Type systems for programming languages

Didier Rémy

Academic year 2020-2021
Version of October 4, 2022

Contents

E% | Strong v.s. weak ;gg;ggjgn_mmmd 17
Call-by-value semantics o 18

2.3 ADSWEIS £0 EXEICISES . « « « v o o 20

23

... 23

3.2 Dvnamic semantics 23
3.3 Tvpesvstem 24

3.4 Tvpe soundness oo 27

[3.4.1 Proof of subject |red1]gL]'Qﬂ 28
3.4.2 Proof of progress. 30
3.5 Simple extensions 32
351 Unitl . ..o 32
B2 Boolead 32
3.0.3 _Paird 33
35; é]]ﬁa .. 34
%&m 34
3.5.6 __Recursive functiond 35
13.5.7 A derived construct: let-bindingd 35

3.6 E%%%f%lgg ... 37
ICH . . 37

4 CONTENTS

|3 71 Laneuage definition oo 41
8.7.2 Type soundnﬁssl 43

B.7.3 Tracing effects with ? monad . . 44
3.74 Memory deallocation 45

...................................... 60
................................. 64

4.4.1 Implicitlv-tvped System H 64
4.4.2 Tyvpe ISEANCA . . . o 67
4.4.3 Tvpe containment in System F,| 68

4.5.2 Internalizing configuration:s

[5.2.2 Implicitly-typed existential types 99

|5 3 Twvped closure conversionl 103

5.3.2 Closure-passing closure conversion 105

CONTENTS

107

111
111
112
115
115
115
116
117
118
121
123
123
123
123
124
126

6 CONTENTS

8.2 Type inference for simply-typed Mcaleulud 152
821 Constraintd 153
8.2.2 A detailed examplé 154

8.3 Typeinference for MI 158
8.3.1 _ Milner's Algorithm J1.o 158

LS .« o 159

18.3.3 _Constraint solving by exampld 163
8.3.4 Tvpe reconStIUCEion . « . o . ot e 166

8.4 Tyvpe ANNOLALIONS . « « o o v o 169
I8.4.1 _Explicit binding of type variabled 170
8.4.2 Polymorphic TECUTSION .« « « o o e oo e e e e e 173
R43 mixedprefid 174

8.5 Equi- and iSo-recursive typeso oo 175
8.5.1 Equi-recursive tvpesl 175
18.5.2 Iso-recursive tvpesi 177

B53 Algebraic data typed . . . o oo o 178
... 179

8.7 Type reconstruction in Svstem = T 181
I8.7.1 Tvpe inference based on Second-order unification 181
18.7.2 Bidirectional tvpe inferencd 182
I8.7.3 Partial tvpe inference in MLEA . .. 184

8.8 Proofs and Solution to Exercised 184

19 Overloading 187

9.1 AN OVErVIeW o 187
9.1.1 Why use overloading? o oo oo 187
9.1.2 _Different forms of overloading 188
0.1.3 Static overloading o oot 189
9.1.4 Dynamic resolution with a tvpe passine semanticd 189
9.1.5__Dynamic overloading with a type erasing semantics 190

92 MiniHaskell 191
0.21 Examplesin MH 191

CONTENTS 7

Chapter 6

Fomega: higher-kinds and
higher-order types

6.1 Introduction

From ML to System F. While simple types lacks polymorphism and thus forces many
functions to be duplicated at different types, ML style prenex (or rank-1) polymorphism is
already a considerable improvement that avoids most of code duplication.

In fact, this is mostly due to toplevel polymorphism. Although ML also allows local
let-bound polymorphism in ML, this is less crucial, which allows Haskell to require explicit
annotations for local polymorphism. Of course, core ML still lacks first-class polymorphism,
which means higher-rank polymorphism, as well as primitive existential types. The absence
of existential types has been partly balanced by the ML module system, which allows for
type abstraction—a key feature for programming in the large. Nowadays, ML also feature
first-class modules, which enables the encoding of first class-existential types. More recently,
first-class iso-existential types have also been added together with GADTs.

Of course, moving to System F enables primitive first-class existential and universal-types
in the core language, avoiding annoying encodings or limitations. This increases expressive-
ness by enabling encoding of data structures and many more programming patterns. Still,
System F polymorphism is limited. . ..

Limits of System F. Although System F has higher-rank polymorphism, this is still
sometimes quite limited.

Let us first illustrate this by considering the simple and rather illustrative example of
the pair_map function, defined as Afzy. (f x, f y) which expects a functions and a pair of
arguments and returns the pair of the applications of the function to each argument. (We
could have taken the arguments in a pair, hence the name pair_map, but it is slightly simpler
to receive them separately.)

111

112 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

This function can be given can be given the two following incompatible types in System F:

Var.Vas. (g = ag) > ap > a1 = ag X ag
Yoy Vas. (Voo >) > ap = g > ag X g

The first one requires z and y to admit a common type, while the second one requires f to
be polymorphic. Or conversely, the first one allows the function domain and codomain to
be arbitrary, while the second one allows the arguments to be arbitrary.

Unfortunately, we cannot give a type to pair_map that subsumes both types above in
System F: it is missing the ability to describe the types of functions that are polymorphic
in one parameter but whose domain and codomain are otherwise arbitrary ¢.e. of the form
Va.7[a] - o[a] for arbitrary one-hole types 7 and o.

To solve this, we need to abstract over o and 7, which are here one-hold contexts, i.e.
type functions, of kind » — «:

Vo Y Va3 Vag. (Va.pa—=1 a) > pag > pag =1 ar x) as
This is exactly what System F“ provides.

6.2 From System F to System F¥

Kinds. To emphasize the small difference between System F and System Fv, we first
introduce an alternative presentation of System F with kinds. This does not change the
expressiveness at all. Indeed, kinds are used to categorize type variables of different kinds,
but we introduce a unique kind *. We still use a metavariable x to range over kinds, even
though it has a single element so far.

Well-formedness of types I' = 7 may then be rewritten as a kinding judgment I' - 7 : *
defined inductively as follows:

FI a:kel ' o I'emox lNa:tk-71:%
I'ra:k I'em > mix I'-Vauk.7:%
o T a ¢ dom(T") CrH7ix x ¢ dom(I")

FlLak Fla:T

We then add kind annotations on type variables in type abstractions and type polymorphism:

Tu=... | Vauk.T Mz:==.. . | Aok M
Typing rules for type abstraction and type applications are modified accordingly.
TABS Tapp
MNa:k+-M:71 I'M:Vauk.T I'e7:k
I'-Aazk M:Vauk.T I'-M7:[a-T]r

So far, this is an equivalent formalization of System F.

6.2. FROM SYSTEM F TO SYSTEM F¥ 113

Type functions. We now add type functions, moving from System F to System F“. For
that purpose, we extend kinds to allow kinds of type functions:
Ki=*| K=K

Notice that this does not only introduce a new kind * = = but kinds of arbitrary shapes,
to also allow type functions to take other type functions as arguments or return them as
results. We may now introduce type functions and type application in type expressions:

Ti= | daskT | TT

These come with the following kinding rules:
WFTYPEAPP WFTYPEABS
I'-7 ke = K ' 1t ke INa:ki Tk

I'-7m 1k ' k. TR = Ko

Type reduction. Types must also be equipped with type-level S-reduction:
(Aa.7) o — [a~T]o
which is applicable in any type context. That is, if T" is an arbitrary one-hold type context
T— 7
Tlr]— TI7']

Notice that the language of types became isomorphic to the simply-typed A-calculus where
types became kinds and terms became types. Hence, type reduction is the same as (full
reduction) in simply-typed A-calculus. Thus, type reduction preserves kindd!. Hence, kinds
are erasable: they may only be checked when reading type expressions and ignored after-
wards. As types, they do not contribute to the reduction, but are just carried over during
the reduction.

Type reduction, which is strongly normalizing induces an equivalence on types written =g4:
two types are equivalent if they have have the same normal-form. An efficient implementation
may however reduce terms by need.

Typing of expressions is up to type equivalence:

TCoNy
' M:71 T=gT

'-M:7

Notice that well-typedness I' = M : 7 ensures well-kindedness I' - 7 : * (in the same way
that it ensures will-formedness in System F. Notice that decidability of type checking in
System F“ relies on decidability of type equivalence, which here follows from strong normal-
ization for types.

'We have only proved subject reduction for CBV in the previous lessons, but still hold for full reduction

114 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

Syntax

* | k=K
alT->71|VYarkT| Atk T|TT

x| e M| M M | Aa:w.M|MT

K
-
M

Kinding rules
KVAR
T a ¢ dom(T") Cr7ix x ¢ dom(T") a:kel

Fl ok o I'~a:k
KARROW WFrTYPEFORALL KABS
| S -mx Na:keE71% INa:ky =71k

%]

' omix I'-Vauk. 7% ' Aastk. 7Kk = Ko
KApp

FI—T1:I<623I€1 FI—TQZHQ

Fl—Tngilil

Typing rules

VAR ABS App
r:Tel MNe:m+-M:7 ' M :m -1 I'-Ms:my

Fcax:7 F'cXe:m. M1 -7 ' My My: 7y

TABS TapPp TEQuv
otk M:T1 I'-M:Va:k.T '-7":k '-M:7 P17

I'-Aazk.M:YaukT PeM71:[a-T1]r 'M:7

Dynamic semantics (unchanged, up to kind annotations in terms)

v
E

Az:T. M| Aa RV Conrir
UMV 7 [Aas k] M — M

Az M)V — [z VM E[M]— E[M']
(Aa=r V)T — [awT]V

Figure 6.1: System F%, altogether

6.3. EXPRESSIVENESS 115

Still, we need not reduce types inside terms. Type reduction is needed for type conversion
during typechecking but such reduction need not be performed on terms, which carries kind
annotations attached to bound type variables, unchanged.

6.2.1 Properties

Main properties are preserved. Proofs are similar to those for System Fv.
e Type soundness. The proof is by subject reduction and progress.

o Termination of reduction. This holds in the absence of other constructs that can be
use to introduce recursion, such as recursive types, recursive definitions or side effects
(references, exceptions, control, etc.).

o Typechecking is decidable. This requires reduction at the level of types to check type
equality. Checking type equality can be performed by putting types in normal forms
using full reduction (on types)—or just in head normal forms. Normal forms for types
exists as the language of type is a simply-typed A-calculus (where kinds plays the role
of types).

6.3 Expressiveness

System F¢ increases expressiveness and solves the limitations of System F discussed above:
Abstraction over type operators allows for more polymorphism, hence more principal types as
illustrated with pair_map, abstraction over data structures such as monads, more encodings
such as non regular datatypes or type equality, and more.

Kind annotations may often be obfuscating. For convenience, we often leave them im-
plicit, using o and g for type variables of kind * and ¢ and ¢ for type variables of kind
* = %_or of some arbitrary kind x given by context.

6.3.1 Map on pairs

We may now type the example of pair_map, whose implicitly-typed definition is A fxy. (f =, f y)
by abstracting over (one parameter) type functions, i.e. type functions of kind « - . That
is, the explicitly-typed version of pair_map is:

Ap Ay Aoy Nas A(f :Ya.pa—=Y a) e ar. Ay:pas. (farz, fasy)
and has type:
Vo Y VYay.Vas. (Va.p a =1 a) = g a; = @ as = ag X as

116 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

We may recover, the two incomparable types it had in System F by instantiation:
Acy.Aag.pair-map (Aa. o) (Aa. az) a3 as
Voar. Yag. (Voo = ag) = a; > a3 »> g X (g
and
pair_map (Aa.ar) (Aa.«v)
:Var. Vag. (Va.a —» a) > a; = ag > ag x ag

Actually, the former is not quite the expected typed, which should be a; = a9 rather than
Va.o; — ag, where the useless quantifier has been removed. This can be obtained by n-
expansion: instantiation:

Ao Aag N fraq = awn. pair-map (Aa. o) (Aa. as) ag as (Aa.f)
: VOél. VOKQ. (Oél - Oég) —> (1 > O] = Qg X Qg

Notice that while the type of pair_map in System F“ is more general than both of these
types, it is still not principal. For example, ¢ and 1 could depend on two variables, 7.e. be
of kind * = % = ».

6.3.2 Abstracting over type operators

Given a type operator ¢, a monad is given by a pair of two functions of the following type
(satisfying certain laws).

monad = Ap.{ret:Va.a—» ¢ a; bind:Ya.V8.pa— (a— ¢) » ¢ [}
(e %) =%

Notice that monad is of higher-order kind—mnot just * — x.

For example, a generic map function, parameterized by some monad m can then be defined
as follows:

fmap = Ap . Am : monad ¢ .
A ABAf: (=). Az :p a.mbinda fx (Ax:a.mreta (f x))
Vo.monad ¢ > Va.Vi.(a—>f) > pa—p

Abstraction over type operators without reduction. In fact type abstraction over
type operators is already available in Haskell, but does not handle §-reduction. In this
case, type application ¢ «a behaves as a first-order type App (¢,a) where App is a binary
(application) symbol of kind (k1 = k) = K1 = Kko. That is,

pa=yf = p=9Yra=p

The expressiveness is then closer to System F than to System F“. As a counterpart of this
limitation, this approach is compatible with type inference, based on first-order unification.

6.3. EXPRESSIVENESS 117

Such abstraction over type operators is actually encodable with OCaml modules. See
Yallop and White (2014) (and also Kiselyov). As in Haskell, the encoding does not handle
type S-reduction and as a consequence is compatible with type inference at higher kinds.

6.3.3 Existential types

We saw the encoding of existential types in System F:
[Ba.r] £ VB.(Va.r - 8) -4
Hence, existential types could be provided as a family of primitives
[packs, .] £ Aadz:[r].ABNk:Va.([r] - B).kax

(and a similar encoding for [unpacky, ,]). In System F, this requires a different code for each
type 7. Indeed, sharing this code when 7 varies requires to abstract over 7, which is not
possible in System F—but quite natural in System F«!

In System F“, we allow existential types to abstract over higher-kinded variables:

[Fa. 7] = VB.(Va.T =) =

In fact, we need not introduce a special construct Ja. 7 for that purpose. We may instead
introduce a family of type constants 3, indexed by k of respective kind x = *. We then
write 3, (Aa.7) for Ja. 7.

Revisiting the encoding, we may now abstract over some type variable ¢ of kind k = *,
as follows:

[3(p k). 7] V(B:x).(V(puk).T—>pB)—> B
3, AW s =) ¥ (B %) (¥ (9 30) . @ > B) = B
pack, s V(W k= %) V(puk). Y o >3 0

AW k=) .A(p k).
Az @ A(Bi#) Ak:V (pir). (0 ¢ > B) ke x

unpack, ¢+ V(Yur =). 3,0 >V (Bua) . (V(p). (1 > B)) > A
AW k=) r:3. ¢ .x

The interest is that the encoding need not be defined at the metalevel, but directly provided
as terms in System F“ defined once for all.

>

>

>

>

Exploiting abstraction over type operators. The encoding of existential types in Sys-
tem Fv is simplified by abstraction over type functions, which allows replacing primitive
type constructs by type constants—just keeping arrow types as primitive as they play a
particular role.

T=a|da:k.T|TT|T>7]|G

118 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

where a family of type constants G € G given with their kinds (left column):

X ok = % D> % (TXT) = (X)7'17'2
+ I A= A=K (t+7) = (+) 11 7o
Vi i (k=) = V(g:r).T 2 V. (A(p:k).7)
e (K= %) =% A 3, (A (g =r) . 7)

F(p k). T
For convenience, we may still provide some notations as shown on the right column, but it
is then just syntactic sugar!

Abstraction over kinds. Although not in System F“ per se, we could also allow abstrac-
tion over kinds (see §6.4.2)), and then just write:

\?m(A(gp::f;).T) Vo .1
Ik (AN (p=k).7) Jp .1

A

V(A7)
F(Ap .7)

where the middle column are the application of the type constants ¥ and 3 to a kind followed
by a type, and the right column is the same when kinds are inferred

Voo Ve (k=) = * Vo kT
él:: V/ﬁ.(/ﬁﬁ*)ﬁ* ElQO:I‘{,.T

ne> e
>

6.3.4 Church encoding of non-regular ADT

Regular ADTs can be encoded in System F. For instance, the list datatype

type Lista=
INil :Va.List o
| Cons : Var. v — List av — List «v

has the following Church (CPS style) encoding:
List = la.VB.8-(a—>B-p8)—p

Nil £ AaABAn:B.Ac:(a—B-08).n

Cons 2 Aa.dz:a. \: List o
ABAn:B.Ac:(a—-pB—B).cx({Bnc)

fold 2 Aa.ABAn:B.Ac:(a—fB—B).M:Lista.lBnc

which is well-typed in System F.

In fact, one may attempt to generalize this signature to allow § to depend on «, hence

6.3. EXPRESSIVENESS 119

replacing [by a type operator ¢ of kind * = *:

List = laVo.pa-(ampa—pa)->pa
Nil 2 AaAp dn:g ade:(a—>¢ a—pa)n
Cons = Aa.\z:a. A\ : List a.
Ap dn:p ad:(a—=p a—-p a)cx(ly nc)
fold £ AaAp M:p ade:(a—>pa—>pa):Lsta.ly nc

This seems more abstract since 8 is now ¢ « which may depend on «.

Actually not! Be aware of useless over-generalization! For regular ADTSs, since all uses of
@ are applied to the same «, this interface is actually no more general that the previous one.
(One can then easily recover this interface by instantiation of the previous one.) However,
this additional degree of liberty will be the key to then encoding of non regular ADTs.

Example 1 For a simpler example of over generalization, take the identity function id of
type Va.a — «. If gave id the more general type Vo .Va.p a — ¢ a, we may then recover
the former by type instantiation: Ay .Aa.id (¢ «).

Of course, raising type abstraction at higher rank is sometimes a key, as illustrated by the
typing of pair_map.

This is also the case for encoding non-regular ADT. Let us consider Okasaki’s datatype
Seq for his purely functional efficient implementation of sequences:
type Seqa =
| Nil : V. Seq
| Zero: V. Seq (axa) - Seq «
| One : Ya. a > Seq (axa) - Seq «

120 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

This may be encoded in System F“ as follows.

Aa.Ve . (Va. ¢ a) > (Va. ¢(axa) > ¢ a) > (Va.a - ¢ (axa) > P a) > ¢ a
An.Az.As. n

Va. Seq a
Aa. A In:Va. ¢ a.dz:Va. ¢ (axa) > P a.As:Va.a - ¢ (axa) > P a. n

M. Az ds.za(nzs)
: Va. Seq (axa) - Seq a
= Aa. M\ :Seq (axa).
Ae An:Va. ¢ a.dz:Va. ¢(axa) > ¢ a. As: Va.a - ¢ (axa) - ¢ a.
za(l Y nzs)

A A An. Az As.sx (Unzs)

: Ya. a— Seq (axa) - Seq «

= Aa)z :a. M :Seq (axa).

Ap An:Va. ¢ a.dz:Va. ¢(axa) > ¢ a. As: Va.a - ¢ (axa) - ¢ a.
sx (¥ nzs)

fold = A An. Az Xs.nzs

: Ya.Seqa— Vo .(Va. ¢ a) > (Va. ¢(axa) > ¢ a) > (Va.a - ¢ (axa) > P a) > ¢ a

= AaM:Seqa. Ap An:Va. ¢ a. Az :Va. ¢ (axa) > @ a. As: Va.a - ¢ (axa) - ¢ a.
LY nzs

Seq
Nil

ne e

ne -

Zero

e

One

To reconstruct the typed Church encoding—if it were not given, one should proceed as
follows:

e First, build the untyped Church encoding:

— The type is the type of deconstruction by cases: it is parametric (polymorphic in
a) and abstract over the type of sequences (polymorphic in ¢) then receives as
many functions as there are constructors in the datatype, if then returns a term
of type ¢ a, hence where both ¢ and a will be chosen by the user.

— We may then write the untyped encoding: each constructor just waits for three
destruction functions (the three actions that will be passed depending on the
constructor) and applies its corresponding action to its arguments.

— Fold is just the n-expansion of the type of Seq «. It is polymorphic in o and
first receives an argument ¢ of type Aa. V¢ . (Va. ¢ a) - (Va. ¢ (axa) > ¢ a) >
(Va.a - ¢ (axa) - ¢ a) > ¢ aA; then it expects as many actions as there are
constructors and just pass them to /.

e Second, the types of the construction functions are exactly the same as those of the
constructors.

e Third, the explicitly typed encoding can be derived mechanically by combining the
untyped encoding and the types of the encoding.

6.3. EXPRESSIVENESS 121

module Eq : EQ = struct
type (‘a, 'b) eq = Eq : ('a, 'a) eq
let coerce (type a) (type b) (ab: (a,b) eq) (x: a) : b = let Eq = ab in x
let refl : ('a, 'a) eq = Eq
(* all these are propagation are automatic with GADTs x)
let symm (type a) (type b) (ab: (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c
(ab : (a,b) eq) (bc: (b,c) eq) : (a,c) eq = let Eq = ab in bc
let lift (type a) (type b) (
let Eq = ab in Eq

end

ab: (a,b) eq) : (a list, b list) eq =

Figure 6.2: Leibnitz equality with GADT in OCaml

Notice that higher-rank is mandatory here as for each constructor ¢ is applied to both «
and a x . This is why non-regular ADTs cannot be encoded in System F.

The encoding of the list datatypes could be obtained similarly, and then realize a poste-
riori that there is no gain in being polymorphic in ¢ since all occurrences of ¢ are always
applied to the same variable a. This is always the case for church encodings or regular
datatypes, hence, there is not need for such over generalization in the first place.

6.3.5 Encoding GADT—with explicit coercions

GADT can be encoded with a single equality type, existential types and non regular datatypes.
Figure gives an implementation of Leibnitz equality with a GADT in OCaml. We may
then use a value of type (7, o) Eq.eq as a proof of equality of the types 7 and o.

Leibnitz equality can also be defined in System F“ (Figure 6.3l In the figure, we have
overlined proof terms and their types (respectively on the left and right columns) so as to
help check typechecking.

We only implemented parts of the coercions of System Fc: we do not have decomposition
of equalities (the inverse of Lift), as this requires injectivity of the type operator, which
cannot be assumed. Hence, some equality proofs are still missing. Notice that equivalences
and liftings must be written explicitly in this encoding, which is cumbersome and obfuscating,
while they are implicit with GADTs.

122

Eq
coerce

refl

symm

trans

lift

> e

Il Il > |-

CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

A AB. Yo .pa—p [
Ap.Ax.p x

Aa.ABAp:Eqa . \x:a.p(A\y.y) x
AT, x
=x

Va. Vo .pa—-pa = Ya.Egaa
Ap. p (refl)

= p(M.Eqya) (refl a)
Va.VB.Eqa f - Eq [«

Ap.Aq. qp

= q(Eqa)p
Va.VB.Vy.Eqa - EqB~v—>Eqa~y

Ap. p (refl)

= p(M-Eq (¢ @) (¢ 7)) (refl (0 a))
Va.VB.Ye .Eqa 8 —Eq (v a) (¢ B)

hence, Eqa f=Vp . pa—¢ 3

:Eqa a—>Eqf «

:Eqa f>Eqa vy

:Eq(p @) (pa) > Eq(pa) (¢ B)

Figure 6.3: Leibnitz equality in System F¥

6.4. BEYOND F¥ 123

6.4 Beyond Fv

6.4.1 Stratification

Let us define the rank of a kind as usual: the base kind * is of rank 1 and rank (k1 = kq)
is recursively defined as max(1 + rank x1,rank ky). Hence, type functions of kind * = x or
* = x = * taking type parameters of base kind have rank 2 and type functions taking such
type functions as arguments, e.g. of kind (* = %) = %, have rank 3.

We may define a hierarchy F'' ¢ F2 c F3... c F¥ of type systems of increasing expres-
siveness, where F™ only uses kinds of rank n and whose limit is F'“. Hence, System F is
just F''. Most examples used in practice (and most of those we wrote) lie in 2, just above
System F. (Sometimes, ranks are shifted by one, starting with 2 for System F.)

6.4.2 Kinds

Kind abstraction. In section §6.3.3] we used abstraction over kinds. Strictly speaking,
this goes beyond System F“, but System F“ can easily be extended with kind abstraction
and properties are preserved.
Vo Vi Yag.Vas.
(Va.pa—>va)>par—pay—>1axpay
One application is the use of constants instead of encodings as in section §6.3.3l Another
application is to have even more general types. See the discussion on pair_map in §6.3.11

Multiple base kinds We have used a single base kind *. Allow several base kinds raise
no problems. For example, we may introduce an additional kind field and declare type
constructors:

filled : % = field box : field = *
empty : field

The will prevents the formation of types such as box (a — filled «). This allows to build
values v of type box # where 6 of kind field statically tells whether v is filled with a value of
type 7 or empty. Such kinding is actually used in OCaml for rows of object types, although
kinds are hidden from the user using superficial syntax:

let get (x : (get: 'a; ..)) : 'a = x#get

The dots “..” here stands for a variable of another base kind representing a row of types.

6.4.3 Recursion

Equirecursive types Checking equality of equirecursive types in System F is already
non obvious, since unfolding may require a-conversion to avoid variable capture. (See also

124 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

Gauthier and Pottier (2004).) With higher-order types, it is even trickier, since unfolding at
functional kinds could expose new type redexes.

Besides, the language of types would be the simply type A-calculus with a fix-point
operator: type reduction would not terminate. Therefore type equality would be undecidable,
as well as type checking.

A solution is to restrict to recursion at the base kind *. This allows to define recursive
types but not recursive type functions. Such an extension has been proven sound and
decidable, but only for the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see (Cai et al) (2016).

Equirecursive kinds Recursion could also occur just at the level of kinds, allowing kinds
to be themselves recursive. Then, the language of types is the simply type A-calculus with
recursive types, which is equivalent to the untyped A-calculus: every term is typable. Hence,
without further restrictions reduction of types no longer terminates and type equality is
ill-defined.

A solution proposed by [Pottier is to force recursive kinds to be productive, reusing an
idea from an |[Nakanao (2000, 2001) for controlling recursion on terms, but pushing it one level
up. Then, type equality is well-defined, but only semi-decidable. This extension has been
used to show that references in System F can be translated away in System F“ with guarded
recursive kinds [Pottier (2011).

6.4.4 Encoding of functors

In early versions of OCaml, functors were generative: when a functor returns an abstract
type, two applications of this functor to the very same structure produce new incompatible
abstract types. By contrast, applicative functors would return two structures with compatible
abstract types, allowing then to interoperate.

Generative functors Generative functors can be encoded in System F with existential
types (as long as we ignore parametric types—or treat them as primitive). The idea to give
functor F' a type of the form

Va.r[a] - 35.0[a, f]

Here 7[a] represents the signature of the argument with some abstract types @ while
33.0[a, 3] represents the signature of the result of the functor application. That is the
abstract types a appearing in the result signature are those taken from and shared with the
argument. By contrast, 5 are the abstract types created by the functor application, and
have fresh identities independent of the argument.

Therefore two successive applications with the very same argument (hence the same @)
will create two signatures with incompatible abstract types B; and B3,, once the existential
have been open.

6.4. BEYOND F¥ 125

Schematically, two applications of a functor F to the very same structure argument X as
on the left column will be typed as on the right-column:

let module Z; = F(X) in let 31, Z1 = unpack (F p X) in
let module Z; = F(X) in ... let 32, Zo = unpack (F p X) in ...

Hence, the two resulting structures Z; and Z, have incompatible abstract types. (Typically,
the they contain a field of respective types f; and f, so that Z.£ = Z'.0 is ill-typed.)

Applicative functors. Applicative functors can also be encoded, but in System F“, using
higher-order existential types.

To allow two identical applications of the functor F to be compatible, we give it a type
of the form:

Jp . Va.r[a] - ola, ¢ al
moving the existential 8 across the arrow and universal quantifier. This requires skolemizing
(3 into a type function ¢ abstracted over the type variables 3.

The functor F is first opened before being applied, becoming of type Va.t[a] — o[@, ¢ «]
for some unknown ¢ . As before, we specialize it to the abstract types, say p, of the argument
followed by the structure argument X and get back a structure Z of type o[p, ¢ p].

Here ¢ p are the abstract types created by the application. Each ¢ p is a new abstract
type—one we know nothing about, as it is the application of an abstract type to p. However,
two successive applications with the same arguments (hence the same p) will create two
compatible structures whose signatures have the same shared abstract types ¢ p, as long as
the functor has just been opened once for performing the two applications.

Schematically, the previous encoding on the left-hand side has been replaced by the one
on the right-hand side:

let ¢, F = unpack F in
let 31, Z; = unpack (F(X)) in let Zy =F pXin
let 32, Zo = unpack (F(X)) in ... let Zy =F pXin ...

More generally, functors could have both an applicative and a generative part, and have
a type of the form: B B
dp.Ya.r[a] - 36.0la, pa, []

Where @ & are the applicative shared abstract types and 3 are the generative abstract types

produced by the application. Or we may just have both forms and alternate between gener-
ative and applicative functors.

Remarks:

e We have used skolemization and therefore type functions to move the existential type
across the universal type.

126 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

e The application of an abstract type of higher-order kind to abstract types can be used
to generate new (partially) abstract types !

The encoding of applicative functors in System F“ uses these mechanisms to generate ab-
stract types that can be shared. See ? and ? for more details and also ? for ongoing
work.

6.4.5 System F“ in OCaml

Second-order polymorphism is not primitive but encodable in OCaml, using polymorphic
methods

let id = object method f: . @ > a = fun x - x end
lety (x: (f : .o > a)) =x#fxinyid

or first-class modules

module type S = sig val f : @ > o end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Both solutions are quite verbose, though. Besides, second-order types are not first-class.
In principle, one can also reach higher-rank types OCaml, using first-class modules. How-
ever, this is not currently possible, due to (unnecessary) restrictions in the module language.
Modular explicits, a prototype extension@, leaves some of these restrictions, easing ab-
straction over first-class modules and allow a light-weight encoding of System F“—with still
some boiler-plate glue code. The encoding of pair_map with modular explicit is presented in
Figure with its two specialized instances.

Higher-order polymorphism a la System F'“ is now also accessible in Scala-3. For instance,
the monad example (with some variation on the signature) can be defined as:

trait Monad [F[]] {

def pure [A] (x: A) : F[A]

def flatMap [A, B] (fa: F[A]) (f: A =) F[B]) : F[B]
}

See https://www.baeldung.com/scala/dotty-oyscala-0,3.

Still, this feature of Scala-3 is not emphasized and was not directly accessible in previous
versions of Scala. Besides, Scala’s syntax and other complex features of Scala are somewhat
obfuscating.

2 Available at https@github.com:mrmr1993/ocaml

https://www.baeldung.com/scala/dotty-scala-3
https@github.com:mrmr1993/ocaml

6.4. BEYOND F¥ 127

module type s = sig type t end
module type op = functor (A:s) — s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} - F(C).t - G(C).t)
(x : F(A).t) (y: F(B).t) : G(A).t «x G(B).t =f {A} x, f {B} y
let dpl (type a) (typeb) (f: {Cs} > Ct—>Ct):a—>b—>axb=
let module F(C:s) = C in let module G = F in

let module A = struct type t = a end in
let module B = struct type t = b end in

dp {F} {G} {A} {B} f
let dp2 (type a) (typeb) (f:a—>b):a—>a—->bxb=
let module A = struct type t = a end in

let module B = struct type t = b end in
let module F(C:s) = A in let module G(C:s) = B in

dp {F} {G} {A} {B} (fun {C:s} ~f)

Figure 6.4: pair_map with modular implicits

What’s next? The next step in expressiveness are dependent types, as illustrated in the
Barendregt’s A-cube:

Mlw

System FY = Aw

S

Fr=2A2

(1) Term abstraction on Types, as in System F;
(2) Type abstraction on Types, as in System F*;
(3) Type abstraction on Terms: dependent types AIT, AII2, ATw.

A form of dependent types is available in Haskell, but not in OCaml.

Bibliography

D> A tour of scala: Implicit parameters. Part of scala documentation.

D> Martin Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order
systems. Information and Computation, 125(2):78-102, March 1996.

D> Martin Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems.
Science of Computer Programming, 25(2-3):81-116, December 1995.

> Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiv-
alence. In ACM International Conference on Functional Programming (ICFP), pages
157-168, September 2008.

D> Lennart Augustsson. Implementing Haskell overloading. In FPCA °93: Proceedings of the
conference on Functional programming languages and computer architecture, pages 65-73,

New York, NY, USA, 1993. ACM. ISBN 0-89791-595-X.

D> Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional programming.
J. Funct. Program., 11(4):395-410, 2001.

> Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing Polymorphic Proper-
ties, pages 125-144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-
642-11957-6. doi: 10.1007/978-023-09642-0511957-056_8.

> Richard Bird and Lambert Meertens. Nested datatypes. In International Conference on
Mathematics of Program Construction (MPC), volume 1422 of Lecture Notes in Computer
Science, pages 52—-67. Springer, 1998.

Nikolaj Skallerud Bjgrner. Minimal typing derivations. In In ACM SIGPLAN Workshop on
ML and its Applications, pages 120126, 1994.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, Ecole des Mines de Paris,
November 2005.

D>/ Daniel Bonniot. Type-checking multi-methods in ML (a modular approach). In Workshop
on Foundations of Object-Oriented Languages (FOOL), January 2002.

211

http://doi.acm.org/10.1145/224164.224198
http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
http://doi.acm.org/10.1145/165180.165191
http://research.microsoft.com/en-us/um/people/akenn/sml/exceptionalsyntax.pdf
https://doi.org/10.1007/978-3-642-11957-6_8
ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
http://cristal.inria.fr/~bonniot/bonniot02.ps

>

>

212 BIBLIOGRAPHY

Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informatice, 33:309-338, 1998.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108-133, November 1999.

Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System F-omega with equirecursive
types for datatype-generic programming. In Rastislav Bodik and Rupak Majumdar, edi-
tors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FIL, USA, January 20 - 22, 2016,
pages 30-43. ACM, 2016. doi: 10.1145/2837614.2837660.

Luca Cardelli. An implementation of fj:. Technical report, DEC Systems Research Center,
1993.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science Series. Birkauser, Boston, 1997.

Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The MLton com-
piler, 2007.

Arthur Charguéraud and Frangois Pottier. Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP), pages 213-224,
September 2008.

Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symposium on Principles of Programming Languages (POPL), pages
38-49, January 2005.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 5465, June 2007.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type era-
sure semantics. Journal of Functional Programming, 12(6):567-600, November 2002.

Julien Crétin and Didier Rémy. Extending System F with Abstraction over Erasable Co-
ercions. In Proceedings of the 39th ACM Conference on Principles of Programming Lan-
guages, January 2012.

Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller. Modular
type classes. In POPL ’07: Proceedings of the 3/th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 63-70, New York, NY, USA,
2007. ACM. ISBN 1-59593-575-4.

ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz
http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://ps.informatik.uni-tuebingen.de/research/functors/equirecursion-fomega-popl16.pdf
http://mlton.org/
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://doi.acm.org/10.1145/1190216.1190229

BIBLIOGRAPHY 213

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 15-26, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-509-3. doi: http://doi.acm.org/10.1145/1596627.1596631.

D> Ken-etsu Fujita and Aleksy Schubert. Existential type systems with no types in terms.
In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 112-126, 2009. doi: 10.1007/
978—0’23-0’2642-0’202273-0’29_10.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In |Ohori (2003), pages
376-393. ISBN 3-540-20536-5.

D> Jun Furuse. Extensional polymorphism by flow graph dispatching. In Asian Symposium on
Programming Languages and Systems (APLAS), volume 2895 of Lecture Notes in Com-
puter Science. Springer, November 2003b.

D> Jacques Garrigue. Relaxing the value restriction. In Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science, pages 196-213. Springer, April 2004.

D> Nadji Gauthier and Francois Pottier. Numbering matters: First-order canonical forms for
second-order recursive types. In Proceedings of the 2004 ACM SIGPLAN International
Conference on Functional Programming (ICFP’04), pages 150-161, September 2004. doi:
http://doi.acm.org/10.1145/1016850.1016872.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. These d’état, Université Paris 7, June 1972.

D> Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, 1990.

> Dan Grossman. Quantified types in an imperative language. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):429-475, May 2006.

> Bob Harper and Mark Lillibridge. ML with callcc is unsound. Message to the TYPES
mailing list, July 1991.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, 2012.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 8, pages 293-345. MIT Press, 2005.

D> Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253-289, April 1993.

http://dx.doi.org/10.1007/978-3-642-02273-9_10
http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://gallium.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.ps.gz
http://www.paultaylor.eu/stable/prot.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf
http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://doi.acm.org/10.1145/169701.169692

214 BIBLIOGRAPHY

J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29-60, 1969.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus.
Cambridge University Press, 1986.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: be-
ing lazy with class. In ACM SIGPLAN Conference on History of Programming Languages,
June 2007.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, ..., w. PhD thesis,
Université Paris 7, September 1976.

John Hughes. Why functional programming matters. Computer Journal, 32(2):98-107, 1989.

Mark P. Jones. Simplifying and improving qualified types. In FPCA '95: Proceedings of
the seventh international conference on Functional programming languages and computer

architecture, pages 160-169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.
Mark P. Jones. Typing Haskell in Haskell. In I'n Haskell Workshop, 1999a.

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193-204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloguium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206-220. Springer, May 1990.

Oleg Kiselyov. Higher-kinded bounded polymorphism. web page.

http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://doi.acm.org/10.1145/224164.224198
http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.journals.cambridge.org/abstract_S0956796806006034
http://dx.doi.org/10.1007/3-540-52590-4_50
http://okmij.org/ftp/ML/higher-kind-poly.html

BIBLIOGRAPHY 215

Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89-101, 1965.

Konstantin Laufer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Transactions on Programming Languages and Systems, 16(5):1411-1430, September
1994.

Didier Le Botlan and Didier Rémy. Recasting MLF. Information and Computation, 207(6):
726-785, 2009. ISSN 0890-5401. doi: 10.1016/j.ic.2008.12.006.

Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD thesis, Université Paris
7, June 1992.

Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM Symposium on Principles of Programming Languages (POPL),
pages 42-54, January 2006.

Xavier Leroy and Francois Pessaux. Type-based analysis of uncaught exceptions. ACM
Trans. Program. Lang. Syst., 22(2):340-377, 2000. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/349214.349230.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM Symposium
on Principles of Programming Languages (POPL), pages 47-57, January 1988.

Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time.
In ACM Symposium on Principles of Programming Languages (POPL), pages 382-401,
1990.

David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques and
Applications (RTA), volume 2706 of Lecture Notes in Computer Science, pages 436-451.
Springer, June 2003.

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In ECOOP
’99: Proceedings of the 13th European Conference on Object-Oriented Programming, pages
279-303, London, UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348-375, December 1978.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In ACM
Symposium on Principles of Programming Languages (POPL), pages 271-283, January
1996.

John C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76(2-3):211-249, 1988.

http://doi.acm.org/10.1145/363744.363749
http://www.cs.luc.edu/laufer/papers/toplas94.pdf
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/exceptions-toplas.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf
http://doi.acm.org/10.1145/96709.96748
http://www.autoreason.com/rta03.ps
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0

216 BIBLIOGRAPHY

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470-502, 1988.

Benoit Montagu and Didier Rémy. Modeling abstract types in modules with open existential
types. In ACM Symposium on Principles of Programming Languages (POPL), pages 63—
74, January 2009.

J. Garrett Morris and Mark P. Jones. Instance chains: type class programming without
overlapping instances. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, pages 375-386, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi: http://doi.acm.org/10.1145/1863543.1863596.

Greg Morrisett and Robert Harper. Typed closure conversion for recursively-defined func-
tions (extended abstract). In International Workshop on Higher Order Operational Tech-
niques in Semantics (HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528-569,
May 1999.

Alan Mycroft. Polymorphic type schemes and recursive definitions. In International Sympo-
stum on Programming, volume 167 of Lecture Notes in Computer Science, pages 217-228.
Springer, April 1984.

Hiroshi Nakano. A modality for recursion. In IEEE Symposium on Logic in Computer
Science (LICS), pages 255-266, June 2000.

Hiroshi Nakano. Fixed-point logic with the approximation modality and its Kripke complete-
ness. In International Symposium on Theoretical Aspects of Computer Software (TACS),
volume 2215 of Lecture Notes in Computer Science, pages 165-182. Springer, October
2001.

Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber. Functional
logic overloading. pages 233-244, 2002. doi: http://doi.acm.org/10.1145/565816.503294.

Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In FPCA
"95: Proceedings of the seventh international conference on Functional programming lan-
gquages and computer architecture, pages 135-146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. Theory and Practice of Object Systems, 5(1):35-55, 1999.

http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://dx.doi.org/10.1007/3-540-12925-1_41
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps.gz
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-tacs01.pdf
http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195
http://eprints.kfupm.edu.sa/73647/1/73647.pdf

BIBLIOGRAPHY 217

Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In
ACM Symposium on Principles of Programming Languages (POPL), pages 41-53, 2001.

Atsushi Ohori, editor. Programming Languages and Systems, First Asian Symposium,
APLAS 2003, Beijing, China, November 27-29, 2003, Proceedings, volume 2895 of Lecture
Notes in Computer Science, 2003. Springer. ISBN 3-540-20536-5.

D> Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

D> Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.

The implicit calculus: a new foundation for generic programming. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design and Implementation,
PLDI "12, pages 35-44, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi:
10.1145/2254064.2254070.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. Online lecture notes, January 2009.

Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Manuscript, April
2004.

Simon Peyton Jones and Philip Wadler. Imperative functional programming. In ACM
Symposium on Principles of Programming Languages (POPL), pages 71-84, January 1993.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In LFP
'88: Proceedings of the 1988 ACM conference on LISP and functional programming, pages
153-163, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X. doi: http://doi.acm.
org/10.1145/62678.62697.

D> Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems, 22(1):1-44, January 2000.

Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321-359, 2000.

Francois Pottier. Notes du cours de DEA “Typage et Programmation”, December 2002.

Francois Pottier. A typed store-passing translation for general references. In Proceedings of
the 38th ACM Symposium on Principles of Programming Languages (POPL’11), Austin,
Texas, January 2011. [Supplementary materiall

Francois Pottier. Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming, 23(1):38-144, January 2013.

http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://doi.acm.org/10.1145/2254064.2254070
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.cse.ogi.edu/~mbs/pub/scoped/
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://www.cis.upenn.edu/~bcpierce/tapl/
http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz

218 BIBLIOGRAPHY

Francois Pottier. Hindley-Milner elaboration in applicative style. In Proceedings of the
2014 ACM SIGPLAN International Conference on Functional Programming (ICFP’14),
September 2014.

Francois Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretiza-
tion. Higher-Order and Symbolic Computation, 19:125-162, March 2006.

Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. Sub-
mitted for publication, October 2012.

Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’13), pages 173-184, September 2013.

Francois Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389-489.
MIT Press, 2005.

Francois Pottier and Didier Rémy. The essence of ML type inference. Draft of an extended
version. Unpublished, September 2003.

Didier Rémy. Simple, partial type-inference for System F based on type-containment. In
Proceedings of the tenth International Conference on Functional Programming, September
2005.

Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and
record types. In International Symposium on Theoretical Aspects of Computer Software
(TACS), pages 321-346. Springer, April 1994a.

Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming: Types,
Semantics and Language Design. MIT Press, 1994b.

Didier Rémy and Jérome Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems, 4(1):27-50, 1998.

Didier Rémy and Boris Yakobowski. FEfficient Type Inference for the MLF language: a
graphical and constraints-based approach. In The 15th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), pages 63-74, Victoria, BC, Canada,
September 2008. doi: http://doi.acm.org/10.1145/1411203.1411216.

John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408-425. Springer, April 1974.

http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop1.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://www.springerlink.com/content/p5801737k78207p7/

BIBLIOGRAPHY 219

John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-
cessing 83, pages 513-523. Elsevier Science, 1983.

John C. Reynolds. Three approaches to type structure. In International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), volume 185 of Lecture Notes
in Computer Science, pages 97-138. Springer, March 1985.

Francois Rouaix. Safe run-time overloading. In Proceedings of the 17th ACM Conference on
Principles of Programming Languages, pages 355-366, 1990. doi: http://doi.acm.org/10.
1145/96709.96746.

Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. Cochis: Deterministic and
coherent implicits. Technical report, KU Leuven, May 2017.

Christian Skalka and Frangois Pottier. Syntactic type soundness for HM(X). In Workshop
on Types in Programming (TIP), volume 75 of Electronic Notes in Theoretical Computer
Science, July 2002.

Lau Skorstengaard. An Introduction to Logical Relations. arXiv e-prints, art.
arXiv:1907.11133, July 2019.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping. In Science of Computer Programming, 1994.

Morten Heine Sgrensen and Pawel Urzyczyn. Studies in Logic and the Foundations of Math-
ematics, chapter Lectures on the Curry-Howard Isomorphism. Elselvir Science Inc, 2006.

Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiene Tahar, Otmame
Ait-Mohamed, and César Munoz, editors, TPHOLs 2008: Theorem Proving in Higher
Order Logics, 21th International Conference, Lecture Notes in Computer Science. Springer,
August 2008.

Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transactions on
Programming Languages and Systems, 19(1):48-86, 1997.

Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1-2):11-49, April 2000.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP ’02: Proceedings of
the seventh ACM SIGPLAN international conference on Functional programming, pages
167-178, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of
Symbolic Logic, 32(2):pp. 198-212, 1967. ISSN 00224812.

ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW705.pdf
http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz
http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps
http://dx.doi.org/10.1023/A:1010000313106
http://doi.acm.org/10.1145/581478.581495
http://www.jstor.org/stable/2271658

220 BIBLIOGRAPHY

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
Computation, 11(2):245-296, 1994.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215-225, April 1975.

Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is unde-
cidable. Information and Computation, 179(1):1-18, 2002.

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17(3):245-265,
September 2004.

Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language interop-
erability via source translation. Journal of Functional Programming, 8(4):367-412, July
1998.

Philip Wadler. Theorems for free! In Conference on Functional Programming Languages
and Computer Architecture (FPCA), pages 347-359, September 1989.

Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer
Science, 375(1-3):201-226, May 2007.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium on Principles of Programming Languages (POPL), pages 60-76, January 1989.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

J. B. Wells. The essence of principal typings. In International Colloguium on Automata,
Languages and Programming, volume 2380 of Lecture Notes in Computer Science, pages
913-925. Springer, 2002.

J. B. Wells. The undecidability of Mitchell’s subtyping relation. Technical Report 95-019,
Computer Science Department, Boston University, December 1995.

J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1-3):111-156, 1999.

Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8
(4):343-356, December 1995.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38-94, November 1994.

http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950
http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://dx.doi.org/10.1017/S0956796898003086
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

BIBLIOGRAPHY 221

D> Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Michael Codish
and Eijiro Sumii, editors, Functional and Logic Programming, pages 119-135, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-07151-0.

https://www.cl.cam.ac.uk/~jdy22/papers/lightweight-higher-kinded-polymorphism.pdf

	Fomega: higher-kinds and higher-order types
	Introduction
	From System F to System F
	Properties

	Expressiveness
	Map on pairs
	Abstracting over type operators
	Existential types
	Church encoding of non-regular ADT
	Encoding GADT—with explicit coercions

	Beyond F
	Stratification
	Kinds
	Recursion
	Encoding of functors
	System F in OCaml

