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Chapter 6

Fomega: higher-kinds and
higher-order types

6.1 Introduction

From ML to System F. While simple types lacks polymorphism and thus forces many
functions to be duplicated at different types, ML style prenex (or rank-1) polymorphism is
already a considerable improvement that avoids most of code duplication.

In fact, this is mostly due to toplevel polymorphism. Although ML also allows local
let-bound polymorphism in ML, this is less crucial, which allows Haskell to require explicit
annotations for local polymorphism. Of course, core ML still lacks first-class polymorphism,
which means higher-rank polymorphism, as well as primitive existential types. The absence
of existential types has been partly balanced by the ML module system, which allows for
type abstraction—a key feature for programming in the large. Nowadays, ML also feature
first-class modules, which enables the encoding of first class-existential types. More recently,
first-class iso-existential types have also been added together with GADTs.

Of course, moving to System F enables primitive first-class existential and universal-types
in the core language, avoiding annoying encodings or limitations. This increases expressive-
ness by enabling encoding of data structures and many more programming patterns. Still,
System F polymorphism is limited. . ..

Limits of System F. Although System F has higher-rank polymorphism, this is still
sometimes quite limited.

Let us first illustrate this by considering the simple and rather illustrative example of
the pair_map function, defined as Afzy. (f x, f y) which expects a functions and a pair of
arguments and returns the pair of the applications of the function to each argument. (We
could have taken the arguments in a pair, hence the name pair_map, but it is slightly simpler
to receive them separately.)
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112 CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

This function can be given can be given the two following incompatible types in System F:

Var.Vas. (g = ag) > ap > a1 = ag X ag
Yoy Vas. (Voo > ) > ap = g > ag X g

The first one requires z and y to admit a common type, while the second one requires f to
be polymorphic. Or conversely, the first one allows the function domain and codomain to
be arbitrary, while the second one allows the arguments to be arbitrary.

Unfortunately, we cannot give a type to pair_map that subsumes both types above in
System F: it is missing the ability to describe the types of functions that are polymorphic
in one parameter but whose domain and codomain are otherwise arbitrary ¢.e. of the form
Va.7[a] - o[a] for arbitrary one-hole types 7 and o.

To solve this, we need to abstract over o and 7, which are here one-hold contexts, i.e.
type functions, of kind » — «:

Vo Y Va3 Vag. (Va.pa—=1 a) > pag > pag =1 ar x) as
This is exactly what System F“ provides.

6.2 From System F to System F¥

Kinds. To emphasize the small difference between System F and System Fv, we first
introduce an alternative presentation of System F with kinds. This does not change the
expressiveness at all. Indeed, kinds are used to categorize type variables of different kinds,
but we introduce a unique kind *. We still use a metavariable x to range over kinds, even
though it has a single element so far.

Well-formedness of types I' = 7 may then be rewritten as a kinding judgment I' - 7 : *
defined inductively as follows:

FI a:kel ' o I'emox lNa:tk-71:%
I'ra:k I'em > mix I'-Vauk.7:%
o T a ¢ dom(T") CrH7ix x ¢ dom(I")

FlLak Fla:T

We then add kind annotations on type variables in type abstractions and type polymorphism:

Tu=... | Vauk.T Mz:==.. . | Aok M
Typing rules for type abstraction and type applications are modified accordingly.
TABS Tapp
MNa:k+-M:71 I'M:Vauk.T I'e7:k
I'-Aazk M:Vauk.T I'-M7:[a-T]r

So far, this is an equivalent formalization of System F.
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Type functions. We now add type functions, moving from System F to System F“. For
that purpose, we extend kinds to allow kinds of type functions:
Ki=*| K=K

Notice that this does not only introduce a new kind * = = but kinds of arbitrary shapes,
to also allow type functions to take other type functions as arguments or return them as
results. We may now introduce type functions and type application in type expressions:

Ti= | daskT | TT

These come with the following kinding rules:
WFTYPEAPP WFTYPEABS
I'-7 ke = K ' 1t ke INa:ki Tk

I'-7m 1k ' k. TR = Ko

Type reduction. Types must also be equipped with type-level S-reduction:
(Aa.7) o — [a~T]o
which is applicable in any type context. That is, if T" is an arbitrary one-hold type context
T— 7
Tlr]— TI7']

Notice that the language of types became isomorphic to the simply-typed A-calculus where
types became kinds and terms became types. Hence, type reduction is the same as (full
reduction) in simply-typed A-calculus. Thus, type reduction preserves kindd!. Hence, kinds
are erasable: they may only be checked when reading type expressions and ignored after-
wards. As types, they do not contribute to the reduction, but are just carried over during
the reduction.

Type reduction, which is strongly normalizing induces an equivalence on types written =g4:
two types are equivalent if they have have the same normal-form. An efficient implementation
may however reduce terms by need.

Typing of expressions is up to type equivalence:

TCoNy
' M:71 T=gT

'-M:7

Notice that well-typedness I' = M : 7 ensures well-kindedness I' - 7 : * (in the same way
that it ensures will-formedness in System F. Notice that decidability of type checking in
System F“ relies on decidability of type equivalence, which here follows from strong normal-
ization for types.

'We have only proved subject reduction for CBV in the previous lessons, but still hold for full reduction
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Syntax

* | k=K
alT->71|VYarkT| Atk T|TT

x| e M| M M | Aa:w.M|MT

K
-
M

Kinding rules
KVAR
T a ¢ dom(T") Cr7ix x ¢ dom(T") a:kel

Fl ok o I'~a:k
KARROW WFrTYPEFORALL KABS
| S -mx Na:keE71% INa:ky =71k

%]

' omix I'-Vauk. 7% ' Aastk. 7Kk = Ko
KApp

FI—T1:I<623I€1 FI—TQZHQ

Fl—Tngilil

Typing rules

VAR ABS App
r:Tel MNe:m+-M:7 ' M :m -1 I'-Ms:my

Fcax:7 F'cXe:m. M1 -7 ' My My: 7y

TABS TapPp TEQuv
otk M:T1 I'-M:Va:k.T '-7":k '-M:7 P17

I'-Aazk.M:YaukT PeM71:[a-T1]r 'M:7

Dynamic semantics (unchanged, up to kind annotations in terms)

v
E

Az:T. M| Aa RV Conrir
UMV 7 [ Aas k] M — M

Az M)V — [z VM E[M]— E[M']
(Aa=r V)T — [awT]V

Figure 6.1: System F%, altogether
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Still, we need not reduce types inside terms. Type reduction is needed for type conversion
during typechecking but such reduction need not be performed on terms, which carries kind
annotations attached to bound type variables, unchanged.

6.2.1 Properties

Main properties are preserved. Proofs are similar to those for System Fv.
e Type soundness. The proof is by subject reduction and progress.

o Termination of reduction. This holds in the absence of other constructs that can be
use to introduce recursion, such as recursive types, recursive definitions or side effects
(references, exceptions, control, etc.).

o Typechecking is decidable. This requires reduction at the level of types to check type
equality. Checking type equality can be performed by putting types in normal forms
using full reduction (on types)—or just in head normal forms. Normal forms for types
exists as the language of type is a simply-typed A-calculus (where kinds plays the role
of types).

6.3 Expressiveness

System F¢ increases expressiveness and solves the limitations of System F discussed above:
Abstraction over type operators allows for more polymorphism, hence more principal types as
illustrated with pair_map, abstraction over data structures such as monads, more encodings
such as non regular datatypes or type equality, and more.

Kind annotations may often be obfuscating. For convenience, we often leave them im-
plicit, using o and g for type variables of kind * and ¢ and ¢ for type variables of kind
* = %_or of some arbitrary kind x given by context.

6.3.1 Map on pairs

We may now type the example of pair_map, whose implicitly-typed definition is A fxy. (f =, f y)
by abstracting over (one parameter) type functions, i.e. type functions of kind « - . That
is, the explicitly-typed version of pair_map is:

Ap Ay Aoy Nas A(f :Ya.pa—=Y a) e ar. Ay:pas. (farz, fasy)
and has type:
Vo Y VYay.Vas. (Va.p a =1 a) = g a; = @ as = ag X as
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We may recover, the two incomparable types it had in System F by instantiation:
Acy.Aag.pair-map (Aa. o) (Aa. az) a3 as
Voar. Yag. (Voo = ag) = a; > a3 »> g X (g
and
pair_map (Aa.ar) (Aa.«v)
:Var. Vag. (Va.a —» a) > a; = ag > ag x ag

Actually, the former is not quite the expected typed, which should be a; = a9 rather than
Va.o; — ag, where the useless quantifier has been removed. This can be obtained by n-
expansion: instantiation:

Ao Aag N fraq = awn. pair-map (Aa. o) (Aa. as) ag as (Aa.f)
: VOél. VOKQ. (Oél - Oég) —> (1 > O] = Qg X Qg

Notice that while the type of pair_map in System F“ is more general than both of these
types, it is still not principal. For example, ¢ and 1 could depend on two variables, 7.e. be
of kind * = % = ».

6.3.2 Abstracting over type operators

Given a type operator ¢, a monad is given by a pair of two functions of the following type
(satisfying certain laws).

monad = Ap.{ret:Va.a—» ¢ a; bind:Ya.V8.pa— (a— ¢ ) » ¢ [}
(e %) =%

Notice that monad is of higher-order kind—mnot just * — x.

For example, a generic map function, parameterized by some monad m can then be defined
as follows:

fmap = Ap . Am : monad ¢ .
A ABAf: (= ). Az :p a.mbinda fx (Ax:a.mreta (f x))
Vo.monad ¢ > Va.Vi.(a—>f) > pa—p

Abstraction over type operators without reduction. In fact type abstraction over
type operators is already available in Haskell, but does not handle §-reduction. In this
case, type application ¢ «a behaves as a first-order type App (¢,a) where App is a binary
(application) symbol of kind (k1 = k) = K1 = Kko. That is,

pa=yf = p=9Yra=p

The expressiveness is then closer to System F than to System F“. As a counterpart of this
limitation, this approach is compatible with type inference, based on first-order unification.
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Such abstraction over type operators is actually encodable with OCaml modules. See
Yallop and White (2014) (and also Kiselyov). As in Haskell, the encoding does not handle
type S-reduction and as a consequence is compatible with type inference at higher kinds.

6.3.3 Existential types

We saw the encoding of existential types in System F:
[Ba.r] £ VB.(Va.r - 8) -4
Hence, existential types could be provided as a family of primitives
[packs, . ] £ Aadz:[r].ABNk:Va.([r] - B).kax

(and a similar encoding for [unpacky, ,]). In System F, this requires a different code for each
type 7. Indeed, sharing this code when 7 varies requires to abstract over 7, which is not
possible in System F—but quite natural in System F«!

In System F“, we allow existential types to abstract over higher-kinded variables:

[Fa. 7] = VB.(Va.T = ) =

In fact, we need not introduce a special construct Ja. 7 for that purpose. We may instead
introduce a family of type constants 3, indexed by k of respective kind x = *. We then
write 3, (Aa.7) for Ja. 7.

Revisiting the encoding, we may now abstract over some type variable ¢ of kind k = *,
as follows:

[3(p k). 7] V(B:x).(V(puk).T—>pB)—> B
3, AW s = ) ¥ (B %) (¥ (9 30) . @ > B) = B
pack, s V(W k= %) V(puk). Y o >3 0

AW k=) .A(p k).
Az @ A(Bi#) Ak:V (pir). (0 ¢ > B) ke x

unpack, ¢+ V(Yur = ). 3,0 >V (Bua) . (V(p ). (1 > B)) > A
AW k=) r:3. ¢ .x

The interest is that the encoding need not be defined at the metalevel, but directly provided
as terms in System F“ defined once for all.

>

>

>

>

Exploiting abstraction over type operators. The encoding of existential types in Sys-
tem Fv is simplified by abstraction over type functions, which allows replacing primitive
type constructs by type constants—just keeping arrow types as primitive as they play a
particular role.

T=a|da:k.T|TT|T>7]|G
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where a family of type constants G € G given with their kinds (left column):

X ok = % D> % (TXT) = (X)7'17'2
+ I A= A=K (t+7) = (+) 11 7o
Vi i (k=) = V(g:r).T 2 V. (A(p:k).7)
e (K= %) =% A 3, (A (g =r) . 7)

F(p k). T
For convenience, we may still provide some notations as shown on the right column, but it
is then just syntactic sugar!

Abstraction over kinds. Although not in System F“ per se, we could also allow abstrac-
tion over kinds (see §6.4.2)), and then just write:

\?m(A(gp::f;).T) Vo .1
Ik (AN (p=k).7) Jp .1

A

V(A7)
F(Ap .7)

where the middle column are the application of the type constants ¥ and 3 to a kind followed
by a type, and the right column is the same when kinds are inferred

Voo Ve (k=) = * Vo kT
él:: V/ﬁ.(/ﬁﬁ*)ﬁ* ElQO:I‘{,.T

ne> e
>

6.3.4 Church encoding of non-regular ADT

Regular ADTs can be encoded in System F. For instance, the list datatype

type Lista=
INil :Va.List o
| Cons : Var. v — List av — List «v

has the following Church (CPS style) encoding:
List = la.VB.8-(a—>B-p8)—p

Nil £ AaABAn:B.Ac:(a—B-08).n

Cons 2 Aa.dz:a. \: List o
ABAn:B.Ac:(a—-pB—B).cx({Bnc)

fold 2 Aa.ABAn:B.Ac:(a—fB—B).M:Lista.lBnc

which is well-typed in System F.

In fact, one may attempt to generalize this signature to allow § to depend on «, hence
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replacing [ by a type operator ¢ of kind * = *:

List = laVo.pa-(ampa—pa)->pa
Nil 2 AaAp dn:g ade:(a—>¢ a—pa)n
Cons =  Aa.\z:a. A\ : List a.
Ap dn:p ad:(a—=p a—-p a)cx(ly nc)
fold £ AaAp M:p ade:(a—>pa—>pa):Lsta.ly nc

This seems more abstract since 8 is now ¢ « which may depend on «.

Actually not! Be aware of useless over-generalization! For regular ADTSs, since all uses of
@ are applied to the same «, this interface is actually no more general that the previous one.
(One can then easily recover this interface by instantiation of the previous one.) However,
this additional degree of liberty will be the key to then encoding of non regular ADTs.

Example 1 For a simpler example of over generalization, take the identity function id of
type Va.a — «. If gave id the more general type Vo .Va.p a — ¢ a, we may then recover
the former by type instantiation: Ay .Aa.id (¢ «).

Of course, raising type abstraction at higher rank is sometimes a key, as illustrated by the
typing of pair_map.

This is also the case for encoding non-regular ADT. Let us consider Okasaki’s datatype
Seq for his purely functional efficient implementation of sequences:
type Seqa =
| Nil : V. Seq
| Zero: V. Seq (axa) - Seq «
| One : Ya. a > Seq (axa) - Seq «
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This may be encoded in System F“ as follows.

Aa.Ve . (Va. ¢ a) > (Va. ¢(axa) > ¢ a) > (Va.a - ¢ (axa) > P a) > ¢ a
An.Az.As. n

Va. Seq a
Aa. A In:Va. ¢ a.dz:Va. ¢ (axa) > P a.As:Va.a - ¢ (axa) > P a. n

M. Az ds.za(nzs)
: Va. Seq (axa) - Seq a
= Aa. M\ :Seq (axa).
Ae An:Va. ¢ a.dz:Va. ¢(axa) > ¢ a. As: Va.a - ¢ (axa) - ¢ a.
za(l Y nzs)

A A An. Az As.sx (Unzs)

: Ya. a— Seq (axa) - Seq «

= Aa )z :a. M :Seq (axa).

Ap An:Va. ¢ a.dz:Va. ¢(axa) > ¢ a. As: Va.a - ¢ (axa) - ¢ a.
sx (¥ nzs)

fold = A An. Az Xs.nzs

: Ya.Seqa— Vo .(Va. ¢ a) > (Va. ¢(axa) > ¢ a) > (Va.a - ¢ (axa) > P a) > ¢ a

= AaM:Seqa. Ap An:Va. ¢ a. Az :Va. ¢ (axa) > @ a. As: Va.a - ¢ (axa) - ¢ a.
LY nzs

Seq
Nil

ne e

ne -

Zero

e

One

To reconstruct the typed Church encoding—if it were not given, one should proceed as
follows:

e First, build the untyped Church encoding:

— The type is the type of deconstruction by cases: it is parametric (polymorphic in
a) and abstract over the type of sequences (polymorphic in ¢) then receives as
many functions as there are constructors in the datatype, if then returns a term
of type ¢ a, hence where both ¢ and a will be chosen by the user.

— We may then write the untyped encoding: each constructor just waits for three
destruction functions (the three actions that will be passed depending on the
constructor) and applies its corresponding action to its arguments.

— Fold is just the n-expansion of the type of Seq «. It is polymorphic in o and
first receives an argument ¢ of type Aa. V¢ . (Va. ¢ a) - (Va. ¢ (axa) > ¢ a) >
(Va.a - ¢ (axa) - ¢ a) > ¢ aA; then it expects as many actions as there are
constructors and just pass them to /.

e Second, the types of the construction functions are exactly the same as those of the
constructors.

e Third, the explicitly typed encoding can be derived mechanically by combining the
untyped encoding and the types of the encoding.
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module Eq : EQ = struct
type (‘a, 'b) eq = Eq : ('a, 'a) eq
let coerce (type a) (type b) (ab: (a,b) eq) (x: a) : b = let Eq = ab in x
let refl : ('a, 'a) eq = Eq
(* all these are propagation are automatic with GADTs x)
let symm (type a) (type b) (ab: (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c
(ab : (a,b) eq) (bc: (b,c) eq) : (a,c) eq = let Eq = ab in bc
let lift (type a) (type b) (
let Eq = ab in Eq

end

ab: (a,b) eq) : (a list, b list) eq =

Figure 6.2: Leibnitz equality with GADT in OCaml

Notice that higher-rank is mandatory here as for each constructor ¢ is applied to both «
and a x . This is why non-regular ADTs cannot be encoded in System F.

The encoding of the list datatypes could be obtained similarly, and then realize a poste-
riori that there is no gain in being polymorphic in ¢ since all occurrences of ¢ are always
applied to the same variable a. This is always the case for church encodings or regular
datatypes, hence, there is not need for such over generalization in the first place.

6.3.5 Encoding GADT—with explicit coercions

GADT can be encoded with a single equality type, existential types and non regular datatypes.
Figure gives an implementation of Leibnitz equality with a GADT in OCaml. We may
then use a value of type (7, o) Eq.eq as a proof of equality of the types 7 and o.

Leibnitz equality can also be defined in System F“ (Figure 6.3l In the figure, we have
overlined proof terms and their types (respectively on the left and right columns) so as to
help check typechecking.

We only implemented parts of the coercions of System Fc: we do not have decomposition
of equalities (the inverse of Lift), as this requires injectivity of the type operator, which
cannot be assumed. Hence, some equality proofs are still missing. Notice that equivalences
and liftings must be written explicitly in this encoding, which is cumbersome and obfuscating,
while they are implicit with GADTs.
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A AB. Yo .pa—p [
Ap.Ax.p x

Aa.ABAp:Eqa . \x:a.p(A\y.y) x
AT, x
=x

Va. Vo .pa—-pa = Ya.Egaa
Ap. p (refl)

= p(M.Eqya) (refl a)
Va.VB.Eqa f - Eq [ «

Ap.Aq. qp

= q(Eqa)p
Va.VB.Vy.Eqa - EqB~v—>Eqa~y

Ap. p (refl)

= p(M-Eq (¢ @) (¢ 7)) (refl (0 a))
Va.VB.Ye .Eqa 8 —Eq (v a) (¢ B)

hence, Eqa f=Vp . pa—¢ 3

:Eqa a—>Eqf «

:Eqa f>Eqa vy

:Eq(p @) (pa) > Eq(pa) (¢ B)

Figure 6.3: Leibnitz equality in System F¥
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6.4 Beyond Fv

6.4.1 Stratification

Let us define the rank of a kind as usual: the base kind * is of rank 1 and rank (k1 = kq)
is recursively defined as max(1 + rank x1,rank ky). Hence, type functions of kind * = x or
* = x = * taking type parameters of base kind have rank 2 and type functions taking such
type functions as arguments, e.g. of kind (* = %) = %, have rank 3.

We may define a hierarchy F'' ¢ F2 c F3... c F¥ of type systems of increasing expres-
siveness, where F™ only uses kinds of rank n and whose limit is F'“. Hence, System F is
just F''. Most examples used in practice (and most of those we wrote) lie in 2, just above
System F. (Sometimes, ranks are shifted by one, starting with 2 for System F.)

6.4.2 Kinds

Kind abstraction. In section §6.3.3] we used abstraction over kinds. Strictly speaking,
this goes beyond System F“, but System F“ can easily be extended with kind abstraction
and properties are preserved.
Vo Vi Yag.Vas.
(Va.pa—>va)>par—pay—>1axpay
One application is the use of constants instead of encodings as in section §6.3.3l Another
application is to have even more general types. See the discussion on pair_map in §6.3.11

Multiple base kinds We have used a single base kind *. Allow several base kinds raise
no problems. For example, we may introduce an additional kind field and declare type
constructors:

filled : % = field box : field = *
empty : field

The will prevents the formation of types such as box (a — filled «). This allows to build
values v of type box # where 6 of kind field statically tells whether v is filled with a value of
type 7 or empty. Such kinding is actually used in OCaml for rows of object types, although
kinds are hidden from the user using superficial syntax:

let get (x : ( get: 'a; .. )) : 'a = x#get

The dots “..” here stands for a variable of another base kind representing a row of types.

6.4.3 Recursion

Equirecursive types Checking equality of equirecursive types in System F is already
non obvious, since unfolding may require a-conversion to avoid variable capture. (See also
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Gauthier and Pottier (2004).) With higher-order types, it is even trickier, since unfolding at
functional kinds could expose new type redexes.

Besides, the language of types would be the simply type A-calculus with a fix-point
operator: type reduction would not terminate. Therefore type equality would be undecidable,
as well as type checking.

A solution is to restrict to recursion at the base kind *. This allows to define recursive
types but not recursive type functions. Such an extension has been proven sound and
decidable, but only for the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see (Cai et al) (2016).

Equirecursive kinds Recursion could also occur just at the level of kinds, allowing kinds
to be themselves recursive. Then, the language of types is the simply type A-calculus with
recursive types, which is equivalent to the untyped A-calculus: every term is typable. Hence,
without further restrictions reduction of types no longer terminates and type equality is
ill-defined.

A solution proposed by [Pottier is to force recursive kinds to be productive, reusing an
idea from an |[Nakanao (2000, 2001) for controlling recursion on terms, but pushing it one level
up. Then, type equality is well-defined, but only semi-decidable. This extension has been
used to show that references in System F can be translated away in System F“ with guarded
recursive kinds [Pottier (2011).

6.4.4 Encoding of functors

In early versions of OCaml, functors were generative: when a functor returns an abstract
type, two applications of this functor to the very same structure produce new incompatible
abstract types. By contrast, applicative functors would return two structures with compatible
abstract types, allowing then to interoperate.

Generative functors Generative functors can be encoded in System F with existential
types (as long as we ignore parametric types—or treat them as primitive). The idea to give
functor F' a type of the form

Va.r[a] - 35.0[a, f]

Here 7[a] represents the signature of the argument with some abstract types @ while
33.0[a, 3] represents the signature of the result of the functor application. That is the
abstract types a appearing in the result signature are those taken from and shared with the
argument. By contrast, 5 are the abstract types created by the functor application, and
have fresh identities independent of the argument.

Therefore two successive applications with the very same argument (hence the same @)
will create two signatures with incompatible abstract types B; and B3,, once the existential
have been open.
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Schematically, two applications of a functor F to the very same structure argument X as
on the left column will be typed as on the right-column:

let module Z; = F(X) in let 31, Z1 = unpack (F p X) in
let module Z; = F(X) in ... let 32, Zo = unpack (F p X) in ...

Hence, the two resulting structures Z; and Z, have incompatible abstract types. (Typically,
the they contain a field of respective types f; and f, so that Z.£ = Z'.0 is ill-typed.)

Applicative functors. Applicative functors can also be encoded, but in System F“, using
higher-order existential types.

To allow two identical applications of the functor F to be compatible, we give it a type
of the form:

Jp . Va.r[a] - ola, ¢ al
moving the existential 8 across the arrow and universal quantifier. This requires skolemizing
(3 into a type function ¢ abstracted over the type variables 3.

The functor F is first opened before being applied, becoming of type Va.t[a] — o[@, ¢ «]
for some unknown ¢ . As before, we specialize it to the abstract types, say p, of the argument
followed by the structure argument X and get back a structure Z of type o[p, ¢ p].

Here ¢ p are the abstract types created by the application. Each ¢ p is a new abstract
type—one we know nothing about, as it is the application of an abstract type to p. However,
two successive applications with the same arguments (hence the same p) will create two
compatible structures whose signatures have the same shared abstract types ¢ p, as long as
the functor has just been opened once for performing the two applications.

Schematically, the previous encoding on the left-hand side has been replaced by the one
on the right-hand side:

let ¢, F = unpack F in
let 31, Z; = unpack (F(X)) in let Zy =F pXin
let 32, Zo = unpack (F(X)) in ... let Zy =F pXin ...

More generally, functors could have both an applicative and a generative part, and have
a type of the form: B B
dp.Ya.r[a] - 36.0la, pa, []

Where @ & are the applicative shared abstract types and 3 are the generative abstract types

produced by the application. Or we may just have both forms and alternate between gener-
ative and applicative functors.

Remarks:

e We have used skolemization and therefore type functions to move the existential type
across the universal type.
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e The application of an abstract type of higher-order kind to abstract types can be used
to generate new (partially) abstract types !

The encoding of applicative functors in System F“ uses these mechanisms to generate ab-
stract types that can be shared. See ? and ? for more details and also ? for ongoing
work.

6.4.5 System F“ in OCaml

Second-order polymorphism is not primitive but encodable in OCaml, using polymorphic
methods

let id = object method f: . @ > a = fun x - x end
lety (x: (f : .o > a)) =x#fxinyid

or first-class modules

module type S = sig val f : @ > o end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Both solutions are quite verbose, though. Besides, second-order types are not first-class.
In principle, one can also reach higher-rank types OCaml, using first-class modules. How-
ever, this is not currently possible, due to (unnecessary) restrictions in the module language.
Modular explicits, a prototype extension@, leaves some of these restrictions, easing ab-
straction over first-class modules and allow a light-weight encoding of System F“—with still
some boiler-plate glue code. The encoding of pair_map with modular explicit is presented in
Figure with its two specialized instances.

Higher-order polymorphism a la System F'“ is now also accessible in Scala-3. For instance,
the monad example (with some variation on the signature) can be defined as:

trait Monad [F[]] {

def pure [A] (x: A) : F[A]

def flatMap [A, B] (fa: F[A]) (f: A =) F[B]) : F[B]
}

See https://www.baeldung.com/scala/dotty-oyscala-0,3.

Still, this feature of Scala-3 is not emphasized and was not directly accessible in previous
versions of Scala. Besides, Scala’s syntax and other complex features of Scala are somewhat
obfuscating.

2 Available at https@github.com:mrmr1993/ocaml


https://www.baeldung.com/scala/dotty-scala-3
https@github.com:mrmr1993/ocaml
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module type s = sig type t end
module type op = functor (A:s) — s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} - F(C).t - G(C).t)
(x : F(A).t) (y: F(B).t) : G(A).t «x G(B).t =f {A} x, f {B} y
let dpl (type a) (typeb) (f: {Cs} > Ct—>Ct):a—>b—>axb=
let module F(C:s) = C in let module G = F in

let module A = struct type t = a end in
let module B = struct type t = b end in

dp {F} {G} {A} {B} f
let dp2 (type a) (typeb) (f:a—>b):a—>a—->bxb=
let module A = struct type t = a end in

let module B = struct type t = b end in
let module F(C:s) = A in let module G(C:s) = B in

dp {F} {G} {A} {B} (fun {C:s} ~f)

Figure 6.4: pair_map with modular implicits

What’s next? The next step in expressiveness are dependent types, as illustrated in the
Barendregt’s A-cube:

Mlw

System FY = Aw

S

Fr=2A2

(1) Term abstraction on Types, as in System F;
(2) Type abstraction on Types, as in System F*;
(3) Type abstraction on Terms: dependent types AIT, AII2, ATw.

A form of dependent types is available in Haskell, but not in OCaml.
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