unique constructor, pattern matching always
succeeds and amounts to the identity. Hence, in ⌈F ⌉, the constructor
could be removed: coercions have no computational content.

140 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise
What are the corresponding declarations in System F?

● a new type constructor GΠ,● 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

● n destructors dℓi ∶ ∀α⃗.G α⃗ → τi● n reduction rules dℓi τ̄ (CΠ τ̄ v1 . . . vn) −↝ vi

Can a record also be used for defining recursive types?

Exercise
Show type soundness for records.

141 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Deep pattern matching

In practice, one allows deep pattern matching and wildcards in patterns.

type nat = Z | S of nat
let rec equal n1 n2 = match n1, n2 with
| Z, Z → true
| S m1, S m2 → equal m1 m2
| → false

Then, one should check for exhaustiveness of pattern matching.

Deep pattern matching can be compiled away into shallow patterns—or
directly compiled to efficient code.

See [Le Fessant and Maranget, 2001; Maranget, 2007]

Exercise
Do the transofrmation manually for the function equal.

142 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

ADTs Regular

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗)
If all occurrences of G in τi are G α⃗ then, the ADT is regular.

Remark regular ADTs can be encoded in System-F. (More precisely, the
church encodings of regular ADTs are typable in System-F.)

143 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

ADTs Non Regular

Non-regular ADT’s do not have this restriction:

type ’a seq =
| Nil
| Zero of (’a ∗ ’a) seq
| One of ’a ∗ (’a ∗ ’a) seq

They usually need polymorphic recursion to be manipulated.

Non regular ADT are heavily used by Okasaki [1999] for implementing
purely functional data structures.

(They are also typically used with GADTs.)

Non-regular ADT can actually be encoded in Fω.

144 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Contents

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

145 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α
Type of closures in the environment-passing variant:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α
A possible encoding of objects:

= ∃ρ. ρ describes the state

µα. α is the concrete type of the closure

Π (a tuple...{(α × τ1)→ τ ′1; ... that begins with a record...

. . .(α × τn)→ τ ′n } ; ... of method code pointers...

ρ ...and continues with the state) (a tuple of unknown length)

146 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existential types

Let’s first look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.

147 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2
Anything wrong?The side condition α # τ2 is mandatory here to ensure
well-formedness of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).
Note the imperfect duality between universals and existentials:

TAbs

Γ, α ⊢M ∶ τ
Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢M ∶ ∀α. τ
Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

148 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢M ∶ ∃α.τ
Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

We could immediately universally quantify over α, and conclude that
Γ ⊢ Λα.unpackM ∶ ∀α. τ . This is nonsense!
Replacing the premise Γ, α ⊢M ∶ ∃α.τ by the conjunction Γ ⊢M ∶ ∃α.τ
and α ∈ dom(Γ) would make the rule even more permissive, so it
wouldn’t help.

149 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

On existential elimination

A correct elimination rule must force the existential package to be used
in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the
package—that is, over the term M2.

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α;x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2
The restriction α # τ2 prevents writing “let α,x = unpackM1 in x”,
which would be equivalent to the unsound “unpackM” of the previous
slide.

The fact that α is bound within M2 forces it to be treated abstractly.

In fact, M2 must be ??? in α.

150 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

On existential elimination

In fact, M2 must be polymorphic in α: the second premise could be:

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ Λα.λx ∶τ1.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2
or, if N2 stands for Λα.λx ∶τ1.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2
One could even view “unpack∃α.τ1” as a family of constants of types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)
or, better unpack∃α.τ ∶ (∃α.τ) → ∀β. ((∀α. (τ → β)) → β)
β stands for τ2: it is bound prior to α, so it cannot be instantiated to a
type that refers to α, which reflects the side condition α # τ2.

151 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

On existential introduction

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Hence, “pack∃α.τ” can be viewed as a family constant of types:

pack∃α.τ ∶ [α ↦ τ ′]τ → ∃α.τ
i.e. of polymorphic types:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)

152 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existentials as constants

In System F, existential types can be presented as a family of constants:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β)

Read:

● for any α, if you have a τ , then, for some α, you have a τ ;

● if, for some α, you have a τ , then, (for any β,) if you wish to obtain
a β out of it, you must present a function which, for any α, obtains
a β out of a τ .

This is somewhat reminiscent of ordinary first-order logic:∃x.F is equivalent to, and can be defined as, ¬(∀x.¬F).
Is there an encoding of existential types into universal types?

153 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983],
although it has more ancient roots in logic.

154⟨7⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The semantics of existential types as constants

pack∃α.τ can be treated as a unary constructor, and unpack∃α.τ as a
unary destructor. The δ-reduction rule is:

unpack∃α.τ0 (pack∃α.ττ ′ V) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V

It would be more intuitive, however, to treat unpack∃α.τ0 as a binary
destructor:

unpack∃α.τ0 (pack∃α.τ τ ′ V) τ1 (Λα.λx ∶τ.M) Ð→ [α ↦ τ ′][x ↦ V]M
Remark:

● This does not quite fit in our generic framework for constants, which
must receive all type arguments prior to value arguments.

● But our framework could be easily extended.

155 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

V ∶∶= . . . ∣ pack τ ′, V as τ
E ∶∶= . . . ∣ pack τ ′, [] as τ ∣ let α,x = unpack [] inM

We add the reduction rule:

let α,x = unpack (pack τ ′, V as τ) inM Ð→ [α ↦ τ ′][x ↦ V]M
Exercise
Show that subject reduction and progress hold.

156 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The semantics of existential types beware!

The reduction rule for existentials destructs its arguments.

Hence, let α,x = unpackM1 inM2 cannot be reduced unless M1 is itself
a packed expression, which is indeed the case when M1 is a value
(or in head normal form).

This contrasts with let x ∶ τ =M1 inM2 where M1 need not be evaluated
and may be an application (e.g. with call-by-name or strong reduction
strategies).

157 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The semantics of existential types beware!

Exercise
Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Need a hint?

Use a conditional Solution

Let M1 be if M then V1 else V2 where Vi is of the form
pack τi,Wi as ∃α.τ and the two witnesses τ1 and τ2 differ.

There is no common type for the unpacking of the two possible results
V1 and V2. The choice between those two possible results must be made,
by evaluating M1, before unpacking.

158 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Is pack too verbose?

Exercise
Recall the typing rule for pack:

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

● The type τ0 of M is fully determined by M . Given the type ∃α.τ of
the packed value, checking that τ0 is of the form [α ↦ τ ′]τ is the
matching problem for second-order types, which is simple.

● However, the reduction rule need the witness type τ ′. If it were not
available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.

159 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

160 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be
dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2
Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, however, that this let-binding is not typechecked as syntactic
sugar for an immediate application!

The semantics of this let-binding is as before:

E ∶∶= . . . ∣ let x = E inM let x = V inM Ð→ [x↦ V]M
Is the semantics type-erasing?

161 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior
to substitution in the body:

let x =M1 inM2 Ð→ [x ↦M1]M2

With existential types, this breaks subject reduction!

Why?

162 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .
What happened? The term a1 is well-typed since v v0 has type τ0, hence
x can be assumed of type (β → β)→ (β → β) for some unknown type β
and λy. y is of type β → β.

However, without the outer existential type v v0 can only be typed with(∀α.α → α)→ ∃α. (α → α), because the value returned by the function
need different witnesses for α. This is demanding too much on its
argument and the outer application is ill-typed.

163 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments?

● This rule does not have a logical flavor...

● It fixes the previous example, but not the general case:
Pick a1 that is not yet a value after one reduction step.
Then, after let-expansion, reduce one of the two occurrences of a1.
The result is no longer of the form [x ↦ a1]a2.

164 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types subtlety

Existential types are trickier than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually
be recovered by further reduction steps—so that progress will never
breaks.

165 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted (4):

Junpack a1 (λx.a2)K = Ja1K (λx. Ja2K) (1)Ð→ (λk. JaK k) (λx. Ja2K) (2)Ð→ (λx. Ja2K) JaK (3)Ð→ [x↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is (λk.λx. k x) JaK, so that a is always a value v.

However, a need not be a value. What is essential is that a1 be reduced
to some head normal form λk. JaK k.

166 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

167 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where and how to pack
and unpack.

168 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗

unpackD ∶ ∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

(Compare with basic isorecursive types, where β̄ = ∅.)

169 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Iso-existential types in ML

One point has been hidden on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a (binary) primitive construct again
(rather than a constant), with an ad hoc typing rule:

UnpackD

Γ ⊢ M1 ∶D τ⃗

Γ ⊢M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2 where D α⃗ ≈ ∃β̄.τ
We have seen a version of this rule in System F earlier; this is an
ML(-like) version.

The term M2 must be polymorphic, which Gen can prove.

170 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Iso-existential types in ML (type inference, skip)

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule (see type
inference):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶D α⃗⟫∀β̄.⟪M2 ∶ τ → τ2⟫)
where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

A universally quantified constraint appears where polymorphism is
required.

171 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with
algebraic data types.

This can be done in OCaml using GADTs (see last part of the course).
The syntax for this in OCaml is:

typeD α⃗ = ℓ ∶ τ →D α⃗

where ℓ is a data constructor and β̄ appears free in τ but does not
appear in α⃗. The elimination construct is typed as:

⟪matchM1 with ℓ x →M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶ D α⃗⟫∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫)
where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

172 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

An example

Define Any ≈ ∃β.β. An attempt to extract the raw content of a package
fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧ ∀β.⟪λx.x ∶ β → τ2⟫⊩ ∀β.β = τ2
≡ false

(Recall that β # τ2.)

172 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

An example

Define
D α ≈ ∃β.(β → α) × β

A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫

172 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existential types calls for universal types!

Exercise Let thunk α ≈ ∃β.(β → α) × β be the type of frozen
computations. Assume given a list l with elements of type thunk τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type thunk τ2 (without actually
running any computation).

List .map (λ(z) let Delay (f, y) = z in Delay ((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′ : it does not typecheck. . .

let lift g l =
List .map (λ(z) let Delay (f, y) = z in Delay ((λ(z) g (f z)), y))

In expression let α,x = unpackM1 inM2, occurrences of x in M2 can
only be passed to external functions (free variables) that are polymorphic
in α so that α does not leak out of its context.

173 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Limits of iso-encodings

Using datatypes for existential and especially universal types is a simple
solution to make them compatible with ML, but it comes with some
limitations:

● All types must be declared before being used

● Programs become quite verbose, with many constructors that
amount to writting type annotations, but in a more rigid way● In particular, there is no canonical way of representing them.
For exemple, a thunk of type ∃β(β → int) × β could have been
defined as Delay (succ, 1) where Delay is either one of

type int thunk = Delay : (’b → int) ∗ ’b → int thunk
type ’a thunk = Delay : (’b → ’a) ∗ ’b → ’a thunk

but the two types are incompatible.

Hence, other primitive solutions have been considered, especially for
universal types.

174 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of
explaining abstract types. For instance, the type:

∃stack.{empty ∶ stack;
push ∶ int × stack→ stack;
pop ∶ stack→ option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing module
systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several
important ways, and argue that they might explain modules after all.

Rossberg, Russo, and Dreyer show that after all, generative modules can
be encoded into System F with existential types [Rossberg et al., 2014].

175 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of
GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)

type ’a thunk = Delay : (’b → ’a) ∗ ’b → ’a thunk
let freeze f x = Delay (f, x)
let unfreeze (Delay (f, x)) = f x

Via first-class modules (abstract types)

module type Thunk = sig type b type a val f : b → a val x : b end
let freeze (type u) (type v) f x =

(module struct type b = u type a = v let f = f let x = x end
: Delay)

let unfreeze (type u) (module M : Thunk with type a = u) = M.f M.x

176 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Contents

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

177 671 ◁

An introduction to GADTs

Algebraic Data Types Existential types GADTs Typed closure conversion

What are they?

ADTs

Types of constructors are surjective: all types can potentially be reached

type α list =
| Nil : α list
| Const : α ∗ α list → α list

GADTs

This is no more the case with GADTs

type (α, β) eq =
| Eq : (α, α) eq

| Any : (α, β) eq

The Eq constructor may only build values of types of (α, α) eq.
For example, it cannot build values of type (int, string) eq.

The criteria is per constructor: it remains a GADT when another (even
regular) constructor is added.

179 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Examples Defunctionalization

let add (x, y) = x + y in
let not x = if x then false else true in
let body b =

let step x =

add (x, if not b then 1 else 2)
in step (step 0))

in body true

Introduce a constructor per function

type (,) apply =
| Fadd : (int ∗ int, int) apply
| Fnot : (bool, bool) apply
| Fbody : (bool, int) apply
| Fstep : bool → (int, int) apply

Define a single apply function that dispatches all function calls:

let rec apply : type a b. (a, b) apply → a → b = fun f arg →
match f with
| Fadd → let x, y = arg in x + y
| Fnot → let x = arg in if x then false else true
| Fstep b → let x = arg in

apply Fadd (x, if apply Fnot b then 1 else 2)
| Fbody → let b = arg in

apply (Fstep b) (apply (Fstep b) 0)
in apply Fbody true 180 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Examples Typed evaluator

A typed abstract-syntax tree

type expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ α expr ∗ α expr) → α expr

let e0 ∶ int expr = (If (Zerop (Int 0), Int 1, Int 2))

A typed evaluator (with no failure)

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ a = int ∗)
| Zerop x → eval x > 0 (∗ a = bool ∗)
| If (b, e1, e2) → if eval b then eval e1 else eval e2

let b0 = eval e0

Exercise
What would you have to do without GADTs? Define a typed abstract
syntax tree for the simply-typed λ-calculus and a typed evaluator.

181 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Examples Generic programming

Example of printing

type ty =
| Tint : int ty
| Tbool : bool ty
| Tlist : α ty → (α list) ty
| Tpair : α ty ∗ β ty → (α ∗ β) ty

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint → string of int x
| Tbool → if x then ”true” else ”false”
| Tlist t → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Tlist Tint, Tbool)) ([1; 2; 3], true)

183 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Examples Encoding sum types

type (α, β) sum = Left of α | Right of β

can be encoded as a product:

type (, ,) tag = Ltag : (α, α, β) tag | Rtag : (β, α, β) tag
type (α, β) prod = Prod : (γ, α, β) tag ∗ γ → (α, β) prod

let sum of prod (type a b) (p : (a, b) prod) : (a, b) sum =
let Prod (t, v) = p in match t with Ltag → Left v | Rtag → Right v

Prod is a single, hence superfluous constructor: it need not be allocated.

A field common to both cases can be accessed without looking at the tag!

type (α, β) prod = Prod : (γ, α, β) tag ∗ γ ∗ bool → (α, β) prod
let get (type a b) (p : (a, b) prod) : bool =
let Prod (t, v, s) = p in s

184 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Examples Encoding sum types

Exercise
Specialize the encoding of sum types to the encoding of ’a list

185 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Other uses of GADTs

GADTs

● May encode data-structure invariants, such as the state of an
automaton, as illustrated by Pottier and Régis-Gianas [2006] for
typechecking LR-parsers.

● They may be used to implement a form of dynamic type
(similarly to the generic printer)

● They may be used to optimize representation (e.g. sum’s encoding)

● GADTs can be used to encode type classes, using a technique
analogous to defunctionalization [Pottier and Gauthier, 2006].

186 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one, encoding type equality:

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can then be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty (∗ int ty ∗)
| Tlist : (α, β list) eq ∗ β ty → α ty (∗ α ty → α list ty ∗)
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

▷ We enlarge the domain of each constructor,

▷ But require a proof evidence as an extra argument that a certain
equality holds to restrict the possible uses of the constructors.
let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, l) → ”[” ˆString.concat ”; ” (List.map (to string l) x)ˆ ”]”
| Tpair (Eq,a,b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Eq, Tlist (Eq, Tint Eq), Tint Eq)) ([1; 2; 3], 0)187 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty
| Tlist : (α, β list) eq ∗ β ty → α ty
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, l) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching

188⟨1⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty
| Tlist : (α, β list) eq ∗ β ty → α ty
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint p → let Eq = p in string of int x
| Tlist (Eq, l) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching

▷ let Eq = p in.. introduces the equality a = int in the current branch

188⟨1⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Formalisation of GADTs

We can extend System F with type equalities to encode GADTs.

We cannot encode type equalities in System F—but in System Fω: they
bring something more, namely local equalities in the typing context.

We write τ1 ∼ τ2 for (τ1, τ2) eq
When typechecking an expression

E[let x ∶ τ1 ∼ τ2 =M0 inM] E[λx ∶ τ1 ∼ τ2.M]
▷ M is typechecked with the asumption that τ1 ∼ τ2, i.e. types τ1 and

τ2 are equivalent, which allows for type conversion within M

▷ but E and M0 are typechecked without this asumption

▷ What is learned by an equation remains local to its static scope,
and does not extend to its surrounding context (or the rest of the
program execution trace).

189 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Fc (simplified) Add equality coercions to System F

Types

τ ∶∶= . . . ∣ τ1 ∼ τ2
Expressions

M ∶∶= . . . ∣ γ ◁M ∣ γ
Coercions are first-class and
can be applied to terms.

Coercions witness type equivalences:

γ ∶∶= α variable∣ ⟨τ⟩ reflexivity∣ symγ symmetry∣ γ1;γ2 transitivity∣ γ1 → γ2 arrow coercions∣ leftγ left projection∣ right γ right projection∣ ∀α.γ type generalization∣ γ@τ type instantiationTyping rules:

Coerce

Γ ⊢M ∶ τ1
Γ ⊢ γ ∶ τ1 ∼ τ2
Γ ⊢ γ ◁M ∶ τ2

Coercion

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊢ γ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢M ∶ τ
Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ1 ∼ τ2 → τ

190 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Fc (simplified) Typing of coercions

Eq-Hyp

y ∶ τ1 ∼ τ2 ∈ Γ
Γ ⊩ y ∶ τ1 ∼ τ2

Eq-Ref

Γ ⊢ τ
Γ ⊩ ⟨τ⟩ ∶ τ ∼ τ

Eq-Sym

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ symγ ∶ τ2 ∼ τ1

Eq-Trans

Γ ⊩ γ1 ∶ τ1 ∼ τ Γ ⊩ γ2 ∶ τ ∼ τ2
Γ ⊩ γ1;γ2 ∶ τ1 ∼ τ2

Eq-Arrow

Γ ⊩ γ1 ∶ τ ′1 ∼ τ1 Γ ⊩ γ2 ∶ τ2 ∼ τ ′2
Γ ⊩ γ1 → γ2 ∶ τ1 → τ2 ∼ τ ′1 → τ ′2

Eq-Left

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ ′1 → τ ′
2

Γ ⊩ leftγ ∶ τ ′
1
∼ τ1

Eq-Right

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ ′1 → τ ′
2

Γ ⊩ rightγ ∶ τ2 ∼ τ ′2
Eq-All

Γ, α ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ ∀α.γ ∶ ∀α. τ1 ∼ ∀α. τ2

Eq-Inst

Γ ⊩ γ ∶ ∀α. τ1 ∼ ∀α. τ2 Γ ⊢ τ
Γ ⊩ γ@τ ∶ [α ↦ τ]τ1 ∼ [α ↦ τ]τ2

Only equalities between injective type constructors can be decomposed.

191 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Semantics

Coercions should be without computational content

▷ they are just type information, and should be erased at runtime

▷ they should not block redexes

▷ in Fc, we may always push them down inside terms, adding new
reduction rules:

(γ ◁ V1) V2 Ð→ rightγ ◁ (V1 (left γ ◁ V2))(γ ◁ V) τ Ð→ (γ@τ)◁ (V τ)
γ1◁ (γ2 ◁ V) Ð→ (γ1;γ2)◁ V

192⟨8⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed in this context.

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time may still be perfomed,
but be aware of stuck programs and treat them as dead branches.

192⟨7⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type soundness Syntactic proofs

Type soundness

By subject reduction and progress with explicit coercions

Erasing semantics

Important and not so obvious.

γ ◁M erases to M
γ erases to ◇

Slogan that “coercion have 0-bit information”, i.e.
Coercions need not be passed at runtime—-but still block the reduction.
Expressions and typing rules.

Coerce

Γ ⊢M ∶ τ1
Γ ⊢ ◇ ∶ τ1 ∼ τ2
Γ ⊢M ∶ τ2

Coercion

Γ ⊩ τ1 ∼ τ2
Γ ⊢ ◇ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢M ∶ τ
Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ1 ∼ τ2 → τ

193 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type soundness Syntactic proofs

The introduction of type equality constraints in System F has been
introduced and formalized by Sulzmann et al. [2007].

Scherer and Rémy [2015] show how strong reduction and confluence can
be recovered in the presence of possibly uninhabited coercions.

194 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type soundness Semantic proofs

Equality coercions are a small logic of type conversions.

Type conversions may be enriched with more operations.

A very general form of coercions has been introduced by
Cretin and Rémy [2014].

The type soundness proof became too cumbersome to be conducted
syntactically.

Instead a semantic proof is used, interpreting types as sets of terms
(a technique similar to unary logical relations)

195 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type checking / inference

With explicit coercions, types are fully determined from expressions.

However, the user prefers to leave applications of Coerce implicit.

Then types becomes ambiguous: when leaving the scope of an equation:
which form should be used, among the equivalent ones?

This must be determined from the context, including the return type,
and calls for extra type annotations:

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ x : int, but a = int, should we return x : a? ∗)
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

In ML, type annotations must be used to tell

● the type of the context● which datatypes must be typed as GADTs.

In Coq, one must use return type annotations on matches.
196 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type inference in ML-like languages with GADTs

Simonet and Pottier [2007] gave a presentation of type inference for
GADTs with general typing constraints for ML-like languages.

Pottier and Régis-Gianas [2006] introduced a stratified approach to
better propagate constraints from outisde to inside GADTs contexts.

Vytiniotis et al. [2011] introduced the outside-in approach, used in
Haskell, which restricts type information to flow from outside to inside
GADT contexts.

Garrigue and Rémy [2013] introduced the notion of ambivalent types,
used in OCaml, to restrict type occurrences that must be considered
ambiguous and explicitly specified using type annotations.

197 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Contents

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

198 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

● it can help debug the compiler;

● types can be used to drive optimizations;

● types can be used to produce proof-carrying code;

● proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].

199 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

● Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

● Closures are themselves a simple form of objects, which can also be
explained with existential types.

● Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.

200 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

● CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

● closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

● allocation and initialization of tuples is made explicit;

● the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.

201 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK
The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.

202 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).

203 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Source and target

In the following,

● the source calculus has unary λ-abstractions, which can have free
variables;

● the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.

204 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Variants of closure conversion

There are at least two variants of closure conversion:

● in the closure-passing variant,
the closure and the environment are a single memory block;

● in the environment-passing variant,
the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.

205 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(clo, x).

let (, x1, . . . , xn) = clo in JaK in(code , x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in

let code = proj0 clo in
code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.

206 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)
Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?

207⟨4⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.
Write JΓK for the tuple type x1 ∶ Jτ ′1K; . . . ;xn ∶ Jτ ′nK where Γ is
x1 ∶ τ ′1; . . . ;xn ∶ τ ′n. We also use JΓK as a type to mean Jτ ′1K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

● env has type JΓK,● code has type (JΓK × Jτ1K)→ Jτ2K, and● the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?

207⟨4⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

That is, this definition is not uniform: it depends on Γ, i.e. the size and
layout of the environment.

Do we really need to have a uniform translation of types?

208 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x
Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?

209 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α
An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α
occur twice on the right-hand side.

210 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x
After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational
equivalence [Ahmed and Blume, 2008].

211 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

212 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

213 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.

214 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1.
JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =

unpack JMK in
code (env , JM1K)

We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.

215 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.

216 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code (env , x) =
let (f ,x1, . . . , xn) = env in
JMK

in
let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).
This requires general, recursively-defined values. Closures are now cyclic
data structures.

217 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =
λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).

let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

218 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗. µf ∶ τ1 → τ2.λx.MK = Λβ⃗. Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly
compile polymorphically recursive functions into polymorphic closure.

219 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.

220 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Algebraic Data Types

Equi- and iso- recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

Application to typed closure conversion

Environment passing

Closure passing

221 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

222⟨5⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

● existential quantification over the tail of a tuple (a.k.a. a row);

● recursive types.

222⟨5⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).
Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.

223 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple ∀i. ∈ [1, n] Γ ⊢Mi ∶ τi
Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)

Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi

224 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

About Rows

Rows were invented by Wand and improved by RÃ©my in order to
ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml
[Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and RÃ©my
[Pottier and Rémy, 2005].

225 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ
The type of the environment is fixed once for all and does not change at
each recursive call.

Question: Notice that ρ appears only once. Any comments?
226 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let (, x1, . . . , xn) ∶ UCloJΓK = unfold clo in
JMK in

pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)

227 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
where {x1, . . . , xn} = fv(µf.λx.M).
No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
228 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.

229 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗. λ(clo ∶ CloJΓfK, x ∶ Jτ1K).
let (code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =

unfold clo in
JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.
pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)

in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).
Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged so the encoding of applications is also unchanged.

230 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

231⟨4⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec env = (clo1, clo2, x1, . . . , xn)

and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

231⟨6⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

231⟨7⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code1 = λ(clo, x).
let (code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let (code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = clo1.tail
in clo1, clo2

● clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.● This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)

231⟨6⟩ 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let (, (x1, . . . , xn)) = clo in JMK in

(code , (x1, . . . , xn))
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

232 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp}
Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.

233 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in
. . .

letmp = λ(m,x1, . . . , xq).Mp in{m1, . . . ,mp} in
λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?

234 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).
Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R) its
unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)i∈I};ρ):
letm = {

m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK} in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.

235 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

236 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.

237 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Optimizations

Because we have focused on type preservation, we have studied only
naÃ¯ve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.

238 671 ◁

Algebraic Data Types Existential types GADTs Typed closure conversion

Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and Tarditi [2005].

239 671 ◁

Fomega: higher-kinds and
higher-order types

Presentation Expressiveness Beyond Fω

Contents

Presentation

Expressiveness

Beyond Fω

241 671 ◁

Presentation Expressiveness Beyond Fω

Polymorphism in System F

Simply-typed λ-calculus

● no polymorphism● many functions must be duplicated at different types

Via ML style (let-binding) polymorphism

● Considerable improvement by avoiding most of code duplication.● ML has also local let-polymorphism (less critical).● Still, ML is lacking existential types—compensated by modules
and sometimes lacking higher-rank polymorphism

System F brings much more expressiveness

● Existential types—allows for type abstraction● First-class universal types● Allows for encoding of data structures and more programming patterns

Still, limited...
242 671 ◁

Presentation Expressiveness Beyond Fω

Limits of System F λfxy. (f x, f y)

Map on pairs, say pair map, has the following incompatible types:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

● that are polymorphic in one parameter● but whose domain and codomain are otherwise arbitrary

i.e. of the form ∀α. τ[α] → σ[α] for arbitrary one-hole types τ and σ.

We just need to abstract over such contexts, i.e., over type functions:

∀ϕ .∀ψ . ∀α1.∀α2. (∀α. ϕ α → ψ α)→ ϕ α1 → ϕ α2 → ψ α1 ×ψ α2

243 671 ◁

Presentation Expressiveness Beyond Fω

From System F to System Fω Kinds

We introduce kinds κ for types (with a single kind ∗ to stay in System F)

Well-formedness of types becomes Γ ⊢ τ ∶ ∗:
⊢ Γ α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ
Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗
Γ, α ∶ κ ⊢ τ ∶ ∗
Γ ⊢ ∀α ∶∶κ . τ ∶ ∗

⊢ ∅ ⊢ Γ α ∉ dom(Γ)
⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗ x ∉ dom(Γ)
⊢ Γ, x ∶ τ

We add and check kinds on type abstractions and type applications:

Tabs

Γ, α ∶ κ ⊢M ∶ τ
Γ ⊢ Λα ∶∶κ .M ∶ ∀α ∶∶κ . τ

Tapp

Γ ⊢M ∶ ∀α ∶∶κ . τ Γ ⊢ τ ′ ∶ κ
Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

So far, this is an equivalent formalization of System F

244 671 ◁

Presentation Expressiveness Beyond Fω

From System F to System Fω Type functions

Redefine kinds as κ ∶∶= ∗ ∣ κ⇒ κ

New types τ ∶∶= . . . ∣ λα ∶∶ κ. τ ∣ τ τ
WfTypeApp

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2
Γ ⊢ τ1 τ2 ∶ κ1

WfTypeAbs

Γ, α ∶ κ1 ⊢ τ ∶ κ2
Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Typing of expressions is up to type equivalence:

TConv

Γ ⊢M ∶ τ τ ≡β τ
′

Γ ⊢M ∶ τ ′
Remark

Γ ⊢M ∶ τ Ô⇒ Γ ⊢ τ ∶ ∗

245 671 ◁

Presentation Expressiveness Beyond Fω

F ω, static semantics (altogether on one slide)

With implicit kindsSyntax κ ∶∶= ∗ ∣ κ⇒ κ

τ ∶∶= α ∣ τ → τ ∣ ∀α.τ ∣ λα. τ ∣ τ τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Kinding rules

⊢ ∅

⊢ Γ
α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗
x ∉ dom(Γ)

⊢ Γ, x ∶ τ

α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α. τ ∶ ∗

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα. τ ∶ κ1 ⇒ κ2

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

Typing rules

Var

x ∶ τ ∈ Γ
Γ ⊢ x ∶ τ

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢ M2 ∶ τ1
Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α∶ κ ⊢M ∶ τ
Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′ ∶ κ
Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

TEquiv

Γ ⊢ M ∶ τ Γ ⊢ τ ≡β τ ′
Γ ⊢ M ∶ τ ′

246 671 ◁

Presentation Expressiveness Beyond Fω

F ω, dynamic semantics

The semantics is unchanged (modulo kind annotations in terms)

V ∶∶= λx ∶τ.M ∣ Λα ∶∶ κ.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα ∶∶ κ. []
(λx ∶τ.M) V Ð→ [x ↦ V]M(Λα ∶∶ κ.V) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]
No type reduction

● We need not reduce types inside terms.

● β reduction on types is needed for type conversion (i.e. for typing)
but such reduction need not be performed during term reduction.

Kinds are erasable

● Kinds are preserved by type and term reduction.

● Kinds may be ignored during reduction—or erased prior to reduction.

247 671 ◁

Presentation Expressiveness Beyond Fω

Properties

Main properties are preserved. Proofs are similar to those for System F.

Type soundness

● Subject reduction

● Progress

Termination of reduction

(In the absence of construct for recursion.)

Typechecking is decidable

● This requires reduction at the level of types to check type equality

● Can be done by putting types in normal forms using full reduction
(on types only), or just head normal forms.

248 671 ◁

Presentation Expressiveness Beyond Fω

Type reduction

Used for typechecking to check type equivalence ≡

Full reduction of the simply typed λ-calculus

(λα. τ) σ Ð→ [α ↦ τ]σ
applicable in any type context.

Type reduction preserve types: this is subject reduction for simply-typed
λ-calculus (when terms are now used as types), but for full reduction

(we have only proved it for CBV).

It is a key that reduction terminates.
(which again, we have only proved for CBV.)

249 671 ◁

Presentation Expressiveness Beyond Fω

Contents

Presentation

Expressiveness

Beyond Fω

250 671 ◁

Presentation Expressiveness Beyond Fω

Expressiveness

More polymorphism

● pair map

Abstraction over type operators

● monads

● encoding of existentials

Other encodings

● non regular datatypes

● equality

● modules

251 671 ◁

Presentation Expressiveness Beyond Fω

Pair map in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆→ ⋆)
Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)
call it pair map of type:

∀ϕ.∀ψ.∀α1.∀α2.(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it has in System F:

Λα1.Λα2. λf ∶α1 → α2.pair map (λα.α1) (λα.α2) α1 α2 (Λγ. f)∶ ∀α1.∀α2. (∀γ. α1 → α2)→ α1 → α1 → α2 × α2

pair map (λα.α) (λα.α)∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2

Still, the type of pair map is not principal: ϕ and ψ could depend on two
variables, i.e. be of kind ∗⇒ ∗⇒ ∗, or many other kinds...

252⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Pair map in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆→ ⋆)
Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)
call it pair map of type:

∀ϕ.∀ψ.∀α1.∀α2.(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it has in System F:

Λα1.Λα2. λf ∶α1 → α2.pair map (λα.α1) (λα.α2) α1 α2 (Λγ. f)∶ ∀α1.∀α2. (∀γ. α1 → α2)→ α1 → α1 → α2 × α2

pair map (λα.α) (λα.α)∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2

Still, the type of pair map is not principal: ϕ and ψ could depend on two
variables, i.e. be of kind ∗⇒ ∗⇒ ∗, or many other kinds...

252⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M △
== λϕ.{ ret ∶ ∀α.α → ϕα;

bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }∶ (∗⇒ ∗)⇒ ∗
(Notice thatM is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== λm.

λf.λx.

m.bind x (λx.m.ret (f x))∶ ∀ϕ.Mϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ
253⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M △
== λϕ.{ ret ∶ ∀α.α → ϕα;

bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }∶ (∗⇒ ∗)⇒ ∗
(Notice thatM is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== λm.

λf.λx.

m.bind x (λx.m.ret (f x))∶ ∀ϕ.Mϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ
253⟨2⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Abstracting over type operators

Available in Haskell —without β-reduction

● ϕα is treated as a type app(ϕ,α) where app ∶ (κ1 ⇒ κ2)⇒ κ1 ⇒ κ2● No β-reduction at the level of types: ϕα = ψβ ⇐⇒ ϕ = ψ ∧α = β
● Compatible with type inference (first-order unification)

● Since there is no type β-reduction, this is not Fω.

Encodable in OCaml with modules

● See [Yallop and White, 2014] (and also [Kiselyov])

● As in Haskell, the encoding does not handle type β-reduction

● As a counterpart, this allows for type inference at higher kinds
(as in Haskell).

254 671 ◁

Presentation Expressiveness Beyond Fω

Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

(omitting kinds)JpackκK = Λϕ.Λα.
λx ∶ ϕ α.Λβ.λk ∶ ∀α. (ϕ α → β). k α x

Allows existentials at higher kinds!

255⟨9⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K
△
== Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we just abstract over λα. τ , i.e. ϕ:

In System Fω, we may defined

(omitting kinds)JpackκK = Λϕ.Λα.
λx ∶ ϕ α.Λβ.λk ∶ ∀α. (ϕ α → β). k α x

Allows existentials at higher kinds!

255⟨8⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Exploiting kinds

Once we have type functions, the language of types could be reduced to
λ-calculus with constants (plus arrow types kept as primitive):

τ = α ∣ λα ∶κ. τ ∣ τ τ ∣ τ → τ ∣ g
where type constants g ∈ G are given with their kind and syntactic sugar:

× ∶∶ ∗⇒ ∗⇒ ∗+ ∶∶ ∗⇒ ∗⇒ κ∀κ ∶∶ (κ⇒ ∗)⇒ ∗∃κ ∶∶ (κ⇒ ∗)⇒ ∗

(τ × τ) △
== (×) τ1 τ2(τ + τ) △
== (+) τ1 τ2∀ϕ ∶ κ. τ △
== ∀κ(λϕ ∶κ⇒ ∗. τ)

∃ϕ ∶ κ. τ △
== ∃κ(λϕ ∶κ⇒ ∗. τ)

In fact Fω could be extended with kind abdstraction:

∀̂ ∶∶ ∀κ.(κ⇒ ∗)⇒ ∗
∃̂ ∶∶ ∀κ.(κ⇒ ∗)⇒ ∗

∀ϕ ∶ κ. τ △
== ∀̂κ (λϕ ∶ κ⇒ ∗. τ)

∃ϕ ∶ κ. τ △
== ∃̂κ (λϕ ∶ κ⇒ ∗. τ)

When kinds are inferred: ∀ϕ. τ △
== ∀̂ (λϕ. τ)

∃ϕ. τ △
== ∃̂ (λϕ. τ)

256 671 ◁

Presentation Expressiveness Beyond Fω

Church encoding of regular ADT List

type List α =∣ Nil ∶ ∀α.List α∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n ∶ ∀α.List α

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c) ∶ ∀α.α → List α → List α

fold
△
== λn.λc.λℓ. ℓ β n c

Actually not enhanced ! Be aware of useless over-generalization!
For regular ADTs, all uses of ϕ are ϕα.
Hence, ∀α.∀ϕ. τ[ϕα] is not more general than ∀α.∀β. τ[β]

257⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Church encoding of regular ADT List

type List α =∣ Nil ∶ ∀α.List α∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n ∶ ∀α.List α

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c) ∶ ∀α.α → List α → List α

fold
△
== λn.λc.λℓ. ℓ β n c

Actually not enhanced ! Be aware of useless over-generalization!
For regular ADTs, all uses of ϕ are ϕα.
Hence, ∀α.∀ϕ. τ[ϕα] is not more general than ∀α.∀β. τ[β]

257⟨2⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =∣ Nil ∶ ∀α.Seq α∣ Zero ∶ ∀α.Seq (α×α)→ Seq α∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== λn.λz.λs.n ∶ ∀α. Seq α

Zero
△
== λℓ.λn.λz.λs. z (ℓ n z s) ∶ ∀α. Seq (α×α) → Seq α

One
△
== λx.λℓ.λn.λz.λs. s x (ℓ n z s) ∶ ∀α. α→ Seq (α×α) → Seq α

fold
△
== λn.λz.λs.λℓ. ℓ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α ×α.
Non regular ADTs cannot be encoded in System F.

258⟨4⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =∣ Nil ∶ ∀α.Seq α∣ Zero ∶ ∀α.Seq (α×α)→ Seq α∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀ϕ. (∀α. ϕα) → (∀α. ϕ(α×α) → ϕα) → (∀α.α → ϕ(α×α) → ϕα) → ϕα

Nil
△
== λn.λz.λs.n ∶ ∀α. Seq α

Zero
△
== λℓ.λn.λz.λs. z (ℓ n z s) ∶ ∀α. Seq (α×α) → Seq α

One
△
== λx.λℓ.λn.λz.λs. s x (ℓ n z s) ∶ ∀α. α→ Seq (α×α) → Seq α

fold
△
== λn.λz.λs.λℓ. ℓ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α ×α.
Non regular ADTs cannot be encoded in System F.

258⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Equality Encoded with GADT

module Eq : EQ = struct
type (α, β) eq = Eq : (α, α) eq

let coerce (type a) (type b) (ab : (a,b) eq) (x : a) : b = let Eq = ab in x

let refl : (α, α) eq = Eq

(∗ all these are propagation and automatic with GADTs ∗)
let symm (type a) (type b) (ab : (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c)

(ab : (a,b) eq) (bc : (b,c) eq) : (a,c) eq = let Eq = ab in bc

let lift (type a) (type b) (ab : (a,b) eq) : (a list, b list) eq =
let Eq = ab in Eq

end

259 671 ◁

Presentation Expressiveness Beyond Fω

Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α
symm

△
== λp. p (refl)
∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ∶ Eq α β → Eq α γ

lift
△
== λp. p (refl)
∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα)(ϕα)→Eq (ϕα) (ϕβ)

260⟨4⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

∶ ∀α.∀β.Eq α β → α → β

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α
symm

△
== λp. p (refl)
∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ∶ Eq α β → Eq α γ

lift
△
== λp. p (refl)
∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα)(ϕα)→Eq (ϕα) (ϕβ)

260⟨4⟩ 671 ◁

Presentation Expressiveness Beyond Fω

Equality Leibnitz equality in F ω

We implemented parts of the coercions of System Fc.

● We do not have decomposition of equalities (the inverse of Lift).

● This requires injectivity of type operators, which is not given.

● Equivalences and liftings must be written explicitly, while they are
implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.

261 671 ◁

Presentation Expressiveness Beyond Fω

Contents

Presentation

Expressiveness

Beyond Fω

262 671 ◁

Presentation Expressiveness Beyond Fω

A hierarchy of type systems

Kinds have a rank:

● the base kind ∗ is of rank 1

● kinds ∗⇒ ∗ and ∗⇒ ∗⇒ ∗ have rank 2. They are the kinds of type
functions taking type parameters of base kind.

● kind (∗⇒ ∗)⇒ ∗ has rank 3—it is a type function whose
parameter is itself a simple type function (of rank 1).

● more generally, rank (κ1 ⇒ κ2) =max(1 + rank κ1, rank κ2)
This defines a sequence F 1 ⊆ F 2 ⊆ F 3 . . . ⊆ Fω of type systems of
increasing expressiveness, where Fn only uses kinds of rank n, whose
limit is Fω and where System F is F 1.

(Ranks are sometimes shifted by one, starting with F = F 2.)

Most examples in practice (and those we wrote) are in F 2, just above F .

263 671 ◁

Presentation Expressiveness Beyond Fω

Extensions

Abstraction over kinds?

∀(ϕ ∶∶ ∗⇒ ∗).∀(ψ ∶∶ ∗⇒ ∗).∀(α1 ∶∶ ∗).∀(α2 ∶∶ ∗).(∀ (α ∶∶ ∗) . ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

Motivation: pair map does not have a principal type.

263 671 ◁

Presentation Expressiveness Beyond Fω

F ω with several base kinds

We could have several base kinds, e.g. ∗ and field with type constructors:

filled ∶ ∗⇒ field
empty ∶ field box ∶ field⇒ ∗

Prevents ill-formed types such as box (α → filled α).
This allows to build values v of type box θ where θ of kind field statically
tells whether v is filled with a value of type τ or empty.

Application:

This is used in OCaml for rows of object types, but kinds are hidden to
the user:

let get (x : ⟨ get : α; .. ⟩) : α = x#get

The dots “ .. ” here stand for a variable of another base kind
(representing a row of types).

264 671 ◁

Presentation Expressiveness Beyond Fω

System F ω with equirecursive types

Checking equality of equirecursive types in System F is already non
obvious, since unfolding may require α-conversion to avoid variable
capture. (See also [Gauthier and Pottier, 2004].)

With higher-order types, it is even trickier, since unfolding at functional
kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with
a fix-point operator: type reduction would not terminate.

Therefore type equality would be undecidable, as well as type checking.

A solution is to restrict to recursion at the base kind ∗. This allows to
define recursive types but not recursive type functions.

Such an extension has been proven sound and and decidable, but only for
the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see [Cai et al., 2016].

265 671 ◁

Presentation Expressiveness Beyond Fω

System F ω with equirecursive kinds

Instead, recursion could also occur just at the level of kinds, allowing
kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive
types, equivalent to the untyped λ-calculus—every term is typable.
Reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier [2011] is to force recursive kinds to be
productive, reusing an idea from an [Nakano, 2000, 2001] for controlling
recursion on terms, but pushing it one level up. Type equality becomes
well-defined and semi-decidable.

The extension has been used to show that references in System F can be
translated away in Fω with guarded recursive kinds.

266 671 ◁

Presentation Expressiveness Beyond Fω

Encoding ML modules with generative functors

Generative functors can be encoded with existential types.

A functor F has a type of the form:

∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]
Where:

● τ[ᾱ] represents the signature of the argument with some abstract types ᾱ.● ∃β̄. σ[ᾱ, β̄] represents the signature of the result of the functor application.● That is, the abstract types ᾱ are those taken from and shared with the
argument.● Conversely β̄ are the abstract types created by the application, and have
fresh identities independent of the argument.● Two successive applications with the same argument (hence the same α)
will create two signatures with incompatible abstract types β̄1 and β̄2,
once the existential is open.

Two applications of F
with the same argument:

let module Z = F(X) in

must be understood as:

let β̄ , Z = unpack (F(X)) in
267 671 ◁

Presentation Expressiveness Beyond Fω

Encoding ML modules with applicative functors

Applicative functors can be encoded with higher-order existential types.

A functor F has a type of the form:

∃ϕ̄.∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]
Compared with: ∃ϕ.∀ᾱ. τ[ᾱ]→ ∃β̄. σ[ᾱ, β̄]
That is:

● σ[ᾱ, ϕ̄ᾱ] represents the signature of the result of the functor application.● ϕ̄ᾱ are the abstract types created by the application. Each ϕᾱ is a new
abstract type—one we know nothing about, as it is the application of an
abstract type to ᾱ.● However, two successive applications with the same argument (hence the
same ᾱ) will create two compatible structures whose signatures have the
same shared abstract types ϕ̄ᾱ.

The two applications of F : becomes:

let ϕ̄, F = unpack F in 268⟨1⟩ 671 ◁

Presentation Expressiveness Beyond Fω

System F ω in OCaml

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : α. α → α = fun x → x end
let y (x : ⟨f : α. α → α⟩) = x#f x in y id

● Via first-class modules
module type S = sig val f : α → α end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.

269⟨3⟩ 671 ◁

Presentation Expressiveness Beyond Fω

System F ω in OCaml

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : α. α → α = fun x → x end
let y (x : ⟨f : α. α → α⟩) = x#f x in y id

● Via first-class modules
module type S = sig val f : α → α end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.

269⟨2⟩ 671 ◁

Presentation Expressiveness Beyond Fω

System F ω in OCaml . . . with modular explicits

Available at git@github.com:mrmr1993/ocaml.git

module type s = sig type t end
module type op = functor (A:s) → s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} → F(C).t → G(C).t)
(x : F(A).t) (y : F(B).t) : G(A).t ∗ G(B).t = f {A} x, f {B} y

And its two specialized versions:

let dp1 (type a) (type b) (f : {C:s} → C.t → C.t) : a → b → a ∗ b =
let module F(C:s) = C in let module G = F in
let module A = struct type t = a end in
let module B = struct type t = b end in
dp {F} {G} {A} {B} f

let dp2 (type a) (type b) (f : a → b) : a → a → b ∗ b =
let module A = struct type t = a end in
let module B = struct type t = b end in
let module F(C:s) = A in let module G(C:s) = B in
dp {F} {G} {A} {B} (fun {C:s} → f)

270 671 ◁

git@github.com:mrmr1993/ocaml.git

Presentation Expressiveness Beyond Fω

System F ω in Scala-3

Higher-order polymorphism a la System Fω is available in Scala-3.

The monad example (with some variation on the signature) is:

trait Monad [F[]] {
def pure [A] (x: A) : F[A]
def flatMap [A, B] (fa: F[A]) (f: A ⇒ F[B]) : F[B]

}

See https://www.baeldung.com/scala/dotty-scala-3

Still, this feature of Scala-3 is not emphasized

● It was not directly available in previous versions of Scala.

● Scala’s syntax and other complex features of Scala are obfuscating.

271 671 ◁

https://www.baeldung.com/scala/dotty-scala-3

Presentation Expressiveness Beyond Fω

What’s next? Dependent types!

Barendregt’s λ-cube

Fω = λω λΠω

F = λ2 λΠ2

λω λΠω

λst λΠ

(1)

(2)

(3)
(1) Term abstraction on Types (example: System F)

(2) Type abstraction on Types (example: Fω)

(3) Type abstraction on Terms (dependent types)

272 671 ◁

Logical relations and parametricity

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

274 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

What are logical relations?

So far, most proofs involving terms have proceeded by induction on the
structure of terms (or, equivalently, on typing derivations).

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

● Unary relations are predicates on expressions (or sets of expressions)

● They can be used to prove type safety and strong normalization

Binary relations

● Binary relations relate pairs of expressions of related types

● They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.

275 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always returns the same integer

▷ λx.n,
λx. (λy. y) n,
λx. (λy.n) x.
etc.

▷ they are all βη-equivalent to the term λx.n

276⟨11⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

▷ behaves as λx.λy.x

A term type ∀α.α → α → α ?

▷ behaves either as λx.λy.x or λx.λy. y

276⟨10⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument

▷ The choice (i, j) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

▷ the function is preserved by a transformation of its argument that
preserves the shape of the argument

∀f,x, whoami (map f x) =map f (whoami x)

277⟨7⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒∀ℓ, sort cmp (map f ℓ) = map f (sort cmp ℓ)

277⟨9⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
Application:

▷ If sort is correct on lists of integers, then it is correct on any list

▷ May be useful to reduce testing.

277⟨11⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
Note that there are many other inhabitants of this type, but they all
satisfy this free theorem. (e.g., a function that sorts in reverse order, or a
function that removes (or adds) duplicates).

277⟨10⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. Wadler’s paper contains the ‘free theorem’ about
the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

Bernardy et al. [2010] generalize the idea of testing polymorphic
functions to arbitrary polymorphic types and show how testing any
function can be restricted to testing it on (possibly infinitely many)
particular values at some particular types.

278 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

279 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as Fω; then, the decidability of type-equality depends
on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.

280 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Proving termination of reduction in fragments of the λ-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by
Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Tait’s method

Idea

● build the set Tτ of terminating terms of type τ ;

● show that any term of type τ is in Tτ , by induction on terms.

This hypothesis is however too weak. The difficulty is as usual to find a
strong enough induction hypothesis...

Terms of type τ1 → τ2 should not only terminate but also terminate when
applied to terms in Tτ1 .
The construction of Tτ is thus by induction of τ .

281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Definition
Let Tτ be defined inductively on τ as follows:

● Tα is the set of closed terms that terminates;

● Tτ2→τ1 is the set of closed terms M1 of type τ2 → τ1 that terminates
and such that M1 M2 is in Tτ1 for any term M2 in Tτ2 .

The set Tτ can be seen as a predicate, i.e. a unary relation. It is called a
logical relation because it is defined inductively on the structure of types.

The following proofs is then schematic of the use of logical relations.

281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Reduction of terms of type τ preserves membership in Tτ (this is stronger
that stability of Tτ by reduction):

Lemma
If ∅ ⊢M ∶ τ and M Ð→M ′, then M ∈ Tτ iff M ′ ∈ Tτ .

Proof.
The proof is by induction on τ .

Lemma
For any type τ , the reduction of any term in Tτ terminates.

Tautology, by definition of Tτ .

281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Therefore, it just remains to show that any term of type τ is in Tτ , i.e.:
Lemma

If ∅ ⊢M ∶ τ , then M ∈ Tτ .
The proof is by induction on (the typing derivation of) M .

However, the case for abstraction requires some similar statement, but
for open terms. We need to strengthen the Lemma.

A trick to avoid considering open terms is to require the statement to
hold for all closed instances of an open term:

Lemma (strenghened)

If (xi ∶ τi)i∈I ⊢M ∶ τ , then for any closed values (Vi)i∈I in (Tτi)i∈I ,
the term [(xi ↦ Vi)i∈I]M is in Tτ .

281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization

Proof. By structural induction on M .
We write Γ for (xi ∶ τi)i∈I and θ for [(xi ↦ Vi)i∈I]. Assume Γ ⊢M ∶ τ .
The only interesting case is whenM is λx ∶τ1.M2:

By inversion of typing, we know that Γ, x ∶ τ1 ⊢ M2 ∶ τ2 and τ1 → τ2 is τ .

To show θM ∈ Tτ , we must show that it is terminating, which holds as it
is a value, and that its application to any M1 in Tτ1 is in Tτ2 (1).

Let M1 ∈ Tτ1 . By definition M1 Ð→∗ V (2). We then have:

(θM)M1

△
== (θ(λx ∶τ1.M2))M1 by definition of M
= (λx ∶τ1. θM2)M1 choose x # x⃗Ð→∗(λx ∶τ1. θM2) V by (2)Ð→ [x ↦ V](θM2) by (β)
= ([x ↦ V]θ)(M2) ∈ Tτ2 by induction hypothesis

This establishes (1) since membership in Tτ2 is preserved by reduction.
281 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Calculus

Take the call-by-value λst with primitive booleans and conditional.

Write B the type of booleans and tt and ff for true and false.

We define VJτK and EJτK the subsets of closed values and closed
expressions of (ground) type τ by induction on types as follows:

VJBK
△
== {tt,ff}

VJτ1 → τ2K
△
== {λx ∶τ1.M ∣ ∀V ∈ VJτ1K, (λx ∶τ1.M) V ∈ EJτ2K}EJτK △== {M ∣ ∃V ∈ VJτK,M ⇓ V }

We write M ⇓ N for M Ð→∗ N .
The goal is to show that any closed expression of type τ is in EJτK.
Remarks
Although usual with logical relations, well-typedness is actually not
required here and omitted: otherwise, we would have to carry unnecessary
type-preservation proof obligations. VJτK ⊆ EJτK—by definition.EJτK is closed by inverse reduction—by definition, i.e.
If M ⇓ N and N ∈ EJτK then M ∈ EJτK. 282 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Problem

We wish to show that every closed term of type τ is in EJτK
● Proof by induction on the typing derivation.

● Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

● The semantics of open terms can be given by abstracting over the
semantics of their free variables.

283 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Generalize the definition to open terms

We define a semantic judgment for open terms Γ ⊧M ∶ τ so that
Γ ⊢M ∶ τ implies Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ EJτK.
We interpret free term variables of type τ as closed values in VJτK.

We interpret environments Γ as closing substitutions γ, i.e. mappings
from term variables to closed values:

We write γ ∈ GJΓK to mean dom(γ) = dom(Γ) and γ(x) ∈ VJτK for all
x ∶ τ ∈ Γ.

Γ ⊧M ∶ τ def⇐⇒ ∀γ ∈ GJΓK, γ(M) ∈ EJτK

284 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Fundamental Lemma

Theorem (fundamental lemma)
If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .
Corollary (termination of well-typed terms):
If ∅ ⊢M ∶ τ then M ∈ EJτK.
That is, closed well-typed terms of type τ evaluate to values of type τ .

285 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof by induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ VJBK and VJBK ⊆ EJBK.

Case Γ ⊢ x ∶ τ : γ ∈ GJΓK, thus γ(x) ∈ VJτK ⊆ EJτK
Case Γ ⊢M1 M2 ∶ τ :
By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.
Let γ ∈ GJΓK. We have γ(M1 M2) = (γM1) (γM2).
By IH, we have Γ ⊧M1 ∶ τ2 → τ and Γ ⊧M2 ∶ τ2.
Thus γM1 ∈ EJτ2 → τK (1) and γM2 ∈ EJτ2K (2).

By (2), there exists V ∈ VJτ2K such that γM2 ⇓ V .
Thus (γM1) (γM2) ⇓ (γM1) V ∈ EJτK by (1).

Then, (γM1) (γM2) ∈ EJτK, by closure by inverse reduction.

Case Γ ⊢ ifM thenM1 elseM2 ∶ τ : By cases on the evaluation of γM .

286 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof by induction on the typing derivation (key case)

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ GJΓK.
We must show that γ(λx ∶τ1.M) ∈ EJτ1 → τK (1)

That is, λx ∶τ1. γM ∈ VJτ1 → τK (we may assume x ∉ dom(γ) w.l.o.g.)
Let V ∈ VJτ1K, it suffices to show (λx ∶τ1. γM) V ∈ EJτK (2).

We have (λx ∶τ1. γM) V Ð→ (γM)[x ↦ V] = γ′M
where γ′ is γ[x ↦ V] ∈ GJΓ, x ∶ τ1K (3)

Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH on M . Therefore
by (3), we have γ′M ∈ EJτK. Since EJτK is closed by inverse reduction,
this proves (2) which finishes the proof of (1).

287 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point.
But type soundness would still hold.

The proof may be modified by choosing:

EJτK = {M ∶ τ ∣ ∀N,M ⇓ N Ô⇒ (N ∈ VJτK ∨ ∃N ′,N Ð→ N ′)}
Compare with

EJτK = {M ∶ τ ∣ ∃V ∈ VJτK,M ⇓ V }

Exercise
Show type soundness with this semantics.

288 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

289 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

(Bibliography)

Mostly following Bob Harper’s course notes Practical foundations for
programming languages [Harper, 2012].

See also

● Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]

● Parametric Polymorphism and Operational Equivalence [Pitts, 2000].

● Theorems for free! [Wadler, 1989].

● Course notes taken by Lau Skorstengaard on Amal Ahmed’s OPLSS
lectures.

We assume a call-by-value operational semantics instead of call-by-name
in [Harper, 2012].

290 671 ◁

https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

When are two programs equivalent

M ⇓ N ?

M ⇓ V and N ⇓ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

291 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing
contexts.

Definition (observational equivalence)

Γ ⊢M ≅ N ∶ τ △
== ∀C ∶ (Γ▷ τ)↝ (∅▷B), C[M] ≃ C[N]

Typing of contextsC ∶ (Γ▷ τ)↝ (∆▷ σ) ⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)
There is an equivalent definition given by a set of typing rules. This is
needed to prove some properties by induction on the typing derivations.

We write M ≅τ N for ∅ ⊢M ≅ N ∶ τ
292 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≡ N ∶ τ ∧ C ∶ (Γ▷τ)↝ (∆▷σ) Ô⇒ ∆ ⊢ C[M] ≡ C[N] ∶ σ
Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsiest: Assume ≡ is a consistent congruence.

We assume Γ ⊢M ≡ N ∶ τ (1) and show Γ ⊢M ≅ N ∶ τ .
Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B
which itself follows by congruence from (1) and (2).

293 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Problem with Observational Equivalence

Problems

● Observational equivalence is too difficult to test.

● Because of quantification over all contexts (too many for testing).

● But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

● Defining/testing the equivalence on base types.

● Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

294 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

295 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of)
closed values of that type.

Binary relations interpret types by binary relations on closed values of
that type, i.e. sets of pairs of related values of that type.

That is VJτK ⊆ Val(τ) ×Val(τ).
Then, EJτK is the closure of VJτK by inverse reduction

We have VJτK ⊆ EJτK ⊆ Exp(τ) × Exp(τ).

296 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms

We recursively define two relations VJτK and EJτK between values of
type τ and expressions of type τ by

VJBK
△
== {(tt, tt), (ff,ff)}

VJτ → σK
△
== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK }
EJτK △

== {(M1,M2) ∣M1,M2 ∶ τ ∧
∃(V1, V2) ∈ VJτK , M1 ⇓ V1 ∧M2 ⇓ V2}

where ⇓ (M1,M2) means

{(V1, V2) ∣Mi ⇓ Vi}
In the following we will leave the typing constraint in gray implicit (as a
global condition for sets VJ⋅K and EJ⋅K).
We also write

M1 ∼τ M2 for (M1,M2) ∈ EJτK and
V1 ≈τ V2 for (V1, V2) ∈ VJτK.

297 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms (variant)

In a language with non-termination

We change the definition of EJτK to

EJτK △
== {(M1,M2) ∣M1,M2 ∶ τ ∧

(∀V1, M1 ⇓ V1 Ô⇒ ∃V2, M2 ⇓ V2 ∧ (V1, V2) ∈ VJτK)
∧ (∀V2, M2 ⇓ V2 Ô⇒ ∃V1, M1 ⇓ V1 ∧ (V1, V2) ∈ VJτK)}

Notice

VJτ → σK
△
== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK}
= {((λx ∶τ.M1), (λx ∶τ.M2)) ∣ (λx ∶τ.M1), (λx ∶τ.M2) ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, ((λx ∶τ.M1)W1, (λx ∶τ.M2)W2) ∈ EJσK}

298 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume M1 ⇓ N1 and
M2 ⇓ N2 and (M1,M2) ∈ EJτK, i.e. there exists (V1, V2) ∈ VJτK (1) such
that Mi ⇓ Vi. Since reduction is deterministic, we must have
Mi ⇓ Ni ⇓ Vi. This, together with (1), implies (N1,M2) ∈ EJτK.
Closure by inverse reduction

Immediate, by construction of EJτK.
Corollaries

● If (M1,M2) ∈ EJτ → σK and (N1,N2) ∈ EJτK, then(M1 N1,M2 N2) ∈ EJσK.

● To prove (M1,M2) ∈ EJτ → σK, it suffices to show(M1 V1,M2 V2) ∈ EJσK for all (V1, V2) ∈ VJτK.

299 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms

Consistency (∼B) ⊆ (≃)
Immediate, by definition of EJBK and VJBK ⊆ (≃).
Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for ∼τ and ≈τ by induction on type τ .

300 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms

We inductively define M1 ∼τ M2 (read M1 and M2 are logically
equivalent at type τ) on closed terms of (ground) type τ by induction
on τ :

● M1 ∼B M2 iff ∅ ⊢M1,M2 ∶ B and M1 ≃ M2● M1 ∼τ→σ M2 iff ∅ ⊢M1,M2 ∶ τ → σ and∀N1,N2, N1 ∼τ N2 Ô⇒ M1 N1 ∼σ M2 N2

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not at all obvious.

300 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms (proof)

For ∼τ , the proof is immediate by transitivity and symmetry of ≈τ .
For ≈τ , it goes as follows.
Case τ is B for values: the result is immediate.

Case τ is τ → σ:

By IH, symmetry and transitivity hold at types τ and σ.

For symmetry, assume V1 ≈τ→σ V2 (H), we must show V2 ≈τ→σ V1.

Assume W1 ≈τ W2. We must show V2 W1 ∼σ V1 W2 (C). We have W2 ≈τ W1

by symmetry at type τ . By (H), we have V2 W2 ∼σ V1 W1 and (C) follows by
symmetry of ∼ at type σ.

For transitivity, assume V1 ≈τ→σ V2 (H1) and V2 ≈τ→σ V3 (H2). To show
V1 ≈τ→σ V3, we assume W1 ≈τ W3 and show V1 W1 ∼σ V3 W3 (C).
By (H1), we have V1 W1 ∼σ V2 W3 (C1).
By symmetry and transitivity of ≈τ (IH), we get W3 ≈τ W3. It’s not reflexivity!
By (H2), we have V2 W3 ∼σ V3 W3 (C2).
(C) follows by transitivity of ∼σ applied to (C1) and (C2).

301 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for open terms

When Γ ⊢M1 ∶ τ and Γ ⊢M2 ∶ τ , we wish to define a judgment
Γ ⊢M1 ∼ M2 ∶ τ to mean that the open terms M1 and M2 are equivalent
at type τ .

The solution is to interpret program variables of dom(Γ) by pairs of
related values and typing contexts Γ by a set of (closing) bisubstitutions
γ mapping variable type assignments to pairs of related values.

GJ∅K
△
== {∅}

GJΓ, x ∶ τK △
== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓK ∧ (V1, V2) ∈ VJτK}

Given a bisubstitution γ, we write γi for the substitution that maps x to
Vi whenever γ maps x to (V1, V2).
Definition

Γ ⊢M1 ∼ M2 ∶ τ ⇐⇒ ∀γ ∈ GJΓK, (γ1M1, γ2M2) ∈ EJτK
We also write ⊢M1 ∼M2 ∶ τ or M1 ∼τ M2 for ∅ ⊢M1 ∼M2 ∶ τ .

302 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical equivalence for open terms

Immediate properties

Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)

303 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))

If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .
Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-True

Γ ⊢ tt ∼ tt ∶ bool C-False

Γ ⊢ ff ∼ ff ∶ bool
C-Var

x ∶ τ ∈ Γ
Γ ⊢ x ∼ x ∶ τ

C-Abs

Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ
Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ

C-App

Γ ⊢M1 ∼ M2 ∶ τ → σ Γ ⊢ N1 ∼ N2 ∶ τ
Γ ⊢M1 N1 ∼ M2 N2 ∶ σ

C-If

Γ ⊢M1 ∼ M2 ∶ B Γ ⊢ N1 ∼ N2 ∶ τ Γ ⊢ N ′1 ∼ N ′2 ∶ τ
Γ ⊢ ifM1 then N1 else N

′
1
∼ ifM2 then N2 else N

′
2
∶ τ

304 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof of compatibility lemmas

Each case can be shown independently.

Rule C-Abs: Assume Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ (1)
We show Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ. Let γ ∈ GJΓK.
We show (γ1(λx ∶τ.M1), γ2(λx ∶τ.M2)) ∈ VJτ → σK. Let (V1, V2) be in VJτK.
We show (γ1(λx ∶τ.M1) V1, γ2(λx ∶τ.M2) V2) ∈ EJσK (2).

Since γi(λx ∶τ.Mi) Vi ⇓ (γi, x↦ Vi)Mi
△
== γ′iMi, by inverse reduction, it suffices

to show (γ′1M1, γ
′
2M2) ∈ EJσK. This follows from (1) since γ′ ∈ GJΓ, x ∶ τK.

Rule C-App (and C-If): By induction hypothesis and the fact that substitution
distributes over applications (and conditional).

We must show Γ ⊢M1 N1 ∼ M2 M2 ∶ σ (1). Let γ ∈ GJΓK. From the premises

Γ ⊢M1 ∼ M2 ∶ τ → σ and Γ ⊢N1 ∼ N2 ∶ τ , we have (γ1M1, γ2M2) ∈ EJτ → σK and

(γ1N1, γ2N2) ∈ EJτK. Therefore (γ1M1 γ1N1, γ2M2 γ2N2) ∈ EJσK. That is

(γ1(M1 N1), γ2(M2 N2)) ∈ EJσK, which proves (1).

Rule C-True, C-False, and C-Var: are immediate

305 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof of compatibility lemmas (cont.)

Rule C-If: We show Γ ⊢ ifM1 then N1 else N
′
1 ∼ ifM2 then N2 else N

′
2 ∶ τ .

Assume γ ∈ GJγK.
We show (γ1(ifM1 then N1 else N

′
1), γ2(ifM2 then N2 else N

′
2)) ∈ EJτK, That

is (if γ1M1 then γ1N1 else γ1N
′
1
, if γ2M2 then γ2N2 else γ2N

′
2
) ∈ EJτK (1).

From the premise Γ ⊢M1 ∼ M2 ∶ B, we have (γ1M1, γ2M2) ∈ EJBK. Therefore
M1 ⇓ V and M2 ⇓ V where V is either tt or ff:

● Case V is tt:. Then, (if γiMi then γiNi else γiN
′
i) ⇓ γiNi, i.e.

γi(ifMi then Ni else N
′
i) ⇓ γiNi. From the premise Γ ⊢ N1 ∼ N2 ∶ τ , we

have (γ1N1, γ2N2) ∈ EJτK and (1) follows by closer by inverse reduction.

● Case V is ff: similar.

306 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof of reflexivity

By induction on the derivation of Γ ⊢M ∶ τ .
We must show Γ ⊢M ∼M ∶ τ :
All cases immediately follow from compatibility lemmas.

Case M is tt or ff: Immediate by Rule C-True or Rule C-False

Case M is x: Immediate by Rule C-Var.

Case M is M ′ N : By inversion of the typing rule App, induction
hypothesis, and Rule C-App.

Case M is λτ ∶N. : By inversion of the typing rule Abs, induction
hypothesis, and Rule C-Abs.

307 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Logical equivalence is a congruence
If Γ ⊢M ∼M ′ ∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then
∆ ⊢ C[M] ∼ C[M ′] ∶ σ.
Proof By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).
Similar to the proof of reflexivity—but we need a syntactic definition of
context-typing derivations (which we have omitted) to be able to reason
by induction on the context-typing derivation.

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
If Γ ⊢M ∼M ′ ∶ τ then Γ ⊢M ≅M ′ ∶ τ .
Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsiest such relation.

308 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties of logical equivalence

Completeness of logical equivalence
Observational equivalence of closed terms implies logical equivalence.
That is (≅τ) ⊆ (∼τ).
Proof by induction on τ .

Case B: In the empty context, by consistency ≅B is a subrelation of ≃B
which coincides with ∼B.
Case τ → σ: By congruence of observational equivalence!

By hypothesis, we have M1 ≅τ→σ M2 (1). To show M1 ∼τ→σ M2, we
assume V1 ≈τ V2 (2) and show M1 V1 ∼σ M2 V2 (3).

By soundness applied to (2), we have V1 ≅τ V2 from (2). By congruence
with (1), we have M1 V1 ≅σ M2 V2, which implies (3) by IH at type σ.

309 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence: example of application

Fact: Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y.

Show that M ≅B→τ→τ→τ M
′.

Proof

It suffices to show M V0 V1 V2 ∼τ M ′ V ′
0
V ′
1
V ′
2
whenever V0 ≈B V ′0 (1)

and V1 ≈τ V ′1 (2) and V2 ≈τ V ′2 (3). By inverse reduction, it suffices to
show: if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1 (4).

It follows from (1) that we have only two cases:

Case V0 = V
′
0
= tt: Then not V0 ⇓ ff and thus M ⇓ V2 while M ′ ⇓ V2.

Then (4) follows by inverse reduction and (3).

Case V0 = V
′
0
= ff: is symmetric.

310 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

311 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Observational equivalence

We now extend the notion of logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds variables and Γ binds
program variables.

Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).
Observational equivalence

We (re)defined ∆;Γ ⊢M ≅M ′ ∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷B), C[M] ≃ C[M ′]
As before, write M ≅τ N for ∅;∅ ⊢M ≅ N ∶ τ (in particular, τ is closed).

312 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence

For closed terms (no free program variables)

● We need to give the semantics of polymoprhic types ∀α. τ● Problem: We cannot do it in terms of the semantics of instances
τ[α ↦ σ] since the semantics is defined by induction on types.● Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations (sets of pairs of related values) of closed types ρ1 and ρ2

Let R(ρ1, ρ2) be the set of relations on values of closed types ρ1 and ρ2,
that is P(Val(ρ1) × Val(ρ2)). We optionally restrict to admissible
relations, i.e. relations that are closed by observational equivalence:

R ∈R♯(τ1, τ2) Ô⇒∀(V1, V2) ∈ R, ∀W1,W2, W1 ≅ V1 ∧ W2 ≅ V2 Ô⇒ (W1,W2) ∈ R
The restriction to admissible relations is required for completeness of logical
equivalence with respect to observational equivalence but not for soundness.

313 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Example of admissible relations

For example, both

R1

△
== {(tt,0), (ff ,1)}

R2

△
== {(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆}

are admissible relations in R♯(B, int).
But

R3

△
== {(tt, λx ∶τ.0), (ff , λx ∶τ.1)}

although in R(B, τ → int), is not admissible.

Taking M0

△
== λx ∶τ. (λz ∶ int. z) 0, we have M ≅τ→int λx ∶τ.0 but (tt,M)

is not in R3. Note A relation R in R(τ1, τ2) can always be turned into

an admissible relation R♯ in R♯(τ1, τ2) by closing R by observational
equivalence.

Note It is a key that such relations can relate values at different types.
314 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Interpretation of type environments

Interpretation of type variables

We write η for mappings α↦ (ρ1, ρ2,R) where R ∈R(ρ1, ρ2).
We write ηi (resp. ηR) for the type (resp. relational) substitution that
maps α to ρi (resp. R) whenever η maps α to (ρ1, ρ2,R).
We define

VJαKη
△
== ηR(α)

VJ∀α. τKη △== {(V1, V2) ∣ V1 ∶ η1(∀α. τ) ∧ V2 ∶ η2(∀α. τ) ∧∀ρ1, ρ2,∀R ∈R(ρ1, ρ2), (V1 ρ1, V2 ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}

315 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms with open types

We redefine

VJBKη
△
== {(tt, tt), (ff ,ff)}

VJτ → σKη
△
== {(V1, V2) ∣ V1 ⊢ η1(τ → σ) ∧ V2 ⊢ η2(τ → σ) ∧

∀(W1,W2) ∈ VJτKη, (V1 W1, V2 W2) ∈ EJσKη}
EJτKη △

== {(M1,M2) ∣M1 ∶ η1τ ∧M2 ∶ η2τ ∧∃(V1, V2) ∈ VJτKη,M1 ⇓ V1 ∧M2 ⇓ V2}
GJ∅Kη

△
== {∅}

GJΓ, x ∶ τKη △
== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓKη ∧ (V1, V2) ∈ VJτKη}

and define

DJ∅K
△
== {∅}

DJ∆, αK
△
== {η,α ↦ (ρ1, ρ2,R) ∣ η ∈ DJ∆K ∧R ∈R(ρ1, ρ2)}

316 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for open terms

Definition We define ∆;Γ ⊢M ∼M ′ ∶ τ as

∧{ ∆;Γ ⊢M,M ′ ∶ τ
∀η ∈ DJ∆K, ∀γ ∈ GJΓKη, (η1(γ1M1), η2(γ2M2)) ∈ EJτKη

(Notations are a bit heavy, but intuitions should remain simple.)

Notation

We also write M1 ∼τ M2 for ⊢M1 ∼M2 ∶ τ (i.e. ∅;∅ ⊢M1 ∼M2 ∶ τ).
In this case, τ is a closed type and M1 and M2 are closed terms of
type τ ; hence, this coincides with the previous definition (M1,M2) inEJτK, which may still be used as a shorthand for EJτK∅.

317 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Respect for observational equivalence

If (M1,M2) ∈ EJτK♯η and N1 ≅η1(τ) M1 and N2 ≅η2(τ) M2 then

(N1,N2) ∈ EJτK♯η. Requires admissibility

(We use ♯ to indicate that admissibility is required in the definition of R♯)
Proof. By induction on τ .

Assume (M1,M2) ∈ EJτKη (1) and N1 ≅η1(τ)M1 (2). We show(N1,M2) ∈ EJτKη .
Case τ is ∀α.σ: Assume R ∈R♯(ρ1, ρ2). Let ηα be η,α ↦ (ρ1, ρ2,R).
We have (M1 ρ1,M2 ρ2) ∈ EJσKηα

, from (1).
By congruence from (2), we have N1ρ1 ≅δ(τ)M1 ρ1.
Hence, by induction hypothesis, (M1 ρ1,M2 ρ2) ∈ EJσKηα

, as expected.

Case τ is α: Relies on admissibility, indeed.

Other cases: the proof is similar to the case of the simply-typed λ-calculus.

Corollary 318 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Lemma (Closure under observational equivalence)
If ∆;Γ ⊢M1 ∼♯M2 ∶ τ and ∆;Γ ⊢M1 ≅ N1 ∶ τ and ∆;Γ ⊢M2 ≅ N2 ∶ τ ,
then ∆;Γ ⊢ N1 ∼♯ N2 ∶ τ Requires admissibility

Lemma (Compositionality) Key lemma

Assume ∆ ⊢ σ and ∆, α ⊢ τ and η ∈ DJ∆K. Then,

VJτ[α ↦ σ]Kη = VJτKη,α↦(η1σ, η2σ,VJσKη)

Proof by induction on τ .

319 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity

Theorem (Reflexivity) (also called the fundamental lemma)

If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .
Notice: Admissibility is not required for the fundamental lemma

Proof by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

We redefine the lemmas to work in a typing context of the form ∆,Γ
instead of Γ and add two new lemmas:

C-Tabs

∆, α; Γ ⊢M1 ∼M2 ∶ τ
∆;Γ ⊢ Λα.M1 ∼ Λα.M2 ∶ ∀α. τ

C-Tapp

∆;Γ ⊢M1 ∼M2 ∶ ∀α. τ ∆ ⊢ σ
∆;Γ ⊢M1 σ ∼M2 σ ∶ τ[α ↦ σ]

320 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof of compatibility

Case M is Λα.N : We must show that ∆;Γ ⊢ Λα.N ∼ Λα.N ∶ ∀α. τ .
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′].
We must show γ(δ(Λα.N)) ∼∀α. τ γ′(δ(Λα.N)) [η ∶ δ ↔ δ].
Assume σ and σ′ closed and R ∶ σ↔ σ′. We must show

(γ(δ(Λα.N))) σ ∼τ (γ′(δ′(Λα.N))) σ [η0 ∶ δ0 ↔ δ′0]
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′.

Since

(γ(δ(Λα.N))) σ = (Λα.γ(δ(N))) σ Ð→ γ(δ(N))[α ↦ σ] = γ(δ0(N))
It suffices to show

γ(δ0(N)) ∼τ γ′(δ′0(N)) [η0 ∶ δ0 ↔ δ′0]
which follows by IH from ∆, α; Γ ⊢ N ∶ τ (which we obtain from
∆,Γ ⊢ Λα.N ∶ τ by inversion).

321 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof of compatibility

Case M is N σ:

By inversion of typing ∆,Γ ⊢ N ∶ ∀α. τ0 (1) and τ is ∀α. τ0.
We must show that ∆;Γ ⊢ N σ ∼ N σ ∶ τ0[α ↦ σ].
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′]. We must show

γ(δ(N σ)) ∼τ0[α↦σ] γ
′(δ′(N σ)) [η ∶ δ↔ δ′]

i.e. (γ(δ(N))) σ ∼τ0[α↦σ] (γ′(δ′(N))) σ [η ∶ δ↔ δ′]
By compositionality, it suffices to show

(γ(δ(N))) σ ∼τ0 (γ′(δ′(N))) σ [η0 ∶ δ0 ↔ δ′0] (2)
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′ and

R ∶ δ(s)↔ δ′(s) is defined by R(N0,N
′
0) ⇐⇒ N0 ∼σ N ′0 [η ∶ δ↔ δ′].

This relation is admissible (3). Hence by IH from (1), we have

(γ(δ(N))) ∼∀α. τ0 (γ′(δ′(N))) [η ∶ δ↔ δ′]
which implies (2) by definition of ∼∀α. τ0 . 322 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
If ∆;Γ ⊢M1 ∼M2 ∶ τ then ∆;Γ ⊢M1 ≅M2 ∶ τ .
Completeness of logical equivalence
Observational equivalence implies logical equivalence with admissibility.
If ∆;Γ ⊢M1 ≅M2 ∶ τ then ∆;Γ ⊢M1 ∼♯M2 ∶ τ .
As a particular case, M1 ≅τ M2 iff M1 ∼♯τ M2.

Note: Admissibility is not required for soundness—only for completeness.

That is, proofs that some observational equivalence hold do not usually
require admissibility.

323 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Extensionality ((A fact, hence does not depend on admissibility)

M1 ≅τ→σ M2 iff ∀(V ∶ τ),M1 V ≅σ M2 V iff ∀(N ∶ τ),M1 N ≅σ M2 N

M1 ≅∀α. τ M2 iff for all closed type ρ, M1 ρ ≅τ[α↦ρ]M2 ρ.

Proof. Forward direction is immediate as ≅ is a congruence. Backward direction
uses logical relations and admissibility, but the exported statement does not.

Case Value abstraction: It suffices to show M1 ∼τ→σ M2. That is, assuming
N1 ∼τ N2 (1), we show M1 N1 ∼σ M2 N2 (2). By assumption, we have
M1 N1 ≅σ M2 N1 (3). By the fundamental lemma, we have M2 ∼τ→σ M2.
Hence, from (1), we must have M2 N1 ∼σ M2 N2, We conclude (2) by respect
for observational equivalence with (3)—which requires admissibility.

Case Type abstraction: It suffices to show M1 ∼∀α. τ M2. That is, given
R ∈ R(ρ1, ρ2), we show (M1 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R) (4).
By assumption, we have M1 ρ1 ≅τ[α↦ρ1] M2 ρ1 (5).
By the fundamental lemma, we have M2 ∼∀α. τ M2.
Hence, we have (M2 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R)

We conclude (4) by respect for observational equivalence with (5). 324 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Identity extension Requires admissibiily
Let θ be a substitution of type variables for ground types.
Let R be the restriction of ≅αθ to Val(αθ) × Val(αθ)) and
η ∶ α ↦ (αθ,αθ,R).
Then EJτKη is equal to ≅τθ.
(The proof uses respect for observational equivalence, which requires
admissibility)

324 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

325 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α

Fact If M ∶ ∀α.α → α, then M ≅∀α.α→α id where id
△
== Λα.λx ∶α.x.

Proof By extensionality, it suffices to show that for any ρ and V ∶ ρ we
have M ρ V ≅ρ id ρ V . In fact, by closure by inverse reduction, it suffices
to show M ρ V ≅ρ V (1).

By parametricity, we have M ∼∀α.α→α M (2).

Consider R in R(ρ, ρ) equal to {(V,V)} and η be [α ↦ (ρ, ρ,R)]. (3)
By construction, we have (V,V) ∈ VJαKη.

Hence, from (2), we have (M ρ V,M ρ V) ∈ EJαKη, which means that
the pair (M ρ V,M ρ V) reduces to a pair of values in (the singleton) R.
This implies that M ρ V reduces to V , which in turn, implies (1).

(3) Admissibility is not needed

326 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff, V2)} in R(B, ρ)
and η be α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly,(ff, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff,M ρ V1 V2) is inVJαKη , which means that (M B tt ff,M ρ V1 V2) reduces to a pair of values in
R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).

327⟨6⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff, V2)} in R(B, ρ)
and η be α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly,(ff, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff,M ρ V1 V2) is inVJαKη , which means that (M B tt ff,M ρ V1 V2) reduces to a pair of values in
R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).

327⟨7⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff, V2)} in R(B, ρ)
and η be α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly,(ff, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff,M ρ V1 V2) is inVJαKη , which means that (M B tt ff,M ρ V1 V2) reduces to a pair of values in
R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).

327⟨8⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt , V1), (ff , V2)} inR(B , ρ) and η be α ↦ (B , ρ,R). We have (tt , V1) ∈ VJαKη since R(tt , V1)
and, similarly, (ff , V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff ,M ρ V1 V2) is
in VJαKη, which means that (M B tt ff ,M ρ V1 V2) reduces to a pair of
values in R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).

327⟨9⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(0 , V1), (1 , V2)} inR(N , ρ) and η be α ↦ (N , ρ,R). We have (0 , V1) ∈ VJαKη since R(0 , V1)
and, similarly, (1 , V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M N 0 1 ,M ρ V1 V2) is
in VJαKη, which means that (M N 0 1 ,M ρ V1 V2) reduces to a pair of
values in R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M N 0 1 ≅N 0 ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M N 0 1 ≅N 1 ∧ M ρ V1 V2 ≅ρ V2

Since, M N 0 1 is independent of ρ, V1, and V2, this actually shows (1).

327⟨10⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(W1, V1), (W2, V2)} inR(σ , ρ) and η be α ↦ (σ , ρ,R). We have (W1, V1) ∈ VJαKη since R(W1, V1)
and, similarly, (W2, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M σ W1W2,M ρ V1 V2) is
in VJαKη, which means that (M σ W1W2,M ρ V1 V2) reduces to a pair of
values in R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M σ W1W2≅σ W1 ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M σ W1W2≅σ W2 ∧ M ρ V1 V2 ≅ρ V2

Since, M σ W1W2 is independent of ρ, V1, and V2, this actually shows (1).

327⟨11⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Exercise Inhabitants of ∀α.α → α

Redo the proof that all inhabitants of of ∀α.α → α are observationally
equivalent to the identity, following the schema that we used for
booleans.

328 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

329⟨1⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

329⟨2⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

That is, the inhabitants of ∀α. (α → α)→ α → α are the Church naturals.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

329⟨3⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

329⟨4⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

329⟨5⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

329⟨6⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

Indeed, assume (W1,W2) in VJαKη. There exists k such that W1 = S
k Z and

W2 = V
k
1 V2. Thus, (SW1, V1 W2) equal to (Sk+1 Z, V k+1

1 V2) is in EJαKη .

329⟨7⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

Indeed, assume (W1,W2) in VJαKη. There exists k such that W1 = S
k Z and

W2 = V
k
1 V2. Thus, (SW1, V1 W2) equal to (Sk+1 Z, V k+1

1 V2) is in EJαKη .

329⟨8⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1 V2 (1), since Nn ρ V1 V2
reduces to V n

1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(Sk Z, V k
1 V2) ∣ k ∈ N} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη.
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

By parametricity, we have M ∼nat M . Hence, (M nat S Z,M ρ V1 V2) ∈ EJαKη .
Thus, there exists n such that M nat S Z ≅nat Sn Z and M ρ V1 V2 ≅ρ V n

1
V2.

Since, M nat S Z is independent of n, we may conclude (1), provided the Sn Z
are all in different observational equivalence classes (easy to check).

329⟨8⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α.α → (τ → α → α)→ α

▷⋅ Left as an exercise. . .

330 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn inLn where Lk is defined inductively by

L0 △== {N} and Lk+1 △== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}
Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈ Rk} and R0 is {(N, V1)}.
We have (N, V1) ∈ R0 ⊆ VJαKη .

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

By parametricity, we have M ∼ M . Hence, (M list C N,M ρ V V) ∈ EJαK .
331⟨4⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn inLn where Lk is defined inductively by

L0 △== {N} and Lk+1 △== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}
Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈ Rk} and R0 is {(N, V1)}.
We have (N, V1) ∈ R0 ⊆ VJαKη .

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

Indeed, assume (G,H) in VJτK and (T,U) in VJαK , i.e. in R for some k.
331⟨8⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn inLn where Lk is defined inductively by

L0 △== {N} and Lk+1 △== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}
Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈ Rk} and R0 is {(N, V1)}.
We have (N, V1) ∈ R0 ⊆ VJαKη .

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

By parametricity, we have M ∼ M . Hence, (M list C N,M ρ V V) ∈ EJαK .
331⟨7⟩ 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

332 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Encodable features Natural numbers

We have shown that all expressions of type nat behave as natural
numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.

Then, we may extend

● behavioral equivalence: if M1 ∶ nat and M2 ∶ nat, we have
M1 ≃nat M2 iff there exists n ∶ nat such that M1 ⇓ n and M2 ⇓ n.

● logical equivalence: VJnatK
△
== {(n,n) ∣ n ∈ N}

All properties are preserved.

333 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Encodable features Products

Given closed types τ1 and τ2, we defined

τ1 × τ2 △
== ∀α. (τ1 → τ2 → α)→ α

(M1,M2) △
== Λα.λx ∶τ1 → τ2 → α.x M1 M2

M.i
△
== M (λx1 ∶τ1. λx2 ∶τ2. xi)

Facts

If M ∶ τ1 × τ2, then M ≅τ1×τ2 (M1,M2) for some M1 ∶ τ1 and M2 ∶ τ2.
If M ∶ τ1 × τ2 and M.1 ≅τ1 M1 and M.2 ≅τ2 M2, then M ≅τ1×τ2 (M1,M2)
Primitive pairs

We may instead extend the language with primitive pairs. Then,

VJτ × σKη
△
== {((V1,W1), (V2,W2))∣ (V1, V2) ∈ VJτKη ∧ (W1,W2) ∈ VJσKη}

334 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Sums

We define:

VJτ + σKη = {(inj1 V1, inj1 V2) ∣ (V1, V2) ∈ VJτKη} ∪
{(inj2 W1, inj2 W2) ∣ (W1,W2) ∈ VJσKη}

Notice that sums, as all datatypes, can also be encoded in System F.

335 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Primitive Lists

We recursively1 define VJlist τKη as ⋃kW k
η where W 0

η is {(Nil,Nil)}
and W k+1

η is

{(Cons H1 T1,Cons H2 T2) ∣ (H1,H2) ∈ VJαKη ∧ (T1, T2) ∈W k
η}.

Assume that (α ↦ ρ1, ρ2,R) ∈ η where R in R(ρ1, ρ2) is the graph ⟨g⟩ of
a function g, i.e. equal to {(V1, V2) ∣ g V1 ⇓ V2}. Then, we have:

VJlist αKη(W1,W2)
⇐⇒ ∃k,⋁

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W1 = Nil ∧W2 = Nil
W1 = Cons H1 T1 ∧W2 = ConsH2 T2 ∧ gH1 ⇓ H2∧ (T1, T2) ∈W k

η⇐⇒ map ρ1 ρ2 g W1 ⇓ W2

1This definition is well-founded.

336 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications sort ∶ ∀α. (α → α → bool)→ list α

Fact: Assume sort ∶ ∀α. (α → α → bool) → list α → list α (1). Then

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

337 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications sort ∶ ∀α. (α → α → bool)→ list α

Proof: Assume ∀x, y, cp (f x) (f y) ≅ cp x y) (H).

We have sort ∼σ sort where σ is ∀α. (α → α → bool) → list α → list α.

Thus, for all ρ1, ρ2, and relations R in R(ρ1, ρ2),
∀(cp1, cp2) ∈ VJα → α → BKη,∀(V1, V2) ∈ VJlist αKη , (sort ρ1 cp1 V1, sort ρ2 cp2 V2) ∈ EJlist αKη)

(1)
(2)

where η is α ↦ (ρ1, ρ2,R). We may choose R to be ⟨f⟩ for some f .

We have (1). Indeed, for all (V1, V2) and (W1,W2) in ⟨f⟩, we have f V1 ⇓ V1
and f W1 ⇓ W1, hence cp2 (f V1)(f W1) ⇓ cp1 V2W2. Thus
cp2 (f V1)(f W1) ≅ cp1 V2W2. With (H), this implies cp2 V1W1 ≅ cp1 V2W2,
i.e. cp2 V1W1 ∼ cp1 V2W2 since we are at type B, as expected. Hence (2) holds.
Since VJlist αKη

△
== ⟨map ρ1 ρ2 f⟩ ⊆ VJρ1K × VJρ2K

(2) reads

∀V ∶ list ρ1, V2 ∶∶ list ρ2,
map ρ1 ρ2 f V ⇓ V2 Ô⇒ ∃W1,W2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
map ρ1 ρ2 f W1

sort ρ1 cp1 V ⇓ W1 ≅
sort ρ2 cp2 V2

338 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications whoami ∶ ∀α. list α → list α

Left as an exercise. . .

339 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Existential types

We define:

VJ∃α. τKη △
== {(pack V1, ρ1 as ∃α. τ,pack V2, ρ2 as ∃α. τ) ∣∃ρ1, ρ2,R ∈R(ρ1, ρ2), (V1, V2) ∈ EJτKη,α↦(ρ1,ρ2,R)}

Compare with

VJ∀α. τKη = {(Λα.M1,Λα.M2) ∣∀ρ1, ρ2,R ∈R(ρ1, ρ2),((Λα.M1) ρ1, (Λα.M2) ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}

340 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Existential types Example

Consider V1
△
== (not, tt), and V2 △== (succ,0) and σ △

== (α → α) × α.
Let R ∈R(bool,nat) be {(tt,2n), (ff ,2n + 1) ∣ n ∈ N} and η be
α ↦ (bool,nat,R).
We have (V1, V2) ∈ VJσKη.

Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

We have (tt,0) ∈ VJαKη, since (tt,0) ∈ R.
We also have (not, succ) ∈ VJα → αKη, which proves (1).

Indeed, assume (W1,W2) ∈ VJαKη. Then (W1,W2) is either of the form

● (tt,2n) and (notW1, succW2) reduces to (ff,2n + 1), or
● (ff,2n + 1) and (notW1, succW2) reduces to (tt,2n + 2).

In both cases, (notW1, succW2) reduces to a pair in R.
Hence, (notW1, succW2) ∈ EJαKη.

341 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Representation independence

A client of an existential type ∃α. τ should not see the difference between
two implementations N1 and N2 of ∃α. τ with witness types ρ1 and ρ2.

A client M has type ∀α. τ → σ with α ∉ fv(σ); it must use the argument
parametrically, and the result is independent of the witness type.

Assume that ρ1 and ρ2 are two closed representation types and R is inR(ρ1, ρ2). Let η be α ↦ (ρ1, ρ2,R).
Suppose that N1 ∶ τ[α ↦ ρ1] and N2 ∶ τ[α ↦ ρ2] are two equivalent
implementations of the operations, i.e. such that (N1,N2) ∈ EJτKη.
A client M satisfies (M,M) ∈ EJ∀α. τ → σKη. Thus(M ρ1 N1,M ρ2 N2) is in EJσK (as α is not free in σ).

That is, M ρ1 N1 ≅σ M ρ2 N2: the behavior with the implementation N1

with representation type ρ1 is indistinguishable from the behavior with
the implementation N2 with representation type ρ2.

342 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

How do we deal with recursive types?

Assume that we allow equi-recursive types.

τ ∶∶= . . . ∣ µα.τ
A naive definition would be

VJµα.τKη = VJ[α ↦ µα.τ]τKη
But this is ill-founded.

The solution is to use indexed-logical relations.

We use a sequence of decreasing relations indexed by integers (fuel),
which is consumed during unfolding of recursive types.

343 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Step-indexed logical relations (a taste)

We define a sequence VkJτKη indexed by natural numbers n ∈ N that
relates values of type τ up to n reduction steps. Omitting typing clauses:

VkJBKη = {(tt, tt), (ff ,ff)}VkJτ → σKη = {(V1, V2) ∣ ∀j < k,∀(W1,W2) ∈ VjJτKη,(V1 W1, V2 W2) ∈ EjJσKη}VkJαKη = ηR(α).kVkJ∀α. τKη = {(V1, V2) ∣ ∀ρ1, ρ2,R ∈Rk(ρ1, ρ2),∀j < k,(V1 ρ1, V2 ρ2) ∈ VjJτKη,α↦(ρ1,ρ2,R)}VkJµα.τKη = Vk−1J[α↦ µα.τ]τKη
EkJτKη = {(M1,M2) ∣ ∀j < k,M1 ⇓j V1Ô⇒ ∃V2,M2 ⇓ V2 ∧ (V1, V2) ∈ Vk−jJτKη}

By ⇓j means reduces in j-steps.Rj(ρ1, ρ2) is composed of sequences of decreasing relations between
closed values of closed types ρ1 and ρ2 of length (at least) j.

344 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Step-indexed logical relations (a taste)

The relation is asymmetric.

If ∆;Γ ⊢M1,M2 ∶ τ we define ∆;Γ ⊢M1 ≾M2 ∶ τ as

∀η ∈Rk
∆(δ1, δ2),∀(γ1, γ2) ∈ GkJΓK, (γ1(δ1(M1)), γ2(δ2(M2)) ∈ EkJτKη

and

∆;Γ ⊢M1 ∼ M2 ∶ τ △
== ⋀

⎧⎪⎪⎨⎪⎪⎩
∆;Γ ⊢M1 ≾M2 ∶ τ
∆;Γ ⊢M2 ≾M1 ∶ τ

Notations and proofs get a bit involved...

Notations may be simplified by introducing a later guard ▷ to capture
incrementation of the index and avoid the explicit manipulation of
integers (but the meaning remains the same).

345 671 ◁

Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical relations for F ω ?

Logical relations can be generalized to work for Fω, indeed.

There is a slight complication though in the interpretation of type
functions.

This is out of this course scope, but one may, for instance, read
[Atkey, 2012].

346 671 ◁

Side effects, References, Value
restriction

Intro Exceptions References in λst References in F

Contents

Introduction

Exceptions

References in λst

Polymorphism and references

349 671 ◁

Intro Exceptions References in λst References in F

Referential transparency

What is it?
An expression is referentially transparent or pure if it can be replaced
with its corresponding value without changing the program behavior.
Applying a pure funtion to the same arguments returns the same result.

Why is it useful?

Allows to reason about programs as a rewrite system, which may help

● prove the correction,

● perform code optimization.

● typically, it allows for: memoization, common expression elimination,
lazy evaluation, . . .

● with code parallelization, optimistic evaluation, transactions, . . .

350 671 ◁

Intro Exceptions References in λst References in F

Referential transparency counter examples

Examples of impure constructs

● Exceptions, References, reading/printing functions.

● Interaction with the file system.

● Date and random primitives, etc.

Termination?
According to the definition, the status of termination is unclear. (As they
never return, they cannot actually be replaced by the result of their
evaluation—except in Haskell that uses an explicit bottom value �.)
Non-termination is usually considered impure: it breaks equational
reasoning and most program transformations, as other impure constructs.

In practice, high-complexity is not so different from non-termimation. . .

Effects
Any source of impurity is usually called an effect.

351 671 ◁

Intro Exceptions References in λst References in F

Referential transparency Summary

Effects are unavoidable
Any programming language must have some impure aspects to
communicate with the operating system.
Side effects may sometimes be encapsulated, e.g. a module with side
effetcs may sometimes have a pure interface.

Mitigation of effects

So the questions are more whether:

● a large core of the language is pure/effect free (e.g. Haskell, Coq,
Core System F) or effectful (most other languages); and/or

● side effects can be tracked, e.g. by the type system.
(Haskell, Koka, Rust, Mezzo, or algebraic effects)

352 671 ◁

Intro Exceptions References in λst References in F

The semantics of effects

Programs with effects cannot be described as a pure rewrite system.

● The semantics must be changed.

● Some of the properties will be lost

We shall see:

● Exceptions, which require a small change to the semantics● References, which:● require a major change to the semantics● do not fit well with polymorphism—which needs to be restricted in
the presence of effects.

● Values, or a larger class of non-expansive expressions, whose
evaluation is effect free play a key role in the presence of effects.

In the presence of effects, deterministic, call-by-value semantics is always
a huge source of simplification when not a requirement.

353 671 ◁

Intro Exceptions References in λst References in F

Contents

Introduction

Exceptions

References in λst

Polymorphism and references

354 671 ◁

Intro Exceptions References in λst References in F

Exceptions Semantics

Exceptions are a mechanism for changing the normal order of evaluation
usually, but not necessarily, in case something abnormal occurred.

When an exception is raised, the evaluation does not continue as usual:
Shortcutting normal evaluation rules, the exception is propagated up into
the evaluation context until some handler is found at which the
evaluation resumes with the exceptional value received; if no handler is
found, the exception had reached the toplevel and the result of the
evaluation is the exception instead of a value.

We extend the language with a constructor form to raise an exception
and a destructor form to catch an exception; we also extend the
evaluation contexts:

M ∶∶= . . . ∣ raiseM ∣ tryM withM
E ∶∶= . . . ∣ raise [] ∣ try [] withM

355 671 ◁

Intro Exceptions References in λst References in F

Exceptions Semantics

We do not treat raise V as a value, since it stops the normal order of
evaluation. Instead, reduction rules propagate and handle exceptions:

Raise

F [raise V]Ð→ raise V

Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→M V

Rule Raise uses an evaluation context F which stands for any E other
than try [] withM , so that it propagates an exception up the evaluation
contexts, but not through a handler.

The case of the handler is treated by two specific rules:

● Rule Handle-Raise passes an exceptional value to its handler;

● Rule Handle-Val removes the handler around a value.

356 671 ◁

Intro Exceptions References in λst References in F

Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

tryK (raiseM) with λx.x by ContextÐ→ tryK (raise V) with λx.x by RaiseÐ→ try raise V with λx.x by Handle-RaiseÐ→ (λx.x) V by βvÐ→ V

In particular, we do not have the following step,

tryK (raise V) with λx.x by βvÐ→/ try λy. y with λx.x Ð→ λy. y

since raise V is not a value, so the first β-reduction step is not allowed.

357 671 ◁

Intro Exceptions References in λst References in F

Exceptions Typing rules

We assume given a fixed type τexn for exceptional values.

Raise

Γ ⊢M ∶ τexn
Γ ⊢ raiseM ∶ τ

Try

Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ τexn → τ

Γ ⊢ tryM1 withM2 ∶ τ
There are some subtleties:

● Raise turns an expression of type τexn into an exception.

● Consistently, the handler has type τexn → τ , since it receives the
exception value of type exn as argument;

● An exceptional value of type exn may be raised in M1 and used in
M2 without any visible flow at the type level.
Hence, raise ⋅ and try ⋅ with ⋅ must agree on the type exn.

● Both premises of Rule Try must return values of the same type τ .

● raiseM can have any type, as the current computation is aborted.

358 671 ◁

Intro Exceptions References in λst References in F

Exceptions The type of exception

What should we choose for τexn? Well, any type:

● Choosing unit, exceptions will not carry any information.

● Choosing int, exceptions can report some error code.

● Choosing string, exceptions can report error messages.

● Using a sum type or better a variant type (tagged sum), with one
case to describe each exceptional situation.

This is the approach followed by ML, which declares a new
extensible type exn for exceptions: this is a sum type, except that all
cases are not declared in advance, but only as needed.
(Extensible datatypes are available in OCaml since version 4.02.)

In all cases, the type of exception must be fixed in the whole program.

This is because raise ⋅ and try ⋅ with ⋅ must agree beforehand on the type
of exceptions as this type is not passed around by the typing rules.

359 671 ◁

Intro Exceptions References in λst References in F

Encoding of multiple exceptions

Introduce a data type:

type exn = Σ(Ei ∶ τi → exn) i∈I
Use syntactic sugar:

raise Ei v
△
== raise (Ei v)

tryM with (Ej x⇒Mk) j∈J
△
==

tryM with(λz.match z with (Ej x⇒Mk) j∈J ∣ z ⇒ raise z)

360 671 ◁

Intro Exceptions References in λst References in F

Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?

By saying that this is the only “exception” to progress:

Theorem (Progress)

A well-typed, irreducible term is either a value or an uncaught exception.
if ∅ ⊢M ∶ τ and M /Ð→ , then M is either V or raise V for some
value V .

361 671 ◁

Intro Exceptions References in λst References in F

Exceptions Structured exceptions

What is the type exn for exceptions? Well, it could be any type:

● If we take the unit type, we only know that an except has been
raised but cannot pass any other information.

● Hence, we could take the type of integers (e.g. passing error codes,
much as commands do in Unix)

● Use some richer data type with one constructor per kind of error.

● Use a variant type (tagged sum)

The handler may analyze the argument of the exception.

361 671 ◁

Intro Exceptions References in λst References in F

Exceptions On uncaught exceptions

An uncaught exception is often a programming error. It may be
surprising that they are not detected by the type system.

Exceptions may be detected using more expressive type systems.
Unfortunately, the existing solutions are often complicated for some
limited benefit, and are still not often used in practice.

The complication comes from the treatment of functions, which have
some latent effect of possibly raising or catching an exception when
applied. To be precise, the analysis must therefore enrich types of
functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions must be declared in the language Java.
(Java also has untraced exceptions.)

See Leroy and Pessaux [2000] for a solution in ML.

362 671 ◁

Intro Exceptions References in λst References in F

Exceptions Small semantic variation

Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel.

We can also describe their semantics by replacing propagation of
exceptions by deep handling of exceptions inside terms.

Replace the three previous reduction rules by:

Handle-Val’

try V withM Ð→ V

Handle-Raise’

try F [raise V] withM Ð→M V

where F is a sequence of F contexts, i.e. handler-free evaluation context
of arbitrary depth.

This semantics is perhaps more intuitive, closer to what a compiler does,
but the two presentations are equivalent.

In this case, uncaught exceptions are of the form F [raise V].
363 671 ◁

Intro Exceptions References in λst References in F

Exceptions Interesting syntactic variation

Benton and Kennedy [2001] have argued for merging let and try
constructs into a unique form let x =M1 withM2 inM3.

The expression M1 is evaluated first and

● if it returns a value it is substituted for x in M3, as if we had
evaluated let x =M1 inM3;● otherwise, i.e., if it raises an exception raise V , then the exception is
handled by M2, as if we had evaluated tryM1 withM2.

This combined form captures a common programming pattern:

let rec read config in path filename (dir :: dirs) →
let fd = open in (Filename.concat dir filename)
with Sys error → read config filename dirs in
read config from fd fd

Workarounds are inelegant and inefficient. This form is also better suited
for program transformations (see Benton and Kennedy [2001]).

364 671 ◁

Intro Exceptions References in λst References in F

Exceptions Interesting syntactic variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 inM3 withM2.

The continuation M3 could raise an exception that would then be
handled by M2, which is not intended.

There are several encodings:

● Use a sum type to know whether M1 raised an exception:
case (try ValM1 with λy.Exc y) of (Val ∶ λx.M3 8 Exc ∶M2)● Freeze the continuation M3 while handling the exception:(try let x =M1 in λ().M3 with λy.λ().M2 y) ()

Unfortunately, they are both hardly readable—and inefficient.

365 671 ◁

Intro Exceptions References in λst References in F

Exceptions Interesting syntactic variation

A similar construct has been added in OCaml version 4.02, allowing
exceptions combined with pattern matching.

The previous example can now be written in OCaml as:

let rec read config in path filename path =
match path with [] → [] | dir :: dirs →

match open in (Filename.concat dir filename) with
| fd → read config from fd fd
| exception Sys error → read config in path filename dirs

366 671 ◁

Intro Exceptions References in λst References in F

Exceptions Termination

Do all well-typed programs terminate in the presence of exceptions?

No, because exceptions hide the type of values that they communicate to
the handler, which can be used to emulate recursive types.

Encode values of type τ0 as lazy values of type unit→ τ0, say τ
Let encode be fun x () -> x and decode be fun x -> x ().
Let dummy be some value of type τ0.
Let type exn be τ → τ , say σ.

Define the two coercion functions between types σ and τ :

fold ∶ σ → τ
△
== λf ∶σ.λ(). let = raise f in dummy

unfold ∶ τ → σ
△
== λf ∶τ. try let = f() in λx ∶τ. x with λy ∶τ → τ. y

We may then define ω
△
== λx. (unfold x) x so that ω (fold ω) loops.

Or a call-by-value fixpoint of type (σ → σ) → σ that allows recursive
definition of functions of type τ → τ (encoding type τ0 → τ0).

367 671 ◁

Intro Exceptions References in λst References in F

Exercise

Program factorial with the previous encoding without using recursion
(nor recursive types, nor references)

368 671 ◁

Intro Exceptions References in λst References in F

Exercise Semantics of let ⋅ = ⋅ with ⋅ in

Describes the dynamic semantics of the let x =M1 withM2 inM3.

Solution
We need a new evaluation context:

E ∶∶= . . . ∣ let x = E withM2 inM3

and the following reduction rules:

Raise

F [raise V]Ð→ raise V
Handle-Val

let x = V withM2 inM3 Ð→ [x ↦ V]M3

Handle-Raise

let x = raise V withM2 inM3 Ð→M2 V

369 671 ◁

Intro Exceptions References in λst References in F

Exercise Try finalize

A finalizer is some code that should always be run, whether the
evaluation ends normally or an exception is being raised.

Write a function try finalize that takes four arguments f , x, g, and y
and returns the application f x with finalizing code g y. i.e. g y should
be called before returning the result of the application of f to x whether
it executed normally or raised an exception.

(You may try first without using binding mixed with exceptions, then
using it, and compare.)

370 671 ◁

Intro Exceptions References in λst References in F

Exercise (Solution to) Try finalize

Without let ⋅ = ⋅ with ⋅ in ∶
let finalize f x g y =
let result = try f x with exn → g y; raise exn in g y; result

An alternative version that does not duplicate the finalizing code and could be

inlined, but allocates an intermediate result, is:

type ’a result = Val of ’a | Exc of exn
let finalize f x g y =
let result = try Val (f x) with exn → Exc exn in
g y; match result with Val x → x | Exc exn → raise exn

More concisely:

let finalize f x g y =
match f x with
| result → g y; result
| exception exn → g y; raise exn

371 671 ◁

Intro Exceptions References in λst References in F

Generalizing exceptions Effect handlers

Exceptions allow to abort the current computation to the dynamically
enclosing handler.

Effect handlers are a variant of control operators.

As exceptions, they allow to abort the current computation to the
dynamically enclosing handler, but offer the handler the possibility to
resume the computation where it was aborted.

They are (much) more expressive.

They also allow to model a global state, where a toplevel heap handler is
setup so that allocation, read, and write can be implemented by passing
control to the handler together with the current continuation, i.e.
evaluation context, which may change the heap and then resume or
throw away the continuation.

372 671 ◁

Intro Exceptions References in λst References in F

Contents

Introduction

Exceptions

References in λst

Polymorphism and references

373 671 ◁

Intro Exceptions References in λst References in F

References

In the ML vocabulary, a reference cell, also called a reference, is a
dynamically allocated block of memory, which holds a value, and whose
content can change over time.

A reference can be allocated and initialized (ref), written (:=), and
read (!).

Expressions and evaluation contexts are extended:

M ∶∶= . . . ∣ refM ∣M ∶=M ∣ !M
E ∶∶= . . . ∣ ref [] ∣ [] ∶=M ∣ V ∶= [] ∣ ! []

374 671 ◁

Intro Exceptions References in λst References in F

References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)
(which intuitively should yield ?) would reduce to:

(ref 3) ∶= 1; ! (ref 3)
(which yields 3).

How shall we solve this problem?

375 671 ◁

Intro Exceptions References in λst References in F

References

(ref 3) should first reduce to a value: the address of a fresh cell.

Not just the content of a cell matters, but also its address. Writing
through one copy of the address should affect a future read via another
copy.

376 671 ◁

Intro Exceptions References in λst References in F

References

We extend the simply-typed λ-calculus calculus with memory locations:

V ∶∶= . . . ∣ ℓ
M ∶∶= . . . ∣ ℓ

A memory location is just an atom (that is, a name). The value found at
a location ℓ is obtained by indirection through a memory (or store).

A memory µ is a finite mapping of locations to closed values.

377 671 ◁

Intro Exceptions References in λst References in F

References

A configuration is a pair M / µ of a term and a store. The operational
semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the
locations that appear in M or in the image of µ are in the domain
of µ.

● Initially, the store is empty, and the term contains no locations,
because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

● If we wish to start reduction with a non-empty store, we must check
that the initial configuration satisfies the no-dangling-pointers
invariant.

378 671 ◁

Intro Exceptions References in λst References in F

References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′

Three new reduction rules are added:

ref V / µ Ð→ ℓ / µ[ℓ ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= V / µ Ð→ () / µ[ℓ ↦ V]

! ℓ / µ Ð→ µ(ℓ) / µ
Notice: In the last two rules, the no-dangling-pointers invariant
guarantees ℓ ∈ dom(µ).

379 671 ◁

Intro Exceptions References in λst References in F

References

The type system is modified as follows. Types are extended:

τ ∶∶= . . . ∣ ref τ
Three new typing rules are introduced:

Ref

Γ ⊢M ∶ τ
Γ ⊢ refM ∶ ref τ

Set

Γ ⊢M1 ∶ ref τ Γ ⊢M2 ∶ τ
Γ ⊢M1 ∶=M2 ∶ unit

Get

Γ ⊢ M ∶ ref τ
Γ ⊢ !M ∶ τ

Is that all we need?

380 671 ◁

Intro Exceptions References in λst References in F

References

The preceding setup is enough to typecheck source terms, but does not
allow stating or proving type soundness.

Indeed, we have not yet answered these questions:

● What is the type of a memory location ℓ?

● When is a configuration M / µ well-typed?

381 671 ◁

Intro Exceptions References in λst References in F

References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ
µ,Γ ⊢ ℓ ∶ ref τ

Comments?

● Typing judgments would have the form µ,Γ ⊢M ∶ τ .
However, they would no longer be inductively defined (or else, every
cyclic structure would be ill-typed). Instead, co-induction would be
required.

● Moreover, if the value µ(ℓ) happens to admit two distinct types τ1
and τ2, then ℓ admits types ref τ1 and ref τ2. So, one can write at
type τ1 and read at type τ2: this rule is unsound!

382 671 ◁

Intro Exceptions References in λst References in F

References

A simpler and sound approach is to fix the type of a memory location
when it is first allocated. To do so, we use a store typing Σ, a finite
mapping of locations to types.

So, when does a location ℓ have type ref τ? “When Σ says so.”

Loc

Σ,Γ ⊢ ℓ ∶ ref Σ(ℓ)
Comments:

● Typing judgments now have the form Σ,Γ ⊢M ∶ τ .

383 671 ◁

Intro Exceptions References in λst References in F

References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config⊢ µ ∶ Σ Σ,∅ ⊢M ∶ τ
⊢M / µ ∶ τ

Comments:

● This is an inductive definition. The store typing Σ serves both as an
assumption (Loc) and a goal (Store). Cyclic stores are not a
problem.● The store typing is used only in the definition of a “well-typed
configuration” and in the typechecking of locations. Thus, it is not
needed for type-checking source programs, since the store is empty
and the empty-store configuration is always well-typed.● Notice that Σ does not appear in the conclusion of Config. 384 671 ◁

Intro Exceptions References in λst References in F

Restating type soundness

The type soundness statements are slightly modified in the presence of
the store, since we now reduce configurations:

Theorem (Subject reduction)

Reduction preserves types: if M / µÐ→M ′ / µ′ and ⊢M / µ ∶ τ , then⊢M ′ / µ′ ∶ τ .
Theorem (Progress)

If M / µ is a well-typed, irreducible configuration, then M is a value.

385 671 ◁

Intro Exceptions References in λst References in F

Restating subject reduction

Inlining Config, subject reduction can also be restated as:

Theorem (Subject reduction, expanded)

If M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢M ∶ τ , then there exists Σ′

such that ⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢ M ′ ∶ τ .
This statement is correct, but too weak—its proof by induction will fail
in one case. (Which one?)

386 671 ◁

Intro Exceptions References in λst References in F

Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ
Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′ ∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)
Then, by the induction hypothesis, there exists Σ′ such that:

⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢M ′ ∶ τ ′
Here, we are stuck. The context E is well-typed under Σ, but the term
M ′ is well-typed under Σ′, so we cannot combine them.

How can we fix this?

387 671 ◁

Intro Exceptions References in λst References in F

Establishing subject reduction

We are missing a key property: the store typing grows with time.
That is, although new memory locations can be allocated, the type of an
existing location does not change.

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

If M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢M ∶ τ , then there exists Σ′

such that ⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢ M ′ ∶ τ and Σ ⊆ Σ′.

At each reduction step, the new store typing Σ′ extends the previous
store typing Σ.

388 671 ◁

Intro Exceptions References in λst References in F

Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

If Σ ⊆ Σ′ and Σ,Γ ⊢M ∶ τ , then Σ′,Γ ⊢M ∶ τ .
(This is a generalization of the weakening lemma.)

389 671 ◁

Intro Exceptions References in λst References in F

Establishing subject reduction

Stability under memory allocation allows establishing a strengthened
version of compositionality:

Lemma (Compositionality)

Assume Σ,∅ ⊢ E[M] ∶ τ . Then, there exists τ ′ such that:

● Σ,∅ ⊢M ∶ τ ′,
● for every Σ′ such that Σ ⊆ Σ′, for every M ′,
Σ′,∅ ⊢M ′ ∶ τ ′ implies Σ′,∅ ⊢ E[M ′] ∶ τ .

390 671 ◁

Intro Exceptions References in λst References in F

Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ and M / µ Ð→M ′ / µ′
By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′
∀Σ′ ,∀M ′, (Σ ⊆ Σ′)⇒ (Σ′ ,∅ ⊢M ′ ∶ τ ′)⇒ (Σ′ ,∅ ⊢ E[M ′] ∶ τ ′)
By the induction hypothesis, there exists Σ′ such that:

⊢ µ′ ∶ Σ′ and Σ′ ,∅ ⊢M ′ ∶ τ ′ and Σ ⊆ Σ′

The goal immediately follows.

391 671 ◁

Intro Exceptions References in λst References in F

Exercise

Exercise (Recommended)

Prove subject reduction and progress for simply-typed λ-calculus
equipped with unit, pairs, sums, recursive functions, exceptions, and
references!

391 671 ◁

Intro Exceptions References in λst References in F

Monads

Haskell adopts a different route and chooses to distinguish effectful
computations [Peyton Jones and Wadler, 1993; Peyton Jones, 2009].

return ∶ α → IO α

bind ∶ IO α → (α → IO β)→ IO β

main ∶ IO ()
newIORef ∶ α → IO (IORef α)
readIORef ∶ IORef α → IO α

writeIORef ∶ IORef α → α → IO ()
Haskell offers many monads other than IO. In particular, the ST monad
offers references whose lifetime is statically controlled.

391 671 ◁

Intro Exceptions References in λst References in F

On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the
runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious
technique, implemented in the ML Kit, is compile-time region
analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the
no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about
aliasing and ownership. See Charguéraud and Pottier [2008] for citations.

See also the Mezzo language [Pottier and Protzenko, 2013] designed
especially for the explicit control of resources.

A similar approach is taken in the language Rust.

392 671 ◁

Intro Exceptions References in λst References in F

Contents

Introduction

Exceptions

References in λst

Polymorphism and references

393 671 ◁

Intro Exceptions References in λst References in F

Combining extensions

We have shown how to extend simply-typed λ-calculus, independently,
with:

● polymorphism, and

● references.

Can these two extensions be combined?

394 671 ◁

Intro Exceptions References in λst References in F

Beware of polymorphic locations!

When adding references, we noted that type soundness relies on the fact
that every reference cell (or memory location) has a fixed type.

Otherwise, if a location had two types ref τ1 and ref τ2, one could store a
value of type τ1 and read back a value of type τ2.

Hence, it should also be unsound if a location could have type ∀α. ref τ
(where α appears in τ) as it could then be specialized to both types
ref ([α ↦ τ1]τ) and ref ([α ↦ τ2]τ).
By contrast, a location ℓ can have type ref (∀α. τ): this says that ℓ
stores values of polymorphic type ∀α. τ , but ℓ, as a value, is viewed with
the monomorphic type ref (∀α. τ).

395 671 ◁

Intro Exceptions References in λst References in F

A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) = Λα. ref (α → α) (λz ∶α. z) in(y bool) ∶= (bool → bool) not;
!(int → int) (y int) 1 /∅

∗Ð→ not 1 / ℓ↦ not

What happens is that the evaluation of the reference:

● creates and returns a location ℓ bound to the identity function
λz ∶α. z of type α → α,

● abstracts α in the result and binds it to y with the polymorphic type∀α. ref (α → α);
● writes the location at type ref (bool→ bool) and reads it back at
type ref (int→ int).

396 671 ◁

Intro Exceptions References in λst References in F

Nailing the bug

In the counter-example, the first reduction step uses the following rule
(where V is λx ∶α.x and τ is α → α).

Context
ref τ V /∅Ð→ ℓ / ℓ ↦ V

Λα. ref τ V /∅Ð→ Λα. ℓ / ℓ↦ V

While we have

α ⊢ ref τ V /∅ ∶ ref τ and α ⊢ ℓ / ℓ ↦ V ∶ ref τ
We have

⊢ Λα. ref τ V /∅ ∶ ∀α. ref τ but not ⊢ Λα. ℓ / ℓ↦ V ∶ ∀α. ref τ
Hence, the context case of subject reduction breaks.

397 671 ◁

Intro Exceptions References in λst References in F

Nailing the bug

The typing derivation of Λα. ℓ requires a store typing Σ of the form ℓ ∶ τ
and a derivation of the form:

Tabs
Σ, α ⊢ ℓ ∶ ref τ

Σ ⊢ Λα. ℓ ∶ ∀α. ref τ
However, the typing context Σ, α is ill-formed as α appears free in Σ.

Instead, a well-formed premise should bind α earlier as in α,Σ ⊢ ℓ ∶ ref τ ,
but then, Rule Tabs cannot be applied.

By contrast, the expression ref τ V is pure, so Σ may be empty:

Tabs
α ⊢ ref τ V ∶ ref τ

∅ ⊢ Λα. ref τ V ∶ ∀α. ref τ
The expression Λα. ℓ is correctly rejected as ill-typed, so Λα. (ref τ V)
should also be rejected.

398 671 ◁

Intro Exceptions References in λst References in F

Fixing the bug

Mysterious slogan:

One must not abstract over a type variable that might, after
evaluation of the term, enter the store typing.

Indeed, this is what happens in our example. The type variable α which
appears in the type α → α of V is abstracted in front of ref (α → α) V .

When ref (α → α) V reduces, α → α becomes the type of the fresh
location ℓ, which appears in the new store typing.

This is all well and good, but how do we enforce this slogan?

399 671 ◁

Intro Exceptions References in λst References in F

Fixing the bug

In the context of ML, a number of rather complex historic approaches
have been followed: see Leroy [1992] for a survey.

Then came Wright [1995], who suggested an amazingly simple solution,
known as the value restriction: only value forms can be abstracted over.

TAbs

Γ, α ⊢ u ∶ τ
Γ ⊢ Λα.u ∶ ∀α.τ

Value forms:

u ∶∶= x ∣ V ∣ Λα.u ∣ u τ
The problematic proof case vanishes, as we now never βδ-reduce under
type abstraction—only ι-reduction is allowed.

Subject reduction holds again.

400 671 ◁

Intro Exceptions References in λst References in F

A good intuition: internalizing configurations

A configuration M / µ is an expression M in a memory µ. The memory
can be viewed as a recursive extensible record.

The configuration M / µ may be viewed as the recursive definition (of
values) let rec m ∶ Σ = µ in [ℓ↦m.ℓ]M where Σ is a store typing for µ.

The store typing rules are coherent with this view.

Allocation of a reference is a reduction of the form

let rec m ∶ Σ = µ in E[ref τ V]Ð→ let rec m ∶ Σ, ℓ ∶ τ = µ, ℓ↦ V in E[m.ℓ]
For this transformation to preserve well-typedness, it is clear that the
evaluation context E must not bind any free type variable of τ .

Otherwise, we are violating the scoping rules.

401 671 ◁

Intro Exceptions References in λst References in F

Clarifying the typing rules

Let us review the typing rules for configurations:

Config

α⃗,Σ,∅ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ
α⃗ ⊢M / µ ∶ τ

Store∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
α⃗ ⊢ µ ∶ Σ

Remarks:

● Closed configurations are typed in an environment just composed of
type variables α⃗.

● α⃗ may appear in the store during reduction.
Take for example, M equal to ref (α → α) V where V is λx ∶α.x.

● Thus α⃗ will also appear in the store typing and should be placed in
front of the store typing; no β in α⃗ can be generalized.

● New type variables cannot be introduced during reduction.

402 671 ◁

Intro Exceptions References in λst References in F

Clarifying the typing rules

Judgments are now of the form α⃗,Σ,Γ ⊢ M ∶ τ although we may see
α⃗,Σ,Γ as a whole typing context Γ′.

For locations, we need a new context formation rule:
WfEnvLoc⊢ Γ Γ ⊢ τ ℓ ∉ dom(Γ)

⊢ Γ, ℓ ∶ τ
This allows locations to appear anywhere. However, in a derivation of a
closed term, the typing context will always be of the form α⃗,Σ,Γ where:

● Σ only binds locations (to arbitrary types) and

● Γ does not bind locations.

403 671 ◁

Intro Exceptions References in λst References in F

Clarifying the typing rules

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′)

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)
In System F, typing rules for references need not be primitive.
We may instead treat them as constants of the following types:

ref ∶ ∀α.α → ref α(!) ∶ ∀α. ref α → α(∶=) ∶ ∀α. ref α → α → unit

There are all destructors (event ref) with the obvious arities.

The δ-rules are adapted to carry explicit type parameters:

ref τ V / µ Ð→ ℓ / µ[ℓ ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= (τ) V / µ Ð→ () / µ[ℓ ↦ V]

!τ ℓ / µ Ð→ µ(ℓ) / µ
404 671 ◁

Intro Exceptions References in λst References in F

Stating type soundness

Lemma (Subject reduction for constants)

δ-rules preserve well-typedness of closed configurations.

Theorem (Subject reduction)

Reduction of closed configurations preserves well-typedness.

Lemma (Progress for constants)

A well-typed closed configuration M/µ where M is a full application of
constants ref, (!), or (∶=) to types and values can always be reduced.

Theorem (Progress)

A well-typed irreducible closed configuration M/µ is a value.

405 671 ◁

Intro Exceptions References in λst References in F

Consequences

The problematic program is now syntactically ill-formed:

let y ∶ ∀α. ref (α → α) = Λα. ref (λz ∶α. z) in(∶=) (bool→ bool) (y bool) not;
! (int → int) (y (int)) 1

Indeed, ref (λz ∶α. z) is not a value form, but the application of a unary
destructor to a value, so it cannot be generalized.

406 671 ◁

Intro Exceptions References in λst References in F

Value restriction limitations

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α.∀β. (α → β)→ list α → list β id ∶ ∀α.α → α

This expression becomes ill-typed:

Λα.map α α (id α)
A common work-around is to perform a manual η-expansion:

Λα.λy ∶ list α.map α (id α) y
Of course, in the presence of side effects, η-expansion is not
semantics-preserving, so this must not be done blindly.

407 671 ◁

Intro Exceptions References in λst References in F

Value restriction Extensions

Non-expansive expressions

The value restriction can be slightly relaxed by enlarging the class of
value-forms to a syntactic category of so-called non-expansive
terms—terms whose evaluation will definitely not allocate new reference
cells. Non-expansive terms form a strict superset of value-forms.

u ∶∶= x ∣ V ∣ Λα.u ∣ u τ∣ let x = u in u ∣ (λx ∶τ. u) u∣ C u1 . . . uk∣ d u1 . . . uk where either [k < arity (d)
d is non-expansive.

In particular, pattern matching is a non-expansive destructor! But ref ⋅ is
an expansive one!.

For example, the following expression is non-exapnsive:

Λα. let x = (match y with (Ci x̄i → ui) i∈I)) in u
408 671 ◁

Intro Exceptions References in λst References in F

Value restriction Extensions

Positive occurrences: Garrigue [2004] relaxes the value restriction in a
more subtle way, which is justified by a subtyping argument.

For instance, let x ∶ ∀α. list α = Λα. (M1 M2) inM may be well-typed
because because α appears only positively in the type of M1 M2.

More generally, given a type context T [α] where α appears only positively

● ∀α.T [α] can be instantiated to T [∀α.α], and
● T [∀α.α] is a subtype of ∀α.T [α]

Hence, a value of type T [α] can be given the monomorphic type
T [∀α.α] by weakening before entering the store to please the value
restriction, but retrieved at type ∀α.T [α], a subtype of T [∀α.α].
OCaml implements this, but restricts it to strictly positive occurrences so
as to keep the principal type property.

409 671 ◁

Intro Exceptions References in λst References in F

Value restriction Extensions

In fact, the two extensions can be combined: Λα.M need only be
forbidden when

α appears in the type of some exposed expansive subterm at
some negative occurrence,

where exposed subterms are those that do not appear under some
λ-abstraction.

For instance, the expression

let x ∶ ∀α. int × (list α) × (α → α) =
Λα. (ref (1 + 2), (λx ∶α.x) Nil, λx ∶α.x)

inM

may be accepted because α appears only in the type of the
non-expansive exposed expression λx ∶α.x and only positively in the type
of the expansive expression (λx ∶α.x) Nil.

410 671 ◁

Intro Exceptions References in λst References in F

Conclusions

Experience has shown that the value restriction is tolerable. Even though
it is not conservative, the search for better solutions has been pretty
much abandoned.

There is still on going research for tracing side effects more precisely, in
particular to better circumvent their use.

Actually, there is a regained interest in tracing side effects, with the
introduction of effect handlers.

411 671 ◁

Intro Exceptions References in λst References in F

Conclusions

In a type-and-effect system [Lucassen and Gifford, 1988;
Talpin and Jouvelot, 1994], or in a type-and-capability
system [Charguéraud and Pottier, 2008], the type system indicates which
expressions may allocate new references, and at which type. This permits
strong updates—updates that may also change the type of references.

There, the value restriction is no longer necessary.

However, if one extends a type-and-capability system with a mechanism
for hiding state, the need for the value restriction re-appears.

Pottier and Protzenko [2012] (and [Protzenko, 2014]) designed a
language, called Mezzo, where mutable state is tracked very precisely,
using permissions, ownership, and afine types.

412 671 ◁

Type reconstruction

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

414 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Logical versus algorithmic properties

We have viewed a type system as a 3-place predicate over a type
environment, a term, and a type.

So far, we have been concerned with logical properties of the type
system, namely subject reduction and progress.

However, one should also study its algorithmic properties: is it decidable
whether a term is well-typed?

415 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Logical versus algorithmic properties

We have seen three different type systems, simply-typed λ-calculus, ML,
and System F, of increasing expressiveness.

In each case, we have presented an explicitly-typed and an
implicitly-typed version of the language and shown a close
correspondence between the two views, thanks to a type-passing
semantics.

We argued that the explicitly-typed version is often more convenient for
studying the meta-theoretical properties of the language.

Which one should we used for checking well-typedness? That is, in which
language should we write programs?

416 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Checking type derivations

The typing judgment is inductively defined, so that, in order to prove
that a particular instance holds, one exhibits a type derivation.

A type derivation is essentially a version of the program where every
node is annotated with a type.

Checking that a type derivation is correct is usually easy: it basically
amounts to checking equalities between types.

However, type derivations are so verbose as to be intractable by humans!
Requiring every node to be type-annotated is not practical.

417 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bottom-up type-checking

A more practical, common, approach consists in requesting just enough
annotations to allow types to be reconstructed in a bottom-up manner.

One seeks an algorithmic reading of the typing rules, where, in a
judgment Γ ⊢M ∶ τ , the parameters Γ and M are inputs, while the
parameter τ is an output.

Moreover, typing rules should be such that a type appearing as output in
a conclusion should also appear as output in a premise or as input in the
conclusion and input in the premises should be input of the conclusion or
output of other premises.

Abs — Checking rule

Γ, x ∶ τ ↑
0
⊢M ∶ τ ↓

Γ ⊢ λx ∶τ ↑
0
.M ∶ τ ↓

0
→ τ ↓

Abs — Inference rule

Γ, x ∶ τ ↑
0
⊢ a ∶ τ ↓

Γ ⊢ λx.a ∶ τ ↓
0
→ τ ↓

This way, types need never be guessed, just looked up into the typing
context, instantiated, or checked for equality.

418 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bottom-up type-checking

This is exactly the situation with explicitly-typed presentations of the
typing rules.

This is also the traditional approach of Pascal, C, C++, Java, . . . :
formal procedure parameters, as well as local variables, are assigned
explicit types. The types of expressions are synthesized bottom-up.

419 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bottom-up type-checking

However, this implies a lot of redundancies:

● Parameters of all functions need to be annotated, even when their
types are obvious from context.

● Let-expressions (when not primitive), recursive definitions, injections
into sum types need to be annotated.

● As the language grows, more and more constructs require type
annotations, e.g. type applications and type abstractions.

Type annotations may quickly obfuscate the code and large
explicitly-typed terms are so verbose that they become intractable by
humans!

Hence, programming in the implicitly-typed version is more appealing.

420 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference

For simply-typed λ-calculus and ML, it turns out that this is possible:
whether a term is well-typed is decidable, even when no type annotations
are provided!

For System F, this is however undecidable. Since programming in
explicitly-typed System F is not practically feasible, some amount of type
reconstruction must still be done. Typically, the algorithm is incomplete,
i.e. it rejects terms that are perhaps well-typed, but the user may always
provide more annotations and at worse, the explicitly-typed version is
never rejected if well-typed.

421 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

422 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference

The type inference algorithm for simply-typed λ-calculus, is due to
Hindley [1969]. The idea behind the algorithm is simple.

Because simply-typed λ-calculus is a syntax-directed type system, an
unannotated term determines an isomorphic candidate type derivation,
where all types are unknown: they are distinct type variables.

For a candidate type derivation to become an actual, valid type
derivation, every type variable must be instantiated with a type, subject
to certain equality constraints on types.

For instance, at an application node, the type of the operator must
match the domain type of the operator.

423 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference

Thus, type inference for the simply-typed λ-calculus decomposes into
constraint generation followed by constraint solving.

Simple types are first-order terms. Thus, solving a collection of equations
between simple types is first-order unification.

First-order unification can be performed incrementally in quasi-linear
time, and admits particularly simple solved forms.

424 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraints

At the interface between the constraint generation and constraint solving
phases is the constraint language.

It is a logic: a syntax, equipped with an interpretation in a model.

425 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraints

There are two syntactic categories: types and constraints.

τ ∶∶= α ∣ F τ⃗
C ∶∶= true ∣ false ∣ τ = τ ∣ C ∧C ∣ ∃α.C

A type is either a type variable α or an arity-consistent application of a
type constructor F.

(The type constructors are unit, ×, +, →, etc.)
An atomic constraint is truth, falsity, or an equation between types.

Compound constraints are built on top of atomic constraints via
conjunction and existential quantification over type variables.

426 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraints

Constraints are interpreted in the Herbrand universe, that is, in the set of
ground types:

t ∶∶= F t⃗

Ground types contain no variables. The base case in this definition is
when F has arity zero. There should be at least one constructor of arity
zero, so that the model is non-empty.

A ground assignment φ is a total mapping of type variables to ground
types.

A ground assignment determines a total mapping of types to ground
types.

427 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraints

The interpretation of constraints takes the form of a judgment, φ ⊢ C,
pronounced: φ satisfies C, or φ is a solution of C.

This judgment is inductively defined:

φ ⊢ true φτ1 = φτ2

φ ⊢ τ1 = τ2
φ ⊢ C1 φ ⊢ C2

φ ⊢ C1 ∧C2

φ[α ↦ t] ⊢ C
φ ⊢ ∃α.C

A constraint C is satisfiable if and only if there exists a ground
assignment φ that satisfies C.

We write C1 ≡ C2 when C1 and C2 have the same solutions.

The problem: “given a constraint C, is C satisfiable?” is first-order
unification.

428 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation

Type inference is reduced to constraint solving by defining a mapping of
candidate judgments to constraints.

⟪Γ ⊢ x ∶ τ⟫ = Γ(x) = τ
⟪Γ ⊢ λx.a ∶ τ⟫ = ∃α1α2.(⟪Γ, x ∶ α1 ⊢ a ∶ α2⟫ ∧ α1 → α2 = τ)

if α1, α2 # Γ, a, τ

⟪Γ ⊢ a1 a2 ∶ τ⟫ = ∃α.(⟪Γ ⊢ a1 ∶ α → τ⟫ ∧ ⟪Γ ⊢ a2 ∶ α⟫)
if α # Γ, a1, a2, τ

Thanks to the use of existential quantification, the names that occur
free in ⟪Γ ⊢ a ∶ τ⟫ are a subset of those that occur free in Γ or τ .

This allows the freshness side-conditions to remain local – there is no
need to informally require “globally fresh” type variables.

429 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

Let us perform type inference for the closed term

λfxy. (f x, f y)
The problem is to construct and solve the constraint

⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫
It is possible (and, for a human, easier) to mix these tasks. A machine,
however, can generate and solve the constraints in two successive phases.

Solving the constraint means to find all possible ground assignments for
α0 that satisfy the constraint.

Typically, this is done by transforming the constraint into successive
equivalent constraints until some constraint that is obviously satisfiable
and from which solutions may be directly read.

430 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫
= ∃α1α2.(⟪f ∶ α1 ⊢ λxy. . . . ∶ α2⟫

α1 → α2 = α0

)

= ∃α1α2.
⎛⎜⎝
∃α3α4.(⟪f ∶ α1;x ∶ α3 ⊢ λy. . . . ∶ α4⟫

α3 → α4 = α2

)
α1 → α2 = α0

⎞⎟⎠

= ∃α1α2.

⎛⎜⎜⎜⎝
∃α3α4.

⎛⎜⎝
∃α5α6.(⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫

α5 → α6 = α4

)
α3 → α4 = α2

⎞⎟⎠
α1 → α2 = α0

⎞⎟⎟⎟⎠

We perform constraint generation for the 3 λ-abstractions.

431 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α2.

⎛⎜⎜⎜⎝
∃α3α4.

⎛⎜⎝
∃α5α6.(⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫

α5 → α6 = α4

)
α3 → α4 = α2

⎞⎟⎠
α1 → α2 = α0

⎞⎟⎟⎟⎠

≡ ∃α1α2α3α4α5α6.

⎛⎜⎜⎜⎝

⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫
α5 → α6 = α4

α3 → α4 = α2

α1 → α2 = α0

⎞⎟⎟⎟⎠

We hoist up existential quantifiers:

(∃α.C1) ∧C2 ≡ ∃α.(C1 ∧C2) if α # C2

432 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α2α3α4α5α6.

⎛⎜⎜⎜⎝

⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫
α5 → α6 = α4

α3 → α4 = α2

α1 → α2 = α0

⎞⎟⎟⎟⎠

≡ ∃α1α2α3α5α6.
⎛⎜⎝
⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫
α3 → α5 → α6 = α2

α1 → α2 = α0

⎞⎟⎠

We eliminate type variables with defining equations:

∃α.(C ∧α = τ) ≡ [α ↦ τ]C if α # τ

433 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α2α3α5α6.
⎛⎜⎝
⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫
α3 → α5 → α6 = α2

α1 → α2 = α0

⎞⎟⎠

≡ ∃α1α3α5α6.(⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫
α1 → α3 → α5 → α6 = α0

)
We have again eliminated a type variable (α2) with a defining equation.

In the following, let Γ stand for (f ∶ α1;x ∶ α3;y ∶ α5).

434 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α3α5α6.(⟪Γ ⊢ (f x, f y) ∶ α6⟫
α1 → α3 → α5 → α6 = α0

)

≡ ∃α1α3α5α6α7α8.

⎛⎜⎜⎜⎝

⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α7 ×α8 = α6

α1 → α3 → α5 → α6 = α0

⎞⎟⎟⎟⎠

≡ ∃α1α3α5α7α8.
⎛⎜⎝
⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎠
We have performed constraint generation for the pair, hoisted the
resulting existential quantifiers, and eliminated a type variable (α6).

Let us now focus on the first application...
435 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

⟪Γ ⊢ f x ∶ α7⟫
= ∃α9.(⟪Γ ⊢ f ∶ α9 → α7⟫⟪Γ ⊢ x ∶ α9⟫)

= ∃α9.(α1 = α9 → α7

α3 = α9

)
≡ α1 = α3 → α7

We perform constraint generation for the variables f and x,
and eliminate a type variable (α9).

Recall that Γ stands for (f ∶ α1;x ∶ α3;y ∶ α5).
Now, back to the big picture...

436 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α3α5α7α8.
⎛⎜⎝
⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎠

≡ ∃α1α3α5α7α8.
⎛⎜⎝
α1 = α3 → α7⟪Γ ⊢ f y ∶ α8⟫
α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎠

≡ ∃α1α3α5α7α8.
⎛⎜⎝
α1 = α3 → α7

α1 = α5 → α8

α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎠
We apply a simplification under a context:

C1 ≡ C2 ⇒R[C1] ≡R[C2]
437 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

∃α1α3α5α7α8.
⎛⎜⎝
α1 = α3 → α7

α1 = α5 → α8

α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎠

≡ ∃α1α3α5α7α8.

⎛⎜⎜⎜⎝

α1 = α3 → α7

α3 = α5

α7 = α8

α1 → α3 → α5 → α7 ×α8 = α0

⎞⎟⎟⎟⎠
≡ ∃α3α7. ((α3 → α7)→ α3 → α3 → α7 × α7 = α0)

We apply transitivity at α1, structural decomposition,
and eliminate three type variables (α1, α5, α8).

We have now reached a solved form.

438 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

We have checked the following equivalence:

⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫
≡ ∃α3α7. ((α3 → α7)→ α3 → α3 → α7 × α7 = α0)

The ground types of λfxy. (f x, f y) are all ground types of the form(t3 → t7)→ t3 → t3 → t7 × t7.

(α3 → α7)→ α3 → α3 → α7 × α7 is a principal type for λfxy. (f x, f y).

439 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

Objective Caml implements a form of this type inference algorithm:

fun f x y -> (f x, f y);;

- : (’a -> ’b) -> ’a -> ’a -> ’b * ’b = <fun>

This technique is used also by Standard ML and Haskell.

440 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

In the simply-typed λ-calculus, type inference works just as well for open
terms. Consider, for instance:

λxy. (f x, f y)
This term has a free variable, namely f .

The type inference problem is to construct and solve the constraint

⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫
We have already done so... with only a slight difference: α1 and α2 are
now free, so they cannot be eliminated.

441 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example

One can check the following equivalence:

⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫
≡ ∃α3α7.(α3 → α7 = α1

α3 → α3 → α7 × α7 = α2

)
In other words, the ground typings of λxy. (f x, f y) are all ground pairs
of the form2: (f ∶ t3 → t7), t3 → t3 → t7 × t7

Remember that a typing is a pair of an environment and a type.

2If we restrict to contexts of domain {x}, the only free variable of the term.

442 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Typings

Definition(Γ, τ) is a typing of a if and only if dom(Γ) = fv(a) and the judgment
Γ ⊢ a ∶ τ is valid.

The type inference problem is to determine whether a term a admits a
typing, and, if possible, to exhibit a description of the set of all of its
typings.

Up to a change of universes, the problem reduces to finding the ground
typings of a term. (For every type variable, introduce a nullary type
constructor. Then, ground typings in the extended universe are in
one-to-one correspondence with typings in the original universe.)

443 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation

Theorem (Soundness and completeness)

φ ⊢ ⟪Γ ⊢ a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .
Proof.
By structural induction over a. (Recommended exercise.)

In other words, assuming dom(Γ) = fv(a), φ satisfies the constraint⟪Γ ⊢ a ∶ τ⟫ if and only if (φΓ, φτ) is a (ground) typing of a.

444 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation

Corollary

Let fv(a) = {x1, . . . , xn}, where n ≥ 0. Let α0, . . . , αn be pairwise
distinct type variables. Then, the ground typings of a are described by

((xi ∶ φαi)i∈1..n, φα0)
where φ ranges over all solutions of ⟪(xi ∶ αi)i∈1..n ⊢ a ∶ α0⟫.
Corollary

Let fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪∅ ⊢ a ∶ α⟫ ≡ true.

445 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint solving

A constraint solving algorithm is typically presented as a
(non-deterministic) system of constraint rewriting rules.

The system must enjoy the following properties:

● reduction is meaning-preserving: C1 Ð→ C2 implies C1 ≡ C2;● reduction is terminating;

● every normal form is either “false” (literally) or satisfiable.

The normal forms are called solved forms.

446 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

First-order unification as constraint solving

Following Pottier and Rémy [2005, §10.6], we extend the syntax of
constraints and replace ordinary binary equations with multi-equations:

U ∶∶= true ∣ false ∣ ǫ ∣ U ∧U ∣ ∃ᾱ.U
A multi-equation ǫ is a multi-set of types. Its interpretation is:

∀τ ∈ ǫ, φτ = t

φ ⊢ ǫ
That is, φ satisfies ǫ if and only if φ maps all members of ǫ to a single
ground type.

447 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

First-order unification as constraint solving

(∃ᾱ.U1) ∧U2 Ð→ ∃ᾱ.(U1 ∧U2) (extrusion)

if ᾱ # U2

α = ǫ ∧ α = ǫ′ Ð→ α = ǫ = ǫ′ (fusion)

F α⃗ = F τ⃗ = ǫ Ð→ α⃗ = τ⃗ ∧ F α⃗ = ǫ (decomposition)

F τ1 . . . τi . . . τn = ǫ Ð→ ∃α.(α = τi ∧ F τ1 . . . α . . . τn = ǫ) (naming)

if τi is not a variable ∧ α # τ1, . . . , τn, ǫ

F τ⃗ = F′ τ⃗ ′ = ǫ Ð→ false (clash)

if F ≠ F′

U Ð→ false (occurs check)

if U is cyclicU[false] Ð→ false (error propag.)

See [Pottier and Rémy, 2005, §10.6] for additional administrative rules.

448 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

The occurs check

α dominates β (with respect to U) iff U contains a multi-equation of the
form α = F τ1 . . . β . . . τn = . . .

U is cyclic iff its domination relation is cyclic.

A cyclic constraint is unsatisfiable: indeed, if φ satisfies U and if α is a
member of a cycle, then the ground type φα must be a strict subterm of
itself, a contradiction.

Remark: Cyclic constraints would become solvable if we allowed regular
trees for ground terms.

449 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Solved forms

A solved form is either false or ∃ᾱ.U , where

● U is a conjunction of multi-equations,

● every multi-equation contains at most one non-variable term,

● no two multi-equations share a variable, and

● the domination relation is acyclic.

Every solved form that is not false is satisfiable – indeed, a solution is
easily constructed by well-founded recursion over the domination relation.

450 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Implementation

Viewing a unification algorithm as a system of rewriting rules makes it
easy to explain and reason about.

In practice, following Huet [1976], first-order unification is implemented
on top of an efficient union-find data structure [Tarjan, 1975]. Its time
complexity is quasi-linear.

451 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

452 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Two presentations

Two presentations of type inference for Damas and Milner’s type system
are possible:

● one of Milner’s classic algorithms [1978], W or J ; see Pottier’s old
course notes for details [Pottier, 2002, §3.3];

● a constraint-based presentation [Pottier and Rémy, 2005];

We favor the latter, but quickly review the former first.

453 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Preliminaries

This algorithm expects a pair Γ ⊢ a, produces a type τ , and uses two
global variables, V and ϕ.

V is an infinite fresh supply of type variables:

fresh = do α ∈ V
do V ← V ∖ {α}
return α

ϕ is an idempotent substitution (of types for type variables), initially the
identity.

454 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

The algorithm

Here is the algorithm in monadic style:

J (Γ ⊢ x) = let ∀α1 . . . αn.τ = Γ(x)
do α′

1
, . . . , α′n = fresh, . . . , fresh

return [αi ↦ α′i]ni=1(τ) – take a fresh instanceJ (Γ ⊢ λx.a1) = do α = fresh
do τ1 = J (Γ;x ∶ α ⊢ a1)
return α → τ1 – form an arrow type

. . .

455 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

The algorithm

. . .J (Γ ⊢ a1 a2) = do τ1 = J (Γ ⊢ a1)
do τ2 = J (Γ ⊢ a2)
do α = fresh
do ϕ←mgu(ϕ(τ1) = ϕ(τ2 → α)) ○ ϕ
return α – solve τ1 = τ2 → αJ (Γ ⊢ let x = a1 in a2) = do τ1 = J (Γ ⊢ a1)
let σ = ∀∖ ftv(ϕ(Γ)). ϕ(τ1) – generalize
return J (Γ;x ∶ σ ⊢ a2)

(∀∖ᾱ. τ quantifies over all type variables other than ᾱ.)

456 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Some weaknesses

Algorithm J mixes generation and solving of equations. This lack of
modularity leads to several weaknesses:

● proofs are more difficult;

● correctness and efficiency concerns are not clearly separated
(if implemented literally, the algorithm is exponential in practice);

● adding new language constructs duplicates solving of equations;

● generalizations, such as the introduction of subtyping, are not easy.

457 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Some weaknesses

Algorithm J works with substitutions, instead of constraints.

Substitutions are an approximation to solved forms for unification
constraints.

Working with substitutions means using most general unifiers,
composition, and restriction.

Working with constraints means using equations, conjunction, and
existential quantification.

458 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

459 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Road map

Type inference for Damas and Milner’s type system involves slightly more
than first-order unification: there is also generalization and instantiation
of type schemes.

So, the constraint language must be enriched.

We proceed in two steps:

● still within simply-typed λ-calculus, we present a variation of the
constraint language;

● building on this variation, we introduce polymorphism.

460 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A variation on constraints

How about letting the constraint solver, instead of the constraint
generator, deal with environment access and construction?

Let’s enrich the syntax of constraints:

C ∶∶= . . . ∣ x = τ ∣ def x ∶ τ in C

The idea is to interpret constraints in such a way as to validate the
equivalence law:

def x ∶ τ in C ≡ [x ↦ τ]C
The def form is an explicit substitution form.

461 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A variation on constraints

More precisely, here is the new interpretation of constraints.

As before, a valuation φ maps type variables α to ground types.

In addition, a valuation x1 maps term variables x to ground types.

The satisfaction judgment now takes the form φ,x1 ⊢ C. The new rules
of interest are:

x1x = φτ

φ,x1 ⊢ x = τ

φ,x1[x ↦ φτ] ⊢ C
φ,x1 ⊢ def x ∶ τ in C

(All other rules are modified to just transport x1.)

462 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A variation on constraints

Constraint generation is now a mapping of an expression a and a type τ
to a constraint ⟪a ∶ τ⟫. There is no longer a need for the parameter Γ.

⟪x ∶ τ⟫ = x = τ

⟪λx.a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

No environments!

463 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A variation on constraints

Theorem (Soundness and completeness)

Assume fv(a) = dom(Γ). Then, φ,φΓ ⊢ ⟪a ∶ τ⟫ if and only if
φΓ ⊢ a ∶ φτ .
Corollary

Assume fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪a ∶ α⟫ ≡ true.

464 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Summary

This variation shows that there is freedom in the design of the constraint
language, and that altering this design can shift work from the constraint
generator to the constraint solver, or vice-versa.

465 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Enriching constraints

To permit polymorphism, we must extend the syntax of constraints so
that a variable x denotes not just a ground type, but a set of ground
types.

However, these sets cannot be represented as type schemes ∀ᾱ. τ ,
because constructing these simplified forms requires constraint solving.

To avoid mingling constraint generation and constraint solving, we use
type schemes that incorporate constraints: constrained type schemes.

466 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Enriching constraints

The syntax of constraints and of constrained type schemes is:

C ∶∶= τ = τ ∣ C ∧C ∣ ∃α.C∣ x ⪯ τ∣ σ ⪯ τ∣ def x ∶ σ in C
σ ∶∶= ∀ᾱ[C]. τ

x ⪯ τ and σ ⪯ τ are instantiation constraints.

σ ⪯ τ constraints are introduced so as to make the syntax stable under
substitutions of constrained type schemes for variables.

As before, def x ∶ σ in C is an explicit substitution form.

467 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Enriching constraints

The idea is to interpret constraints in such a way as to validate the
equivalence laws:

def x ∶ σ in C ≡ [x ↦ σ]C
(∀ᾱ[C]. τ) ⪯ τ ′ ≡ ∃ᾱ.(C ∧ τ = τ ′) if ᾱ # τ ′

Using these laws, a closed constraint can be rewritten to a unification
constraint (with a possibly exponential increase in size).

The new constructs do not add much expressive power. They add just
enough to allow a stand-alone formulation of constraint generation.

468 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Interpreting constraints

A type variable α still denotes a ground type.

A variable x now denotes a set of ground types.

Instantiation constraints are interpreted as set membership.

φτ ∈ x1x

φ,x1 ⊢ x ⪯ τ

φτ ∈ (φx1
)σ

φ,x1 ⊢ σ ⪯ τ

φ,x1[x ↦ (φx1
)σ] ⊢ C

φ,x1 ⊢ def x ∶ σ in C

469 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Interpreting constrained type schemes

The interpretation of ∀ᾱ[C]. τ under φ and x1 is the set of all φ′τ ,

where φ and φ′ coincide outside ᾱ and where φ′ and x1 satisfy C.

(φx1
)(∀ᾱ[C]. τ) = {φ′τ ∣ (φ′ ∖ ᾱ = φ ∖ ᾱ) ∧ (φ′, x1 ⊢ C)}

For instance, the interpretation of ∀α[∃β.α = β → δ]. α → α under φ
and x1 is the set of all ground types of the form (t → φδ) → (t → φδ),
where t ranges over ground types.

This is also the interpretation of ∀β. (β → δ) → (β → δ).
In fact, every constrained type scheme is equivalent to a standard type
scheme. (Because constrainted can be reduced to equality constrained,
which can always be eliminated: this would no longer be true if we
introducted subtyping constrained.)

If ᾱ and C are empty, then (φx1
)τ is φτ .

470 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A derived form

Notice that def x ∶ σ in C is equivalent to C whenever x does not appear
free in C—whether or not of the constraints appearing in σ are solvable.

To enforce the constraints in σ to be solvable, we use a variant of the def
construct:

let x ∶ σ in C ≡ def x ∶ σ in ((∃α.x ⪯ α) ∧C)

Expanding σ
△
== ∀ᾱ[C0]. τ and simplifying, an equivalent definition is:

let x ∶ ∀ᾱ[C0]. τ in C ≡ ∃ᾱ.C0 ∧ def x ∶ ∀ᾱ[C0]. τ in C

It would also be equivalent to provide a direct interpretation of it:

(φx1
)σ /= ∅ φ,x1[x ↦ (φx1

)σ] ⊢ C
φ,x1 ⊢ let x ∶ σ in C

471 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation

Constraint generation is now as follows:

⟪x ∶ τ⟫ = x ⪯ τ

⟪λx.a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧ α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

⟪let x = a1 in a2 ∶ τ⟫ = let x ∶ La1M in ⟪a2 ∶ τ⟫
LaM = ∀α[⟪a ∶ α⟫]. α

LaM is a principal constrained type scheme for a: its intended
interpretation is the set of all ground types that a admits.

472 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Properties of constraint generation

Lemma∃α.(⟪a ∶ α⟫ ∧α = τ) ≡ ⟪a ∶ τ⟫ if α # τ .

Lemma
LaM ⪯ τ ≡ ⟪a ∶ τ⟫.
Lemma[x ↦ La1M]⟪a2 ∶ τ⟫ ≡ ⟪[x↦ a1]a2 ∶ τ⟫.
Lemma⟪let x = a1 in a2 ∶ τ⟫ ≡ ⟪a1; [x ↦ a1]a2 ∶ τ⟫.
The constraint associated with a let construct is equivalent to the
constraint associated with its let-normal form.

473 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Complexity

Lemma
The size of ⟪a ∶ τ⟫ is linear in the sum of the sizes of a and τ .

Constraint generation can be implemented in linear time and space.

474 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Soundness and completeness

The statement keeps its previous form, back but Γ now contains
Damas-Milner type schemes. Since Γ binds variables to type schemes, we
define φ(Γ) as the point-wise mapping of (φ∅) to Γ.

Theorem (Soundness and completeness)

Let fv(a) = dom(Γ). Then, φΓ ⊢ a ∶ φτ if and only if φ,φΓ ⊢ ⟪a ∶ τ⟫.

475 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Summary

Note that

● constraint generation has linear complexity;

● constraint generation and constraint solving are separate;

● the constraint language remains small as the programming language
grows.

This makes constraints suitable for use in an efficient and modular
implementation.

476 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

477 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An initial environment

Let Γ0 stand for assoc ∶ ∀αβ.α → list (α × β)→ β.

We take Γ0 to be the initial environment, so that the constraints
considered next are implicitly wrapped within the context def Γ0 in [].

478 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A code fragment

Let a stand for the term

λx.λl1.λl2.

let assocx = assoc x in(assocx l1,assocx l2)
One anticipates that assocx receives a polymorphic type scheme, which is
instantiated twice at different types...

479 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

The generated constraint

Let Γ stand for x ∶ α0; l1 ∶ α1; l2 ∶ α2. Then, the constraint ⟪a ∶ α⟫ is
(with a few minor simplifications):

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀γ1 [∃γ2.(assoc ⪯ γ2 → γ1
x ⪯ γ2

)] . γ1 in
∃β1β2.(β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

480 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification

Constraint solving can be viewed as a rewriting process that exploits
equivalence laws. Because equivalence is, by construction, a congruence,
rewriting is permitted within an arbitrary context.

For instance, environment access is allowed by the law

let x ∶ σ inR[x ⪯ τ] ≡ let x ∶ σ inR[σ ⪯ τ]
where R is a context that does not bind x.

481 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

Thus, within the context def Γ0; Γ in [], the constraint:

(assoc ⪯ γ2 → γ1
x ⪯ γ2

)
is equivalent to:

(∃αβ.(α → list (α × β)→ β = γ2 → γ1)
α0 = γ2

)

482 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

By first-order unification, the constraint:

∃γ2. (∃αβ. (α → list (α × β)→β = γ2→γ1) ∧ α0 = γ2)
simplifies down successively to:

∃γ2. (∃αβ. (α = γ2 ∧ list (α × β)→ β = γ1) ∧ α0 = γ2)
∃γ2. (∃β. (list (γ2 × β)→ β = γ1) ∧ α0 = γ2)

∃β. (list (α0 × β)→ β = γ1)

483 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

The constrained type scheme:

∀γ1[∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)]. γ1
is thus equivalent to:

∀γ1[∃β. (list (α0 × β)→ β = γ1)]. γ1
which can also be written:

∀γ1β[list (α0 × β)→ β = γ1]. γ1
∀β.list (α0 × β)→ β

484 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

The initial constraint has now been simplified down to:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in
let assocx ∶ ∀β. list (α0 × β)→ β in

∃β1β2.(β = β1 × β2∀i ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎠
The simplification work spent on assocx’s type scheme was well worth
the trouble, because we are now going to duplicate the simplified type
scheme.

485 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

The sub-constraint:

∃γ2. (assocx ⪯ γ2 → βi ∧ li ⪯ γ2)
where i ∈ {1,2}, is rewritten:

∃γ2. (∃β. (list (α0 × β)→ β = γ2 → βi) ∧ αi = γ2)
∃β. (list (α0 × β)→ β = αi → βi)
∃β. (list (α0 × β) = αi ∧ β = βi)

list (α0 × βi) = αi

486 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

The initial constraint has now been simplified down to:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in
let assocx ∶ ∀β. list (α0 × β)→ β in

∃β1β2. (β = β1 × β2∀i list (α0 × βi) = αi
)

⎞⎟⎟⎟⎟⎟⎟⎠
Now, the context def Γ in let assocx ∶ . . . in [] can be dropped, because
the constraint that it applies to contains no occurrences of x, l1, l2, or
assocx.

487 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, continued

The constraint becomes:

∃α0α1α2β.
⎛⎜⎝
α = α0 → α1 → α2 → β

∃β1β2. (β = β1 × β2∀i list (α0 × βi) = αi
)
⎞⎟⎠

that is:

∃α0α1α2ββ1β2.
⎛⎜⎝
α = α0 → α1 → α2 → β

β = β1 × β2∀i list (α0 × βi) = αi

⎞⎟⎠
and, by eliminating a few auxiliary variables:

∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)

488 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Simplification, the end

We have shown the following equivalence between constraints:

def Γ0 in ⟪a ∶ α⟫
≡ ∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)

That is, the principal type scheme of a relative to Γ0 is

LaMΓ0
= ∀α[def Γ0 in ⟪a ∶ α⟫]. α
= ∀α0β1β2. α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2

489 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Rewriting strategies

Again, constraint solving can be explained in terms of a small-step
rewrite system.

Again, one checks that every step is meaning-preserving, that the system
is normalizing, and that every normal form is either literally “false” or
satisfiable.

Different constraint solving strategies lead to different behaviors in terms
of complexity, error explanation, etc.

See ATTAPL for details on constraint solving [Pottier and Rémy, 2005].
See Jones [1999] for a different presentation of type inference, in the
context of Haskell.

490 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Rewriting strategies

In all reasonable strategies, the left-hand side of a let constraint is
simplified before the let form is expanded away.

This corresponds, in Algorithm J , to computing a principal type scheme
before examining the right-hand side of a let construct.

491 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Complexity

Type inference for ML is DEXPTIME-complete [Kfoury et al., 1990;
Mairson, 1990], so any constraint solver has exponential complexity.

Nevertheless, under the hypotheses that types have bounded size and let
forms have bounded left-nesting depth, constraints can be solved in
linear time [McAllester, 2003].

This explains why ML type inference works well in practice.

492 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An alternative presentation of constraint generation

Using principal contrained type schemes and the following equivalence

LaM
△
== ∀α[⟪a ∶ α⟫]. α ⟪a ∶ τ⟫ ≡ LaM ⪯ τ

we can also present contraint generation as follows:

LxM = ∀α[x ⪯ α]. α
Lλx.aM = ∀α1α2[def x ∶ α1 in LaM ⪯ α2]. α1 → α2

if α1, α2 # a

La1 a2M = ∀α1α2[La1M ⪯ α1 → α2 ∧ La2M ⪯ α1]. α2

if α1, α2 # a1, a2

Llet x = a1 in a2M = ∀α[let x ∶ La1M in La2M ⪯ α]. α

493 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

494 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type reconstruction

Type inference should not just infer a principal type for an expression.
It should also elaborate the implicitly-typed input term into an
explicitly-typed one.

Notice that the elaborated term is not unique:

● redundant type abstractions and type applications may be used.

● some non principal type schemes may sometimes be used for local
let-bindings.

However, we may seek for a principal derivation in canonical form
(as defined in the previous chapter, Damas and Milner’s type system).

495 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type reconstruction Idea

To perform type reconstruction, it suffices to know the types of let
bindings and of function parameters.

In constraints, it suffices to remember def and let-constraints and
instantiation constraints x ⪯ τ : we may just not remove then during
constraint resolution.

We also request that let-constraints be not extruded, so that the binding
structure of let-constraints and the scopes of program variables remain as
in the original constraint.

496 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type reconstruction Preserving the orginal

We modify equivalences used during constraint resolution, so as to
preserve the original constraint—and mark it as resolved (in green)

For instance, environment access becomes:

def x ∶ σ inR[x ⪯ τ] ≡ def x ∶ σ inR[x ⪯ τ ∧ σ ⪯ τ]
A binding constraint def x ∶ σ in C can be flagged as presolved when x
does not appear free in C, except in its resolved subconstraints C:

def x ∶ σ in C ≡ def x ∶ σ in C x# (C ∖C)
A resolved form of a constraint C is an equivalent constraint with the
same structure as C that is in solved form after dropping all resolved
subconstraints.

497 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Example

Let us reuse a defined above as

λx.λl1. λl2. let assocx = assoc x in (assocx l1,assocx l2)
The principal type scheme LaM is:

∀α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in
let assocx ∶ ∀γ1 [∃γ2.assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2] . γ1 in
∃β1β2.(β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. α

where:

● Γ stands for x ∶ α0; l1 ∶ α1; l2 ∶ α2, and the initial environment

● Γ0 stands for assoc ∶ ∀αβ.α → list (α × β)→ β.

498 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Example

The inner assocx type scheme in context Γ can be simplified as follows:

∀γ1 [∃γ2. (assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)] . γ1
≡ ∀γ1 [∃γ2. (assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2 ∧α0 ⪯ γ2)] . γ1
≡ ∀γ1 [assoc ⪯ α0 → γ1 ∧ x ⪯ α0] . γ1
≡ ∀γ1 [assoc ⪯ α0 → γ1 ∧ x ⪯ α0∀αβ.α → list (α × β)→ β ⪯ α0 → γ1

] . γ1
≡ ∀γ1 [assoc ⪯ α0 → γ1 ∧ x ⪯ α0∃αβ.(α = α0 ∧ list (α × β)→ β = γ1)] . γ1
≡ ∀β [assoc ⪯ α0 → list (α0 × β)→ β ∧ x ⪯ α0] . list (α0 × β)→ β

499 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Example

Simplifying, the remaining instantiations similarly in LaM is equivalent to:

∀α0β1β2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

def Γ in

let assocx ∶ ∀γ [assoc ⪯ α0 → list (α0 × γ)→ γ)
x ⪯ α0

] .
list (α0 × γ)→ γ in

∀i ∈ {1,2}, ((assocx ⪯ list (α0 × βi)→ βi)
li ⪯ list (α0 × βi))))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2
From which, we may read the elaboration of M :

Λα0β1β2. λx ∶α0. λl1 ∶ list (α0 × β1). λl2 ∶ list (α0 × β2).
let assocx = Λγ.assoc α0 γ x in(assocx β1 l1,assocx β2 l2)

Type abstrations can be read from the principal type scheme.
Type applications can be locally inferred from type instantiations.

500 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type reconstruction, a modular approach

As presented, our type reconstruction is not modular: it builds a program
typing constraint that it solves and then performs the elaboration from
the solved program typing constraint.

Constraint generation is defined independently for each program
construct, what about type reconstruction?

Type reconstruction can also be defined this way, for each construct of
the language independently, by abstracting over the elaboration of the
subconstructs and the solved contrained for the current construct.

See [Pottier, 2014] for details.

This allows to define the constrain solver with elaboration as a library,
add new programming constructs without changing the constraint
language, or use it for an another language.

501 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

502 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

On type annotations

Damas and Milner’s type system has principal types: at least in the core
language, no type information is required.

This is very lightweight, but a bit extreme: sometimes, it is useful to
write types down, and use them as machine-checked documentation.

503 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Syntax for type annotations

Let us, then, allow programmers to annotate a term with a type:

a ∶∶= . . . ∣ (a ∶ τ)
Typing and constraint generation are obvious:

Annot

Γ ⊢ a ∶ τ
Γ ⊢ (a ∶ τ) ∶ τ ⟪(a ∶ τ) ∶ τ ′⟫ = ⟪a ∶ τ⟫ ∧ τ = τ ′

Type annotations are erased prior to runtime, so the operational
semantics is not affected.

(Erasure of type annotations preserves well-typedness.)

504 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type annotations are restrictive

The constraint ⟪(a ∶ τ) ∶ τ ′⟫ implies the constraint ⟪a ∶ τ ′⟫.
That is, in terms of type inference, type annotations are restrictive: they
lead to a principal type that is less general, and possibly even to
ill-typedness.

For instance, λx.x has principal type scheme ∀α.α → α, whereas(λx.x ∶ int→ int) has principal type scheme int→ int, and(λx.x ∶ int→ bool) is ill-typed.

505 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Where

Does it make sense for a type annotation to contain a type variable, as in, say:

(λx.x ∶ α → α)(λx.x + 1 ∶ α → α)
let f = (λx.x ∶ α → α) in (f 0, f true)

If so, what does it mean?

Short answer: it does not mean anything, because α is unbound. “There is no

such thing as a free variable” (Alan Perlis).

A longer answer:

It is necessary to specify how and where type variables are bound.

How is α bound?

If α is existentially bound, or flexible, then both (λx.x ∶ α → α) and(λx.x + 1 ∶ α → α) should be well-typed.

If it is universally bound, or rigid, only the former should be well-typed.
506 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Binding type variables

Let’s allow programmers to explicitly bind type variables:

a ∶∶= . . . ∣ ∃ᾱ.a ∣ ∀ᾱ.a
It now makes sense for a type annotation (a ∶ τ) to contain free type
variables.

Terms a can now contain free type variables, so some side conditions
have to be updated (e.g., ᾱ # Γ, a in Gen).

507 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Binding type variables

The typing rules (in the implicitly-typed presentation) are as follows:

Exists

Γ ⊢ [α⃗ ↦ τ⃗]a ∶ τ
Γ ⊢ ∃ᾱ.a ∶ τ

Forall

Γ ⊢ a ∶ τ ᾱ # Γ

Γ ⊢ ∀ᾱ.a ∶ ∀ᾱ. τ
⎛⎜⎜⎝

Gen

Γ ⊢ a ∶ τ ᾱ # Γ, a

Γ ⊢ a ∶ ∀ᾱ. τ
⎞⎟⎟⎠

These constructs are erased prior to runtime.

Why are these rules sound?

Define the erasure of a term, and prove that the erasure of a well-typed
term is well-typed:

Rule Exists disappears; Rule Forall becomes rule Gen.

508 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation: existential case

Constraint generation for the existential form is straightforward:

⟪(∃ᾱ.a) ∶ τ⟫ = ∃ᾱ.⟪a ∶ τ⟫ if ᾱ # τ

The type annotations inside a contain free occurrences of ᾱ. Thus, the
constraint ⟪a ∶ τ⟫ contains such occurrences as well. They are bound by
the existential quantifier.

509 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation: existential case

For instance, the expression:

λx1. λx2.∃α.((x1 ∶ α), (x2 ∶ α))
has principal type scheme ∀α.α → α → α × α. Indeed, the generated
constraint contains the pattern:

∃α.(⟪x1 ∶ α⟫ ∧ ⟪x2 ∶ α⟫ ∧ . . .)
which requires x1 and x2 to share a common (unspecified) type.

510 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation: universal case

A term a has type scheme, say, ∀α.α → α if and only if a has type
α → α for every instance of α, or, equivalently, for an abstract α.

To express this in terms of constraints, we introduce universal
quantification in the constraint language:

C ∶∶= . . . ∣ ∀α.C
Its interpretation is standard.

(To solve these constraints, we will use an extension of the unification
algorithm called unification under a mixed prefix—see forward .)

The need for universal quantification in constraints arises when
polymorphism is required by the programmer, as opposed to inferred by
the system.

511 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation: universal case

Constraint generation for the universal form is somewhat subtle. A naive
definition fails (why?):

⟪(∀ᾱ.a) ∶ τ⟫ = ∀ᾱ.⟪a ∶ τ⟫ if ᾱ # τ (Wrong)

This requires τ to be simultaneously equal to all of the types that a
assumes when ᾱ varies.

For instance, with this incorrect definition, one would have:

⟪∀α.(λx.x ∶ α → α) ∶ int→ int⟫ = ∀α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.(⟪λx.x ∶ α → α⟫ ∧α = int)
≡ ∀α.(true ∧ α = int)
≡ false

512 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Constraint generation: universal case

A correct definition is:

⟪(∀ᾱ.a) ∶ τ⟫ = ∀ᾱ.∃γ.⟪a ∶ γ⟫ ∧ ∃ᾱ.⟪a ∶ τ⟫
This requires

● a to be well-typed for all instances of ᾱ and● τ to be a valid type for a under some instance of ᾱ.

A problem with this definition is that the term a is duplicated! This can
lead to exponential complexity.

Fortunately, this can be avoided modulo a slight extension of the
constraint language [Pottier and Rémy, 2003, p. 112]. The solution
defines: ⟪∀ᾱ.a ∶ τ⟫ = let x ∶ ∀α⃗, β[⟪a ∶ β⟫]. β in x ⪯ τ

where the new constraint form satisfies the equivalence:

let x ∶ ∀α⃗, β⃗[C1]. τ in C2 ≡ ∀α⃗.∃β⃗. C1 ∧ def x ∶ ∀α⃗, β⃗[C1]. τ in C2

513 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type schemes as annotations

Annotating a term with a type scheme, rather than just a type, is now
just syntactic sugar:

(a ∶ ∀ᾱ. τ) stands for ∀ᾱ.(a ∶ τ) if ᾱ # a

In that particular case, constraint generation is in fact simpler:

⟪(a ∶ ∀ᾱ. τ) ∶ τ ′⟫ ≡ ∀ᾱ.⟪a ∶ τ⟫ ∧ (∀ᾱ. τ) ⪯ τ ′
(Exercise: check this equivalence.)

514 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

A correct example:

⟪(∃α.(λx.x + 1 ∶ α → α)) ∶ int→ int⟫
= ∃α.⟪(λx.x + 1 ∶ α → α) ∶ int→ int⟫
≡ ∃α.(α = int)
≡ true

The system infers that α must be int. Because α is a local type variable,
it does not appear in the final constraint.

515 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

An incorrect example:

⟪(∀α.(λx.x + 1 ∶ α → α)) ∶ int→ int⟫
⊩ ∀α.∃γ.⟪(λx.x + 1 ∶ α → α) ∶ γ⟫
≡ ∀α.∃γ.(α = int ∧ α → α = γ)
≡ ∀α.α = int
≡ false

The system checks that α is used in an abstract way, which is not the
case here, since the code implicitly assumes that α is int.

516 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

A correct example:

⟪(∀α.(λx.x ∶ α → α)) ∶ int→ int⟫
= ∀α.∃γ.⟪(λx.x ∶ α→ α) ∶ γ⟫ ∧ ∃α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.∃γ.α → α = γ ∧ ∃α.α = int
≡ true

The system checks that α is used in an abstract way, which is indeed the
case here.

It also checks that, if α is appropriately instantiated, the code admits the
expected type int→ int.

517 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

An incorrect example:

⟪∃α.(let f = (λx.x ∶ α → α) in (f 0, f true)) ∶ γ⟫
≡ ∃α.(let f ∶ α → α in∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ))
≡ ∃αγ1γ2.(α → α = int→ γ1 ∧α → α = bool→ γ2 ∧ γ1 × γ2 = γ)
⊩ ∃α.(α = int ∧ α = bool)
≡ false

α is bound outside the let construct; f receives the monotype α → α.

518 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

A correct example:

⟪let f = ∃α.(λx.x ∶ α→ α) in (f 0, f true) ∶ γ⟫
≡ let f ∶ ∀β[∃α.(α → α = β)]. β in∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ)
≡ let f ∶ ∀α.α → α in∃γ1γ2.(. . .)
≡ ∃γ1γ2.(int = γ1 ∧ bool = γ2 ∧ γ1 × γ2 = γ)
≡ int × bool = γ

α is bound within the let construct; the term ∃α.(λx.x ∶ α → α) has the
same principal type scheme as λx.x, namely ∀α.α → α; f receives the
type scheme ∀α.α → α.

519 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type annotations in the real world

For historical reasons, in Objective Caml, type variables are not explicitly
bound. (Retrospectively, that’s bad!) They are implicitly existentially
bound at the nearest enclosing toplevel let construct.

In Standard ML, type variables are implicitly universally bound at the
nearest enclosing toplevel let construct.

In Glasgow Haskell, type variables are implicitly existentially bound within
patterns: ‘A pattern type signature brings into scope any type variables
free in the signature that are not already in
scope’ [Peyton Jones and Shields, 2004].

Constraints help understand these varied design choices uniformly.

520 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type annotations in the real world

The recent versions of OCaml also have a way to specify universally
bound type variables, treating them as abtract types:

let f (type a) = ((fun x -> x) : a -> a);;

val f : ’a -> ’a = <fun>

let f (type a) = ((fun x -> x + 1) : a -> a);;

^

Error: This expression has type a

but an expression was expected of type int

521 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

522 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Monomorphic recursion

Recall the typing rule for recursive functions:

FixAbs

Γ, f ∶ τ ⊢ λx.a ∶ τ
Γ ⊢ µf.λx.a ∶ τ

It leads to the following derived typing rule:

LetRec

Γ, f ∶ τ1 ⊢ λx.a1 ∶ τ1 ᾱ# Γ, a1
Γ, f ∶ ∀ᾱ. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let rec f x = a1 in a2 ∶ τ2
Any comments?

523 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Monomorphic recursion

These rules require occurrences of f to have monomorphic type within
the recursive definition (that is, within λx.a1).

This is visible also in terms of type inference. The constraint

⟪let rec f x = a1 in a2 ∶ τ⟫
is equivalent to

let f ∶ ∀αβ[let f ∶ α → β;x ∶ α in ⟪a1 ∶ β⟫]. α → β in ⟪a2 ∶ τ⟫

524 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Monomorphic recursion

This is problematic in some situations, most particularly when defining
functions over nested algebraic data types [Bird and Meertens, 1998;
Okasaki, 1999].

525 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Polymorphic recursion

This problem is solved by introducing polymorphic recursion, that is, by
allowing µ-bound variables to receive a polymorphic type scheme:

FixAbsPoly

Γ, f ∶ σ ⊢ λx.a ∶ σ
Γ ⊢ µf.λx.a ∶ σ

LetRecPoly

Γ, f ∶ σ ⊢ λx.a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ
Γ ⊢ let rec f x = a1 in a2 ∶ τ

This extension of ML is due to Mycroft [1984].

In System F, there is no problem to begin with; no extension is necessary.

526 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Polymorphic recursion

Polymorphic recursion alters, to some extent, Damas and Milner’s type
system.

Now, not only let-bound, but also µ-bound variables receive type
schemes. The type system is no longer equivalent, up to reduction to
let-normal form, to simply-typed λ-calculus.

This has two consequences:

● monomorphization, a technique employed in some ML compilers
[Tolmach and Oliva, 1998; Cejtin et al., 2007], is no longer possible;

● type inference becomes problematic!

527 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Polymorphic recursion

Type inference for ML with polymorphic recursion is undecidable
[Henglein, 1993]. It is equivalent to the undecidable problem of
semi-unification.

528 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Polymorphic recursion

Yet, type inference in the presence of polymorphic recursion can be made
simple. (How?)

By relying on a mandatory type annotation. The rules become:

FixAbsPoly

Γ, f ∶ σ ⊢ λx.a ∶ σ
Γ ⊢ µ(f ∶ σ).λx.a ∶ σ

LetRecPoly

Γ, f ∶ σ ⊢ λx.a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ
Γ ⊢ let rec (f ∶ σ) = λx.a1 in a2 ∶ τ

The type scheme σ no longer has to be guessed.

With this feature, contrary to what was said earlier back , type
annotations are not just restrictive: they are sometimes required for type
inference to succeed.

529 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Polymorphic recursion

The constraint generation rule becomes:

⟪let rec (f ∶ σ) = λx.a1 in a2 ∶ τ⟫ = ?let f ∶ σ in (⟪λx.a1 ∶ σ⟫ ∧ ⟪a2 ∶ τ⟫)
It is clear that f receives type scheme σ both inside and outside of the
recursive definition.

530 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

531 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Unification under a mixed prefix

Unification under a mixed prefix means unification in the presence of
both existential and universal quantifiers.

We extend the basic unification algorithm with support for universal
quantification.

The solved forms are unchanged: universal quantifiers are always
eliminated.

532 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Unification under a mixed prefix

In short, in order to reduce ∀ᾱ.C to a solved form, where C is itself a
solved form:

● if a rigid variable is equated with a constructed type, fail;∀α.∃βγ.(α = β → γ) is false;
● if two rigid variables are equated, fail;∀αβ.(α = β) is false;
● if a free variable dominates a rigid variable, fail;∀α.∃β.(γ = α → β) is false;
● otherwise, one can decompose C as ∃β̄.(C1 ∧C2),
where ᾱβ̄ # C1 and ∃β̄.C2 ≡ true; then, ∀ᾱ.C reduces to just C1.

∀α.∃βγ1.(β = α → γ1 ∧ γ = γ1 → γ1) reduces to ∃γ1.(γ = γ1 → γ1),
since ∀α.∃β.(β = α → γ1) is equivalent to true.

See [Pottier and Rémy, 2003, p. 109] for details.

533 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

Objective Caml implements a form of unification under a mixed prefix:

bash$ ocaml
let module M : sig val id : ’a → ’a end

= struct let id x = x + 1 end
in M.id;;

Values do not match: val id : int → int
is not included in val id : ’a → ’a

This example gives rise to a constraint of the form ∀α.α = int.

534 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Examples

Here is another example:

bash$ ocaml
let r = ref (fun x → x) in
let module M : sig val id : ’a → ’a end

= struct let id = !r end
in M.id;;

Values do not match: val id : ’ a → ’ a
is not included in val id : ’a → ’a

This example gives rise to a constraint of the form ∃β.∀α.(α = β).

535 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

536 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Recursive types

Product and sum types alone do not allow describing data structures of
unbounded size, such as lists and trees.

Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this
grammar. However, the type of lists of unbounded length is not.

537 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Equi- versus iso-recursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list α ◇ unit +α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?

538 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Equi- versus iso-recursive types

There are two standard approaches to recursive types, dubbed the
equi-recursive and iso-recursive approaches.

In the equi-recursive approach, a recursive type is equal to its unfolding.

In the iso-recursive approach, a recursive type and its unfolding are
related via explicit coercions.

539 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗
is no longer interpreted inductively. Instead, types are the regular trees
built on top of this signature.

540 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Finite syntax for equi-recursive types

If desired, it is possible to use finite syntax for recursive types:

τ ∶∶= α ∣ µα.(F τ⃗)
We do not allow the seemingly more general µα.τ , because µα.α is
meaningless, and µα.β or µα.µβ.τ are useless. If we write µα.τ , it
should be understood that τ is contractive, that is, τ is a type
constructor application.

For instance, the type of lists of elements of type α is:

µβ.(unit + α × β)

541 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Finite syntax for equi-recursive types

Each type in this syntax denotes a unique regular tree, sometimes known
as its infinite unfolding. Conversely, every regular tree can be expressed
in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be
able to decide whether two types are equal, that is, have identical infinite
unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or by unification. (The latter approach is simpler, faster, and
extends to the type inference problem.)

542 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the least
congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

543 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.
(We only need it to prove the termination of reduction.)

It remains true that F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2—this was used in our
Subject Reduction proofs.

It remains true that F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was used in our
Progress proofs.

So, the reasoning that leads to type soundness is unaffected.

(Exercise: prove type soundness for the simply-typed λ-calculus in Coq.
Then, change the syntax of types from Inductive to CoInductive.)

544 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference for equi-recursive types

How is type inference adapted for equi-recursive types?

The syntax of constraints is unchanged: they remain systems of equations
between finite first-order types, without µ’s. Their interpretation
changes: they are now interpreted in a universe of regular trees.

As a result,

● constraint generation is unchanged;

● constraint solving is adapted by removing the occurs check.

(Exercise: describe solved forms and show that every solved form is
either false or satisfiable.)

545 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference for equi-recursive types

Here is a function that measures the length of a list:

µlength.λxs.case xs of
λ().0

8 λ(x,xs).1 + length xs

Type inference gives rise to the cyclic equation:

β = unit + α × β
where length has type β → int.

546 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference for equi-recursive types

That is, length has principal type scheme:

∀α. (µβ.unit + α × β)→ int

or, equivalently, principal constrained type scheme:

∀α[β = unit +α × β]. β → int

The cyclic equation that characterizes lists was never provided by the
programmer, but was inferred.

547 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference for equi-recursive types

Objective Caml implements equi-recursive types upon explicit request:

bash$ ocaml −rectypes
type (’a, ’b) sum = Left of ’a | Right of ’b;;

type (’a, ’b) sum = Left of ’a | Right of ’b

let rec length xs =
match xs with
| Left () → 0
| Right (x, xs) → 1 + length xs ;;

val length : ((unit, ’b ∗ ’a) sum as ’a) → int = ⟨fun⟩
Quiz: why is -rectypes only an option?

548 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Drawbacks of equi-recursive types

Equi-recursive types are simple and powerful. In practice, however, they
are perhaps too expressive:

bash$ ocaml −rectypes
let rec map f = function
| [] → []
| x :: xs → map f x :: map f xs;;

val map : ’a → (’b list as ’b) → (’c list as ’c) = ⟨fun⟩
map (fun x → x + 1) [1; 2];;

This expression has type int but is used with type ’a list as ’a

map () [[];[[]]];;

− : ’a list as ’a = [[]; [[]]]

Equi-recursive types allow this nonsensical version of map to be
accepted, thus delaying the detection of a programmer error.

549 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Half a pint of equi-recursive types

Quiz: why is this accepted?

bash$ ocaml
let f x = x#hello x;;

val f : (< hello : ’a → ’b; .. > as ’a) → ’b = ⟨fun⟩

550 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new type
constructors D via (possibly mutually recursive) declarations:

D α⃗ ≈ τ (where ftv(τ) ⊆ ᾱ)
Each such declaration adds a unary constructor foldD and a unary
destructor unfoldD with the following types:

foldD ∶ ∀ᾱ. τ → D α⃗

unfoldD ∶ ∀ᾱ.D α⃗ → τ

and the reduction rule:

unfoldD (foldD v)Ð→ v

551 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Iso-recursive types

Ideally, iso-recursive types should not have any runtime cost.

One solution is to compile constructors and destructors away into a
target language with equi-recursive types.

Another solution is to see iso-recursive types as a restriction of
equi-recursive types where the source language does not have
equi-recursive types but instead two unary destructors foldD and unfoldD
with the semantics of the identity function.

Subject reduction does not hold in the source language, but only in the
full language with iso-recursive types. Applications of destructors can
also be reduced at compile time.

Note that iso-recursive types are less expressive than equi-recursive types,
as there is no counter-part to the Uniqueness typing rule.

552 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Iso-recursive lists

A parametrized, iso-recursive type of lists is:

list α ≈ unit + α × list α

The empty list is:
foldlist (inj1 ()) ∶ ∀α. list α

A function that measures the length of a list is:

⎛⎜⎝
µlength.λxs.case (unfoldlist xs) of

λ().0
8 λ(x,xs).1 + length xs

⎞⎟⎠ ∶ ∀α. list α → int

One folds upon construction and unfolds upon deconstruction.

553 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference for iso-recursive types

In the iso-recursive approach, types remain finite. The type list α is just
an application of a type constructor to a type variable.

As a result, type inference is unaffected. The occurs check remains.

554 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with
structural, labeled products and sums.

This suppresses the verbosity of explicit folds and unfolds as well as the
fragility and inconvenience of numeric indices – instead, named record
fields and data constructors are used.

For instance,

foldlist (inj1 ()) is replaced with Nil ()

555 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Algebraic data type declarations

An algebraic data type constructor D is introduced via a record type or
variant type definition:

D α⃗ ≈∏
ℓ∈L

ℓ ∶ τℓ or D α⃗ ≈∑
ℓ∈L

ℓ ∶ τℓ
L denotes a finite set of record labels or data constructors.

Algebraic data type definitions can be mutually recursive.

556 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Effects of a record type declaration

The record type definition D α⃗ ≈∏ℓ∈L ℓ ∶ τℓ introduces syntax for
constructing and deconstructing records:

C ∶∶= . . . ∣ {ℓ = ⋅}ℓ∈L d ∶∶= . . . ∣ ⋅.ℓ
With the following types

{ℓ1 = ⋅, . . . , ℓn} ∶ ∀α⃗. τℓ1 → . . . τℓn →D α⃗⋅.ℓ ∶ ∀α⃗.D α⃗ → τℓ

557 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Effects of a variant type declaration

The variant type definition D α⃗ ≈ ∑ℓ∈L ℓ ∶ τℓ introduces syntax for
constructing and deconstructing variants:

C ∶∶= . . . ∣ ℓ d ∶∶= . . . ∣ case ⋅ of [ℓ ∶ ⋅]ℓ∈L
With the following types:

case ⋅ of [ℓ1 ∶ ⋅ 8 . . . ℓn ∶ ⋅] ∶ ∀α⃗β.D α⃗ → (τℓ1 → β)→ . . . (τℓn → β)→ β

ℓ ∶ ∀α⃗. τℓ →D α⃗

558 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

An example: lists

Here is an algebraic data type of lists:

list α ≈ Nil ∶ unit +Cons ∶ α × list α

This gives rise to:

case ⋅ of [Nil ∶ ⋅ 8 . . .Cons ∶ ⋅] ∶ ∀αβ. list α → (unit → β)→((α × list α)→ β)→ β

Nil ∶ ∀α.unit → list α
Cons ∶ ∀α. (α × list α)→ list α

A function that measures the length of a list is:

⎛⎜⎝
µlength.λxs.case xs of

Nil ∶ λ().0
8 Cons ∶ λ(x,xs).1 + length xs

⎞⎟⎠ ∶ ∀α. list α → int

559 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

A word on mutable fields

In Objective Caml, a record field can be marked mutable. This
introduces an extra binary destructor for writing this field:

(⋅.ℓ ← ⋅) ∶ ∀α⃗.D τ⃗ → τℓ → unit

This also makes record construction a destructor since, when fully
applied it is not a value but it allocates a piece of store and returns its
location.

Thus, due to the value restriction, the type of such expressions cannot be
generalized.

560 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

561 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(X)

Soundness/completeness of type inference are in fact easier to prove if
one adopts a constraint-based specification of the type system.

In HM(X), judgments take the form

C,Γ ⊢ a ∶ τ

called a constrained typing judgment and should be read under the
asumption C and typing environment Γ, the program a has type τ .

Here, C ranges over first-order typing constraints as earlier.

However, we require type constraint to have no free program variables.

In a constrained typing judgment, C constrains free type variables of the
judgment while Γ provides the types of free program variables.

This generalizes Damas and Milner’s type system.
See Odersky et al. [1999], Pottier and Rémy [2005],
Skalka and Pottier [2002] for a detailed treatment.

562 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(X) Entailment and subtyping

Typing rules also use an entailment predicate C ⊩ C ′ between
constraints that is more general than constraint equivalence.

Entailment is defined as expected: C ⊩ C ′ if and only if any ground
assignment that satisfies C also satisfies C ′.

Then, two constraints are equivalent iff each one entails the other.

Typing judgments for HM(X) are taken up to constraint equivalence.

The parameter X for HM(X) stands for the logic of the constraints.
We have so far only considered constraints with an equality predicate.
Here, we use a more general subtyping predicate ≤ that we assume to be
contravariant on arrow types:

τ1 → τ2 ≤ τ
′
1 → τ ′2 ≡ τ2 ≤ τ

′
2 ∧ τ ′1 ≤ τ1

563 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(X) Typing rules

hm-Var

σ = Γ(x) C ⊩ ∃σ
C,Γ ⊢ x ∶ σ

hm-Abs

C, (Γ, x ∶ τ0) ⊢ a ∶ τ
C,Γ ⊢ λx.a ∶ τ0 → τ

hm-App

C,Γ ⊢ a1 ∶ τ2 → τ1 C,Γ ⊢ a2 ∶ τ2
C,Γ ⊢ a1 a2 ∶ τ1

hm-Let

C,Γ ⊢ a1 ∶ σ
C, (Γ, x ∶ σ) ⊢ a2 ∶ τ

C,Γ ⊢ let x = a1 in a2 ∶ τ
hm-Gen

C ∧C0,Γ ⊢ a ∶ τ α⃗ # C,Γ

C ∧ ∃α⃗. C0,Γ ⊢ a ∶ ∀ᾱ[C0]. τ
hm-Inst

C,Γ ⊢ a ∶ ∀α⃗[C0]. τ
C ∧C0,Γ ⊢ a ∶ τ

hm-Sub

C,Γ ⊢ a ∶ τ1 C ⊩ τ1 ≤ τ2

C,Γ ⊢ a ∶ τ2
hm-Exists

C,Γ ⊢ a ∶ τ α⃗ # Γ, τ

∃α⃗. C,Γ ⊢ a ∶ τ
564 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(X)

The constraint ∃σ when σ is a type scheme ∀ᾱ[C0]. τ means ∃ᾱ.C0, i.e.
that the type scheme is non empty (in premisse of Rule hm-Var).

A valid judgment is one that has a derivation with those typing rules.

In a valid judgment, C may not be satisfiable.

A program is well-typed in environment Γ if the judgment C,Γ ⊢ a ∶ τ is
valid and C is satisfiable.

565 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(=) Compared with ML

When considering equality only constraints, HM(=) is equivalent to ML:

HM(=) is a conservative extension of ML:

If Γ and τ contain only Damas-Milner’s type schemes, then

Γ ⊢ a ∶ τ ∈ML ⇐⇒ true,Γ ⊢ a ∶ τ ∈ HM(=)

HM(=) does not add expressiveness to ML:

If C,Γ ⊢ a ∶ τ ∈ HM(=) and ϕ is an idempotent solution of C,
then Γϕ ⊢ a ∶ τϕ ∈ML.

where (⋅)ϕ translates HM(=) type schemes into ML type schemes,
applying the substitution ϕ on the fly.

566 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

PCB(X)

As for ML, there is a syntax directed presentation of typing rules.

However, we may take advantage of program variables in constraints to
go one step further and mix the constraint C (without free program
variables) and the typing environment Γ into a single constraint C now
allowing free program variables.

Judgments take the form C ⊢ a ∶ τ where C both constrains type
variables and assigns constrained type schemes to program variables.

The type system, called PCB(X), is equivalent to HM(X)—see
Pottier and Rémy [2005] a detailed presentation.

567 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

PCB(X)

pcb-Var

C ⊩ x ⪯ τ

C ⊢ x ∶ τ
pcb-Abs

C ⊢ a ∶ τ
let x ∶ τ0 in C ⊢ λx.a ∶ τ0 → τ

pcb-App

C1 ⊢ a1 ∶ τ2 → τ1
C2 ⊢ a2 ∶ τ2

C1 ∧C2 ⊢ a1 a2 ∶ τ1
pcb-Let

C1 ⊢ a1 ∶ τ1 C2 ⊢ a2 ∶ τ2
let x ∶ ∀V[C1]. τ1 in C2 ⊢ let x = a1 in a2 ∶ τ2

pcb-Sub

C ⊢ a ∶ τ1
C ∧ τ1 ≤ τ2 ⊢ a ∶ τ2

pcb-Exists

C ⊢ a ∶ τ α # τ

∃α.C ⊢ a ∶ τ

568 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Soundness and completeness of PCB(=)

The type inference algorithm for ML is sound and complete for PCB(=):

– Soundness: ⟪a ∶ τ⟫ ⊢ a ∶ τ .
The constraint inferred for a typing validates the typing.

– Completeness: If C ⊢ a ∶ τ then C ⊩ ⟪a ∶ τ⟫.
The constraint inferred for a typing is more general than any
constraint that validates the typing.

569 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

HM(≤)

In the presence of subtyping, we must recheck type soundness.

This has been done for HM(≤) itself, but ideally, this should be done in a
more general setting, such as an explicitly typed version of System F with
subtyping constraints.

570 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type reconstruction

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

HM(X)

System F

571 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Full type inference

Type inference has long been an open problem for System F, until
Wells [1999] showed that it is in fact undecidable by showing it is
equivalent to the semi-unification problem which was earlier proved
undecidable.

Type-checking in explicitly-typed System F is indeed feasible and easy
(still, an implementation must be careful with renaming of variables
when applying substitutions).

However, we have seen that programming with fully-explicit types is
unpractical.

Several solutions for partial type inference are used in practice. They may
alleviate the need for a lot of redundant type annotations. However, none
of them is fully satisfactory.

572 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Type inference and second-order unification

The full type-inference problem is not directly related to second-order
unification but rather to semi-unification.

However, it becomes equivalent to second-order unification if the
positions of type abstractions and type applications are explicit. That is,
if terms are

M ∶∶= x ∣ λx ∶?.M ∣M M ∣ Λ?.M ∣M ?

where the question marks stand for type variables and types to inferred.

Second-order unification is still undecidable. One solution is to use
semi-algorithms, which may not terminate on some cases. This works
arguably well in some cases Pfenning [1988].

Another approach is to restrict to unification under a mixed-prefix. Here,
simplifications remain complete (don’t loose solutions), but the answer
may be “I don’t know.”

This approach is often used in interactive theorem provers.
573 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Implicit type arguments

Derived from this solution, one can add decorations to let-bindings to
indicate that some type arguments are left implicit.

Then, every occurrence of such a variable automatically adds type
applications holes for type parameters at the corresponding positions so
that will be inferred using second-order unification, while other type
applications remain explicit.

574 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bidirectional type inference

What makes type-checking easy is that typing rules have an algorithmic
reading. This implies that they are syntax directed, but also that
judgments can be read as functions where some arguments are inputs
and others are output.

Typically, Γ and a would be inputs and τ is an ouput in the judgment
Γ ⊢ a ∶ τ , which we may represent as Γ↑ ⊢ a↑ ∶ τ ↓.
However, although the rules for simply-typed λ-calculus are syntax
directed they do not have an algorithmic reading;

The rule for abstraction is
Abs

Γ↑, x ∶ τ ↑
0
⊢ a ∶ τ ↓

Γ↑ ⊢ λx.a ∶ (τ0 → τ)↓
Then τ0 is used both as input in the premise and output in the
conclusion.

575 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bidirectional type inference

However, in some cases, the type of the function may be known, e.g.
when the function is an argument to an expression of a known type.

In such cases, it suffices to check the proposed type is indeed correct.

Formally, the typing judgment Γ ⊢ a ∶ τ may be split into two judgments
Γ ⊢ a ⇓ τ to check that a may be assigned the type τ and Γ ⊢ a ⇑ τ to
infer the type τ of a.

576 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bidirectional type inference simple types

Var-I

τ = Γ(x)
Γ ⊢ x ⇑ τ

Abs-C

Γ, x ∶ τ0 ⊢ a ⇓ τ
Γ ⊢ λx.a ⇓ τ0 → τ

App-I

Γ ⊢ a1 ⇑ τ2 → τ1 Γ ⊢ a2 ⇓ τ2

Γ ⊢ a1 a2 ⇑ τ1

I-C

Γ ⊢ a ⇑ τ

Γ ⊢ a ⇓ τ

Annot-I

Γ ⊢ a ⇓ τ

Γ ⊢ (a ∶ τ) ⇑ τ
Abs-I

Γ, x ∶ τ0 ⊢ a ⇑ τ
Γ ⊢ λx ∶τ0. a ⇑ τ0 → τ

Checking mode can use inference mode.

Annotations turn inference mode into checking mode.

Annotations on type abstractions enable the inference mode.

577 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bidirectional type inference Simple types

Example: Let τ be (τ1 → τ1)→ τ2. and Γ be f ∶ τ

App-I

Var-I
Γ ⊢ f ⇑ τ

Γ, x ∶ τ1 ⊢ x ⇑ τ1
Γ, x ∶ τ1 ⊢ x ⇓ τ1 C-I

Var-I

Γ ⊢ λx.x ⇓ τ1 → τ1
Abs-C

Abs-C

I-C
Γ ⊢ f (λx.x) ⇑ τ2
Γ ⊢ f (λx.x) ⇓ τ2

∅ ⊢ λf ∶τ. f (λx.x) ⇓ τ → τ2

578 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Bidirectional type inference Polymorphic types

The method can be extended to deal with polymorphic types.

The idea is due to [Cardelli, 1993] and is still being
improved [Dunfield, 2009]. However, it is quite complicated.

Predicative polymorphism is an interesting subcase where partial type
inference can be reduced to typing constraints under a mixed prefix.
Unfortunately, predicative polymorphism is too restrictive for
programming languages (See [Rémy, 2005]).

A simpler approach proposed by Pierce and Turner [2000] and improved
by Odersky et al. [2001] is to perform bidirectional type inference only
from a small context surounding each node.

Interestingly, bidrectional type inference can easily be extended to work
in the presence of subtyping (by constrast with methods based on
second-order unification).

579 671 ◁

Introduction Simple types Core ML Type annotations Recursive Types HM(X) System F

Partial type inference MLF

MLF follows another approach that amounts to performing first-order
unification of higher-order types.

● only parameters of functions that are used polymorphically need to
be annotated.

● type abstractions and type annotation are always implicit.

However, MLF goes beyond System F: for the purpose of type inference,
it introduces richer types that enable to write “more principal types”, but
that are also harder to read. See [Rémy and Yakobowski, 2008].

The type inference method for MLF can be seen as a generalization of
type constraints for ML to handle polymorphic types—still with
first-order unification.

580 671 ◁

Overloading

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

582 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What is overloading?

Overloading occurs when at some program point, several definitions for a
same identifier are visible simultaneously.

An interpretation of the program (and a fortiori a run of the program)
must choose the definition that applies at this point. This is called
overloading resolution, which may use very different strategies and
techniques.

All sorts of identifiers may be subject to overloading: variables, labels,
constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by
normal scoping rules, where in this case, a new definition may just
shadow an older one and temporarily become the only one visible.

583 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Naming convenience

It avoids name mangling, such as suffixing similar names by type
information: printing functions, e.g. print int, print string, etc.;
numerical operations, e.g. +, +●); or numerical constants e.g. 0, 0●

Modularity

To avoid name clashing, the naming discipline (including name mangling
conventions) must be known globally. Isolated identifiers with no
particular naming convention may still interfere between different
developments and cannot be used together unless fully qualified.

To think more abstractly

In terms of operations rather than of particular implementations.
For instance, calling to string conversion lets the system check whether
one definition is available according to the type of the argument.

584 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on τ[α] for all α may have an implementation
depending on the type of α. For instance, a marshalling function of type∀α.α → string may execute a different code for each base type α.

Ad hoc polymorphism

Overloaded definitions may be ad hoc, i.e. completely unrelated for each
type, or just share a same type schema.

For instance, 0 could mean either the integer zero or the empty list. The
symbol × could mean either integer product or string concatenation.

585⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on τ[α] for all α may have an implementation
depending on the type of α. For instance, a marshalling function of type∀α.α → string may execute a different code for each base type α.

Polytypic polymorphism

Overloaded definitions depend solely on the type structure (on whether it
is a sum, a product, etc.) and can thus be derived mechanically for all
types from their definitions on base types.

Typical examples of polytypic functions are marshalling functions or the
generation of random values for arbitrary types, e.g. as used in
Quickcheck for Haskell.

585⟨2⟩ 671 ◁

http://en.wikipedia.org/wiki/QuickCheck

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Different forms of overloading

There are many variants of overloading, which can be classified by how
overloading is introduced and resolved.

What are the restrictions on overloading definitions?

● None, i.e. arbitrary definitions can be overloaded!

● Can just functions or any definition be overloaded? e.g. can
numerical values be overloaded?

● Are all overloaded definitions of the same name instances of a
common type scheme? Are these type schemes arbitrary?

● Are overloaded definitions primitive (pre-existing), automatic
(generated mechanically from other definitions), or user-defined?

● Can overloaded definitions overlap?

● Can overloaded definitions have a local scope?

586 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading resolved?

How is overloading resolution defined?

● up to subtyping?● static or dynamic?

Static resolution (rather simple)

● Overloaded symbols can/must be statically replaced by their
implementations at the appropriate types.● This does not increase expressiveness, but may still significantly
reduce verbosity.

587⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading resolved?

How is overloading resolution defined?

● up to subtyping?

● static or dynamic?

Dynamic resolution (more involved)

This is required when the choice of the implementation depends on the
dynamic of the program execution. For example, the resolution at a
program point in a polymorphic function may depend on the type of its
argument so that different calls can make different choices.

The resolution is driven by information made available at runtime:

● it can be full or partial type information, or extra values (tags,
dictionaries, etc.) correlated to types instead of types themselves.

● it can be attached to normal values or passed as extra arguments.

587⟨2⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In SML

Overloaded definitions are primitive (for numerical operators), and
automatic (for record accesses).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel, as + could be the addition on either integers or floats.

In Java?

588 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In Java

Overloading is not primitive but automatically generated by subtyping.
When a class extends another one and a method is redefined, the older
definition is still visible, hence the method is overloaded.

Overloading is resolved at compile time by choosing the most specific
definition. There is always a best choice—according to static knowledge.

An argument may have a runtime type that is a subtype of the best
known compile-time type, and perhaps a more specific definition could
have been used if overloading were resolved dynamically.

This is often a source of confusion for Java programmers.

class A { int bin(A y) { return 1; } }
class B extends A { int bin(B y) { return 2; } }
A aa = new A(); B bb = new B(); A ab = bb;

x.bin(y)? when
x, y ∈ {aa, bb, ab}

589 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Limits

It does not fit well with first-class functions and polymorphism:

For example, λx.x + x is rejected when + is overloaded, as it cannot be
statically resolved. The function must be specialized at some type at
which + is defined.

This argues in favor of some form of dynamic overloading:
dynamic overloading allows to delay resolution of overloaded symbols
until polymorphic functions have been sufficiently specialized.

590 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is dynamic resolution implemented?

Three main techniques for dynamic resolution

● Pass types at runtime and dispatch on the runtime type, using a
general typecase construct.

● Tag values with their types—or, usually, an approximation of their
types—and dispatch on these tags.
(This is one possible approach to object-orientation where objects
may be tagged with the class they belong to.)

● Pass the appropriate implementations at runtime as extra
arguments, usually grouped in dictionaries of implementations.

591 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type passing semantics

Dispatch on runtime type

● Use an explicitly-typed calculus (e.g. System F)● Add a typecase function.● The runtime cost of typecase may be high, unless type patterns are
significantly restricted.● By default, one pays even when overloading is not used.● Monomorphization may be used to reduce type matching statically.● Ensuring exhaustiveness of type matching is difficult.

ML& (Castagna)

● System F + intersection types + subtyping + type matching● An expressive type system that keeps track of exhaustiveness; type
matching functions are first-class and can be extended or overridden.● Allows overlapping definitions with a best match resolution strategy.

592 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

Passing unresolved implementations as extra arguments

● Abstract over unresolved overloaded symbols and pass them around
as extra arguments.
Hopefully, overloaded symbols can be resolved when their types are
sufficiently specialized and before they are actually needed.
In short, let f = λx.x + x in a can be elaborated into
let f = λ(+). λx.x+ x in a. Then, the application of f to a float in a
e.g. f 1.0 can be elaborated into f (+.) 1.0.

● This can be done based on the typing derivation.

● After elaboration, types are no longer needed and can be erased.

● Monomorphization or other simplifications may reduce the number
of abstractions and applications introduced by overloading
resolution.

593 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

This has been explored under different facets in the context of ML:

● Type classes, introduced in [1989] by Wadler and Blott are the most
popular and widely explored framework of this kind.● Other contemporary proposals were proposed by Rouaix [1990] and
Kaes [1992].● Tentative simplifications of type classes have been
made [Odersky et al., 1995] but did not take over, because of their
restrictions.● Other works have tried to relax some
restrictions [Morris and Jones, 2010]

We present Mini-Haskell that contains the essence of Haskell.

Type-classes overloading style can also be largely mimicked with implicit
module arguments [White et al., 2014] with a few drawbacks but also
many advantages.

594 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

595 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell

Mini Haskell is a simplification of Haskell to avoid most of the difficulties
of type classes while keeping their essence:

● single parameter type classes

● no overlapping instance definitions

It is close to A second look at overloading by Odersky et al. in terms of
expressiveness and simplicity—but closer to Haskell in style: it can be
easily generalized by lifting restrictions without changing the framework.

Our version of Mini-Haskell is explicitly typed. We present:

● Some examples in Mini-Haskell.

● Elaboration of Mini-Haskell into (the ML subset of) System F.

● An implicitly-typed version with type inference.

596 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell Example Implicitly/Explicitly Typed

class Eq X { equal : X → X → Bool }

inst Eq Int { equal = primEqInt }
inst Eq Char { equal = primEqChar }
inst Λ(X) Eq X ⇒ Eq (List (X))
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | ,[] → false
| h1 ::t1 , h2 ::t2 → equal X h1 h2 && equal (List X) t1 t2 }

This code:

● declares a class (dictionary) of type Eq(X) that contains definitions
for equal : X → X → Bool,● creates two concrete instances (dictionaries) of type Eq Int and
Eq Char,● may create a concrete instance of type Eq (List(X)) for any instance
of type Eq(X)

597 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Elaboration into explicit dictionaries

class Eq X { equal : X → X → Bool }

inst Eq Int { equal = primEqInt }
inst Eq Char { equal = primEqChar }
inst Λ(X) Eq X ⇒ Eq (List (X))
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 → equal X h1 h2 && equal (List X) t1 t2 }

Becomes:
type Eq (X) = { equal : X → X → Bool }
let equal X (EqX : Eq X) : X → X → Bool = EqX.equal

let EqInt : Eq Int = { equal = primEqInt }
let EqChar : Eq Char = { equal = primEqChar }
let EqList X (EqX : Eq X) : Eq (List X)
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 →

equal X EqX h1 h2 && equal (List X) (EqList X EqX) t1 t2 }

598 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Class Inheritance

Classes may themselves depend on other classes (called superclasses):

class Eq X ⇒ Ord (X) { lt : X → X → Bool }
inst Ord Int { lt = (<) }

This declares a new class (dictionary) Ord X that depends on a dictionary
Eq X and contains a method lt : X → X → Bool.

The instance definition builds a dictionary Ord Int from the existing
dictionary Eq Int and the primitive (<) for lt .

The two declarations are elaborated into:

type Ord X = { Eq : Eq X; lt : X → X → Bool }
let EqOrd X (OrdX : Ord X) : Eq X = OrdX.Eq
let lt X (OrdX : Ord X) : X → X → Bool = OrdX.lt

let OrdInt : Ord Int = { Eq = EqInt; lt = (<) }

599 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell Overloading

An overloaded function search is defined as follows:

let rec leq ∶ ∀(X) Ord X⇒ X→ List X→ Bool =
Λ(X) λ(x ∶ X) λ(l ∶ ListX)
match l with [] → true
| h::t → (lt x h || equal x h) && leq x t

let b = leq Int 1 [1; 2; 3];;

This elaborates into:

let rec leq X (OrdX ∶ Ord X) (x ∶ X) (l ∶ ListX) ∶ Bool =
match l with | [] → true
| h::t → (lt X OrdX x h || equal X (EqOrd X OrdX) x h)

&& leq X OrdX x t

let b = leq Int OrdInt 1 [1; 2; 3];;

That is, the code in green is inferred.
600 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

601 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

We restrict to single parameter classes.

Class and instance declarations are restricted to the toplevel.
Their scope is the whole program.

602 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

In practice, a program is composed of interleaved

● class declarations,

● instance definitions,

● function definitions,

given in any order and

● ending with an expression.

Instance and function definitions are interpreted recursively.
Hence, their definition order does not matter.

For simplification, we assume that instance definitions do not depend on
function definitions, which may then come last as part of the expression
in a recursive let-binding.

603⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

In practice, a program is composed of sequences of

● class declarations,

● instance definitions,

given in this order and

● ending with an expression.

Instance definitions are interpreted recursively; their order does not
matter.

We may assume, w.l.o.g., that instance definitions come after all class
declarations.

The order of class declaration matters, since they may only refer to other
class constructors that have been previously defined.

603⟨2⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Source programs p are of the form:

p ∶∶=H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . um ∶ τm

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 =M1, . . . uk =Mk

P ∶∶= K α Q ∶∶= K τ σ ∶∶= ∀α⃗. Q⃗⇒ T T ∶∶= τ ∣ Q

Letter u ranges over overloaded symbols.

Class constructors K may appear in Q but not in τ .
Only regular type constructors G may appear in τ .

We write ∀α⃗.Q1 ⇒ . . . Qm ⇒ T for ∀α⃗.Q1, . . . Qm ⇒ T

and see ⇒ as an annotated version of →.

604⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Source programs p are of the form:

p ∶∶=H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . um ∶ τm

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 =M1, . . . uk =Mk

P ∶∶= K α Q ∶∶= K τ σ ∶∶= ∀α⃗. Q⃗⇒ T T ∶∶= τ ∣ Q

The sequence P⃗ in class and instance definitions is a typing context.
Each clause P⃗ is of the form K′ α′ and can be read as an assumption
“given a dictionary K′ of type α′. . . ”

The restriction to types of the form K′ α′ in typing contexts and class
declarations, and to types of the form K (G β⃗) in instances are for
simplicity. Generalizations are discussed later.

604⟨2⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Target language

System F, extended with record types, let-bindings, and let-rec.

Records are provided as data types. They are used to represent
dictionaries. Record labels represent overloaded symbols u.

We may also use overloaded symbols u as variables.
This amounts to reserving a subset of variables xu indexed by overloaded
symbols, but just writing u as a shortcut for xu.

We use letter N instead of M for elaborated terms, to distinguish them
from source terms.

605 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

H
△
== classK1 α, . . .Kp α⇒ K α {ρ}

A class declaration H defines a class constructor K.

Every class (constructor) K must be defined by one and only one class
declaration. So we may say that H is the declaration of K.

Classes Ki’s are superclasses of K and we write Ki ≺ K.

Class definitions must respect the order ≺ (acyclic)

The dictionary of K will contain a sub-dictionary for each superclass Ki.

All Ki’s are independent in a typing context: there does not exists i and
j such that Kj ≺ Ki.

Indeed, if Kj ≺ Ki, then Ki dictionary would contain a sub-dictionary for Kj , to

which K has access via Ki so K does not itself need dictionary Kj .

606 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

H
△
== classK1 α, . . .Kp α⇒ K α {ρ}

The row type ρ is of the form

u1 ∶ τ1, . . . um ∶ τm
and declares overloaded symbols ui (also called methods) of class K.

An overloaded symbol cannot be declared twice in the same class and
must be declared only in one class.

Types τi’s must be closed with respect to α.

Each class instance will contain a definition for each method.

607 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

H
△
== classK1 α, . . .Kp α⇒ K α {ρ}

Its elaboration consists of a record type declaration to represent the
dictionary and the definition of accessors for each field of the record.

The row ρ only lists methods u1 ∶ τ1, . . . um ∶ τm. We extend it with
sub-dictionary fields and define ρK to be ρ,uKK1

∶ K1 α, . . . u
K
Kp

∶ Kp α.

Thus ρK is of the form u1 ∶ T1, . . . un ∶ Tn. We introduce:

● a record type definition K α ≈ {u1 ∶ T1, . . . un ∶ Tn},● for each i in 1..n we define the accessor to field ui:● let Ni be Λα.λz ∶K α. (z.ui).● let σi be ∀α.K α⇒ Ti, i.e. the type of Ni● let Ri be the program context let ui ∶ σi = Ni in [].
Then, JHK is R1 ○ . . .Rn and we write ΓH for the typing environment
u1 ∶ σ1 . . . up ∶ σp in the hole of JHK.

608 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

The elaboration JH⃗K of the sequence of class definitions H⃗ is the
composition of the elaboration of each.

JH1 . . .HpK
△
== JH1K ○ . . . JHpK

△
== let u⃗ ∶ σ⃗u = N⃗u in []

Record type definitions are collected in the program prelude.

We write ΓH1...Hp for ΓH1
, . . .ΓHp .

609 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance definitions

h
△
== inst ∀β⃗. K ′

1 β1, . . .K
′
k βk ⇒ K (G β⃗) {r}

It defines an instance of a class K.

The typing context K ′1 β1, . . . K
′
k βk describes the dictionaries that must

be available on type parameters β⃗ to build the dictionary K (G β⃗).
This is not related to the superclasses of the class K:

For example, in

inst Λ(X) Eq X ⇒ Eq (List (X))

An instance of class Eq at type X is needed to build an instance of class
Eq at type List(X), but Eq is not a superclass of itself.

610 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance definitions

h
△
== inst ∀β⃗. K ′

1 β1, . . .K
′
k βk ⇒ K (G β⃗) {r}

The typing context describes dictionaries that cannot yet be built
because they depend on some unknown type β in β⃗.

We assume that the typing context is such that:

● each βi is in β⃗● βi and βj may be equal, except if Ki and Kj are related
(i.e. Ki ≺ Kj or Kj ≺ Ki or Ki = Kj)
The reason is, as for class declarations, that it would be useless to
require both dictionaries Ki β and Kj β when they are equal or one
is contained in the other.

Such typing contexts are said to be canonical.

611 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance declarations Elaboration

h
△
== inst ∀β⃗. K ′

1 β1, . . .K
′
k βk ⇒ K (G β⃗) {r}

This instance definition h is elaborated into a triple (zh,Nh, σh) where
zh is an identifier to refer to the elaborated body Nh of type σh.

The type σh is ∀β⃗.K′1 β1 ⇒ . . .K′k βk ⇒ K (G β⃗)
The expression Nh builds a dictionary of type K (G β⃗), given k ≥ 0
dictionaries of respective types K′1 β1, . . .K

′
k βk:

Λβ⃗. λ(z1 ∶K′1 β1). . . . λ(zk ∶K′k βk).{u1 = Nh
1 , . . . um = N

h
m, u

K
K1
= q1, . . . u

K
Kp
= qp}

The types of fields are as prescribed by the class definition K:

● Nh
i is the elaboration of Mi where r is u1 =M1, . . . um =Mm.● qi is a dictionary of type Ki (G β⃗) (the i’th subdictionary of K)

(We write z for a variable x that binds a dictionary.)

612 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of whole programs

The elaboration of all class instances Jh⃗K is the program context

let rec (z⃗h ∶ σ⃗h) = N⃗h in []
The elaboration of the whole program H⃗ h⃗ M is

JH⃗ h⃗ MK
△
== let u⃗ ∶ σ⃗u = N⃗u in let rec (z⃗h ∶ σ⃗h) = N⃗h in N

Hence, the expression N and all expressions Nh are typed (and
elaborated) in the environment Γ0 equal to ΓH⃗ , Γh⃗

where

● Γ
H⃗

declares functions to access components of dictionaries
(both sub-dictionaries and definitions of overloaded symbols).

● Γ
h⃗
equal to (z⃗h ∶ σ⃗h) declares functions to build dictionaries

(i.e. all class instances).

613 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

The elaboration of expressions is defined by a judgment

Γ ⊢ M ↝ N ∶ σ
where Γ is a System-F typing context, M is the source expression, N is
the elaborated expression and σ its type in Γ.

In particular, Γ ⊢M ↝ N ∶ σ implies Γ ⊢ N ∶ σ in F .

We write q for dictionary terms, i.e. the following subset of F terms:

q ∶∶= u ∣ z ∣ q τ ∣ q q
(u and z are just particular cases of x)

The elaboration of dictionaries is the judgment Γ ⊢ q ∶ σ which is just
typability in System F—but restricted to dictionary expressions.

614 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

Var

x ∶ σ ∈ Γ
Γ ⊢ x↝ x ∶ σ

Inst

Γ ⊢M ↝N ∶ ∀α.σ
Γ ⊢ M τ ↝ N τ ∶ [α ↦ τ]σ

Gen

Γ, α ⊢ M ↝ N ∶ σ
Γ ⊢ Λα.M ↝ Λα.N ∶ ∀α.σ

Let

Γ ⊢M1 ↝N1 ∶ σ Γ, x ∶ σ ⊢M2 ↝ N2 ∶ τ
Γ ⊢ let x ∶ σ =M1 inM2 ↝ let x ∶ σ = N1 in N2 ∶ τ

App

Γ ⊢M1 ↝ N1 ∶ τ2 → τ1
Γ ⊢M2 ↝ N2 ∶ τ2

Γ ⊢ M1 M2 ↝ N1 N2 ∶ τ1
Abs

Γ, x ∶ τ ′ ⊢M ↝ N ∶ τ
Γ ⊢ λx ∶τ ′.M ↝ λx ∶τ ′.N ∶ τ ′ → τ

In rule Let, σ must be canonical, i.e. of the form ∀α⃗. P⃗ ⇒ T where P⃗ is
itself empty or canonical (see the definition and also this restriction).

Rules App and Abs do not apply to overloaded expressions of type σ.

615 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λ x ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q
Γ ⊢M ↝ N q ∶ σ

Rule Oabs pushes dictionary abstractions Q in the context Γ as
prescribed by the expected type of the argument x.

These may then be used (in addition to dictionary accessors and instance
definitions already in Γ) to elaborate dictionaries as described by the

premise Γ ⊢ q ∶ Q of rule OApp.

616⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λ x ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q
Γ ⊢M ↝ N q ∶ σ

Judgment Γ ⊢ q ∶ Q is just well-typedness in System F, but restricted to
dictionary expressions. There is an algorithmic reading of the rule,
described further, where Γ and Q are given and q is inferred.

616⟨2⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λ x ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q
Γ ⊢M ↝ N q ∶ σ

By construction, elaboration produces well-typed expressions: that is
Γ0 ⊢M ↝ N ∶ τ implies that is Γ0 ⊢ N ∶ τ .

616⟨3⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration

An instance declaration h of the form:

inst ∀β⃗. K ′1 β1, . . . K ′k βk ⇒ K (G τ⃗) {u1 =M1, . . . um =Mm}
is translated into

Λβ⃗. λ(z1 ∶K′1 β1). . . . λ(zk ∶K′k βk).{u1 = Nh
1 , . . . um = N

h
m, u

K
K1
= q1, . . . u

K
Kp
= qp}

where:

● uKKi
∶ Qi are the superclasses fields, ui ∶ τi are the method fields

● Γh is β⃗,K ′
1
β1, . . .K

′
k βk● Γ0,Γh ⊢ qi ∶ Qi● Γ0,Γh ⊢Mi ↝ Ni ∶ τi

Finally, given the program p equal to H⃗ h⃗ M , we elaborate M as N such
that Γ0 ⊢ M ↝ N ∶ ∀ᾱ. τ .
Notice that ∀ᾱ. τ is an unconstrained type scheme. Why?

617 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

Otherwise, N could elaborate into an abstraction over dictionaries, i.e. it
would be a value and never applied!

Where else should we be careful that the intended semantics is
preserved?

In a call-by-value setting, we must not elaborate applications into
abstractions, since it would delay and perhaps duplicate the order of
evaluations.

For that purpose, we must restrict rule Let so that either σ is of the
form ∀ᾱ. τ or M1 is a value or a variable.

What about call-by-name? and Haskell?

618 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

In call-by-name, an application is not evaluated until it is needed. Hence,
adding an abstraction in front of an application should not change the
evaluation order M1 M2.

We must in fact compare:

let x1 = let x2 = λy.V1 V2 in [x2 ↦ x2 q]M2 inM1 (1)
let x1 = λy. let x2 = V1 V2 inM2 in [x1 ↦ x1 q]M1 (2)

The order of evaluation of V1 V2 is preserved.

However, Haskell is call-by-need, and not call-by-name!

Hence, applications are delayed as in call-by-name but their evaluation is
shared and only reduced once.

The application V1 V2 will be reduced once in (2), but as many types as
there are occurrences of x2 in M2 in (1).

619 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

The final result will still be the same in both cases because Haskell is
pure, but the intended semantics is changed regarding the efficiency.

Hence, Haskell may also use monomorphization in this case. This is a
delicate design choice

(Of course, monomorphization reduces polymorphism, hence the set of
typable programs.)

620 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration Sources of failures

The elaboration may fail for several reasons:

● The input expression does not obey one of the restrictions we have
requested.

● A typing error may occur during elaboration of an expression.

● Some required dictionary cannot be built.

If elaboration fails, the program p is rejected, indeed.

621 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

Hum. . . Although terms are explicitly-typed, their elaboration may not
be unique! Indeed, there might be several ways to build dictionaries of
some given type (see below for details).

In the worst case, a source program may elaborate to completely
unrelated programs. In the best case, all possible elaborations are
equivalent programs and we say that the elaboration is coherent: the
program then has a deterministic semantics given by elaboration.

But what does it mean for programs be equivalent?

622 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

There are several notions of program equivalence:

● If programs have a denotational semantics, the equivalence of
programs should be the equality of their denotations.

● As a subcase, two programs having a common reduct should
definitely be equivalent. However, this will in general not be
complete: values may contain functions that are not identical, but
perhaps would reduce to the same value whenever applied to the
same arguments.

● This leads to the notion of zobservational equivalence. Two
expressions are observationally equivalent (at some observable type,
such as integers) if their are indistinguishable whenever they are put
in arbitrary (well-typed) contexts of the observable type.

623 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

For instance, two different elaborations that would just consistently
change the representation of dictionaries (e.g. by ordering records in
reverse order), would be equivalent if we cannot observe the
representation of dictionaries.

624 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Sufficient conditions for coherence

Since terms are explicitly typed, the only source of non-determinism is
the elaboration of dictionaries.

One way to ensure coherence is that two dictionary values of the same
type are always equal. This does not mean that there is a unique way of
building dictionaries, but that all ways are equivalent as they eventually
return the same dictionary.

625 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration of dictionaries is just typing in System F.

More precisely, it infers a dictionary q given Γ and Q so that Γ ⊢ q ∶ Q.

The relevant subset of rules for dictionary expressions are:

D-OVar

x ∶ σ ∈ Γ
Γ ⊢ x ∶ σ

D-Inst

Γ ⊢ q ∶ ∀α.σ
Γ ⊢ q τ ∶ [α ↦ τ]σ

D-App

Γ ⊢ q1 ∶ Q1 ⇒ Q2 Γ ⊢ q2 ∶ Q1

Γ ⊢ q1 q2 ∶ Q2

Can we give a type-directed presentation?

626 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration is driven by the type of the expected dictionary and the
bindings available in the typing environment, which may be:

● a dictionary constructor zh given by an instance definition h;

● a dictionary accessor uK
′

K given by a class declaration K′;

● a dictionary argument z, given by the local typing context.

Hence, the typing rules may be reorganized as follows:

D-OVar-Inst

zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ zh τ⃗ q⃗ ∶ K (G τ⃗)
D-Proj

uK
′

K ∶ ∀α.K′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ
Γ ⊢ uK

′

K τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α
627 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary values

Dictionary values are typed in Γ0, which does not contain free type
variables, hence, the last rule does not apply.

Dictionary stored in other dictionaries must have been built in the first
place. Hence, all dictionary values can be built with the unique rule:

D-OVar-Inst

zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ zh τ⃗ q⃗ ∶ K (G τ⃗)
This rule for the judgment Γ ⊢ q ∶ τ can be read as an algorithm where Γ
and τ are inputs (and Γ is constant) and q is an output.

There is no choice in finding zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ, since
each such clause is coming from an instance definition h, and we
requested that instance definitions never overlap.

This ensures uniqueness of dictionary values, hence coherence.

628 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances

Two instances inst ∀β⃗i. P⃗ ⇒ K (Gi β⃗i) {ri} for i in {1,2} of a class K
overlap if the type schemes ∀β⃗i.K (Gi τ⃗i) have a common instance, i.e.
in the present setting, if G1 and G2 are equal.

Overlapping instances are an inherent source of incoherence: it means
that for some type Q (in the common instance), a dictionary of type Q
may (possibly) be built using two different implementations.

629 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

Dictionary expressions, as opposed to dictionary values, will also be built
by extracting dictionaries from other dictionaries.

Why? Indeed, in overloaded code, the exact type is not fully known at
compile time, hence dictionaries must be passed as arguments, from
which superclass dictionaries may (and must, as we forbid to pass both a
class and one of its super class dictionary simultaneously) be extracted.

Technically, they are typed in an extension of the typing context Γ0

which may contain typing assumptions z ∶ K′ β about dictionaries
received as arguments. Hence rules D-Proj and D-Var may also apply.

630 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

The elaboration of dictionaries uses the three rules (reminder):

D-OVar-Inst

z ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)
D-Proj

u ∶ ∀α.K′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ
Γ ⊢ z τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α
They can be read as a prolog-like backtracking algorithm.

631 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Termination

The proof search always terminates, since premises have smaller Q than
the conclusion when using the lexicographic order of first the height of τ ,
then the reverse order of class inheritance:

● If no rule applies, we fail.

● If rule D-Var applies, the derivation ends with success.

● If rule D-Proj applies, the premise is called with a smaller problem
since the height is unchanged and K′ τ⃗ with K′ ≺ K.

● If D-Ovar-Inst applies, the premises are called at type Ki τj where
τj is subtype (i.e. subterm) of τ⃗ , hence of a strictly smaller height.

632 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Non determinism

For instance, in the introduction, we defined two instances eqInt and
ordInt, while the later contains an instance of the former.

Hence, a dictionary of type eqInt may be obtained:

● directly as EqInt, or

● indirectly as OrdInt.Eq, by projecting the Eq sub-dictionary of class
Ord Int

In fact, the latter choice could then be reduced at compile time and be
equivalent to the first one.

One may enforce determinism by fixing a simple and sensible strategy for
elaboration. Restrict the use of rule D-Proj to cases where Q is P–when
D-OVar-Inst does not apply. However, the extra flexibility is harmless
and perhaps useful freedom for the compiler.

633 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing dictionaries Example

In the introductory example Γ0 is:

equal
△
== uequal ∶ ∀α.Eq α⇒ α → α → bool,

EqInt
△
== zIntEq ∶ Eq int

EqList
△
== zListEq ∶ ∀α.Eq α⇒ Eq (list α)

EqOrd
△
== uOrd

Eq ∶ ∀α.Ord α⇒ Eq α

lt
△
== ult ∶ ∀α.Ord α⇒ α → α → bool

When elaborating the body of leq, we have to infer a dictionary for
EqOrd X OrdX in the local context X, OrdX : Ord X. Thus, Γ is
Γ0, α, z ∶ Ord α and EqOrd is uOrd

Eq . We have:

D-Proj

D-OVar-Inst

Γ ⊢ uOrd
Eq α ∶ Ord α → Eq α

D-Var

Γ ⊢ z ∶ Ord α
Γ ⊢ uOrd

Eq α z ∶ Eq α
634 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

635 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations? must remain explicit:

● They define the structure of dictionaries: a record type definition
and its accessors.

● They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations? must also remain explicit:

● These are polymorphic recursive definitions, hence their types are
mandatory.

However, all core language expressions (in instance declarations and the
final one) can be left implicit, in particular dictionary applications, but
also abstractions over unresolved dictionaries.

636 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example

class Eq X { equal : X → X → Bool }
inst Eq Int { equal = primEqInt }
inst Eq Char { equal = primEqChar }
inst Λ(X) Eq X⇒ Eq (List (X))
{ eq = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 → eq X h1 h2 && eq (List X) t1 t2 }

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

let rec leq ∶ ∀(X) Ord X⇒ X→ List X→ Bool =
Λ(X) λ(x ∶ X) λ(l ∶ List X)
match l with [] → true
| h::t → (equal X x h || lt X x h) && leq X x t

let b = leq Int 1 [1; 2; 3];;
637⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type inference

The idea is to see dictionary types K τ , which can only appear in type
schemes and not in types, as a type constraint to mean “there exists a
dictionary of type K α”.

Just read ∀α⃗. P⃗ ⇒ τ as the constraint type scheme ∀α⃗[P⃗]. τ .
We extend constraints with dictionary predicates:

C ∶∶= . . . ∣ K τ
On ground types a constraint K t is satisfied if one can build a
dictionary of type K t in the initial environment Γ0 (that contains all
class and instance declarations), i.e. formally, if there exists a dictionary
expression q such that Γ0 ⊢ q ∶ K t.

The satisfiability of class-membership constraints is thus:

K φτ

φ ⊢ K τ
638 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class declaration classK1 α, . . . Kn α⇒ K α {ρ},
K α ⊩ K1 α ∧ . . . Kn α (1)

This rule allows to decompose any set of simple constraints into a
canonical one.

Proof of (1).Assume φ ⊢ K α, i.e. Γ0 ⊢ q ∶ K (φα) for some q.

From the class declaration, we know that K α is a record type definition
that contains fields uKKi

of type Ki αi. Hence, the dictionary value q
contains field values of types Ki (φα). Therefore, we have φ ⊢ Ki α for
all i in 1..n, which implies φ ⊢ K1 α ∧ . . . Kn α.

639 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp ⇒ K (G β) {r}
K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (2)

This rule allows to decompose all class constraints into simple
constraints of the form K α.

Proof of (2) (ê direction).Assume φ ⊢ Ki βi. There exists dictionaries qi
such that Γ0 ⊢ qi ∶ Ki (φβi). Hence, Γ0 ⊢ xh β⃗ q1 . . . qp ∶ K (G (φβ⃗)),
i.e. φ ⊢ K (G (φβ⃗)).
(⊩ direction).Assume, φ ⊢ K (G (φβ⃗). i.e. there exists a dictionary q
such that Γ0 ⊢ q ∶ K (G φβ⃗). By non-overlapping of instance declarations,
the only way to build such a dictionary is by an application of xh. Hence,
q must be of the form xh β⃗ q1 . . . qp with Γ0 ⊢ qi ∶ Ki (φβi), that is,
φ ⊢ Ki βi for every i, which implies φ ⊢ K1 β1 ∧ . . . Kp βp.

640⟨1⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp ⇒ K (G β) {r}
K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (2)

This rule allows to decompose all class constraints into simple
constraints of the form K α.

Notice that the equivalence still holds in an open-world assumption
where new instance clauses may be added later, because another future
instance definition cannot overlap with existing ones.

If overlapping of instances were allowed, the ⊩ direction would not hold.
Then, the rewriting rule:

K (G β⃗) Ð→ K1 β1 ∧ . . . Kp βp

would still be sound (the right-hand side entails the left-hand side, and
thus type inference would infer sound typings), ı.e. but not complete
(type inference could miss some typings).

640⟨2⟩ 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class K and type constructor G for which there is no instance of
K,

K (G β⃗) ≡ false (3)
This rule allows failure to be reported as soon as constraints of the form
K (G τ⃗) appear and there is no instance of K for G.

Proof of (3).The ê direction is a tautology, so it suffices to prove the ⊩
direction. By contradiction. Assume φ ⊢ K (G β⃗). This implies the
existence of a dictionary q such that Γ0 ⊢ q ∶ K (G (φβ⃗)). Then, there
must be some xh in Γ whose type scheme is of the form∀β⃗. P⃗ ⇒ K (G β⃗), i.e. there must be an instance of class K for G.

Notice that this rule does not work in an open world assumption. The
rewriting rule

K (G β⃗) Ð→ false

would still remain sound but incomplete.
641 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing constraints

Constraint generation is as in ML.

A constraint type scheme can always be decomposed into one of the
form ∀ᾱ[P1 ∧ P2]. τ where ftv(P1) ∈ ᾱ and ftv(P2)# ᾱ.

The constraints P2 can then be extruded in the enclosing context if any,
so we are in general left with just P1.

642 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Checking well-typedness

To check well-typedness of the program p equal to H⃗ h⃗ a, we must check
that: each expression ahi and the expression a are well-typed, in the
environment used to elaborate them:

This amounts to checking:

● Γ0,Γh ⊢ a
h
i ∶ τhi where τhi is given.

Thus, we check that the constraints def Γ0,Γh in Lahi M ⪯ τ
h
i ≡ true.● Γ0 ⊢ a ∶ τ for some τ .

Thus, we check that def Γ0 in ∃α. LaM ⪯ α ≡ true.
However, . . . Typechecking is not sufficient!

Type reconstruction should also return an explicitly-typed term M that
can then be elaborated into N .

643 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction

As for ML the resolution strategy for constraints may be tuned to keep
persistent constraints from which an explicitly typed term M can be read
back.

644 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Back to coherence

When the source language is implicitly-typed, the elaboration from the
source language into System F code is the composition of type
reconstruction with elaboration of explicitly-typed terms.

That is, a elaborates to N if Γ ⊢ a↝M ∶ τ and Γ ⊢M ↝ N ∶ τ .
Hence, even if the elaboration is coherent for explicitly-typed terms, this
may not be true for implicitly-typed terms.

There are two potential problems:

● The language has principal constrained type schemes, but the
elaboration requests unconstrained type schemes.

● Ambiguities could be hidden (and missed) by non principal type
reconstruction.

645 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

Thanks to the several restrictions on class declarations and instance
definitions, the type system has principal constrained schemes (and
principal typing reconstruction). However, this does not imply that there
are principal unconstrained type schemes.

Indeed, assume that the principal constrained type scheme is∀α[K α]. α → α and the typing environment contains two instances of
K G1 and K G2 of class K. Constraint-free instances of this type scheme
are G1→ G1 and G2→ G2 but ∀α.α → α is certainly not one.

Not only neither choice is principal, but the two choices would elaborate
into expressions with different (non-equivalent) semantics.

We must fail in such cases.

646 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

This problem may appear while typechecking the final expression a in Γ0

that request an unconstrained type scheme ∀α. τ
It may also occur when typechecking the body of an instance definition,
which requests an explicit type scheme ∀α⃗[Q⃗]. τ in Γ0 or equivalently
that requests a type τ in Γ0, α⃗, Q⃗.

647 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Example of unresolved constraints

class Num (X) { 0 : X, (+) : X → X → X }
inst Num Int { 0 = Int.(0), (+) = Int.(+} }
inst Num Float { 0 = Float.(0), (+) = Float.(+} }
let zero = 0 + 0;

The type of zero or zero + zero is ∀α[Num α]. α—and several classes
are possible for Num X. The semantics of the program is undetermined.

class Readable (X) { read : descr → X }
inst Readable (Int) { read = read int }
inst Readable (Char) { read = read char }
let x = read (open in())

The type of x is ∀α[Readable α].unit → α—and several classes are
possible for Readable α. The program is rejected.

648 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Inaccessible constraint variables

In the previous examples, the incoherence comes from the obligation to
infer type schemes without constraints. A similar problem may occur
with isolated constraints in a type scheme.

Assume, for instance, that the elaboration of let x = a1 in a2 is
let x ∶ ∀α[K α]. int → int = N1 in N2.

All applications of x in N2 will lead to an unresolved constraint K α since
neither the argument nor the context of this application can determine
the value of the type parameter α. Still, a dictionary of type K τ must be
given before N1 can be executed.

Although x may not be used in N2, in which case, all elaborations of the
expression may be coherent, we may still raise an error, since an unusable
local definition is certainly useless, hence probably a programmer’s
mistake. The error may then be raised immediately, at the definition site,
instead of at every use of x.

649 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence The open-world view

When there is a single instance K G for a class K that appears in an
unresolved or isolated constraint K α, the problem formally disappears, as
all possible type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons,
as an extension of the program with another non-overlapping correct
instance declaration would make the program become ambiguous.

Formally, this amounts to saying that the program must be coherent in
its current form, but also in all possible extensions with well-typed class
definitions. This is taking an open-world view.

650 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

In the source of incoherence we have seen, some class constraints
remained undetermined.

As noticed earlier, some (usually arbitrary) less general elaboration would
solve the problem—but the source program would remain incoherent.

Hence, in order to detect incoherent (i.e. ambiguous) programs it is
essential that type reconstruction is principal.

Once a program has been checked coherent, i.e. with no undetermined
constraint, based on a principal type reconstruction, can we still use
another non principal type reconstruction for its elaboration?

Yes, indeed, this will preserve the semantics.

This freedom may actually be very useful for optimizations.

651 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Consider the program

let twice = λ(x) x + x in twice (twice 1)

Its principal type reconstruction is:

let twice : ∀(X) [Num X] X → X = Λ(X) [Num X] λ(x) x + x in
twice Int (twice Int) 1

which elaborates into

let twice X numX = λ(x : X) x (plus numX) x in
twice Int NumInt (twice Int NumInt 1)

while, avoiding polyorphism, twice would elaborate into:

let twice = λ(x : Int) x (plus NumInt) x in twice (twice 1)

where moreover, the plus NumInt can be statically reduced.

652 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

All previous ambiguous examples are overloaded by return types:

● 0 : X.
The value 0 has an overloaded type that is not constraint by the
argument.

● read : desc → X.
The function read applied to some ground type argument will be
under specified.

Odersky et al. [1995] suggested to prevent overloading by return types by
requesting that overloaded symbols of a class K α have types of the form
α → τ .

The above examples are indeed rejected by this definition.

653 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

In fact, disallowing overloading by return types suffices to ensure that all
well-typed programs are coherent.

Moreover, untyped programs can then be given a semantics directly
(which of course coincides with the semantics obtained by elaboration).

Many interesting examples of overloading fits in this schema.

However, overloading by returns types is also found useful in several
cases and Haskell allows it, using default rules to resolve ambiguities.

This is still an arguable design choice in the Haskell community.

654 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

655 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Changing the representation of dictionaries

An overloaded method call u of a class K is elaborated into an
application u q of u to a dictionary expression q of class K. The function
u and the representation of the dictionary are both defined in the
elaboration of the class K and need not be known at the call site.

This leaves quite a lot of flexibility in the representation of dictionaries.

For example, we used record data-type definitions to represent
dictionaries, but tuples would have been sufficient.

656 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

An alternative compilation of type classes

The dictionary passing semantics is quite intuitive and very easy to type
in the target language.

However, dictionaries may be replaced by a derivation tree that proves
the existence of the dictionary. This derivation tree can be passed around
instead of the dictionary and be used at the call site to dispatch to the
appropriate implementation of the method.

This has been studied in [Furuse, 2003].

This can also elegantly be explained as a type preserving compilation of
dictionaries called concretization and described in
[Pottier and Gauthier, 2006]. It is somehow similar to defunctionalization
and also requires that the target language be equipped with GADT
(Guarded Abstract Data Types).

657 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Multi-parameter type classes

Multi-parameter type classes are of the form

class P⃗ ⇒ K α⃗ {ρ}
where free variables of P⃗ are in α⃗.

The current framework can easily be extended to handle multi-parameter
type classes.

Example: Collections represented by type C whose elements are of type
E can be defined as follows:

class Collection C E { find : C → E → Option(E), add : C → E → C }
inst Collection (List X) X { find = List.find, add = λ(c)λ(e) e::c }
inst Collection (Set X) X { ... }

658 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

However, the class Collection does not provide the intended intuition that
collections be homogeneous:

let add2 c x y = add (add c x) y
add2 : ∀(C, E, E’)

Collection C E, Collection C E’ ⇒ C → E → E’ → C

This definition assumes that collections may be heterogeneous. This may
not be intended, and perhaps no instance of heterogeneous collections
will ever be provided.

To statically enforce collections to be homogeneous in types, the
definition can add a clause to say that the parameter C determines the
parameter E:

class Collection C E | C → E { ... }

Then, add2 would enforce E and E′ to be equal.

659 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

Type dependencies also reduce overlapping between class declarations.

Hence they allow examples that would have to be rejected if type
dependencies could not be expressed.

660 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Associated types

Functional dependencies are being replaced by the notion of associated
types, which allows a class to declare its own type function.

Correspondingly, instance definitions must provide a definition for
associated types (in addition to values for overloaded symbols).

For example, the Collection class becomes a single parameter class with
an associated type definition:

class Collection E {
type C : ∗
find : C → E → Option E
add : C → E → C

}
inst Collection Eq X ⇒ Collection X {type C = List E, ... }
inst Collection Eq X ⇒ Collection X {type C = Set E, ... }

Associated types increase the expressiveness of type classes.

661 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

In practice, overlapping instances may be desired! For example, one
could provide a generic implementation of sets provided an ordering
relation on elements, but also provide a more efficient version for bit sets.

If overlapping instances are allowed, further rules are needed to
disambiguate the resolution of overloading, such as giving priority to
rules, or using the most specific match.

However, the semantics depend on some particular resolution strategy
and becomes more fragile. See [Jones et al., 1997] for a discussion.

See also [Morris and Jones, 2010] for a recent new proposal.

662 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

inst Eq(X) { equal = (=) }
inst Eq(Int) { equal = primEqInt }

This elaborates into the creation of a generic dictionary

let Eq X : Eq X= { equal = (=) }
let EqInt : Eq Int = { equal = primEqInt }

Then, EqInt or Eq Int are two dictionaries of type Eq Int but with
different implementations.

663 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Restriction that are harder to lift

One may consider removing other restrictions on the class declarations or
instance definitions. While some of these generalizations would make
sense in theory, they may raise serious difficulties in practice.

For example:

● If constrained type schemes are of the form K τ instead of K α?
(which affects all aspects of the language), then it becomes difficult
to control the termination of constrained resolution and of the
elaboration of dictionaries.

● If a class instance inst ∀β⃗. P⃗ ⇒ K τ {ρ} could be such that τ is G τ⃗
and not G β⃗, then it would be more difficult to check
non-overlapping of class instances.

664 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Methods as overloading functions

One approach to object-orientation is to see methods as over as
overloaded functions.

In this view, objects carry class tags that can be used at runtime to find
the best matching definition.

This approach has been studied in detail
by [Millstein and Chambers, 1999]. See also [Bonniot, 2002, 2005].

665 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Implicit arguments

Oliviera et al noticed that type classes could be largely emulated in Scala
with implicit arguments [Oliveira et al., 2010].

This has recently be formalized by Oliviera et al in COCHIS, a calculus
with implicits arguments [Schrijvers et al., 2017].

This allows local scoping of overloaded functions, but coherence is solved
by a restriction to first-choice commitment during resolution to force it
to be deterministic.

666 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Modules-based type classes

Modular type classes [Dreyer et al., 2007] mimic type classes at the level
of modules, but with explicit abstraction and instantiations.

Modular implicits [White et al., 2014] allows for implicit module
arguments. This extends the idea of modular type-classes in two
directions.

● The language is more expressive

● Module arguments are inferred (left implicit).

● Module abstractions remain explicit. This allows for local scoping of
overloading.

667 671 ◁

module type EQ =
sig type t val eq : t → t → bool end

implicit module Eq Int = struct
type t = int let eq (x:int) y = x = y

end

implicit module Eq Char = struct
type t = char
let eq (x:char) y = x = y end

let eq {Eq : EQ} x = Eq.eq x

implicit module Eq List {Eq : EQ} =
struct module rec R : EQ

with type t = Eq.t list = struct
type t = Eq.t list
let eq l1 l2 = match l1, l2 with
| [],[] → true | [], | ,[] → false
| h1::t1, h2::t2 →

eq h1 h2 && eq {R} t1 t2
end include R end

module type ORD = sig type t
module Eq : EQ with type t = t
val lt : t → t → bool end

implicit module Ord Int = struct
type t = int
module Eq = Eq Int
let lt x y = (x < y) end

implicit module Eq {Ord : ORD} = Ord.Eq

let lt {Ord : ORD} x = Ord.lt x;;

implicit module Ord List {Ord : ORD} =
struct module rec R : ORD

with type t = Ord.t list = struct
type t = Ord.t list
module Eq = Eq List {Ord.Eq}
let lt l1 l2 = match l1, l2 with
| , [] → false | [], → true
| h1::t1, h2::t2 → lt h1 h2 && lt{R} t1 t2

end include R end

let leq (type a) {Ord : ORD with type t = a list} (l1 : a list) l2 =
lt l1 l2 || eq l1 l2

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Static overloading is not a solution for polymorphic languages.
Dynamics overloading must be used instead.

Dynamics overloading is a powerful mechanism.

Haskell type classes are a practical, general, and powerful solution to
dynamic overloading,

Dynamic overloading works relatively well in combination with ML-like
type inference.

However, besides the simplest case where every one agrees, useful
extensions often come with some drawbacks, and there is not yet an
agreement on the best design choices.

The design decisions are often in favor of expressiveness, but loosing
some of the properties and the canonicity of the minimal design.

669 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Dynamic overloading is a typical and very elegant use of elaboration.

The programmer could in principle write the elaborated program, build
and pass dictionaries explicitly, but this would be cumbersome, tricky,
error prone, and it would obfuscate the code.

The elaboration does this automatically, without arbitrary choices (in the
minimal design) and with only local transformations that preserve the
structure of the source.

670 671 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Further Reading

For an all-in-one explanation of Haskell-like overloading, see The essence
of Haskell by Odersky et al.

See also the Jones’s monograph Qualified types: theory and practice.

For a calculus of overloading see ML& [Castagna, 1997]

Type classes have also been added to Coq [Sozeau and Oury, 2008].
Interestingly, the elaboration of proof terms need not be coherent which
makes it a simpler situation for overloading.

A technique similar to defunctionalization can be used to replace
dictionnaries by tags, which are interpreted when calling an overloaded
function to dispatch to the appropriate
definition [Pottier and Gauthier, 2004].

Implicit module arguments [White et al., 2014] can also mimick
type-classes overloading with some drawbacks and advantages.

671 671 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped and
first-order systems. Information and Computation, 125(2):78–102, March
1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-order
systems. Science of Computer Programming, 25(2–3):81–116, December
1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves
observational equivalence. In ACM International Conference on Functional
Programming (ICFP), pages 157–168, September 2008.

▷ Robert Atkey. Relational parametricity for higher kinds. In Patrick Cégielski and
Arnaud Durand, editors, Computer Science Logic (CSL’12) - 26th
International Workshop/21st Annual Conference of the EACSL, volume 16 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 46–61, 2012.
doi: 10.4230/LIPIcs.CSL.2012.46.

672 671 ◁

http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
https://bentnib.org/fomega-parametricity.pdf

Bibliography

Bibliography II

▷ Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional
programming. J. Funct. Program., 11(4):395–410, 2001.

▷ Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing
Polymorphic Properties, pages 125–144. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-642-11957-6. doi:
10.1007/978-σ23-σ2642-σ211957-σ26 8.

▷ Richard Bird and Lambert Meertens. Nested datatypes. In International
Conference on Mathematics of Program Construction (MPC), volume 1422
of Lecture Notes in Computer Science, pages 52–67. Springer, 1998.

▷ Clément Blaudeau. OCaml modules: formalization, insights and improvements.
Master’s thesis, École polytechnique fédérale de Lausanne, September 2021.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, École des
Mines de Paris, November 2005.

▷ Daniel Bonniot. Type-checking multi-methods in ML (a modular approach). In
Workshop on Foundations of Object-Oriented Languages (FOOL), January
2002.

673 671 ◁

http://research.microsoft.com/en-us/um/people/akenn/sml/exceptionalsyntax.pdf
https://doi.org/10.1007/978-3-642-11957-6_8
ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
https://hal.inria.fr/hal-03526068
http://cristal.inria.fr/~bonniot/bonniot02.ps

Bibliography

Bibliography III

▷ Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fundamenta Informaticæ, 33:309–338, 1998.

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. Information and Computation, 155(1/2):108–133, November
1999.

▷ Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System F-omega with
equirecursive types for datatype-generic programming. In Rastislav Bod́ık and
Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 30–43.
ACM, 2016. doi: 10.1145/2837614.2837660.

Luca Cardelli. An implementation of f¡:. Technical report, DEC Systems
Research Center, 1993.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science Series. Birkäuser, Boston, 1997.

674 671 ◁

ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz
http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://ps.informatik.uni-tuebingen.de/research/functors/equirecursion-fomega-popl16.pdf

Bibliography

Bibliography IV

▷ Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The
MLton compiler, 2007.

▷ Arthur Charguéraud and François Pottier. Functional translation of a calculus of
capabilities. In ACM International Conference on Functional Programming
(ICFP), pages 213–224, September 2008.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for
object-oriented languages. In ACM Symposium on Principles of Programming
Languages (POPL), pages 38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. In ACM Conference on Programming Language Design
and Implementation (PLDI), pages 54–65, June 2007.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in
type erasure semantics. Journal of Functional Programming, 12(6):567–600,
November 2002.

Julien Cretin and Didier Rémy. System F with Coercion Constraints. In Logics
In Computer Science (LICS). ACM, July 2014.

675 671 ◁

http://mlton.org/
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps

Bibliography

Bibliography V

▷ Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller.
Modular type classes. In POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 63–70, New York, NY, USA, 2007. ACM. ISBN 1-59593-575-4.

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09: Proceedings of
the 2009 ACM SIGPLAN workshop on ML, pages 15–26, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-509-3. doi:
http://doi.acm.org/10.1145/1596627.1596631.

▷ Jun Furuse. Extensional polymorphism by flow graph dispatching. In Asian
Symposium on Programming Languages and Systems (APLAS), volume 2895
of Lecture Notes in Computer Science. Springer, November 2003.

▷ Jacques Garrigue. Relaxing the value restriction. In Functional and Logic
Programming, volume 2998 of Lecture Notes in Computer Science, pages
196–213. Springer, April 2004.

676 671 ◁

http://doi.acm.org/10.1145/1190216.1190229
http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

Bibliography

Bibliography VI

Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type
Inference with GADTs. In 11th Asian Symposium on Programming
Languages and Systems, Melbourne, Australia, December 2013.

▷ Nadji Gauthier and François Pottier. Numbering matters: First-order canonical
forms for second-order recursive types. In Proceedings of the 2004 ACM
SIGPLAN International Conference on Functional Programming (ICFP’04),
pages 150–161, September 2004. doi:
http://doi.acm.org/10.1145/1016850.1016872.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’état, Université Paris 7, June 1972.

▷ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
University Press, 1990.

677 671 ◁

http://gallium.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.ps.gz
http://www.paultaylor.eu/stable/prot.pdf

Bibliography

Bibliography VII

▷ Neal Glew. A theory of second-order trees. In Daniel Le Métayer, editor,
Programming Languages and Systems, 11th European Symposium on
Programming, ESOP 2002, held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2305 of Lecture Notes in Computer Science,
pages 147–161. Springer, 2002. doi: 10.1007/3-σ2540-σ245927-σ28/ 11.

Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, 2012.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style
module systems. In Benjamin C. Pierce, editor, Advanced Topics in Types
and Programming Languages, chapter 8, pages 293–345. MIT Press, 2005.

▷ Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions
on Programming Languages and Systems, 15(2):253–289, April 1993.

▷ J. Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29–60, 1969.

678 671 ◁

https://ecommons.cornell.edu/bitstream/handle/1813/5844/2002-1859.ps
http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158

Bibliography

Bibliography VIII

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
Lambda-Calculus. Cambridge University Press, 1986.

▷ Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
Haskell: being lazy with class. In ACM SIGPLAN Conference on History of
Programming Languages, June 2007.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . ., ω.
PhD thesis, Université Paris 7, September 1976.

Mark P. Jones. Qualified types: theory and practice. Cambridge University
Press, New York, NY, USA, 1995. ISBN 0-521-47253-9.

▷ Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999.

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration
of the design space. In Haskell workshop, 1997.

679 671 ◁

http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz

Bibliography

Bibliography IX

Stefan Kaes. Type inference in the presence of overloading, subtyping and
recursive types. In LFP ’92: Proceedings of the 1992 ACM conference on
LISP and functional programming, pages 193–204, New York, NY, USA,
1992. ACM. ISBN 0-89791-481-3. doi:
http://doi.acm.org/10.1145/141471.141540.

▷ Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is
DEXPTIME-complete. In Colloquium on Trees in Algebra and Programming,
volume 431 of Lecture Notes in Computer Science, pages 206–220. Springer,
May 1990.

▷ Oleg Kiselyov. Higher-kinded bounded polymorphism. web page.

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s
lambda-notation: part I. Communications of the ACM, 8(2):89–101, 1965.

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Systems, 16
(5):1411–1430, September 1994.

680 671 ◁

http://dx.doi.org/10.1007/3-540-52590-4_50
http://okmij.org/ftp/ML/higher-kind-poly.html
http://doi.acm.org/10.1145/363744.363749
http://www.cs.luc.edu/laufer/papers/toplas94.pdf

Bibliography

Bibliography X

▷ Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of system F .
In ACM International Conference on Functional Programming (ICFP), pages
27–38, August 2003.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional
Programming. ACM Press, 2001.

▷ Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD thesis,
Université Paris 7, June 1992.

▷ Xavier Leroy and François Pessaux. Type-based analysis of uncaught exceptions.
ACM Trans. Program. Lang. Syst., 22(2):340–377, 2000. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/349214.349230.

▷ John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM
Symposium on Principles of Programming Languages (POPL), pages 47–57,
January 1988.

681 671 ◁

http://cristal.inria.fr/~remy/work/mlf/icfp.pdf
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://gallium.inria.fr/~xleroy/publi/exceptions-toplas.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf

Bibliography

Bibliography XI

▷ Harry G. Mairson. Deciding ML typability is complete for deterministic
exponential time. In ACM Symposium on Principles of Programming
Languages (POPL), pages 382–401, 1990.

▷ Sophie Malecki. Proofs in system fω can be done in system fω1. In Dirk van
Dalen and Marc Bezem, editors, Computer Science Logic, pages 297–315,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN
978-3-540-69201-0.

Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17, May 2007.

▷ David McAllester. A logical algorithm for ML type inference. In Rewriting
Techniques and Applications (RTA), volume 2706 of Lecture Notes in
Computer Science, pages 436–451. Springer, June 2003.

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods.
In ECOOP ’99: Proceedings of the 13th European Conference on
Object-Oriented Programming, pages 279–303, London, UK, 1999.
Springer-Verlag. ISBN 3-540-66156-5.

682 671 ◁

http://doi.acm.org/10.1145/96709.96748
https://link.springer.com/content/pdf/10.1007/3-540-63172-0_46.pdf
http://www.autoreason.com/rta03.ps

Bibliography

Bibliography XII

▷ Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, December 1978.

▷ Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure
conversion. In ACM Symposium on Principles of Programming Languages
(POPL), pages 271–283, January 1996.

▷ John C. Mitchell. Polymorphic type inference and containment. Information and
Computation, 76(2–3):211–249, 1988.

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470–502,
1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules with
open existential types. In ACM Symposium on Principles of Programming
Languages (POPL), pages 63–74, January 2009.

683 671 ◁

http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf

Bibliography

Bibliography XIII

J. Garrett Morris and Mark P. Jones. Instance chains: type class programming
without overlapping instances. In ICFP ’10: Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, pages
375–386, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. doi:
http://doi.acm.org/10.1145/1863543.1863596.

▷ Greg Morrisett and Robert Harper. Typed closure conversion for
recursively-defined functions (extended abstract). In International Workshop
on Higher Order Operational Techniques in Semantics (HOOTS), volume 10
of Electronic Notes in Theoretical Computer Science. Elsevier Science, 1998.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):528–569, May 1999.

▷ Alan Mycroft. Polymorphic type schemes and recursive definitions. In
International Symposium on Programming, volume 167 of Lecture Notes in
Computer Science, pages 217–228. Springer, April 1984.

684 671 ◁

http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://dx.doi.org/10.1007/3-540-12925-1_41

Bibliography

Bibliography XIV

▷ Hiroshi Nakano. A modality for recursion. In IEEE Symposium on Logic in
Computer Science (LICS), pages 255–266, June 2000.

▷ Hiroshi Nakano. Fixed-point logic with the approximation modality and its
Kripke completeness. In International Symposium on Theoretical Aspects of
Computer Software (TACS), volume 2215 of Lecture Notes in Computer
Science, pages 165–182. Springer, October 2001.

▷ Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading.
In FPCA ’95: Proceedings of the seventh international conference on
Functional programming languages and computer architecture, pages
135–146, New York, NY, USA, 1995. ACM. ISBN 0-89791-719-7.

▷ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

▷ Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type
inference. In ACM Symposium on Principles of Programming Languages
(POPL), pages 41–53, 2001.

685 671 ◁

http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps.gz
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-tacs01.pdf
http://doi.acm.org/10.1145/224164.224195
http://eprints.kfupm.edu.sa/73647/1/73647.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz

Bibliography

Bibliography XV

▷ Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999.

▷ Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as
objects and implicits. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
OOPSLA ’10, pages 341–360, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0203-6. doi: 10.1145/1869459.1869489.

▷ Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. Online lecture
notes, January 2009.

▷ Simon Peyton Jones and Mark Shields. Lexically-scoped type variables.
Manuscript, April 2004.

▷ Simon Peyton Jones and Philip Wadler. Imperative functional programming. In
ACM Symposium on Principles of Programming Languages (POPL), pages
71–84, January 1993.

686 671 ◁

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://doi.acm.org/10.1145/1869459.1869489
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.cse.ogi.edu/~mbs/pub/scoped/
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz

Bibliography

Bibliography XVI

Frank Pfenning. Partial polymorphic type inference and higher-order unification.
In LFP ’88: Proceedings of the 1988 ACM conference on LISP and functional
programming, pages 153–163, New York, NY, USA, 1988. ACM. ISBN
0-89791-273-X. doi: http://doi.acm.org/10.1145/62678.62697.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

▷ Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems, 22(1):1–44, January
2000.

▷ Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321–359, 2000.

▷ François Pottier. Notes du cours de DEA “Typage et Programmation”,
December 2002.

François Pottier. A typed store-passing translation for general references. In
Proceedings of the 38th ACM Symposium on Principles of Programming
Languages (POPL’11), Austin, Texas, January 2011. Supplementary material.

687 671 ◁

http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz

Bibliography

Bibliography XVII

François Pottier. Hindley-Milner elaboration in applicative style. In Proceedings
of the 2014 ACM SIGPLAN International Conference on Functional
Programming (ICFP’14), September 2014.

▷ François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization. In
ACM Symposium on Principles of Programming Languages (POPL), pages
89–98, January 2004.

▷ François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and
concretization. Higher-Order and Symbolic Computation, 19:125–162, March
2006.

François Pottier and Jonathan Protzenko. Programming with permissions in
Mezzo. Submitted for publication, October 2012.

François Pottier and Jonathan Protzenko. Programming with permissions in
Mezzo. In Proceedings of the 2013 ACM SIGPLAN International Conference
on Functional Programming (ICFP’13), pages 173–184, September 2013.

688 671 ◁

http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-popl04.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz

Bibliography

Bibliography XVIII

▷ François Pottier and Yann Régis-Gianas. Stratified type inference for generalized
algebraic data types. In ACM Symposium on Principles of Programming
Languages (POPL), pages 232–244, January 2006.

▷ François Pottier and Yann Régis-Gianas. Towards efficient, typed LR parsers. In
ACM Workshop on ML, volume 148-2 of Electronic Notes in Theoretical
Computer Science, pages 155–180, March 2006.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

▷ François Pottier and Didier Rémy. The essence of ML type inference. Draft of
an extended version. Unpublished, September 2003.

▷ Jonathan Protzenko. Mezzo, a typed language for safe effectful concurrent
programs. PhD thesis, University Paris Diderot, 2014.

▷ Didier Rémy. Simple, partial type-inference for System F based on
type-containment. In Proceedings of the tenth International Conference on
Functional Programming, September 2005.

689 671 ◁

http://cristal.inria.fr/~fpottier/publis/pottier-regis-gianas-popl06.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-regis-gianas-typed-lr.pdf
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz
http://pauillac.inria.fr/~protzenk/these/snapshot-0909.pdf
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf

Bibliography

Bibliography XIX

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML with
abstract and record types. In International Symposium on Theoretical
Aspects of Computer Software (TACS), pages 321–346. Springer, April 1994.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

Didier Rémy and Boris Yakobowski. Efficient Type Inference for the MLF
language: a graphical and constraints-based approach. In The 13th ACM
SIGPLAN International Conference on Functional Programming (ICFP’08),
pages 63–74, Victoria, BC, Canada, September 2008. doi:
http://doi.acm.org/10.1145/1411203.1411216.

▷ John C. Reynolds. Towards a theory of type structure. In Colloque sur la
Programmation, volume 19 of Lecture Notes in Computer Science, pages
408–425. Springer, April 1974.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

690 671 ◁

ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf

Bibliography

Bibliography XX

▷ John C. Reynolds. Three approaches to type structure. In International Joint
Conference on Theory and Practice of Software Development (TAPSOFT),
volume 185 of Lecture Notes in Computer Science, pages 97–138. Springer,
March 1985.

▷ Andreas Rossberg. 1ml - core and modules united. J. Funct. Program., 28:e22,
2018. doi: 10.1017/S0956796818000205.

▷ Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. J.
Funct. Program., 24(5):529–607, 2014. doi: 10.1017/S0956796814000264.

François Rouaix. Safe run-time overloading. In Proceedings of the 17th ACM
Conference on Principles of Programming Languages, pages 355–366, 1990.
doi: http://doi.acm.org/10.1145/96709.96746.

691 671 ◁

http://dx.doi.org/10.1007/3-540-15198-2_7
https://people.mpi-sws.org/~rossberg/1ml/1ml-jfp-draft.pdf
https://people.mpi-sws.org/~rossberg/f-ing/f-ing-jfp.pdf

Bibliography

Bibliography XXI

▷ Gabriel Scherer and Didier Rémy. Full reduction in the face of absurdity. In
Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 685–709, 2015. doi:
10.1007/978-σ23-σ2662-σ246669-σ28 28.

▷ Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. Cochis:
Deterministic and coherent implicits. Technical report, KU Leuven, May 2017.

▷ Vincent Simonet and François Pottier. A constraint-based approach to guarded
algebraic data types. ACM Trans. Program. Lang. Syst., 29(1), January
2007. ISSN 0164-0925. doi: 10.1145/1180475.1180476.

▷ Christian Skalka and François Pottier. Syntactic type soundness for HM(X). In
Workshop on Types in Programming (TIP), volume 75 of Electronic Notes in
Theoretical Computer Science, July 2002.

692 671 ◁

http://gallium.inria.fr/~remy/coercions/
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW705.pdf
http://doi.acm.org/10.1145/1180475.1180476
http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz

Bibliography

Bibliography XXII

▷ Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiène Tahar,
Otmame Ait-Mohamed, and César Muñoz, editors, TPHOLs 2008: Theorem
Proving in Higher Order Logics, 21th International Conference, Lecture Notes
in Computer Science. Springer, August 2008.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM
Transactions on Programming Languages and Systems, 19(1):48–86, 1997.

▷ Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1–2):11–49, April 2000.

▷ Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System f with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, TLDI ’07, pages 53–66, New York, NY, USA, 2007. ACM.
ISBN 1-59593-393-X. doi: 10.1145/1190315.1190324.

▷ W. W. Tait. Intensional interpretations of functionals of finite type i. The
Journal of Symbolic Logic, 32(2):pp. 198–212, 1967. ISSN 00224812.

693 671 ◁

http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps
http://dx.doi.org/10.1023/A:1010000313106
http://doi.acm.org/10.1145/1190315.1190324
http://www.jstor.org/stable/2271658

Bibliography

Bibliography XXIII

▷ Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 11(2):245–296, 1994.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, April 1975.

▷ Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order
types is undecidable. Information and Computation, 179(1):1–18, 2002.

▷ Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A
retrospective on region-based memory management. Higher-Order and
Symbolic Computation, 17(3):245–265, September 2004.

▷ Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. Journal of Functional Programming, 8
(4):367–412, July 1998.

▷ Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin
Sulzmann. Outsidein(x) modular type inference with local assumptions. J.
Funct. Program., 21(4-5):333–412, September 2011. ISSN 0956-7968. doi:
10.1017/S0956796811000098.

694 671 ◁

http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950
http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://dx.doi.org/10.1017/S0956796898003086
http://dx.doi.org/10.1017/S0956796811000098

Bibliography

Bibliography XXIV

▷ Philip Wadler. Theorems for free! In Conference on Functional Programming
Languages and Computer Architecture (FPCA), pages 347–359, September
1989.

▷ Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical
Computer Science, 375(1–3):201–226, May 2007.

▷ Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In ACM Symposium on Principles of Programming Languages
(POPL), pages 60–76, January 1989.

▷ J. B. Wells. The essence of principal typings. In International Colloquium on
Automata, Languages and Programming, volume 2380 of Lecture Notes in
Computer Science, pages 913–925. Springer, 2002.

▷ J. B. Wells. The undecidability of Mitchell’s subtyping relation. Technical
Report 95-019, Computer Science Department, Boston University, December
1995.

▷ J. B. Wells. Typability and type checking in system F are equivalent and
undecidable. Annals of Pure and Applied Logic, 98(1–3):111–156, 1999.

695 671 ◁

http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

Bibliography

Bibliography XXV

▷ Leo White, Frédéric Bour, and Jeremy Yallop. Modular implicits. In Oleg
Kiselyov and Jacques Garrigue, editors, Proceedings ML Family/OCaml Users
and Developers workshops, ML/OCaml 2014, Gothenburg, Sweden,
September 4-5, 2014., volume 198 of EPTCS, pages 22–63, 2014. doi:
10.4204/EPTCS.198.2.

▷ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–356, December 1995.

▷ Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, November 1994.

▷ Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In
Michael Codish and Eijiro Sumii, editors, Functional and Logic Programming,
pages 119–135, Cham, 2014. Springer International Publishing. ISBN
978-3-319-07151-0.

696 671 ◁

http://dx.doi.org/10.4204/EPTCS.198.2
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf

	chapmetasfMetatheory of System F
	Simply-typed lambda-calculus
	Type soundness for simply-typed lambda-calculus
	Simple extensions: Pairs, sums, recursive functions
	Polymorphism
	Polymorphic lambda-calculus
	Type soundness
	Type erasing semantics

	chapexgadtAbstract Data types, Existential types, GADTs
	Algebraic Data Types
	Equi- and iso- recursive types

	Existential types
	Implicitly-type existential types passing
	Iso-existential types

	Generalized Algebraic Datatypes
	Application to typed closure conversion
	Environment passing
	Closure passing

	chapfomegaFomega: higher-kinds and higher-order types
	Presentation
	Expressiveness
	Beyond F

	chaplogrelLogical relations and parametricity
	Introduction
	Normalization of st
	Observational equivalence in st
	Logical relations in stlc
	Logical relations in F
	Applications
	Extensions

	Side effects, References, Value restriction
	Introduction
	Exceptions
	References in st
	Polymorphism and references

	Type reconstruction
	Introduction
	Type inference for simply-typed lambda-calculus
	Type inference for ML
	[
	Constraint-based type inference for ML
	Constraint solving by example
	Type reconstruction

	Type annotations
	Polymorphic recursion
	Unification under a mixed prefix

	Equi- and iso-recursive types
	HM(X)
	

	Overloading
	Introduction
	Examples in Mini Haskell
	Mini Haskell
	Implicitly-typed terms
	Variations

	Appendix
	Bibliography

