
Type systems for programming languages

Didier Rémy

Academic year 2014-2015

Version of January 2, 2017

2

Contents

1 Introduction 7
1.1 Overview of the course . 7
1.2 Requirements . 9
1.3 About Functional Programming . 9
1.4 About Types . 9
1.5 Acknowledgment . 11

2 The untyped λ-calculus 13
2.1 Syntax . 13
2.2 Semantics . 15

2.2.1 Strong v.s. weak reduction strategies . 15
2.2.2 Call-by-value semantics . 16

2.3 Answers to exercises . 18

3 Simply-typed lambda-calculus 21
3.1 Syntax . 21
3.2 Dynamic semantics . 21
3.3 Type system . 22
3.4 Type soundness . 25

3.4.1 Proof of subject reduction . 26
3.4.2 Proof of progress . 28

3.5 Simple extensions . 30
3.5.1 Unit . 30
3.5.2 Boolean . 30
3.5.3 Pairs . 31
3.5.4 Sums . 32
3.5.5 Modularity of extensions . 32
3.5.6 Recursive functions . 33
3.5.7 A derived construct: let-bindings . 33

3.6 Exceptions . 35
3.6.1 Semantics . 35

3

4 CONTENTS

3.6.2 Typing rules . 36
3.6.3 Variations . 37

3.7 References . 39
3.7.1 Language definition . 39
3.7.2 Type soundness . 41
3.7.3 Tracing effects with a monad . 42
3.7.4 Memory deallocation . 43

3.8 Ommitted proofs and answers to exercises . 44

4 Polymorphism and System F 49
4.1 Polymorphism . 49
4.2 Polymorphic λ-calculus . 51

4.2.1 Types and typing rules . 51
4.2.2 Semantics . 52
4.2.3 Extended System F with datatypes . 54

4.3 Type soundness . 58
4.4 Type erasing semantics . 62

4.4.1 Implicitly-typed System F . 62
4.4.2 Type instance . 64
4.4.3 Type containment in System Fη . 66
4.4.4 A definition of principal typings . 68
4.4.5 Type soundness for implicitly-typed System F 69

4.5 References . 72
4.5.1 A counter example . 73
4.5.2 Internalizing configurations . 74

4.6 Damas and Milner’s type system . 77
4.6.1 Definition . 77
4.6.2 Syntax-directed presentation . 79
4.6.3 Type soundness for ML . 82

4.7 Ommitted proofs and answers to exercises . 84

5 Type reconstruction 91
5.1 Introduction . 91
5.2 Type inference for simply-typed λ-calculus . 92

5.2.1 Constraints . 93
5.2.2 A detailed example . 94
5.2.3 Soundness and completeness of type inference 96
5.2.4 Constraint solving . 96

5.3 Type inference for ML . 98
5.3.1 Milner’s Algorithm J . 98
5.3.2 Constraints . 99

CONTENTS 5

5.3.3 Constraint solving by example . 103
5.3.4 Type reconstruction . 106

5.4 Type annotations . 109
5.4.1 Explicit binding of type variables . 110
5.4.2 Polymorphic recursion . 113
5.4.3 mixed-prefix . 114

5.5 Equi- and iso-recursive types . 115
5.5.1 Equi-recursive types . 115
5.5.2 Iso-recursive types . 117
5.5.3 Algebraic data types . 118

5.6 HM(X) . 119
5.7 Type reconstruction in System F . 121

5.7.1 Type inference based on Second-order unification 121
5.7.2 Bidirectional type inference . 122
5.7.3 Partial type inference in MLF . 124

5.8 Proofs and Solution to Exercises . 124

6 Existential types 127
6.1 Towards typed closure conversion . 128
6.2 Existential types . 130

6.2.1 Existential types in Church style (explicitly typed) 130
6.2.2 Implicitly-typed existential types . 133
6.2.3 Existential types in ML . 135
6.2.4 Existential types in OCaml . 136

6.3 Typed closure conversion . 137
6.3.1 Environment-passing closure conversion 137
6.3.2 Closure-passing closure conversion . 139
6.3.3 Mutually recursive functions . 141

7 Overloading 145
7.1 An overview . 145

7.1.1 Why use overloading? . 145
7.1.2 Different forms of overloading . 146
7.1.3 Static overloading . 147
7.1.4 Dynamic resolution with a type passing semantics 147
7.1.5 Dynamic overloading with a type erasing semantics 148

7.2 Mini Haskell . 149
7.2.1 Examples in MH . 149
7.2.2 The definition of Mini Haskell . 150
7.2.3 Semantics of Mini Haskell . 152
7.2.4 Elaboration of expressions . 154

6 CONTENTS

7.2.5 Summary of the elaboration . 155
7.2.6 Elaboration of dictionaries . 157

7.3 Implicitly-typed terms . 159
7.4 Variations . 165
7.5 Ommitted proofs and answers to exercises . 169

Chapter 1

Introduction

These are course notes for part of the master course Typing and Semantics of functional
Programming Languages taught at the MPRI (Parisian Master of Research in Computer
Science1) in 2010, 2011, 2012.

The aim of the course is to provide students with the basic knowledge for understand-
ing modern programming languages and designing extensions of existing languages or new
languages. The course focuses on the semantics of programming languages.

We present programming languages formally, with their syntax, type system, and oper-
ational semantics. We then prove soundness of the semantics, i.e. that well-typed programs
cannot go wrong. We do not study full-fledged languages but their core calculi, from which
other constructions can be easily added. The underlying computational language is the
untyped λ-calculus, extended with primitives, store, etc.

1.1 Overview of the course

These notes only cover part of the course, described below in the paragraph Typed lan-

guages. Here, we give a brief overview of the whole course to put the study of Typed
languages into perspective.

Untyped languages. Although all the programming languages we study are typed, their
underlying computational model is the untyped λ-calculus That is, types can be dropped
after type checking and before evaluation.

Therefore, the course starts with a few reminders about the untyped λ-calculus, even
though those are assumed to be known. We show how to extend the pure λ-calculus with
constants and primitives and a few other constructs to make it a small programming lan-
guage. This is also an opportunity to present source program transformations and compi-

1Master Parisian de Recherche en Informatique.

7

8 CHAPTER 1. INTRODUCTION

lation techniques for function languages, which do not depend much on types. This part is
taught by Xavier Leroy.

Typed languages Types play a central role in the design of modern programming lan-
guages, so they also play a key role in this course. In fact, once we restrict our study to
functional languages, the main differences between languages lie more often in the differences
between their type systems than between other aspects of their design.

Hence, the course is primarily structured around type systems. We remind the simply-
typed λ-calculus, the simplest of type systems for functional languages, and show how to
extend it with other fundamental constructs of programming languages.

We introduce polymorphism with System F. We present ML as a restriction of System F
for which type reconstruction is simple and efficient. We actually introduce a slight gener-
alization HM(X) of ML to ease and generalize the study of type reconstruction for ML. We
discuss techniques for type reconstruction in System F—but without formalizing the details.

We present existential types, first in the context of System F, and then discuss their
integration in ML.

Finally, we study the problem of overloading. Overloading differs from other language
constructs as the semantics of source programs depend on their types, even though types
should be erased at runtime! We thus use overloading as an example of elaboration of source
terms, whose semantics is typed, into an internal language, whose semantics is untyped.

Towards program proofs Types, as in ML or System F, ensure type soundness, i.e. that
programs do not go wrong. However useful, this remains a weak property of programs. One
often wishes to write more accurate specifications of the actual behavior of programs and
prove the implementation correct with respect to them. Finer invariants of data-structures
may be expressed within types using Generalized Algebraic Data Types (GADT); or one step
further using dependent types. However, one may also describe the behavior of programs
outside of proper types per se, by writing logic formulas as pre and post conditions, and
verifying them mechanically, e.g. with a proof assistant. This spectrum of solutions will be
presented by Yann Regis-Gianas.

Subtyping and recursive types The last part of the course, taught by Giuseppe Castagna,
focuses on subtyping, and in particular on semantic subtyping. This allows for very precise
types that can be used to describe semi-structured data. Recursive types are also presented
in this context, where they play a crucial role.

1.2. REQUIREMENTS 9

1.2 Requirements

We assume the reader familiar with the notion of programming languages. Some experience
of programming in a typed functional language such as ML or Haskell will be quite helpful.
Some knowledge in operational semantics, λ-calculus, terms, and substitutions is needed.
The reader with missing background may find relevant chapters in the book Types And
Programming Languages by Pierce (2002).

1.3 About Functional Programming

The term functional programming means various things. Functional programming views
functions as ordinary data which, in particular, can be passed as arguments to other functions
and stored in data structures.

A common idea behind functional programming is that repetitive patterns can be ab-
stracted away as functions that may be called several times so as to avoid code duplication.
For this reason, functional programming also often loosely or strongly discourages the use
of modifiable data, in favor of effect-free transformations of data. (In contrast, the main-
stream object-oriented programming languages view objects as the primary kind of data and
encourage the use of modifiable data.)

Functional programming languages are traditionally typed (Scheme and Erlang are ex-
ceptions) and have close connections with logic. We will focus on typed languages. Because
functional programming puts emphasis on reusability and sharing multiple uses of the same
code, even in different contexts, they require and make heavy use of polymorphism; when
programming in the large, abstraction over implementation details relies on an expressive
module system. Types unquestionably play a central role, as explained next.

Functional programming languages are usually given a precise and formal semantics de-
rived from the one of the λ-calculus. The semantics of languages differ in that some are
strict (ML) and some are lazy (Haskell) Hughes (1989). This difference has a large impact on
the language design and on the programming style, but has usually little impact on typing.

Functional programming languages are usually sequential languages, whose model of
evaluation is not concurrent, even if core languages may then be extended with primitives
to support concurrency.

1.4 About Types

A type is a concise, formal description of the behavior of a program fragment. For instance,
int describes an expression that evaluates to an integer; int→ bool describes a function that
maps an integer argument to a boolean result; (int → bool) → (list int → list int) describes a
function that maps an integer predicate to an integer list transformer.

10 CHAPTER 1. INTRODUCTION

Types must be sound. That is, programs must behave as prescribed by their types.
Hence, types must be checked and ill-typed programs must be rejected.

Types are useful for quite different reasons: They first serve as machine-checked docu-
mentation. More importantly, they provide a safety guarantee. As stated by Milner (1978),
“Well-typed expressions do not go wrong.” Advanced type systems can also guarantee vari-
ous forms of security, resource usage, complexity, etc. Types encourage separate compilation,
modularity, and abstraction. Reynolds (1983) said: “Type structure is a syntactic discipline
for enforcing levels of abstraction.” Types can be abstract. Even seemingly non-abstract
types offer a degree of abstraction. For example, a function type does not tell how a function
is represented at the machine level. Types can also be used to drive compiler optimizations.

Type-checking is compositional: type-checking an application depends on the type of the
function and the type of the argument and not on their code. This is a key to modularity
and code maintenance: replacing a function by another one of the same type will preserve
well-typedness of the whole program.

Type-preserving compilation Types make sense in low-level programming languages as
well—even assembly languages can be statically typed! as first popularized by Morrisett et al.
(1999). In a type-preserving compiler, every intermediate language is typed, and every
compilation phase maps typed programs to typed programs. Preserving types provides in-
sight into a transformation, helps debug it, and paves the way to a semantics preservation
proof (Chlipala, 2007). Interestingly enough, lower-level programming languages often re-
quire richer type systems than their high-level counterparts.

Typed or untyped? Reynolds (1985) nicely sums up a long and rather acrimonious de-
bate: “One side claims that untyped languages preclude compile-time error checking and
are succinct to the point of unintelligibility, while the other side claims that typed languages
preclude a variety of powerful programming techniques and are verbose to the point of un-
intelligibility.” A sound type system with decidable type-checking (and possibly decidable
type inference) must be conservative.

Later, Reynolds also settles the debate: “From the theorist’s point of view, both sides are
right, and their arguments are the motivation for seeking type systems that are more flexible
and succinct than those of existing typed languages.”

Today, the question is rather whether to use basic types (e.g. as in ML or System F)
or sophiscated types (e.g. with dependent types, logical assertions, afine types, capabililties
and ownership, etc.) or full program proofs as in the compcert project (Leroy, 2006)!

Explicit v.s. implicit types? The typed v.s. untyped flavor of a programming language
should not be confused with the question of whether types of a programming language are
explicit or implicit.

1.5. ACKNOWLEDGMENT 11

Annotating programs with types can lead to a lot of redundancies. Types can even
become extremely cumbersome when they have to be explicitly and repeatedly provided. In
some pathological cases, they may even increase the size of source terms non linearly. This
creates a need for a certain degree of type reconstruction (also called type inference), where
the source program may contain some—but not all—type information.

When the semantics is untyped, i.e. types could in principle be entirely left implicit,
even if the language is typed. A well-typed program is then one that is the type erasure of a
(well-typed) explicitly-typed program. However, full type reconstruction is undecidable for
expressive type systems, leading to partial type reconstruction algorithms.

An important issue with type reconstruction is its robustness to small program changes.
Because type systems are compositional, a type inference problem can often be expressed
as a constraint solving problem, where constraints are made up of predicates about types,
conjunction, and existential quantification.

1.5 Acknowledgment

These course notes are based on and still contain a lot of material from a previous course
taught for several years by François Pottier.

http://cristal.inria.fr/~fpottier

12 CHAPTER 1. INTRODUCTION

Chapter 2

The untyped λ-calculus

In this course, λ-calculus is the underlying computational language. The λ-calculus supports
natural encodings of many programming languages Landin (1965), and as such provides a
suitable setting for studying type systems. Following Church’s thesis, any Turing-complete
language can be used to encode any programming language. However, these encodings might
not be natural or simple enough to help us in understanding their typing discipline. Using λ-
calculus, most of our results can also be applied to other languages (Java, assembly language,
etc.).

The untyped λ-calculus and its extension with the main constructs of programming lan-
guages have been presented in the first part of the course taught by Xavier Leroy. Hereafter,
we just recall some of the notations and concepts used in our part of the course.

2.1 Syntax

We assume given a denumerable set of term variables, denoted by letter x. Then λ-terms,
also known as terms and expressions, are given by the grammar:

a ∶∶= x ∣ λx. a ∣ a a ∣ . . .

This definition says that an expression a is a variable x, an abstraction λx. a, or an application
a1 a2. The “. . . ” is just a place holder for more term constructs that will be introduced later
on. Formally, the “. . . ” is taken empty in the current definition of expressions. However,
we may later extend expressions, for instance with let-bindings using the meta-notation:

a ∶∶= . . . ∣ let x = a in a

which means that the new set of expressions is to be understood as:

a ∶∶= x ∣ λx. a ∣ a a ∣ let x = a in a

The expression λx. a binds variable x in a. We write [x ↦ a0]a for the capture avoiding
substitution of a0 for x in a. Terms are considered equal up to the renaming of bound

13

14 CHAPTER 2. THE UNTYPED λ-CALCULUS

variables. That is λx1. λx2. x1 (x1 x2) and λy.λx. y (y x) are really the same term. And
λx.λx. a is equal to λy.λx. a when y does not appear free in a.

When inspecting the structure of terms, we often need to open up a λ-abstraction λx. a

to expose its body a. Then, a usually contains free occurrences of x (that were bound in
λx. a). When doing so, we may assume, w.l.o.g.1, that x is fresh for (i.e. does not appear
free in) any given set of finite variables.

Concrete v.s. abstract syntax For our meta-theoretical study, we are interested in the
abstract syntax of expressions rather than their concrete syntax. Hence, we like to think of
expressions as their abstract syntax trees. Still, we need to write expressions on paper, i.e.
strings of characters, hence we need some concrete syntax for terms. The compromise is to
have some concrete syntax that is in one-to-one correspondence with the abstract syntax.

An expression in concrete notation, e.g. λx.λy. x y must be
understood as its abstract syntax tree (next on the right).

For convenience, we may sometimes introduce syntactic
sugar as shorthand; it should then be understood by its expansion
into some primitive form. For instance, we may introduce multi-
argument functions λxy. a as a short hand for λx.λy. a just for
conciseness of notation on paper or readability of examples, but
without introducing a new form of expressions into the abstract
syntax. (Although, studying multi-parameter functions would
also be possible, and then this would not be syntactic sugar, but
this is not the route we take here.)

λ .

x λ .

y

⋅

x

⋅

y

When studying programming languages formally, the core language is usually kept as
small as possible avoiding the introduction of new constructs that can already be expressed
with existing ones—or are trivial variatons on existing ones. Indeed, redundant constructs
often obfuscate the essence of the semantics of the language.

Exercise 1 Write a datatype term to represent the abstract syntax of the untyped λ-calculus.
(Solution p. 18)

Exercise 2 Higher Order Abstract Syntax (HOAS) uses the binding and α-conversion mech-
anisms of the host language (here OCaml) to implement bindings and α-conversion of the
concrete language. The parametric version of HOAS is moreover parameterized by the type
of variables.

type ’a pterm =
| PVar of ’a

| PFun of (’a → ’a pterm)
| PApp of ’a pterm ∗ ’a pterm

1without lost of generality.

2.2. SEMANTICS 15

For example, we may define

let h = PApp (PFun (fun f → PApp (PVar f, PVar f)), PFun (fun x → PVar x))

Notice that h is polymorephic in the type of term variables. What term of the λ-calculus does
it represent? (Solution p. 18)

Write a function to term that translates from terms in HOAS (of type pterm) into terms
in concrete syntax (of type term). (Solution p. 18)

2.2 Semantics

The semantics of the λ-calculus is given by a small-step operational semantics, i.e. a reduc-
tion relation between λ-terms. It is also called the dynamic semantics since it describes the
behavior of programs at runtime, i.e. when programs are executed.

2.2.1 Strong v.s. weak reduction strategies

For the pure λ-calculus, one can allow a full reduction, i.e. reduction can be performed in
any context, in particular under λ-abstractions. This implies that a term can be reduced
in many different ways, depending on which redex is reduced first. Despite this, reduction
in the λ-calculus is confluent: for terms that are strongly normalizing, i.e. do not contain
infinite reduction path, then all possible reduction paths end up on the same normal form:
the calculus is confluent.

By contrast, programming languages are usually give a weak reduction strategy, i.e.
reduction does not occur under abstractions. The main reason for this choice is simplicity
and efficiency or reduction.

The most commonly used strategy is call-by-value, where arguments are reduced before
being substituted for the formal parameter of functions. However, some languages also use a
call-by-name strategy that delays the evaluation of arguments until they are actually used.
In fact, rather than call-by-name, one use implements a call-by-need strategy, which as call-
by-name delays the evaluation of arguments, but as call-by-value shares this evaluation:
that is, the occurrence of an argument that is used requires its evaluation, but all other
occurrences of the argument see the result of the evaluation and do not have to reevaluate
the argument if needed. This is however more delicate to formalize and one often uses
call-by-name semantics as an approximation of call-by-need semantics.

Although programming languages implement weak reduction strategies, it would make
perfect sense to define their semantics in two steps, first using using full reduction, and then
restricting the reduction paths to obtain the actual strategy. Full reduction may be used
to model some program transformations, such as partial evaluation, that are performed at
compile time. Another advantage of this two-step approach is that weak reduction strategies
are a particular case of full reduction. Hence, (positive) properties can be established once

16 CHAPTER 2. THE UNTYPED λ-CALCULUS

for all for full reduction and will also hold for weak reduction strategies, including both
call-by-value and call-by-name.

However, the metatheorical properties, such as type soundness, are often simpler to
establish for weak reductions strategies. Despite some advantages of the two step-approach
to the semantics of programming languages, we will not pursue it here. We instead directly
start with a weak reduction strategy. Still, we will informally discuss at certain places some
of the properties that would hold if we had followed the more general approach.

2.2.2 Call-by-value semantics

We choose a call-by-value semantics. When explaining references, exceptions, or other forms
of side effects, this choice matters. Otherwise, most of the type-theoretic machinery applies
to call-by-name or call-by-need—actually to any weak reduction strategy—just as well.

In the pure λ-calculus, the values are the functions:

v ∶∶= λx. a ∣ . . .

Variables are not values in the call-by0value λ-calculus. We only evaluate closed terms,
hence a variable should never appear in an evaluation context. Notice that any function
is a value in the call-by-value λ-calculus, in particular, a is an arbitrary term. In a strong
reduction setting, we could also evaluate the body of the function a, and then, a should thus
not contain any β-redex.

The reduction relation a1 Ð→ a2 is inductively defined:

βv

(λx. a) v Ð→ [x↦ v]a

Context

aÐ→ a′

e[a]Ð→ e[a′]

[x↦ V] is the capture avoiding substitution of V for x. We write [x↦ V]a its application to
a term a. Evaluation may only occur in call-by-value evaluation contexts, defined as follows:

e ∶∶= [] a ∣ v [] ∣ . . .

Notice that we only need evaluation contexts of depth one, thanks to repeated applications
of Rule Context. An evaluation context of arbitrary depth may be defined as a stack of
one-hole contexts:

ē ∶∶= [] ∣ e[ē]

Exercise 3 Define the semantics of the call-by-name λ-calculus. (Solution p. 18)

Exercise 4 Give a big-step operational semantics for the call-by-value λ-calculus. Compare
it with the small-step semantics. What can you say about non terminating programs? How
can this be improved? (Solution p. 19)

2.2. SEMANTICS 17

Exercise 5 Write an interpreter for a call-by-value λ-calculus. Modify the interpreter to
have a call-by-name semantics; then a call-by-need semantics. You may instrument the
evaluation to count the number of evaluation steps.

Recursion

Recursion is inherent in λ-calculus, hence reduction may not terminate. For example, the
term (λx.x x) (λx.x x) known as ∆ reduces to itself, and so may reduce forever.

A slight variation on ∆ is the fix-point combinator Y , defined as

λg. (λx.x x) (λz. g (z z))

Whenever applied to a functional G, it reduces in a few steps to G (Y G), which is not yet a
value. In a call-by-value setting, this term actually reduces forever—before even performing
any interesting computation step. Therefore, we instead use its η-expanded version Z that
guards the duplication of the generator G:

λg. (λx.x x) (λz. g (λv. z z v))

Exercise 6 Check that Y G reduces for ever. Check that Z G does not. Check that Z G v

behaves as expected—unfolds the recursion after the body of G has been evaluated.

Exercise 7 Define the fixpoint combination Z in OCaml—without using let rec. Why do
you need the −rectype option? Use Z to define the factorial function (still without using
let rec). (Solution p. 19)

18 CHAPTER 2. THE UNTYPED λ-CALCULUS

2.3 Answers to exercises

Solution of Exercise 1

type var = string

type term =
| Var of var

| Fun of var ∗ term

| App of term ∗ term

Define in this abstract syntax the term funaa

Solution of Exercise 2

(λf. f f)(λx.x).

Solution of Exercise 2, Question 2

let gensym = let n = ref 0 in fun () → incr n; ”x”ˆ string of int !n;;
let rec to term = function

| PFun f → let x = gensym() in Fun (x, to term (f x))
| PApp (f, g) → App (to term f, to term g)
| PVar x → Var x

let t = to term h

val t : term = App (Fun (”x2”, App (Var ”x2”, Var ”x2”)), Fun (”x1”, Var ”x1”))

Solution of Exercise 3

Values are unchanged. Evaluation contexts only allow the evaluation in function position:

e ∶∶= [] a

As a counterpart, β-reduction must not require its argument to be evaluated. Hence the
call-by-name βn rule is:

(λx. a0) aÐ→ [x↦ a]a0 (βn)

2.3. ANSWERS TO EXERCISES 19

Solution of Exercise 4

The big-step semantics defines an evaluation relation E ⊢ a ↝ v where E is an evaluation
environment E that maps variables to values. The relation is defined by inference rules:

Eval-Fun

E ⊢ λx. a ↝ λx. a

Eval-Var

x↦ v ∈ E

E ⊢ x ↝ v

Eval-App

E ⊢ a1 ↝ λx. a E ⊢ a2 ↝ v2 E , x ↦ v2 ⊢ a↝ v

E ⊢ a1 a2 ↝ v

Rule Eval-Fun says that a function is a value and evaluates to itself. Rule Eval-App

evaluates both sides of an application. Provided the left-hand side evaluates to a function
λx. a, we may evaluation a in an extended context where x is mapped to the evaluation of
the right-hand side. The results of the evaluation of a is then the result of the evaluation of
the application.

Notice that the definition is partial: if the left-hand side does not evaluate to a function
(e.g. it could be a free variable), then the evaluation of the application is not defined.
Similarly, the evaluation of a variable that is not bound in the environment is undefined.

Furthermore, the evaluation is also undefined for programs that loops, such as (λx.x x) (λx.x x):
one will attempt to build an infinite evaluation derivation, but as this never ends, we cannot
formally say anything about its evaluation.

Solution of Exercise 7

The definition contains an auto-application of a λ-bound variable fun x → x x. In OCaml,
this is ill-typed, as it requires x to have both types α and α → β simultaneously, which is
only possible if α is a recursive type (. . . (α → . . .)→ α) With the -rectype option, one can
defined:

let zfix g = (fun x → x x) (fun z → g (fun v → z z v))
let gfact f n = if n > 0 then n ∗ f (n−1) else 1
let fact = zfix gfact;;
let six = fact 3;;

which correctly evaluates six to the integer 6.

20 CHAPTER 2. THE UNTYPED λ-CALCULUS

Chapter 3

Simply-typed lambda-calculus

This chapter is an introduction to typed languages. The formalization will be subsumed by
that of System F in the next chapter. We still give all the definitions and the proofs of the
main results in this simpler setting for pedagogical purposes. Their generalization in the
more general setting of System F will then be easier to understand.

3.1 Syntax

We give an explicitly typed version of the simply-typed λ-calculus. Therefore, we modify
the syntax of the λ-calculus to add type annotations for parameters of functions. In order
to avoid confusion, we write M instead of a for explicitly typed expressions.

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .

As earlier, the “. . . ” are a place holder for further extensions of the language. Types are
denoted by letter τ and defined by the following grammar:

τ ∶∶= α ∣ τ → τ ∣ . . .

where α denotes a type variable. We assume given a denumerable collection of type variables.
This definition says that a type τ is a type variable α, or an arrow type τ1 → τ2.

3.2 Dynamic semantics

The dynamic semantics of the simply-typed λ-calculus is obtained by modifying the dynamic
semantics of the λ-calculus in the obvious way to accommodate for type annotations of
function parameters, which are just ignored. Values and evaluation contexts become:

V ∶∶= λx ∶τ.M ∣ . . . E ∶∶= []M ∣ V [] ∣ . . .

21

22 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

The reduction relation M1 Ð→M2 is inductively defined by:

βv

(λx ∶τ.M) V Ð→ [x ↦ V]M

Context

M Ð→ M ′

E[M]Ð→ E[M ′]

The semantics of simply-typed λ-calculus is obviously type erasing, i.e. as we shall see in
the next section (§3.3).

3.3 Type system

In typed λ-calculi, not all syntactically well-formed programs are accepted—only well-typed
programs are. Well-typedness is defined as a 3-place predicate Γ ⊢ M ∶ τ called a typing
judgment.

The typing context Γ (also called a typing environment) is a finite sequence of bindings
of program variables to types. The empty context is written ∅. A typing context Γ can be
extended with a new binding τ for x with the notation Γ, x ∶ τ . To avoid confusion between
the new binding and any other binding that may appear in Γ, we disallow typing contexts
to bind the same variable several times. This is not restrictive because bound variables can
always be renamed in source programs to avoid name clashes. A typing context can then be
thought of as a finite function from program variables to their types. We write dom(Γ) for
the set of variables bound by Γ and Γ(x) for the type τ bound to x in Γ, which implies that
x is in dom(Γ). We write x ∶ τ ∈ Γ to mean that Γ maps x to τ , and x # dom(Γ) to mean
that x ∉ dom(Γ).

Typing judgments are defined inductively by the following inference rules:

Var

Γ ⊢ x ∶ Γ(x)

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

By our convention on well-formedness of typing contexts, the premise of rule Abs carries the
implicit assumption x# dom(Γ). This condition can always be satisfied, since x is bound in
the expression λx ∶τ.M and can be renamed if necessary.

Notice that the specification is extremely simple. In the simply-typed λ-calculus, the
definition is syntax-directed. That is, at most one rule applies for an expression; hence, the
shape of the derivation tree for proving a judgment Γ ⊢ M ∶ τ is fully determined by the
shape of the expression M . This is not true of all type systems.

A typing derivation is a proof tree that witnesses the validity of a typing judgment: each
node is the application of a typing rule. A proof tree is either a single node composed of
an axiom (a typing rule without premises) or a typing rule with as many proof-subtrees as
typing judgment premises.

For example, the following is a typing derivation for the compose function in the empty

3.3. TYPE SYSTEM 23

environment where Γ stands for f ∶ τ1 → τ2; g ∶ τ0 → τ1;x ∶ τ0.

Abs

Abs

App

Var

Γ ⊢ f ∶ τ1 → τ2

Var

Γ ⊢ g ∶ τ0 → τ1

Var

Γ ⊢ x ∶ τ0

Γ ⊢ g x ∶ τ1
App

Abs

Γ ⊢ f (g x) ∶ τ2

f ∶ τ1 → τ2, g ∶ τ0 → τ1 ⊢ λx ∶τ0. f (g x) ∶ τ0 → τ2

f ∶ τ1 → τ2 ⊢ λg ∶τ0 → τ1. λx ∶τ0. f (g x) ∶ (τ0 → τ1)→ τ0 → τ2

∅ ⊢ λf ∶τ1 → τ2. λg ∶τ0 → τ1. λx ∶τ0. f (g x) ∶ (τ1 → τ2)→ (τ0 → τ1)→ τ0 → τ2

This derivation is valid for any choice of τ1 and τ2. Conversely, every derivation for this term
must have this shape, for some τ1 and τ2.

This suggests a procedure for type inference: build the shape of the derivation from
the shape of the expression. Then, solve the constraints on types so that the derivation is
valid. This informal procedure to search for possible derivations is justified formally by the
inversion lemma, which describes how the subterms of a well-typed term can be typed.

Lemma 1 (Inversion of typing rules) Assume Γ ⊢M ∶ τ .

• If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .

• If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

• If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and Γ, x ∶ τ0 ⊢M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when reasoning by in-
duction on terms. Although trivial in our simple setting, stating it explicitly avoids informal
reasoning in proofs; in more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.

In our settings, the typing rules are syntax-directed, That is, for any given well-formed
expression, at most one typing rule may apply. Then, the shape of the typing derivation tree
is unique and fully determined by the shape of the term.

Moreover, each term has actually a unique type. Hence, typing derivations are unique, in
a given typing context. The proof is a straightforward induction on the structure of terms.

Explicitly-typed terms can thus be used to describe typing derivations (up to the typing
context) in a precise and concise way, because terms of the language have a concrete syntax.
This enables reasoning by induction on terms, which is often lighter than reasoning by
induction on typing derivations, since terms are concrete objects while derivations are in the
meta-language of mathematics.

This also makes typechecking a trivial recursive function that checks that for each ex-
pression that the unique candidate typing rule can be correctly instantiated.

Of course, the existence of syntax-directed typing rules relies on type information present
in source terms. Uniqueness of typing derivations can be easily lost if some type information

24 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

is left implicit. At some extreme, types may be left implicit and only appear in typing
derivations; then there would be many possible derivations for the same term.

Explicitly v.s. implicitly typed? Our presentation of simply-typed λ-calculus is ex-
plicitly typed (we also say in church-style), as parameters of abstractions are annotated with
their types. Simply-typed λ-calculus can also be implicitly typed (we also say in curry-style)
when parameters of abstractions are left unannotated, as in the plain λ-calculus.

We may easily translate explicitly-typed expressions into implicitly-typed ones by drop-
ping type annotations. This is called type erasure. We write ⌈M⌉ for the type erasure of M ,
which is defined by structural induction on M :

⌈x⌉
△

== x

⌈λx ∶τ.M⌉
△

== λx. ⌈M⌉

⌈M1 M2⌉
△

== ⌈M1⌉ ⌈M2⌉

The erasure of a term M of System F is an untyped λ-term a.

Conversely, can we convert implicitly-typed expressions back into explicitly-typed ones,
that is, can we reconstruct the missing type information? This is equivalent to finding a
typing derivation for implicitly-typed terms. It is called type reconstruction (or type inference
and is much more involved than just type-checking explicitly typed terms—see the chapter
on type inference (§5).

Untyped semantics Observe that although the reduction carries types at runtime, types
do not actually contribute to the reduction. Intuitively, the semantics of terms is the same
as that of their type erasure.

Formally, we must be more careful, as terms and their erasure do not live in the same
world. Instead, we may say that the two semantics coincide by putting them into correspon-
dence.

The semantics is said to be untyped or type-erasing if any reduction step on source terms
can be reproduced in the untyped language between their type erasures (direct simulation),
and conversely, a reduction step after type erasure can also be traced back in the typed
language as a reduction step between associated source terms (inverse simulation). Formally,
this can be stated as follows:

Lemma 2 (direct simulation) If M1 Ð→ M2 then ⌈M1⌉Ð→ ⌈M2⌉.

Lemma 3 (inverse simulation) If ⌈M⌉ Ð→ a, then there exists M ′ such that M Ð→ M ′

and ⌈M ′⌉ = a.

3.4. TYPE SOUNDNESS 25

Diagramatically, we have

M1 M2

a1 a2

Direct simulation

β

⌈⌉ ⌈⌉

β

M1 M2

a1 a2

Inverse simulation

⌈⌉

β

β

⌈⌉

The combination of both lemmas establishes a bisimulation between explicitly-typed terms
and implicitly-typed ones.

In our simple setting this is a one-to-one correspondence, and the proof is immediate
and not very interesting. The proof will be done in the more general case of System F. In
general (and this will be the case in System F) there may be reduction steps on source terms
that involve only types and that have no counter-part on compiled terms. In this case we
may split the reduction relation into Ð→ι that deals with those steps without counter-part
on type-erasures and other steps such as Ð→β that are reproduced type-erasures. The ι-
reduction must be terminating (see the statement of bisimilation for System-F in §4.4.5).

Exercise 8 (Short, but difficult) How would you write the two previous lemmas in the
presence of ι-steps. What could happen if ι-reduction were not terminating?

(Solution p. 44)

Having a type-erasing semantics is an important property of a language: it simplifies its
meta-theoretical study since its semantics does not depend on types. It also means that
types can be ignored at runtime.

Be aware that an implicitly typed language does not necessarily have a type-erasing
semantics. In Haskell, for instance, types drive the semantics via the choice of type classes
even though they are inferred. In fact, Haskell surface programs are elaborated by compiling
type classes away into an internal typed language which itself has an erasing semantics.

3.4 Type soundness

Type soundness is often known as Milner’s slogan “Well-typed expressions do not go wrong”
What is a formal statement of this? By definition, a closed term M is well-typed if it admits
some type τ in the empty environment. By definition, a closed, irreducible term is either a
value or stuck. A closed term must converge to a value, diverge, or go wrong by reducing to
a stuck term. Milner’s slogan now has a formal meaning:

Theorem 1 (Type Soundness) Well-typed expressions do not go wrong.

26 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

The proof of type soundness is by combination of Subject Reduction (Lemma 2) and Progress
(Lemma 3). This syntactic proof method is due to Wright and Felleisen (1994).

Theorem 2 (Subject reduction) Reduction preserves types: if M1 Ð→ M2, then for any
type τ such that ∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem 3 (Progress) A well-typed, closed term is either reducible or a value: if ∅ ⊢M ∶

τ , then there exists M ′ such that M Ð→ M ′ or M is a value.

Progress also says that no stuck term is well-typed. We sometimes use an equivalent formu-
lartion of progress: a closed, well-typed irreducible term is a value, i.e. if ∅ ⊢ M ∶ τ and
M /Ð→ then M is a value.

3.4.1 Proof of subject reduction

Subject reduction is proved by induction over the hypothesis M1 Ð→M2. Thus, there is one
case per reduction rule. In the pure simply-typed λ-calculus, there are just two such rules:
β-reduction and reduction under an evaluation context.

Type preservation by β-reduction.

In the proof of subject reduction for the β-reduction case, the hypotheses are

(λx ∶τ.M) V Ð→ [x↦ V]M (1) ∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

and the goal is ∅ ⊢ [x↦ V]M ∶ τ0 (3).
To proceed, we decompose the hypothesis (2): by inversion (Lemma 1), its derivation

of (2) must be of the form:

App

Abs

x ∶ τ ⊢M ∶ τ0 (4)

∅ ⊢ (λx ∶τ.M) ∶ τ → τ0 ∅ ⊢ V ∶ τ (5)

∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

We expect the conclusion (3) to follow from (4) and (5). Indeed, we could conclude with the
following lemma:

Lemma 4 (Value substitution) If x ∶ τ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then ∅ ⊢ [x ↦ V]M ∶ τ0.

In plain words, replacing a formal parameter with a type-compatible actual argument pre-
serves types. Unsurprisingly, this lemma must be suitably generalized so that it can be
proved by structural induction over the typing derivation for M :

Lemma 5 (Value substitution, strengthened) If x ∶ τ,Γ ⊢ M ∶ τ0 and ∅ ⊢ V ∶ τ , then
Γ ⊢ [x↦ V]M ∶ τ0.

3.4. TYPE SOUNDNESS 27

The proof is then straightforward provided we have a weakening lemma (stated below) in
the case for variables. (In the case for abstraction, the variable for the parameter can—and
must—be chosen different from the variable x.) This closes the β-reduction proof case for
type preservation.

Exercise 9 Write all the details of the proof of value substitution.

The weakening we have used in the proof of type preservation for β-reduction is:

Lemma 6 (Weakening) If ∅ ⊢ V ∶ τ1 then Γ ⊢ V ∶ τ1.

We may actually prove a simplified version adding only one binding at a time, as the general
case follows as a corollary. However, the lemma must also be strengthened.

Remark 1 Strengthening will often be needed for properties of interest in this course, which
are about explicitly-typed terms, or equivalently, typing derivations, and proved by structural
induction, i.e. by induction and case analysis on the structure of the term (or its derivation),
because well-typednessed of subterms may involve a larger typing context than the one used
for the inclosing term. Therefore, properties stated for a term M must hold not under a
particular context in which M is typed but under all extensions of such a context.

Lemma 7 (Weakening, strengthened) If Γ ⊢ M ∶ τ and y ∉ dom(Γ), then Γ, y ∶ τ ′ ⊢
M ∶ τ .

Proof: The proof is by structural induction on M , applying the inversion lemma:

Case M is x: Then x must be bound to τ in Γ. Hence, it is also bound to τ in Γ, y ∶ τ ′. We
conclude by rule Var.

Case M is λx ∶ τ2.M1: W.l.o.g, we may choose x ∉ dom(Γ) and x /= y. We have Γ, x ∶ τ2 ⊢
M1 ∶ τ1 with τ2 → τ1 equal to τ . By induction hypothesis, we have Γ, x ∶ τ2, y ∶ τ

′ ⊢ M1 ∶ τ1.
Thanks to a permutation lemma, we have Γ, y ∶ τ ′, x ∶ τ2 ⊢ M1 ∶ τ1 and we conclude by Rule
Abs.

Case M is M1 M2: easy.

Exercise 10 Write the details of the application case for weakening. (Solution p. 44)

Exercise 11 Try to prove the unstrengthened version and see where you get stuck.
(Solution p. 44)

Lemma 8 (Permutation lemma) If Γ ⊢ M ∶ τ and Γ′ is a permutation of Γ, then Γ′ ⊢
M ∶ τ .

The result is obvious since a permutation of Γ does not change its interpretation as a finite
function, which is all what is used in the typing rules so far (this will no longer be the case
when we extend Γ with type variable declarations). Formally, the proof is by induction
on M .

28 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Type preservation by reduction under an evaluation context.

The first hypothesis isM Ð→ M ′ (1) where, by induction hypothesis, this reduction preserves
types (2). The second hypothesis is ∅ ⊢ E[M] ∶ τ (3) where E is an evaluation context. The
goal is ∅ ⊢ E[M ′] ∶ τ (4).

Observe that typechecking is compositional : only the type of the subexpression in the
hole matters, not its exact form, as stated by the compositionality Lemma, below. The
context case immediately follows from compositionality, which closes the proof of subject
reduction.

Lemma 9 (Compositionality) If ∅ ⊢ E[M] ∶ τ , then, there exists τ ′ such that:

• ∅ ⊢M ∶ τ ′, and

• for every term M ′ such that ∅ ⊢M ′ ∶ τ ′, we have ∅ ⊢ E[M ′] ∶ τ .

The proof is by cases over E; each case is straightforward.

Remark 2 Informally, τ ′ is the type of the hole in the context E, itself of type τ ; we could
write the pseudo judgment ∅ ⊢ E[τ ′] ∶ τ . (This judgment could also be defined by formal
typing rules, of course.)

3.4.2 Proof of progress

Progress (Theorem 3) says that (closed) well-typed terms are either reducible or values. It
is proved by structural induction over the term M . Thus, there is one case per construct in
the syntax of terms.

In the pure λ-calculus, there are just three cases: variable; λ-abstraction; and application.
The case of variables is void, since a variable is never well-typed in the empty environment.
The case of λ-abstractions is immediate, because a λ-abstraction is a value. In the only
remaining case of an application, we show that M is always reducible.

Assume that ∅ ⊢ M ∶ τ1 and M is an application M1 M2. By inversion of typing rules,
there exist types τ1 and τ2 such that ∅ ⊢ M1 ∶ τ2 → τ1 and ∅ ⊢ M2 ∶ τ2. By induction
hypothesis, M1 is either reducible or a value V1. If M1 is reducible, so is M because []M2

is an evaluation context and we are done. Otherwise, by induction hypothesis, M2 is either
reducible or a value V2. If M2 is reducible, so is M because V1 [] is an evaluation context
and we are done. Otherwise, because V1 is a value of type τ1 → τ2, it must be a λ-abstraction
by classification of values (Lemma 10, below), so V1 V2 is a β-redex, hence reducible.

Interestingly, the proof is constructive and corresponds to an algorithm that searches for
the active redex in a well-typed term.

In the last case, we have appealed to the following property:

Lemma 10 (Classification of values) Assume ∅ ⊢ V ∶ τ . Then,

3.4. TYPE SOUNDNESS 29

• if τ is an arrow type, then V is a λ-abstraction;

• . . .

Proof: By cases over V :

• if V is a λ-abstraction, then τ must be an arrow type;

• . . .

Because different kinds of values receive types with different head constructors, this classifi-
cation is injective, and can be inverted, which gives exactly the conclusion of the lemma.

In the pure λ-calculus, classification is trivial, because every value is a λ-abstraction. Progress
holds even in the absence of the well-typedness hypothesis, i.e. in the untyped λ-calculus,
because no term is ever stuck!

As the programming language and its type system are extended with new features, how-
ever, type soundness is no longer trivial. Most type soundness proofs are shallow but large.
Authors are often tempted to skip the “easy” cases, but these may contain hidden traps!

This calls for mechanized proofs that ensure case coverage while trivial cases should be
automatically dischargeable.

Warning! Sometimes, the combination of two features is unsound, even though each fea-
ture, in isolation, is sound. This is problematic, because researchers like studying each
feature in isolation, and do not necessarily foresee problems with the combination. This will
be illustrated in this course by the interaction between references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and used for some
time before they were found to be unsound! For example, this happened for call/cc +
polymorphism in SML/NJ (Harper and Lillibridge, 1991); and for mutable records with
existential quantification in Cyclone (Grossman, 2006).

Soundness versus completeness Because the λ-calculus is a Turing-complete program-
ming language, whether a program goes wrong is an undecidable property. (Assuming that
it is possible to go wrong, i.e., the calculus is not the pure λ-calculus, since progress holds
in λ-calculus even for untyped programs, as we have noticed above.) As a consequence, any
sound, decidable type system must be incomplete, that is, it must reject some valid programs.

Type systems can be compared against one another via encodings, so it is sometimes
possible to prove that one system is more expressive than another. However, whether a type
system is “sufficiently expressive in practice” can only be assessed via empirical means. It
can take a lot of intuition and experience to determine whether a type system is, or is not,
expressive enough in practice.

30 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Exercise 12 The subject reduction is often stated as “ reduction preserve typings”. A typing
of a term M is a pair (Γ, τ) such that Γ ⊢ M ∶ τ . Define a relation ⊑ on typings such that
M ⊑M ′ means that all typings of M are also typings of M ′. Restate subject reduction using
the relation ⊑ and proof it. (Solution p. 44)

3.5 Simple extensions

In this section, we introduce simple extensions to the calculus, mainly adding new constants
and new primitives. These extensions will look very similar in one another and we will see
how they can be factored out in the case of System F.

3.5.1 Unit

This is one of the simplest extension. We just introduce a new type unit and a constant
value () of that type.

τ ∶∶= . . . ∣ unit V ∶∶= . . . ∣ () M ∶∶= . . . ∣ ()

Reduction rules are unchanged, since () is already a value. The following typing rule is
introduced:

Unit

Γ ⊢ () ∶ unit

Exercise 13 Check that type soundness is preserved. (Solution p. 44)

Notice that the classification Lemma is no longer degenerate.

3.5.2 Boolean

V ∶∶= . . . ∣ true ∣ false M ∶∶= . . . ∣ true ∣ false ∣ if M then M elseM

We add only one evaluation context, since only the condition should be reduced:

E ∶∶= . . . ∣ if [] then M elseM

In particular, if V then E else M or if V then E else M are not evaluation contexts, because
M and N must not be both evaluated before the conditional has been resolved. Instead,
once the condition is a value, the conditional can be reduced to the relevant branch and
dropping the other one, by one of the two new reduction rules:

if true then M1 elseM2 Ð→ M1 if false then M1 elseM2 Ð→ M2

We also introduction a new type, bool, to classify booleans.

τ ∶∶= . . . ∣ bool

3.5. SIMPLE EXTENSIONS 31

The new typing rules are:

True

Γ ⊢ true ∶ bool

False

Γ ⊢ false ∶ bool

IfThenElse

Γ ⊢M0 ∶ bool Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ τ

Γ ⊢ if M0 then M1 elseM2 ∶ τ

Exercise 14 Given the new cases for the classification lemma (without proving them).
Check that progress is preserved. (Solution p. 45)

Exercise 15 Describe the extension of the λ-calculus with integers addition, and multipli-
cation. (We do not ask to recheck the meta-theory, just to give the changes to the syntax
and static and dynamic semantics, as we did above for booleans.) (Solution p. 45)

3.5.3 Pairs

To extend the simply-typed λ-calculus with pairs, we extend values, expressions, and evalu-
ation contexts as follows:

i ∶∶= 1 ∣ 2
M ∶∶= . . . ∣ (M, M) ∣ proji M

V ∶∶= . . . ∣ (V, V)
E ∶∶= . . . ∣ ([], M) ∣ (V, []) ∣ proji []

Notice that the components of the pair are evaluated from left-to-right. At this stage, it could
be left unspecified as the language is pure. However, it should be fixed when we later extend
the language with side effects—even if the user should avoid side effects during evaluation
of the components of a pair. This orientation from left-to-right is somewhat arbitrary—but
more intuitive than the opposite order!

We introduce one new reduction rule (in fact, two rules if we inlinied i):

proji (V1, V2)Ð→ Vi

Product types are introduced to classify pairs, together with two new typing rules:

τ ∶∶= . . . ∣ τ × τ

Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1, M2) ∶ τ1 × τ2

Proj

Γ ⊢M ∶ τ1 × τ2

Γ ⊢ proji M ∶ τi

Exercise 16 Check that subject reduction is preserved when adding pairs.
(Solution p. 45)

Exercise 17 Modify the semantics to evaluate pairs from right to left. Would this be sound?
Would this be still call-by-value? (Solution p. 46)

32 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.5.4 Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V ◇ V
V ∶∶= . . . ∣ inji V
E ∶∶= . . . ∣ inji [] ∣ case [] of V ◇ V

A new reduction rule is introduced:

case inji V of V1 ◇ V2 Ð→ Vi V

Sum types are added to classify sums:

τ ∶∶= . . . ∣ τ + τ

Two new typing rules are introduced:
Inj

Γ ⊢M ∶ τi

Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2 Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 ◇ V2 ∶ τ

Notice A property of the simply-typed λ-calculus is lost: expressions do not have unique
types anymore, i.e. the type of an expression is no longer always determined by the ex-
pression. Uniqueness of types may however be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly. Although, the later variant
is more verbose (and so not chosen in practice) it is easier and thus usually the one choosen
for meta-theoretical studies.

Exercise 18 Describe the extension with the option type.

3.5.5 Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can be destructed;

• new evaluation contexts, but just to propagate reduction under the new constructors.

Then, in each case,

3.5. SIMPLE EXTENSIONS 33

• subject reduction is preserved because types of new redexes are preserved by the new
reduction rules.

• progress is preserved because the type system ensures that the new destructors can
only be applied to values such that at least one of the new reduction rules applies.

Moreover, the extensions are independent: they can be added to the λ-calculus alone or
mixed altogether. Indeed, no assumption about other extensions (the “. . .”) has ever been
made, except for the classification lemma which requires, informally, that values of other
shapes have types of other shapes. This is obviously the case in the extensions we have
presented: the unit has the unit type, pairs have product types, and sums have sum types.

In fact, all these extensions could have been presented as several instances of a more
general extension of the λ-calculus with constants, for which type soundness can be estab-
lished uniformly under reasonable assumptions relating the typing rules and reduction rules
for constants. This is the approach that we will follow in the next chapter (§4).

3.5.6 Recursive functions

Programs in the simply-typed λ-calculus always terminate. In particular, fix points of the
λ-calculus cannot be typed. To recover recursion, we may introduce recursive functions as
follows. Values and expressions are extended with a fix-point construct:

V ∶∶= . . . ∣ µf ∶τ. λx.M M ∶∶= . . . ∣ µf ∶τ. λx.M

A new reduction rule is introduced to unfold recursive calls:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V]M

Types are not extended, as we already have function types, i.e. types won’t tell the difference
between a function and a recursive function. A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves as both an assumption and a goal. This is a typical
feature of recursive definitions.

Notice that we have syntactically restricted recursive definitions to functions. We could
allow the definition of recursive values as well. However, the definition of recursive expres-
sions that are not syntactically values is more difficult, as their semantics may be undefined
and their efficient compilation is problematic—no good solution has been found yet.

3.5.7 A derived construct: let-bindings

The let-binding construct “let x ∶ τ = M1 in M2” can be viewed as syntactic sugar for the
β-redex “(λx ∶τ.M2)M1”. The latter form can be type-checked only by a derivation of the

34 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

following shape:

App

Abs

Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete for let-bindings (a derived
rule is a rule that abbreviates a prefix of a derivation tree):

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

In the derived form let x ∶ τ1 = M1 in M2 the type of M1 must be given explicitly, although
by uniqueness of types, it is fully determined by the expression M1 and is thus redundant. If
we replace the derived form by a primitive form let x =M1 inM2 we could use the following
primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

Remark 3 The primitive form is not necessary a better design choice however. Derived
forms are more economical, since they do not extend the core language, and should be used
whenever possible. Minimizing the number of language constructs is at least as important
as avoiding extra type annotations in an explicitly-typed language. Moreover, removing
redundant type annotations is the problem of type reconstruction and we should not bother
too much about it in the explicitly-typed version of the language.

Sequences The sequence “M1;M2” is a derived construct of let-bindings; it can be viewed
as additional syntactic sugar that expands to let x ∶ unit =M1 inM2 where x#M2.

Exercise 19 Recover the typing rule for sequences from this syntactic suggar.

A derived construct: let rec The construct “let rec (f ∶ τ) x = M1 in M2” can also be
viewed as syntactic sugar for “let f = µf ∶ τ. λx.M1 in M2”. The latter can be type-checked
only by a derivation of the form:

LetMono

FixAbs

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:
LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2

3.6. EXCEPTIONS 35

3.6 Exceptions

Exceptions are a mechanism for changing the normal order of evaluation (usually, but not
necessarily, in case something abnormal occurred).

When an exception is raised, the evaluation does not continue as usual: Shortcutting
normal evaluation rules, the exception is propagated up into the evaluation context until
some handler is found at which the evaluation resumes with the exceptional value received;
if no handler is found, the exception reaches the toplevel and the result of the evaluation is
the exception instead of a value.

Because exceptions may break the flow of evaluation, they cannot be described as just
new constants and primitives.

3.6.1 Semantics

We extend the language with a constructor form to raise an exception and a destructor form
to catch an exception; we also extend the evaluation contexts:

M ∶∶= . . . ∣ raiseM ∣ try M with M E ∶∶= . . . ∣ raise [] ∣ try [] with M

However, we do not treat raise V as a value, since raise V stops the normal order of evaluation.
Instead, we introduce three reduction rules to propagate and handle exceptions:

Raise

F [raise V]Ð→ raise V
Handle-Val

try V with M Ð→ V

Handle-Raise

try raise V with M Ð→ M V

Rule Raise propagates an exception one level up in the evaluation contexts, but not through
a handler. This is why the rule uses an evaluation context F , which stands for any evaluation
context E other than try [] with M .

The handling of exceptions is then treated by two specific rules: Rule Handle-Raise

passes an exceptional value to its handler; Rule Handle-Val removes the handler around a
value.

Example Assume that K is λx.λy. y and M Ð→ V . We have the following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V by β

Ð→ V

In particular, we do not have the following reduction sequence, since raise V is not a value,
hence the K (raise V) does not reduce to λy. y:

try K (raise V) with λx.x /Ð→ try λy. y with λx.x Ð→ λy. y

36 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.6.2 Typing rules

We assume given a fixed type exn for exceptional values. The new typing rules are:
Raise

Γ ⊢M ∶ exn

Γ ⊢ raiseM ∶ τ

Try

Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ exn→ τ

Γ ⊢ try M1 with M2 ∶ τ

There are some subtleties: raise turns an expression of type exn into an exception. Consis-
tently, the handler has type exn→ τ , since it receives as argument the value of type exn that
has been raised. The expression raise M can have any type, since the current computation
is aborted. In try M1 with M2, M2 must return a value of the same type as M1, since the
evaluation will proceed with either branch depending on whether the evaluation of M1 raises
an exception or returns a value.

Type of exceptions What can we choose for exn? Well, any type could do. Choosing
unit, exceptions would carry no information. Choosing int, exceptions would carry an integer
that could be used, e.g., to report some error code. Choosing string, exceptions would carry
a string that could be used to report error messages. Or better, exception could be of a sum
type to allow any of these alternatives to be chosen when the exception is raised.

This is the approach followed by ML. However, since the set of exceptions is not known
in advance, ML declares a new type exn for exceptions and allows adding new cases to the
sum later on as needed. This is called an extensible datatype. (Until recently, the type of
exceptions was the only extensible datatypes in OCaml, but since verion 4.02, the user may
define his own.)

As a counterpart checking for exceptions can’t be exhaustive without a “catch all” branch,
since further cases could always be added later. Notice that although new constructors may
be added, the type of exception is fixed in the whole program, to exn. This is essential for
type soundness, since the handling and raising of exceptions must agree globally on the type
exn of exceptional values as it is not passed around.

Notice that exception constructors must have closed types since the type exn has no
parameter.

Type soundness How do we state type soundness, since exceptions may be uncaught?
By saying that this is the only “exception” to progress:

Theorem 4 (Progress) A well-typed, irreducible term is either a value or an uncaught
exception. if ∅ ⊢M ∶ τ and M /Ð→ , then M is either v or raise v for some value v.

Exercise 20 Do all well-typed closed programs still terminate in the presence of exceptions?
(Solution p. 46)

3.6. EXCEPTIONS 37

3.6.3 Variations

Structured exceptions We have assumed that there is a unique exception, which could
itself be a sum type. This simulates having multiple exceptions where each one is identified
by a tag and may carry values of different types. However, having mutiple exceptions as
primitive would amount to redefining sum types within the mechanism of exceptions; this
would just bringing more complications without any real gain.

On uncaught exceptions Usage of exceptions may vary a lot in programs: some excep-
tions are used for fatal errors and abort the program while others may be used during normal
computation, e.g. for quickly returning from a deep recursive call. However, an uncaught
exception is often a programming error—even exceptions raised to abort the whole program
must usually be caught for error reporting or cleaning up before exiting. It may be surprising
that uncaught exceptions are not considered as static errors that should be detected by the
type system.

Unfortunately, detecting uncaught exceptions require more expressive type systems and
the existing solutions are often complicated for some limited benefit. This explains why they
are not often used in practice.

The complication comes from the treatment of functions, which have some latent effect
of possibly raising or catching an exception when applied. To be precise, the analysis must
therefore enrich types of functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions are checked in the language Java, but they must be declared. See
Leroy and Pessaux (2000) for an analysis of uncaught exceptions in ML.

Small variation Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel. The semantics could avoid the step-by-step propagation
of exceptions by handling exceptions deeply inside terms. It suffices to replace the three
reduction rules by:

Handle-Val’

try V with M Ð→ V

Handle-Raise’

try F [raise V] with M Ð→ M V

where F is sequence of F -contexts, i.e. a handler-free evaluation context of arbitrary depth.
In this case, uncaught exceptions are of the form F [raise V]. This semantics is perhaps more
intuitive—but it is equivalent.

Exceptions with bindings Benton and Kennedy (2001) have argued for merging let-
bindings with exception handling into a unique form let x =M1 with M2 in M3. The expres-
sion M1 is evaluated first and, if it returns a value, it is substituted for x in M3, as if we
had evaluated let x = M1 in M3; otherwise, i.e., if it raises an exception raise V , then the
exception is handled by M2, as if we had evaluated try M1 withM2.

38 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

This combined form captures a common pattern in programming that has no elegant
workaround:

let rec read config in path filename (dir :: dirs) →
let fd = open in (Filename.concat dir filename)
with Sys error → read config filename dirs in

read config from fd fd

This form is also better suited for program transformations, as argued by Benton and Kennedy
(2001).

The separate let-binding and exception handling constructs are obviously particular
cases of the new combined construct. Conversely, encoding the new construct let x =

M1 with M2 in M3 with let and try is not so easy. In particular, it is not equivalent
to: try (let x = M1 in M3) with M2! In this expression, M3 could raise an exception that
would then be handled by M2, which is not intended.

There are several encodings in the combined form into simple exceptions, but none of
them is very readable, and all of them introduce some source of inefficiency. For instance,
one may use a sum datatype to tell whether M1 raised an exception:

case (try Val M1 with λy.Exc y) of (Val∶ λx.M3 ◇ Exc∶M2)

Alternatively, one may freeze the continuation M3 while handling the exception:

(try let x =M1 in λ().M3 with λy.λ().M2 y) ()

The extra allocation for the sum or the closure for the continuation are sources of inefficiency
which the primitive combined form can easily avoid.

Exercise 21 Describes the dynamic semantics of the let x = M1 with M2 in M3 construct,
formally. (Solution p. 46)

A similar construct has been added in OCaml, version 4.02, allowing exceptions to be
combined with pattern matching. The previous example can now be written:

let rec read config in path filename (dir :: dirs) →
match open in (Filename.concat dir filename) with
| fd → read config from fd fd

| exception Sys error → read config filename dirs

Exercise 22 (try finalize) A finalizer is some code that should be run in case of both
normal and exceptional evaluation. Write a function finalize that takes four arguments f ,
x, g, and y and returns the application f x with finalizing code g y. i.e. g y should be called
before returning the result of the application of f to x whether it exercutes normally or raises
an exception. (You may try first without using binding mixed with exceptions and then using
it.) this construct.) (Solution p. 46)

3.7. REFERENCES 39

3.7 References

In the ML vocabulary, a reference cell, also called a reference, is a dynamically allocated
block of memory that holds a value and whose content can change over time. A reference
can be allocated and initialized (ref), written (:=), and read (!). Expressions and evaluation
contexts are extended as follows:

M ∶∶= . . . ∣ ref M ∣M ∶=M ∣ !M E ∶∶= . . . ∣ ref [] ∣ [] ∶=M ∣ V ∶= [] ∣ ! []

A reference allocation expression is not a value. Otherwise, by β-reduction, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)

which intuitively should yield 1, would reduce to:

(ref 3) ∶= 1; ! (ref 3)

which intuitively yields 3. How shall we solve this problem? The expression (ref 3) should
first reduce to a value: the address of a fresh cell. That is, not just the content of a cell
matters, but also its address, since writing through one copy of the address should not affect
a future read via another copy.

3.7.1 Language definition

Formally, we extend the simply-typed λ-calculus calculus with memory locations :

M ∶∶= . . . ∣ ℓ V ∶∶= f . . . ∣ ℓ

A memory location is just an atom (that is, a name). The value found at a location ℓ is
obtained by indirection through a memory (or store). A memory µ is a finite mapping
of locations to closed values. A configuration is a pair M / µ of a term and a store. The
operational semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the locations that appear in
M or in the image of µ are in the domain of µ. Initially, the store is empty, and the term
contains no locations, because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

If we wish to start reduction with a non-empty store, we must check that the initial
configuration satisfies the no-dangling-pointers invariant. Because the semantics now reduces
configurations, all existing reduction rules are augmented with a store, which they do not
touch:

(λx ∶τ.M) V / µÐ→ [x↦ V]M / µ
E[M] / µÐ→ E[M ′] / µ′ if M / µÐ→ M ′ / µ′

40 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Three new reduction rules are added:

ref V / µÐ→ ℓ / µ[ℓ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= V / µÐ→ () / µ[ℓ↦ V]

! ℓ / µÐ→ µ(ℓ) / µ

In the last two rules, the no-dangling-pointers invariant guarantees ℓ ∈ dom(µ).

The type system is modified as follows. Types are extended:

τ ∶∶= . . . ∣ ref τ

Three new typing rules are introduced:
Ref

Γ ⊢M ∶ τ

Γ ⊢ ref M ∶ ref τ

Set

Γ ⊢M1 ∶ ref τ Γ ⊢M2 ∶ τ

Γ ⊢M1 ∶=M2 ∶ unit

Get

Γ ⊢M ∶ ref τ

Γ ⊢ !M ∶ τ

Is that all we need? The preceding setup is enough to typecheck source terms, but does not
allow stating or proving type soundness. Indeed, we have not yet answered these questions:
What is the type of a memory location ℓ? When is a configuration M / µ well-typed? A
location ℓ has type ref τ when it points to some value of type τ .

Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ

µ,Γ ⊢ ℓ ∶ ref τ

Then, typing judgments would have the form µ,Γ ⊢ M ∶ τ . typing judgments would no
longer be inductively defined (or else, every cyclic structure would be ill-typed). Instead,
co-induction would be required. Moreover, if the value µ(ℓ) happens to admit two distinct
types1 τ1 and τ2, then ℓ admits types ref τ1 and ref τ2. So, one can write at type τ1 and read
at type τ2: this rule is unsound!

A simpler, and sound, approach is to fix the type of a memory location when it is first
allocated. To do so, we use a store typing Σ, a finite mapping of locations to types. Then,
a location ℓ has type ref τ “when the store typing Σ says so.”

Loc

Σ,Γ ⊢ ℓ ∶ ref Σ(ℓ)

Typing judgments now have the form Σ,Γ ⊢M ∶ τ . The following typing rules for stores and
configurations ensure that the store typing predicts appropriate types

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

Config

Σ,∅ ⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ

Remarks:

1This could happen, for example, in the presence of sum types (described in §3.5.4), when expressions do
not have unique types any longer.

3.7. REFERENCES 41

• This is an inductive definition. The store typing Σ serves both as an assumption (Loc)
and a goal (Store). Cyclic stores are not a problem.

• The store typing is used only in the definition of a “well-typed configuration” and in the
typechecking of locations. Thus, it is not needed for type-checking source programs,
since the store is empty and the empty-store configuration is always well-typed.

3.7.2 Type soundness

The type soundness statements are slightly modified in the presence of the store, since we
now reduce configurations:

Theorem 5 (Subject reduction) Reduction preserves types: if M / µ Ð→ M ′ / µ′ and
⊢M / µ ∶ τ , then ⊢M ′ / µ′ ∶ τ .

Theorem 6 (Progress) If M / µ is a well-typed, irreducible configuration, then M is a
value.

Inlining Config, subject reduction can also be restated as:

Theorem 7 (Subject reduction, expanded) If M / µ Ð→ M ′ / µ′ and Σ,∅ ⊢ M ∶ τ and
⊢ µ ∶ Σ, then there exists Σ′ such that Σ′,∅ ⊢M ′ ∶ τ and ⊢ µ′ ∶ Σ′.

This statement is correct, but too weak—its proof by induction will fail in one case. Let us
look at the case of reduction under a context. The hypotheses are:

M / µÐ→ M ′ / µ′ and Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ

Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)

Then, by the induction hypothesis, there exists Σ′ such that:

Σ′,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′

Here, we are stuck. The context E is well-typed under Σ, but the term M ′ is well-typed
under Σ′, so we cannot combine them. We are missing a key property: the store typing
grows with time. That is, although new memory locations can be allocated, the type of an
existing location does not change. This is formalized by strengthening the subject reduction
statement:

Theorem 8 (Subject reduction, strengthened) If M / µ Ð→ M ′ / µ′ and Σ,∅ ⊢ M ∶ τ

and ⊢ µ ∶ Σ, then there exists Σ′ such that Σ′,∅ ⊢M ′ ∶ τ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′.

At each reduction step, the new store typing Σ′ extends the previous store typing Σ. Growing
the store typing preserves well-typedness (a generalization of the weakening lemma):

42 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Lemma 11 (Stability under memory allocation) If Σ ⊆ Σ′ and Σ,Γ ⊢ M ∶ τ , then
Σ′,Γ ⊢M ∶ τ .

This allows establishing a strengthened version of compositionality:

Lemma 12 (Compositionality) Assume Σ,∅ ⊢ E[M] ∶ τ . Then, there exists τ ′ such
that:

• Σ,∅ ⊢M ∶ τ ′,

• for every Σ′ and M ′, if Σ ⊆ Σ′ and Σ′,∅ ⊢M ′ ∶ τ ′, then Σ′,∅ ⊢ E[M ′] ∶ τ .

Let us now look again at the case of reduction under a context. The hypotheses are:

Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ and M / µÐ→ M ′ / µ′

By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′

∀Σ′,∀M ′, (Σ ⊆ Σ′)⇒ (Σ′,∅ ⊢M ′ ∶ τ ′)⇒ (Σ′,∅ ⊢ E[M ′] ∶ τ ′)

By the induction hypothesis, there exists Σ′ such that:

Σ′,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′

The goal immediately follows.

Exercise 23 Prove subject reduction and progress for simply-typed λ-calculus equipped with
unit, pairs, sums, recursive functions, exceptions, and references.

3.7.3 Tracing effects with a monad

Haskell adopts a different route and chooses to distinguish effectful computations (Peyton Jones and Wadler,
1993; Peyton Jones, 2009).

return ∶ α → IO α

bind ∶ IO α→ (α → IO β)→ IO β

main ∶ IO ()

newIORef ∶ α → IO (IORef α)
readIORef ∶ IORef α → IO α

writeIORef ∶ IORef α → α → IO ()

Haskell offers many monads other than IO. In particular, the ST monad offers references
whose lifetime is statically controlled.

3.7. REFERENCES 43

3.7.4 Memory deallocation

In ML, memory deallocation is implicit. It must be performed by the runtime system,
possibly with the cooperation of the compiler. The most common technique is garbage
collection. A more ambitious technique, implemented in the ML Kit, is compile-time region
analysis (Tofte et al., 2004).

References in ML are easy to typecheck, thanks to the no-dangling-pointers property of
the semantics. Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about aliasing and ownership.
See Charguéraud and Pottier (2008) for citations. See Pottier and Protzenko (2013) for the
language Mezzo designed especially for the explicit control of resources. The meta-theory of
such languages may become quite intricate Pottier (2013).

Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce (2002). For more
details about syntactic type soundness proofs, see Wright and Felleisen (1994).

44 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.8 Ommitted proofs and answers to exercises

Solution of Exercise 8

See the statement of bisimilation for System-F in §4.4.5, in particular lemmas 21 and ??.

Solution of Exercise 10

Case M is M1 M2: By inversion of the judgment Γ ⊢ M ∶ τ , we must have Γ ⊢ M1 ∶ τ2 → τ

and Γ ⊢ M2 ∶ τ2 for some τ2. By induction hypothesis, we have Γ, y ∶ τ ′ ⊢ M1 ∶ τ2 → τ and
Γ, y ∶ τ ′ ⊢M2 ∶ τ2, respectively. We conclude by an application of Rule App.

Solution of Exercise 11

As a hint, the problem in the case for abstraction.

Solution of Exercise 12

M ⊑M ′ ⇐⇒ ∀Γ,∀τ, (Γ ⊢M ∶ τ Ô⇒ Γ ⊢M ′
∶ τ)

Subject reduction can then be stated as (Ð→) ⊆ (⊏). We proof it as follows:

Proof: Since (Ð→) is the smallest relation that satisfies rules Beta and Context, it suffices
to show that ⊑ also satisfies rules Beta and Context.

Case Beta: Assume that Γ ⊢ (λx ∶ τ0.M) V ∶ τ Then Γ ⊢ [x ↦ V]M ∶ τ follows by the
substitution Lemma.

Case Context: Asume M ⊑M ′. Let us show E[M] ⊑ E[M ′]. Asume Γ ⊢ E[M] ∶ τ . Then
Γ ⊢ E[M ′] ∶ τ follows by compositinality.

Solution of Exercise 13

Formally, we must revisit all the proofs. Auxiliary lemmas such as permutation and weak-
ening still hold without any problem: in the proof by structural induction, there is a new
case for unit expressions, which is proved by an application of the same rule, Unit but with
possibly a different context Γ.

In the proof of subject reduction, nothing need to be changed.
In the proof of progress, we have a new case for closed expressions, i.e. (), which happens

to be a value, so it trivially satisfied the goal. Notice that although we do not need to
invoke the classification for the new case of the () expression, we still need to recheck the

3.8. OMMITTED PROOFS AND ANSWERS TO EXERCISES 45

classification lemma, which is used in the case for application. The proof of the classification
lemma is achieved by filling in the dots with a new case for a value of type unit that must
be (), so that the classification can still be inverted.

Solution of Exercise 14

The new case for the classification Lemma is that a value of type bool must be a boolean,
i.e. either true or false (5).

For the proof of progress, we assume that ∅ ⊢ M ∶ τ (6) and show that M is either a
value or reducible (4??) by structural induction on M . We have two new cases:

Case M is true or false: In both cases, M is a value.
Case M is if M0 then M1 else M2.: By inversion of typing rules applied to (6), we have

∅ ⊢ M0 ∶ bool, ∅ ⊢ M1 ∶ τ , and ∅ ⊢ M2 ∶ τ . If M0 is a value, then, since it is of type bool, it
must be true or false by (5), and in both cases, M reduces by either one of the two new rules.
Otherwise, by induction hypothesis, M0 myst be reducible, and so is M by rule Context

since if [] thenM1 elseM2 is an evaluation context. This ends the proof.

Solution of Exercise 15

This is very similar to the case of boolean, except that we introduce a denumerable collection
of interger constants (n̄)n∈IN .

V ∶∶= . . . ∣ n̄ M ∶∶= . . . ∣ n ∣M +M ∣M ×M

We add only evaluation contexts:

E ∶∶= . . . ∣ [] +M ∣ V + [] ∣ [] ∗M ∣ V ∗ []

two reduction rules are:

n̄ + m̄Ð→ n +m n̄ ∗ m̄Ð→ n ∗m

and the following typing rules:

Int

Γ ⊢ n̄ ∶ int

Plus

Γ ⊢M1 ∶ int Γ ⊢M2 ∶ int

Γ ⊢M1 +M2 ∶ int

Times

Γ ⊢M1 ∶ int Γ ⊢M2 ∶ int

Γ ⊢M1 ×M2 ∶ int

Solution of Exercise 16

The proof of subject reduction is by cases on the reduction rule. We have two new reduction
rules for each the projection, which can be factorized as follows:

proji (V1, V2)Ð→

46 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

We assume that Γ ⊢ proji (V1, V2) ∶ τ (2??). By inversion of typing of judgment, we know
that the derivation of (2) ends with:

Pair

Γ ⊢ V1 ∶ τ1 (1) Γ ⊢ V2 ∶ τ2 (3)

Proj

Γ ⊢ (V1, V2) ∶ τ1 × τ2

(2)

with τ of the form τ1 → τ2. We must show that Γ ⊢ V ∶i τi which is either one of the
hypotheses (1) or (3).

Solution of Exercise 17

Just exchangeM and V in the definition of evaluation contexts. This does not break sounness
of course. The semantics is still call-by-value.

Solution of Exercise 20

No, because exceptions allow to hide the type of values that they communicate, and one
may create a recursion without noticing it from types.

For instance, take the type exn equal to τ → τ where τ is unit → unit. You may then
define the inverse coercion functions between types τ → τ and τ :

fold = λf ∶τ → τ. λx ∶unit. let z = raise f in ()
unfold = λf ∶τ. try let z = f () in λx ∶τ. x with λy ∶τ → τ. y

Therefore, we may define the term ω as λx. (unfold x) x and the term ω (fold ω) whose
reduction does not terminate.

Solution of Exercise 21

We need a new evaluation context:

E ∶∶= . . . ∣ let x = E withM2 inM3

and the following reduction rules:
Raise

F [raise V]Ð→ raise V
Handle-Val

let x = V withM2 inM3 Ð→ [x ↦ V]M3

Handle-Raise

let x = raise V with M2 inM3 Ð→ M2 V

Solution of Exercise 22

3.8. OMMITTED PROOFS AND ANSWERS TO EXERCISES 47

let finalize f x g y =
let result = try f x with exn → g y; raise exn in

g y; result

This may also be written, more concisely:

let finalize f x g y =
match f x with

| result → g y; result
| exception exn → g y; raise exn

An alternative that does not duplicate the finalizing code and could be inlined is:

type ’a result = Val of ’a | Exc of exn

let finalize f x g y =
let result = try Val (f x) with exn → Exc exn in

g y;
match result with Val x → x | Exc exn → raise exn

As a counterpart, this allocated an intermediate result.

170 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Bibliography

▷ A tour of scala: Implicit parameters. Part of scala documentation.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order
systems. Information and Computation, 125(2):78–102, March 1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems.
Science of Computer Programming, 25(2–3):81–116, December 1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiv-
alence. In ACM International Conference on Functional Programming (ICFP), pages
157–168, September 2008.

▷ Lennart Augustsson. Implementing Haskell overloading. In FPCA ’93: Proceedings of the
conference on Functional programming languages and computer architecture, pages 65–73,
New York, NY, USA, 1993. ACM. ISBN 0-89791-595-X.

▷ Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional programming.
J. Funct. Program., 11(4):395–410, 2001.

▷ Richard Bird and Lambert Meertens. Nested datatypes. In International Conference on
Mathematics of Program Construction (MPC), volume 1422 of Lecture Notes in Computer
Science, pages 52–67. Springer, 1998.

Nikolaj Skallerud Bjørner. Minimal typing derivations. In In ACM SIGPLAN Workshop on
ML and its Applications, pages 120–126, 1994.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, École des Mines de Paris,
November 2005.

▷ Daniel Bonniot. Type-checking multi-methods in ML (a modular approach). In Workshop
on Foundations of Object-Oriented Languages (FOOL), January 2002.

▷ Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informaticæ, 33:309–338, 1998.

171

http://doi.acm.org/10.1145/224164.224198
http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
http://doi.acm.org/10.1145/165180.165191
http://research.microsoft.com/en-us/um/people/akenn/sml/exceptionalsyntax.pdf
ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
http://cristal.inria.fr/~bonniot/bonniot02.ps
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz

172 BIBLIOGRAPHY

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108–133, November 1999.

Luca Cardelli. An implementation of f¡:. Technical report, DEC Systems Research Center,
1993.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science Series. Birkäuser, Boston, 1997.

▷ Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The MLton com-
piler, 2007.

▷ Arthur Charguéraud and François Pottier. Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP), pages 213–224,
September 2008.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symposium on Principles of Programming Languages (POPL), pages
38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 54–65, June 2007.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type era-
sure semantics. Journal of Functional Programming, 12(6):567–600, November 2002.

Julien Crétin and Didier Rémy. Extending System F with Abstraction over Erasable Co-
ercions. In Proceedings of the 39th ACM Conference on Principles of Programming Lan-
guages, January 2012.

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 15–26, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-509-3. doi: http://doi.acm.org/10.1145/1596627.1596631.

▷ Ken-etsu Fujita and Aleksy Schubert. Existential type systems with no types in terms.
In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 112–126, 2009. doi: 10.1007/
978-3-642-02273-9 10.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In Ohori (2003), pages
376–393. ISBN 3-540-20536-5.

http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://mlton.org/
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://dx.doi.org/10.1007/978-3-642-02273-9_10

BIBLIOGRAPHY 173

▷ Jun Furuse. Extensional polymorphism by flow graph dispatching. In Asian Symposium on
Programming Languages and Systems (APLAS), volume 2895 of Lecture Notes in Com-
puter Science. Springer, November 2003b.

▷ Jacques Garrigue. Relaxing the value restriction. In Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science, pages 196–213. Springer, April 2004.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thèse d’état, Université Paris 7, June 1972.

▷ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, 1990.

▷ Dan Grossman. Quantified types in an imperative language. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):429–475, May 2006.

▷ Bob Harper and Mark Lillibridge. ML with callcc is unsound. Message to the TYPES
mailing list, July 1991.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 8, pages 293–345. MIT Press, 2005.

▷ Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253–289, April 1993.

▷ J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1969.

▷ Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: be-
ing lazy with class. In ACM SIGPLAN Conference on History of Programming Languages,
June 2007.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . ., ω. PhD thesis,
Université Paris 7, September 1976.

▷ John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.

▷ Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95: Proceedings of
the seventh international conference on Functional programming languages and computer
architecture, pages 160–169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999a.

http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.paultaylor.eu/stable/prot.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf
http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://doi.acm.org/10.1145/224164.224198

174 BIBLIOGRAPHY

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

▷ Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

▷ Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193–204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

▷ Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloquium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206–220. Springer, May 1990.

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89–101, 1965.

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Transactions on Programming Languages and Systems, 16(5):1411–1430, September
1994.

▷ Didier Le Botlan and Didier Rémy. Recasting MLF. Information and Computation, 207(6):
726–785, 2009. ISSN 0890-5401. doi: 10.1016/j.ic.2008.12.006.

▷ Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD thesis, Université Paris
7, June 1992.

▷ Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM Symposium on Principles of Programming Languages (POPL),
pages 42–54, January 2006.

▷ Xavier Leroy and François Pessaux. Type-based analysis of uncaught exceptions. ACM
Trans. Program. Lang. Syst., 22(2):340–377, 2000. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/349214.349230.

▷ John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM Symposium
on Principles of Programming Languages (POPL), pages 47–57, January 1988.

http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.journals.cambridge.org/abstract_S0956796806006034
http://dx.doi.org/10.1007/3-540-52590-4_50
http://doi.acm.org/10.1145/363744.363749
http://www.cs.luc.edu/laufer/papers/toplas94.pdf
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/exceptions-toplas.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf

BIBLIOGRAPHY 175

▷ Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time.
In ACM Symposium on Principles of Programming Languages (POPL), pages 382–401,
1990.

▷ David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques and
Applications (RTA), volume 2706 of Lecture Notes in Computer Science, pages 436–451.
Springer, June 2003.

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In ECOOP
’99: Proceedings of the 13th European Conference on Object-Oriented Programming, pages
279–303, London, UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

▷ Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, December 1978.

▷ Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In ACM
Symposium on Principles of Programming Languages (POPL), pages 271–283, January
1996.

▷ John C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76(2–3):211–249, 1988.

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470–502, 1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules with open existential
types. In ACM Symposium on Principles of Programming Languages (POPL), pages 63–
74, January 2009.

J. Garrett Morris and Mark P. Jones. Instance chains: type class programming without
overlapping instances. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, pages 375–386, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi: http://doi.acm.org/10.1145/1863543.1863596.

▷ Greg Morrisett and Robert Harper. Typed closure conversion for recursively-defined func-
tions (extended abstract). In International Workshop on Higher Order Operational Tech-
niques in Semantics (HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528–569,
May 1999.

http://doi.acm.org/10.1145/96709.96748
http://www.autoreason.com/rta03.ps
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf

176 BIBLIOGRAPHY

▷ Alan Mycroft. Polymorphic type schemes and recursive definitions. In International Sympo-
sium on Programming, volume 167 of Lecture Notes in Computer Science, pages 217–228.
Springer, April 1984.

▷ Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber. Functional
logic overloading. pages 233–244, 2002. doi: http://doi.acm.org/10.1145/565816.503294.

▷ Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In FPCA
’95: Proceedings of the seventh international conference on Functional programming lan-
guages and computer architecture, pages 135–146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

▷ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

▷ Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In
ACM Symposium on Principles of Programming Languages (POPL), pages 41–53, 2001.

Atsushi Ohori, editor. Programming Languages and Systems, First Asian Symposium,
APLAS 2003, Beijing, China, November 27-29, 2003, Proceedings, volume 2895 of Lecture
Notes in Computer Science, 2003. Springer. ISBN 3-540-20536-5.

▷ Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

▷ Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design and Implementation,
PLDI ’12, pages 35–44, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi:
10.1145/2254064.2254070.

▷ Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. Online lecture notes, January 2009.

▷ Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Manuscript, April
2004.

▷ Simon Peyton Jones and Philip Wadler. Imperative functional programming. In ACM
Symposium on Principles of Programming Languages (POPL), pages 71–84, January 1993.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In LFP
’88: Proceedings of the 1988 ACM conference on LISP and functional programming, pages
153–163, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X. doi: http://doi.acm.
org/10.1145/62678.62697.

▷ Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

http://dx.doi.org/10.1007/3-540-12925-1_41
http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195
http://eprints.kfupm.edu.sa/73647/1/73647.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://doi.acm.org/10.1145/2254064.2254070
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.cse.ogi.edu/~mbs/pub/scoped/
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://www.cis.upenn.edu/~bcpierce/tapl/

BIBLIOGRAPHY 177

▷ Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems, 22(1):1–44, January 2000.

▷ Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321–359, 2000.

▷ François Pottier. Notes du cours de DEA “Typage et Programmation”, December 2002.

François Pottier. A typed store-passing translation for general references. In Proceedings of
the 38th ACM Symposium on Principles of Programming Languages (POPL’11), Austin,
Texas, January 2011. Supplementary material.

François Pottier. Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming, 23(1):38–144, January 2013.

François Pottier. Hindley-Milner elaboration in applicative style. In Proceedings of the
2014 ACM SIGPLAN International Conference on Functional Programming (ICFP’14),
September 2014.

▷ François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretiza-
tion. Higher-Order and Symbolic Computation, 19:125–162, March 2006.

François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. Sub-
mitted for publication, October 2012.

François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’13), pages 173–184, September 2013.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489.
MIT Press, 2005.

▷ François Pottier and Didier Rémy. The essence of ML type inference. Draft of an extended
version. Unpublished, September 2003.

▷ Didier Rémy. Simple, partial type-inference for System F based on type-containment. In
Proceedings of the tenth International Conference on Functional Programming, September
2005.

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and
record types. In International Symposium on Theoretical Aspects of Computer Software
(TACS), pages 321–346. Springer, April 1994a.

http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz

178 BIBLIOGRAPHY

▷ Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming: Types,
Semantics and Language Design. MIT Press, 1994b.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

Didier Rémy and Boris Yakobowski. Efficient Type Inference for the MLF language: a
graphical and constraints-based approach. In The 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), pages 63–74, Victoria, BC, Canada,
September 2008. doi: http://doi.acm.org/10.1145/1411203.1411216.

▷ John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer, April 1974.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-
cessing 83, pages 513–523. Elsevier Science, 1983.

▷ John C. Reynolds. Three approaches to type structure. In International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), volume 185 of Lecture Notes
in Computer Science, pages 97–138. Springer, March 1985.

François Rouaix. Safe run-time overloading. In Proceedings of the 17th ACM Conference on
Principles of Programming Languages, pages 355–366, 1990. doi: http://doi.acm.org/10.
1145/96709.96746.

▷ Christian Skalka and François Pottier. Syntactic type soundness for HM(X). In Workshop
on Types in Programming (TIP), volume 75 of Electronic Notes in Theoretical Computer
Science, July 2002.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping. In Science of Computer Programming, 1994.

Morten Heine Sørensen and Pawel Urzyczyn. Studies in Logic and the Foundations of Math-
ematics, chapter Lectures on the Curry-Howard Isomorphism. Elselvir Science Inc, 2006.

▷ Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiène Tahar, Otmame
Ait-Mohamed, and César Muñoz, editors, TPHOLs 2008: Theorem Proving in Higher
Order Logics, 21th International Conference, Lecture Notes in Computer Science. Springer,
August 2008.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transactions on
Programming Languages and Systems, 19(1):48–86, 1997.

ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop1.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7
http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz
http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps

BIBLIOGRAPHY 179

▷ Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1–2):11–49, April 2000.

▷ Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP ’02: Proceedings of
the seventh ACM SIGPLAN international conference on Functional programming, pages
167–178, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

▷ Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
Computation, 11(2):245–296, 1994.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, April 1975.

▷ Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is unde-
cidable. Information and Computation, 179(1):1–18, 2002.

▷ Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17(3):245–265,
September 2004.

▷ Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language interop-
erability via source translation. Journal of Functional Programming, 8(4):367–412, July
1998.

▷ Philip Wadler. Theorems for free! In Conference on Functional Programming Languages
and Computer Architecture (FPCA), pages 347–359, September 1989.

▷ Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer
Science, 375(1–3):201–226, May 2007.

▷ Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium on Principles of Programming Languages (POPL), pages 60–76, January 1989.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

▷ J. B. Wells. The essence of principal typings. In International Colloquium on Automata,
Languages and Programming, volume 2380 of Lecture Notes in Computer Science, pages
913–925. Springer, 2002.

▷ J. B. Wells. The undecidability of Mitchell’s subtyping relation. Technical Report 95-019,
Computer Science Department, Boston University, December 1995.

▷ J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1–3):111–156, 1999.

http://dx.doi.org/10.1023/A:1010000313106
http://doi.acm.org/10.1145/581478.581495
http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950
http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://dx.doi.org/10.1017/S0956796898003086
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

180 BIBLIOGRAPHY

▷ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8
(4):343–356, December 1995.

▷ Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, November 1994.

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Introduction
	Overview of the course
	Requirements
	About Functional Programming
	About Types
	Acknowledgment

	The untyped -calculus
	Syntax
	Semantics
	Strong v.s. weak reduction strategies
	Call-by-value semantics

	Answers to exercises

	Simply-typed lambda-calculus
	Syntax
	Dynamic semantics
	Type system
	Type soundness
	Proof of subject reduction
	Proof of progress

	Simple extensions
	Unit
	Boolean
	Pairs
	Sums
	Modularity of extensions
	Recursive functions
	A derived construct: let-bindings

	Exceptions
	Semantics
	Typing rules
	Variations

	References
	Language definition
	Type soundness
	Tracing effects with a monad
	Memory deallocation

	Ommitted proofs and answers to exercises

