
Type systems for programming languages

Didier Rémy

Academic year 2014-2015

Version of January 2, 2017

2

Contents

1 Introduction 7
1.1 Overview of the course . 7
1.2 Requirements . 9
1.3 About Functional Programming . 9
1.4 About Types . 9
1.5 Acknowledgment . 11

2 The untyped λ-calculus 13
2.1 Syntax . 13
2.2 Semantics . 15

2.2.1 Strong v.s. weak reduction strategies . 15
2.2.2 Call-by-value semantics . 16

2.3 Answers to exercises . 18

3 Simply-typed lambda-calculus 21
3.1 Syntax . 21
3.2 Dynamic semantics . 21
3.3 Type system . 22
3.4 Type soundness . 25

3.4.1 Proof of subject reduction . 26
3.4.2 Proof of progress . 28

3.5 Simple extensions . 30
3.5.1 Unit . 30
3.5.2 Boolean . 30
3.5.3 Pairs . 31
3.5.4 Sums . 32
3.5.5 Modularity of extensions . 32
3.5.6 Recursive functions . 33
3.5.7 A derived construct: let-bindings . 33

3.6 Exceptions . 35
3.6.1 Semantics . 35

3

4 CONTENTS

3.6.2 Typing rules . 36
3.6.3 Variations . 37

3.7 References . 39
3.7.1 Language definition . 39
3.7.2 Type soundness . 41
3.7.3 Tracing effects with a monad . 42
3.7.4 Memory deallocation . 43

3.8 Ommitted proofs and answers to exercises . 44

4 Polymorphism and System F 49
4.1 Polymorphism . 49
4.2 Polymorphic λ-calculus . 51

4.2.1 Types and typing rules . 51
4.2.2 Semantics . 52
4.2.3 Extended System F with datatypes . 54

4.3 Type soundness . 58
4.4 Type erasing semantics . 62

4.4.1 Implicitly-typed System F . 62
4.4.2 Type instance . 64
4.4.3 Type containment in System Fη . 66
4.4.4 A definition of principal typings . 68
4.4.5 Type soundness for implicitly-typed System F 69

4.5 References . 72
4.5.1 A counter example . 73
4.5.2 Internalizing configurations . 74

4.6 Damas and Milner’s type system . 77
4.6.1 Definition . 77
4.6.2 Syntax-directed presentation . 79
4.6.3 Type soundness for ML . 82

4.7 Ommitted proofs and answers to exercises . 84

5 Type reconstruction 91
5.1 Introduction . 91
5.2 Type inference for simply-typed λ-calculus . 92

5.2.1 Constraints . 93
5.2.2 A detailed example . 94
5.2.3 Soundness and completeness of type inference 96
5.2.4 Constraint solving . 96

5.3 Type inference for ML . 98
5.3.1 Milner’s Algorithm J . 98
5.3.2 Constraints . 99

CONTENTS 5

5.3.3 Constraint solving by example . 103
5.3.4 Type reconstruction . 106

5.4 Type annotations . 109
5.4.1 Explicit binding of type variables . 110
5.4.2 Polymorphic recursion . 113
5.4.3 mixed-prefix . 114

5.5 Equi- and iso-recursive types . 115
5.5.1 Equi-recursive types . 115
5.5.2 Iso-recursive types . 117
5.5.3 Algebraic data types . 118

5.6 HM(X) . 119
5.7 Type reconstruction in System F . 121

5.7.1 Type inference based on Second-order unification 121
5.7.2 Bidirectional type inference . 122
5.7.3 Partial type inference in MLF . 124

5.8 Proofs and Solution to Exercises . 124

6 Existential types 127
6.1 Towards typed closure conversion . 128
6.2 Existential types . 130

6.2.1 Existential types in Church style (explicitly typed) 130
6.2.2 Implicitly-typed existential types . 133
6.2.3 Existential types in ML . 135
6.2.4 Existential types in OCaml . 136

6.3 Typed closure conversion . 137
6.3.1 Environment-passing closure conversion 137
6.3.2 Closure-passing closure conversion . 139
6.3.3 Mutually recursive functions . 141

7 Overloading 145
7.1 An overview . 145

7.1.1 Why use overloading? . 145
7.1.2 Different forms of overloading . 146
7.1.3 Static overloading . 147
7.1.4 Dynamic resolution with a type passing semantics 147
7.1.5 Dynamic overloading with a type erasing semantics 148

7.2 Mini Haskell . 149
7.2.1 Examples in MH . 149
7.2.2 The definition of Mini Haskell . 150
7.2.3 Semantics of Mini Haskell . 152
7.2.4 Elaboration of expressions . 154

6 CONTENTS

7.2.5 Summary of the elaboration . 155
7.2.6 Elaboration of dictionaries . 157

7.3 Implicitly-typed terms . 159
7.4 Variations . 165
7.5 Ommitted proofs and answers to exercises . 169

Chapter 1

Introduction

These are course notes for part of the master course Typing and Semantics of functional
Programming Languages taught at the MPRI (Parisian Master of Research in Computer
Science1) in 2010, 2011, 2012.

The aim of the course is to provide students with the basic knowledge for understand-
ing modern programming languages and designing extensions of existing languages or new
languages. The course focuses on the semantics of programming languages.

We present programming languages formally, with their syntax, type system, and oper-
ational semantics. We then prove soundness of the semantics, i.e. that well-typed programs
cannot go wrong. We do not study full-fledged languages but their core calculi, from which
other constructions can be easily added. The underlying computational language is the
untyped λ-calculus, extended with primitives, store, etc.

1.1 Overview of the course

These notes only cover part of the course, described below in the paragraph Typed lan-

guages. Here, we give a brief overview of the whole course to put the study of Typed
languages into perspective.

Untyped languages. Although all the programming languages we study are typed, their
underlying computational model is the untyped λ-calculus That is, types can be dropped
after type checking and before evaluation.

Therefore, the course starts with a few reminders about the untyped λ-calculus, even
though those are assumed to be known. We show how to extend the pure λ-calculus with
constants and primitives and a few other constructs to make it a small programming lan-
guage. This is also an opportunity to present source program transformations and compi-

1Master Parisian de Recherche en Informatique.

7

8 CHAPTER 1. INTRODUCTION

lation techniques for function languages, which do not depend much on types. This part is
taught by Xavier Leroy.

Typed languages Types play a central role in the design of modern programming lan-
guages, so they also play a key role in this course. In fact, once we restrict our study to
functional languages, the main differences between languages lie more often in the differences
between their type systems than between other aspects of their design.

Hence, the course is primarily structured around type systems. We remind the simply-
typed λ-calculus, the simplest of type systems for functional languages, and show how to
extend it with other fundamental constructs of programming languages.

We introduce polymorphism with System F. We present ML as a restriction of System F
for which type reconstruction is simple and efficient. We actually introduce a slight gener-
alization HM(X) of ML to ease and generalize the study of type reconstruction for ML. We
discuss techniques for type reconstruction in System F—but without formalizing the details.

We present existential types, first in the context of System F, and then discuss their
integration in ML.

Finally, we study the problem of overloading. Overloading differs from other language
constructs as the semantics of source programs depend on their types, even though types
should be erased at runtime! We thus use overloading as an example of elaboration of source
terms, whose semantics is typed, into an internal language, whose semantics is untyped.

Towards program proofs Types, as in ML or System F, ensure type soundness, i.e. that
programs do not go wrong. However useful, this remains a weak property of programs. One
often wishes to write more accurate specifications of the actual behavior of programs and
prove the implementation correct with respect to them. Finer invariants of data-structures
may be expressed within types using Generalized Algebraic Data Types (GADT); or one step
further using dependent types. However, one may also describe the behavior of programs
outside of proper types per se, by writing logic formulas as pre and post conditions, and
verifying them mechanically, e.g. with a proof assistant. This spectrum of solutions will be
presented by Yann Regis-Gianas.

Subtyping and recursive types The last part of the course, taught by Giuseppe Castagna,
focuses on subtyping, and in particular on semantic subtyping. This allows for very precise
types that can be used to describe semi-structured data. Recursive types are also presented
in this context, where they play a crucial role.

1.2. REQUIREMENTS 9

1.2 Requirements

We assume the reader familiar with the notion of programming languages. Some experience
of programming in a typed functional language such as ML or Haskell will be quite helpful.
Some knowledge in operational semantics, λ-calculus, terms, and substitutions is needed.
The reader with missing background may find relevant chapters in the book Types And
Programming Languages by Pierce (2002).

1.3 About Functional Programming

The term functional programming means various things. Functional programming views
functions as ordinary data which, in particular, can be passed as arguments to other functions
and stored in data structures.

A common idea behind functional programming is that repetitive patterns can be ab-
stracted away as functions that may be called several times so as to avoid code duplication.
For this reason, functional programming also often loosely or strongly discourages the use
of modifiable data, in favor of effect-free transformations of data. (In contrast, the main-
stream object-oriented programming languages view objects as the primary kind of data and
encourage the use of modifiable data.)

Functional programming languages are traditionally typed (Scheme and Erlang are ex-
ceptions) and have close connections with logic. We will focus on typed languages. Because
functional programming puts emphasis on reusability and sharing multiple uses of the same
code, even in different contexts, they require and make heavy use of polymorphism; when
programming in the large, abstraction over implementation details relies on an expressive
module system. Types unquestionably play a central role, as explained next.

Functional programming languages are usually given a precise and formal semantics de-
rived from the one of the λ-calculus. The semantics of languages differ in that some are
strict (ML) and some are lazy (Haskell) Hughes (1989). This difference has a large impact on
the language design and on the programming style, but has usually little impact on typing.

Functional programming languages are usually sequential languages, whose model of
evaluation is not concurrent, even if core languages may then be extended with primitives
to support concurrency.

1.4 About Types

A type is a concise, formal description of the behavior of a program fragment. For instance,
int describes an expression that evaluates to an integer; int→ bool describes a function that
maps an integer argument to a boolean result; (int → bool) → (list int → list int) describes a
function that maps an integer predicate to an integer list transformer.

10 CHAPTER 1. INTRODUCTION

Types must be sound. That is, programs must behave as prescribed by their types.
Hence, types must be checked and ill-typed programs must be rejected.

Types are useful for quite different reasons: They first serve as machine-checked docu-
mentation. More importantly, they provide a safety guarantee. As stated by Milner (1978),
“Well-typed expressions do not go wrong.” Advanced type systems can also guarantee vari-
ous forms of security, resource usage, complexity, etc. Types encourage separate compilation,
modularity, and abstraction. Reynolds (1983) said: “Type structure is a syntactic discipline
for enforcing levels of abstraction.” Types can be abstract. Even seemingly non-abstract
types offer a degree of abstraction. For example, a function type does not tell how a function
is represented at the machine level. Types can also be used to drive compiler optimizations.

Type-checking is compositional: type-checking an application depends on the type of the
function and the type of the argument and not on their code. This is a key to modularity
and code maintenance: replacing a function by another one of the same type will preserve
well-typedness of the whole program.

Type-preserving compilation Types make sense in low-level programming languages as
well—even assembly languages can be statically typed! as first popularized by Morrisett et al.
(1999). In a type-preserving compiler, every intermediate language is typed, and every
compilation phase maps typed programs to typed programs. Preserving types provides in-
sight into a transformation, helps debug it, and paves the way to a semantics preservation
proof (Chlipala, 2007). Interestingly enough, lower-level programming languages often re-
quire richer type systems than their high-level counterparts.

Typed or untyped? Reynolds (1985) nicely sums up a long and rather acrimonious de-
bate: “One side claims that untyped languages preclude compile-time error checking and
are succinct to the point of unintelligibility, while the other side claims that typed languages
preclude a variety of powerful programming techniques and are verbose to the point of un-
intelligibility.” A sound type system with decidable type-checking (and possibly decidable
type inference) must be conservative.

Later, Reynolds also settles the debate: “From the theorist’s point of view, both sides are
right, and their arguments are the motivation for seeking type systems that are more flexible
and succinct than those of existing typed languages.”

Today, the question is rather whether to use basic types (e.g. as in ML or System F)
or sophiscated types (e.g. with dependent types, logical assertions, afine types, capabililties
and ownership, etc.) or full program proofs as in the compcert project (Leroy, 2006)!

Explicit v.s. implicit types? The typed v.s. untyped flavor of a programming language
should not be confused with the question of whether types of a programming language are
explicit or implicit.

1.5. ACKNOWLEDGMENT 11

Annotating programs with types can lead to a lot of redundancies. Types can even
become extremely cumbersome when they have to be explicitly and repeatedly provided. In
some pathological cases, they may even increase the size of source terms non linearly. This
creates a need for a certain degree of type reconstruction (also called type inference), where
the source program may contain some—but not all—type information.

When the semantics is untyped, i.e. types could in principle be entirely left implicit,
even if the language is typed. A well-typed program is then one that is the type erasure of a
(well-typed) explicitly-typed program. However, full type reconstruction is undecidable for
expressive type systems, leading to partial type reconstruction algorithms.

An important issue with type reconstruction is its robustness to small program changes.
Because type systems are compositional, a type inference problem can often be expressed
as a constraint solving problem, where constraints are made up of predicates about types,
conjunction, and existential quantification.

1.5 Acknowledgment

These course notes are based on and still contain a lot of material from a previous course
taught for several years by François Pottier.

http://cristal.inria.fr/~fpottier

12 CHAPTER 1. INTRODUCTION

Chapter 2

The untyped λ-calculus

In this course, λ-calculus is the underlying computational language. The λ-calculus supports
natural encodings of many programming languages Landin (1965), and as such provides a
suitable setting for studying type systems. Following Church’s thesis, any Turing-complete
language can be used to encode any programming language. However, these encodings might
not be natural or simple enough to help us in understanding their typing discipline. Using λ-
calculus, most of our results can also be applied to other languages (Java, assembly language,
etc.).

The untyped λ-calculus and its extension with the main constructs of programming lan-
guages have been presented in the first part of the course taught by Xavier Leroy. Hereafter,
we just recall some of the notations and concepts used in our part of the course.

2.1 Syntax

We assume given a denumerable set of term variables, denoted by letter x. Then λ-terms,
also known as terms and expressions, are given by the grammar:

a ∶∶= x ∣ λx. a ∣ a a ∣ . . .

This definition says that an expression a is a variable x, an abstraction λx. a, or an application
a1 a2. The “. . . ” is just a place holder for more term constructs that will be introduced later
on. Formally, the “. . . ” is taken empty in the current definition of expressions. However,
we may later extend expressions, for instance with let-bindings using the meta-notation:

a ∶∶= . . . ∣ let x = a in a

which means that the new set of expressions is to be understood as:

a ∶∶= x ∣ λx. a ∣ a a ∣ let x = a in a

The expression λx. a binds variable x in a. We write [x ↦ a0]a for the capture avoiding
substitution of a0 for x in a. Terms are considered equal up to the renaming of bound

13

14 CHAPTER 2. THE UNTYPED λ-CALCULUS

variables. That is λx1. λx2. x1 (x1 x2) and λy.λx. y (y x) are really the same term. And
λx.λx. a is equal to λy.λx. a when y does not appear free in a.

When inspecting the structure of terms, we often need to open up a λ-abstraction λx. a
to expose its body a. Then, a usually contains free occurrences of x (that were bound in
λx. a). When doing so, we may assume, w.l.o.g.1, that x is fresh for (i.e. does not appear
free in) any given set of finite variables.

Concrete v.s. abstract syntax For our meta-theoretical study, we are interested in the
abstract syntax of expressions rather than their concrete syntax. Hence, we like to think of
expressions as their abstract syntax trees. Still, we need to write expressions on paper, i.e.
strings of characters, hence we need some concrete syntax for terms. The compromise is to
have some concrete syntax that is in one-to-one correspondence with the abstract syntax.

An expression in concrete notation, e.g. λx.λy. x y must be
understood as its abstract syntax tree (next on the right).

For convenience, we may sometimes introduce syntactic
sugar as shorthand; it should then be understood by its expansion
into some primitive form. For instance, we may introduce multi-
argument functions λxy. a as a short hand for λx.λy. a just for
conciseness of notation on paper or readability of examples, but
without introducing a new form of expressions into the abstract
syntax. (Although, studying multi-parameter functions would
also be possible, and then this would not be syntactic sugar, but
this is not the route we take here.)

λ .

x λ .

y

⋅

x

⋅

y

When studying programming languages formally, the core language is usually kept as
small as possible avoiding the introduction of new constructs that can already be expressed
with existing ones—or are trivial variatons on existing ones. Indeed, redundant constructs
often obfuscate the essence of the semantics of the language.

Exercise 1 Write a datatype term to represent the abstract syntax of the untyped λ-calculus.
(Solution p. 18)

Exercise 2 Higher Order Abstract Syntax (HOAS) uses the binding and α-conversion mech-
anisms of the host language (here OCaml) to implement bindings and α-conversion of the
concrete language. The parametric version of HOAS is moreover parameterized by the type
of variables.

type ’a pterm =
| PVar of ’a
| PFun of (’a → ’a pterm)
| PApp of ’a pterm ∗ ’a pterm

1without lost of generality.

2.2. SEMANTICS 15

For example, we may define

let h = PApp (PFun (fun f → PApp (PVar f, PVar f)), PFun (fun x → PVar x))

Notice that h is polymorephic in the type of term variables. What term of the λ-calculus does
it represent? (Solution p. 18)

Write a function to term that translates from terms in HOAS (of type pterm) into terms
in concrete syntax (of type term). (Solution p. 18)

2.2 Semantics

The semantics of the λ-calculus is given by a small-step operational semantics, i.e. a reduc-
tion relation between λ-terms. It is also called the dynamic semantics since it describes the
behavior of programs at runtime, i.e. when programs are executed.

2.2.1 Strong v.s. weak reduction strategies

For the pure λ-calculus, one can allow a full reduction, i.e. reduction can be performed in
any context, in particular under λ-abstractions. This implies that a term can be reduced
in many different ways, depending on which redex is reduced first. Despite this, reduction
in the λ-calculus is confluent: for terms that are strongly normalizing, i.e. do not contain
infinite reduction path, then all possible reduction paths end up on the same normal form:
the calculus is confluent.

By contrast, programming languages are usually give a weak reduction strategy, i.e.
reduction does not occur under abstractions. The main reason for this choice is simplicity
and efficiency or reduction.

The most commonly used strategy is call-by-value, where arguments are reduced before
being substituted for the formal parameter of functions. However, some languages also use a
call-by-name strategy that delays the evaluation of arguments until they are actually used.
In fact, rather than call-by-name, one use implements a call-by-need strategy, which as call-
by-name delays the evaluation of arguments, but as call-by-value shares this evaluation:
that is, the occurrence of an argument that is used requires its evaluation, but all other
occurrences of the argument see the result of the evaluation and do not have to reevaluate
the argument if needed. This is however more delicate to formalize and one often uses
call-by-name semantics as an approximation of call-by-need semantics.

Although programming languages implement weak reduction strategies, it would make
perfect sense to define their semantics in two steps, first using using full reduction, and then
restricting the reduction paths to obtain the actual strategy. Full reduction may be used
to model some program transformations, such as partial evaluation, that are performed at
compile time. Another advantage of this two-step approach is that weak reduction strategies
are a particular case of full reduction. Hence, (positive) properties can be established once

16 CHAPTER 2. THE UNTYPED λ-CALCULUS

for all for full reduction and will also hold for weak reduction strategies, including both
call-by-value and call-by-name.

However, the metatheorical properties, such as type soundness, are often simpler to
establish for weak reductions strategies. Despite some advantages of the two step-approach
to the semantics of programming languages, we will not pursue it here. We instead directly
start with a weak reduction strategy. Still, we will informally discuss at certain places some
of the properties that would hold if we had followed the more general approach.

2.2.2 Call-by-value semantics

We choose a call-by-value semantics. When explaining references, exceptions, or other forms
of side effects, this choice matters. Otherwise, most of the type-theoretic machinery applies
to call-by-name or call-by-need—actually to any weak reduction strategy—just as well.

In the pure λ-calculus, the values are the functions:

v ∶∶= λx. a ∣ . . .
Variables are not values in the call-by0value λ-calculus. We only evaluate closed terms,
hence a variable should never appear in an evaluation context. Notice that any function
is a value in the call-by-value λ-calculus, in particular, a is an arbitrary term. In a strong
reduction setting, we could also evaluate the body of the function a, and then, a should thus
not contain any β-redex.

The reduction relation a1 Ð→ a2 is inductively defined:

βv(λx. a) v Ð→ [x↦ v]a
Context

aÐ→ a′

e[a]Ð→ e[a′]
[x↦ V] is the capture avoiding substitution of V for x. We write [x↦ V]a its application to
a term a. Evaluation may only occur in call-by-value evaluation contexts, defined as follows:

e ∶∶= [] a ∣ v [] ∣ . . .
Notice that we only need evaluation contexts of depth one, thanks to repeated applications
of Rule Context. An evaluation context of arbitrary depth may be defined as a stack of
one-hole contexts:

ē ∶∶= [] ∣ e[ē]

Exercise 3 Define the semantics of the call-by-name λ-calculus. (Solution p. 18)

Exercise 4 Give a big-step operational semantics for the call-by-value λ-calculus. Compare
it with the small-step semantics. What can you say about non terminating programs? How
can this be improved? (Solution p. 19)

2.2. SEMANTICS 17

Exercise 5 Write an interpreter for a call-by-value λ-calculus. Modify the interpreter to
have a call-by-name semantics; then a call-by-need semantics. You may instrument the
evaluation to count the number of evaluation steps.

Recursion

Recursion is inherent in λ-calculus, hence reduction may not terminate. For example, the
term (λx.x x) (λx.x x) known as ∆ reduces to itself, and so may reduce forever.

A slight variation on ∆ is the fix-point combinator Y , defined as

λg. (λx.x x) (λz. g (z z))
Whenever applied to a functional G, it reduces in a few steps to G (Y G), which is not yet a
value. In a call-by-value setting, this term actually reduces forever—before even performing
any interesting computation step. Therefore, we instead use its η-expanded version Z that
guards the duplication of the generator G:

λg. (λx.x x) (λz. g (λv. z z v))

Exercise 6 Check that Y G reduces for ever. Check that Z G does not. Check that Z G v

behaves as expected—unfolds the recursion after the body of G has been evaluated.

Exercise 7 Define the fixpoint combination Z in OCaml—without using let rec. Why do
you need the −rectype option? Use Z to define the factorial function (still without using
let rec). (Solution p. 19)

18 CHAPTER 2. THE UNTYPED λ-CALCULUS

2.3 Answers to exercises

Solution of Exercise 1

type var = string
type term =
| Var of var
| Fun of var ∗ term
| App of term ∗ term

Define in this abstract syntax the term funaa

Solution of Exercise 2

(λf. f f)(λx.x).

Solution of Exercise 2, Question 2

let gensym = let n = ref 0 in fun () → incr n; ”x”ˆ string of int !n;;
let rec to term = function

| PFun f → let x = gensym() in Fun (x, to term (f x))
| PApp (f, g) → App (to term f, to term g)
| PVar x → Var x

let t = to term h

val t : term = App (Fun (”x2”, App (Var ”x2”, Var ”x2”)), Fun (”x1”, Var ”x1”))

Solution of Exercise 3

Values are unchanged. Evaluation contexts only allow the evaluation in function position:

e ∶∶= [] a
As a counterpart, β-reduction must not require its argument to be evaluated. Hence the
call-by-name βn rule is:

(λx. a0) aÐ→ [x↦ a]a0 (βn)

2.3. ANSWERS TO EXERCISES 19

Solution of Exercise 4

The big-step semantics defines an evaluation relation E ⊢ a ↝ v where E is an evaluation
environment E that maps variables to values. The relation is defined by inference rules:

Eval-Fun

E ⊢ λx. a ↝ λx. a

Eval-Var

x↦ v ∈ E

E ⊢ x ↝ v

Eval-App

E ⊢ a1 ↝ λx. a E ⊢ a2 ↝ v2 E , x ↦ v2 ⊢ a↝ v

E ⊢ a1 a2 ↝ v

Rule Eval-Fun says that a function is a value and evaluates to itself. Rule Eval-App

evaluates both sides of an application. Provided the left-hand side evaluates to a function
λx. a, we may evaluation a in an extended context where x is mapped to the evaluation of
the right-hand side. The results of the evaluation of a is then the result of the evaluation of
the application.

Notice that the definition is partial: if the left-hand side does not evaluate to a function
(e.g. it could be a free variable), then the evaluation of the application is not defined.
Similarly, the evaluation of a variable that is not bound in the environment is undefined.

Furthermore, the evaluation is also undefined for programs that loops, such as (λx.x x) (λx.x x):
one will attempt to build an infinite evaluation derivation, but as this never ends, we cannot
formally say anything about its evaluation.

Solution of Exercise 7

The definition contains an auto-application of a λ-bound variable fun x → x x. In OCaml,
this is ill-typed, as it requires x to have both types α and α → β simultaneously, which is
only possible if α is a recursive type (. . . (α → . . .)→ α) With the -rectype option, one can
defined:

let zfix g = (fun x → x x) (fun z → g (fun v → z z v))
let gfact f n = if n > 0 then n ∗ f (n−1) else 1
let fact = zfix gfact;;
let six = fact 3;;

which correctly evaluates six to the integer 6.

20 CHAPTER 2. THE UNTYPED λ-CALCULUS

Chapter 3

Simply-typed lambda-calculus

This chapter is an introduction to typed languages. The formalization will be subsumed by
that of System F in the next chapter. We still give all the definitions and the proofs of the
main results in this simpler setting for pedagogical purposes. Their generalization in the
more general setting of System F will then be easier to understand.

3.1 Syntax

We give an explicitly typed version of the simply-typed λ-calculus. Therefore, we modify
the syntax of the λ-calculus to add type annotations for parameters of functions. In order
to avoid confusion, we write M instead of a for explicitly typed expressions.

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .
As earlier, the “. . . ” are a place holder for further extensions of the language. Types are
denoted by letter τ and defined by the following grammar:

τ ∶∶= α ∣ τ → τ ∣ . . .
where α denotes a type variable. We assume given a denumerable collection of type variables.
This definition says that a type τ is a type variable α, or an arrow type τ1 → τ2.

3.2 Dynamic semantics

The dynamic semantics of the simply-typed λ-calculus is obtained by modifying the dynamic
semantics of the λ-calculus in the obvious way to accommodate for type annotations of
function parameters, which are just ignored. Values and evaluation contexts become:

V ∶∶= λx ∶τ.M ∣ . . . E ∶∶= []M ∣ V [] ∣ . . .
21

22 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

The reduction relation M1 Ð→M2 is inductively defined by:

βv(λx ∶τ.M) V Ð→ [x ↦ V]M
Context

M Ð→ M ′

E[M]Ð→ E[M ′]
The semantics of simply-typed λ-calculus is obviously type erasing, i.e. as we shall see in
the next section (§3.3).

3.3 Type system

In typed λ-calculi, not all syntactically well-formed programs are accepted—only well-typed
programs are. Well-typedness is defined as a 3-place predicate Γ ⊢ M ∶ τ called a typing
judgment.

The typing context Γ (also called a typing environment) is a finite sequence of bindings
of program variables to types. The empty context is written ∅. A typing context Γ can be
extended with a new binding τ for x with the notation Γ, x ∶ τ . To avoid confusion between
the new binding and any other binding that may appear in Γ, we disallow typing contexts
to bind the same variable several times. This is not restrictive because bound variables can
always be renamed in source programs to avoid name clashes. A typing context can then be
thought of as a finite function from program variables to their types. We write dom(Γ) for
the set of variables bound by Γ and Γ(x) for the type τ bound to x in Γ, which implies that
x is in dom(Γ). We write x ∶ τ ∈ Γ to mean that Γ maps x to τ , and x # dom(Γ) to mean
that x ∉ dom(Γ).

Typing judgments are defined inductively by the following inference rules:

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

By our convention on well-formedness of typing contexts, the premise of rule Abs carries the
implicit assumption x# dom(Γ). This condition can always be satisfied, since x is bound in
the expression λx ∶τ.M and can be renamed if necessary.

Notice that the specification is extremely simple. In the simply-typed λ-calculus, the
definition is syntax-directed. That is, at most one rule applies for an expression; hence, the
shape of the derivation tree for proving a judgment Γ ⊢ M ∶ τ is fully determined by the
shape of the expression M . This is not true of all type systems.

A typing derivation is a proof tree that witnesses the validity of a typing judgment: each
node is the application of a typing rule. A proof tree is either a single node composed of
an axiom (a typing rule without premises) or a typing rule with as many proof-subtrees as
typing judgment premises.

For example, the following is a typing derivation for the compose function in the empty

3.3. TYPE SYSTEM 23

environment where Γ stands for f ∶ τ1 → τ2; g ∶ τ0 → τ1;x ∶ τ0.

Abs

Abs

App

Var

Γ ⊢ f ∶ τ1 → τ2

Var

Γ ⊢ g ∶ τ0 → τ1

Var

Γ ⊢ x ∶ τ0

Γ ⊢ g x ∶ τ1
App

Abs
Γ ⊢ f (g x) ∶ τ2

f ∶ τ1 → τ2, g ∶ τ0 → τ1 ⊢ λx ∶τ0. f (g x) ∶ τ0 → τ2

f ∶ τ1 → τ2 ⊢ λg ∶τ0 → τ1. λx ∶τ0. f (g x) ∶ (τ0 → τ1)→ τ0 → τ2

∅ ⊢ λf ∶τ1 → τ2. λg ∶τ0 → τ1. λx ∶τ0. f (g x) ∶ (τ1 → τ2)→ (τ0 → τ1)→ τ0 → τ2

This derivation is valid for any choice of τ1 and τ2. Conversely, every derivation for this term
must have this shape, for some τ1 and τ2.

This suggests a procedure for type inference: build the shape of the derivation from
the shape of the expression. Then, solve the constraints on types so that the derivation is
valid. This informal procedure to search for possible derivations is justified formally by the
inversion lemma, which describes how the subterms of a well-typed term can be typed.

Lemma 1 (Inversion of typing rules) Assume Γ ⊢M ∶ τ .

• If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
• If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

• If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and Γ, x ∶ τ0 ⊢M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when reasoning by in-
duction on terms. Although trivial in our simple setting, stating it explicitly avoids informal
reasoning in proofs; in more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.

In our settings, the typing rules are syntax-directed, That is, for any given well-formed
expression, at most one typing rule may apply. Then, the shape of the typing derivation tree
is unique and fully determined by the shape of the term.

Moreover, each term has actually a unique type. Hence, typing derivations are unique, in
a given typing context. The proof is a straightforward induction on the structure of terms.

Explicitly-typed terms can thus be used to describe typing derivations (up to the typing
context) in a precise and concise way, because terms of the language have a concrete syntax.
This enables reasoning by induction on terms, which is often lighter than reasoning by
induction on typing derivations, since terms are concrete objects while derivations are in the
meta-language of mathematics.

This also makes typechecking a trivial recursive function that checks that for each ex-
pression that the unique candidate typing rule can be correctly instantiated.

Of course, the existence of syntax-directed typing rules relies on type information present
in source terms. Uniqueness of typing derivations can be easily lost if some type information

24 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

is left implicit. At some extreme, types may be left implicit and only appear in typing
derivations; then there would be many possible derivations for the same term.

Explicitly v.s. implicitly typed? Our presentation of simply-typed λ-calculus is ex-
plicitly typed (we also say in church-style), as parameters of abstractions are annotated with
their types. Simply-typed λ-calculus can also be implicitly typed (we also say in curry-style)
when parameters of abstractions are left unannotated, as in the plain λ-calculus.

We may easily translate explicitly-typed expressions into implicitly-typed ones by drop-
ping type annotations. This is called type erasure. We write ⌈M⌉ for the type erasure of M ,
which is defined by structural induction on M :

⌈x⌉ △
== x

⌈λx ∶τ.M⌉ △
== λx. ⌈M⌉

⌈M1 M2⌉ △
== ⌈M1⌉ ⌈M2⌉

The erasure of a term M of System F is an untyped λ-term a.

Conversely, can we convert implicitly-typed expressions back into explicitly-typed ones,
that is, can we reconstruct the missing type information? This is equivalent to finding a
typing derivation for implicitly-typed terms. It is called type reconstruction (or type inference
and is much more involved than just type-checking explicitly typed terms—see the chapter
on type inference (§5).

Untyped semantics Observe that although the reduction carries types at runtime, types
do not actually contribute to the reduction. Intuitively, the semantics of terms is the same
as that of their type erasure.

Formally, we must be more careful, as terms and their erasure do not live in the same
world. Instead, we may say that the two semantics coincide by putting them into correspon-
dence.

The semantics is said to be untyped or type-erasing if any reduction step on source terms
can be reproduced in the untyped language between their type erasures (direct simulation),
and conversely, a reduction step after type erasure can also be traced back in the typed
language as a reduction step between associated source terms (inverse simulation). Formally,
this can be stated as follows:

Lemma 2 (direct simulation) If M1 Ð→ M2 then ⌈M1⌉Ð→ ⌈M2⌉.

Lemma 3 (inverse simulation) If ⌈M⌉ Ð→ a, then there exists M ′ such that M Ð→ M ′

and ⌈M ′⌉ = a.

3.4. TYPE SOUNDNESS 25

Diagramatically, we have

M1 M2

a1 a2

Direct simulation

β

⌈⌉ ⌈⌉
β

M1 M2

a1 a2

Inverse simulation

⌈⌉
β

β

⌈⌉

The combination of both lemmas establishes a bisimulation between explicitly-typed terms
and implicitly-typed ones.

In our simple setting this is a one-to-one correspondence, and the proof is immediate
and not very interesting. The proof will be done in the more general case of System F. In
general (and this will be the case in System F) there may be reduction steps on source terms
that involve only types and that have no counter-part on compiled terms. In this case we
may split the reduction relation into Ð→ι that deals with those steps without counter-part
on type-erasures and other steps such as Ð→β that are reproduced type-erasures. The ι-
reduction must be terminating (see the statement of bisimilation for System-F in §4.4.5).

Exercise 8 (Short, but difficult) How would you write the two previous lemmas in the
presence of ι-steps. What could happen if ι-reduction were not terminating?

(Solution p. 44)

Having a type-erasing semantics is an important property of a language: it simplifies its
meta-theoretical study since its semantics does not depend on types. It also means that
types can be ignored at runtime.

Be aware that an implicitly typed language does not necessarily have a type-erasing
semantics. In Haskell, for instance, types drive the semantics via the choice of type classes
even though they are inferred. In fact, Haskell surface programs are elaborated by compiling
type classes away into an internal typed language which itself has an erasing semantics.

3.4 Type soundness

Type soundness is often known as Milner’s slogan “Well-typed expressions do not go wrong”
What is a formal statement of this? By definition, a closed term M is well-typed if it admits
some type τ in the empty environment. By definition, a closed, irreducible term is either a
value or stuck. A closed term must converge to a value, diverge, or go wrong by reducing to
a stuck term. Milner’s slogan now has a formal meaning:

Theorem 1 (Type Soundness) Well-typed expressions do not go wrong.

26 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

The proof of type soundness is by combination of Subject Reduction (Lemma 2) and Progress
(Lemma 3). This syntactic proof method is due to Wright and Felleisen (1994).

Theorem 2 (Subject reduction) Reduction preserves types: if M1 Ð→ M2, then for any
type τ such that ∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem 3 (Progress) A well-typed, closed term is either reducible or a value: if ∅ ⊢M ∶

τ , then there exists M ′ such that M Ð→ M ′ or M is a value.

Progress also says that no stuck term is well-typed. We sometimes use an equivalent formu-
lartion of progress: a closed, well-typed irreducible term is a value, i.e. if ∅ ⊢ M ∶ τ and
M /Ð→ then M is a value.

3.4.1 Proof of subject reduction

Subject reduction is proved by induction over the hypothesis M1 Ð→M2. Thus, there is one
case per reduction rule. In the pure simply-typed λ-calculus, there are just two such rules:
β-reduction and reduction under an evaluation context.

Type preservation by β-reduction.

In the proof of subject reduction for the β-reduction case, the hypotheses are

(λx ∶τ.M) V Ð→ [x↦ V]M (1) ∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)
and the goal is ∅ ⊢ [x↦ V]M ∶ τ0 (3).

To proceed, we decompose the hypothesis (2): by inversion (Lemma 1), its derivation
of (2) must be of the form:

App

Abs
x ∶ τ ⊢M ∶ τ0 (4)

∅ ⊢ (λx ∶τ.M) ∶ τ → τ0 ∅ ⊢ V ∶ τ (5)
∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

We expect the conclusion (3) to follow from (4) and (5). Indeed, we could conclude with the
following lemma:

Lemma 4 (Value substitution) If x ∶ τ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then ∅ ⊢ [x ↦ V]M ∶ τ0.

In plain words, replacing a formal parameter with a type-compatible actual argument pre-
serves types. Unsurprisingly, this lemma must be suitably generalized so that it can be
proved by structural induction over the typing derivation for M :

Lemma 5 (Value substitution, strengthened) If x ∶ τ,Γ ⊢ M ∶ τ0 and ∅ ⊢ V ∶ τ , then
Γ ⊢ [x↦ V]M ∶ τ0.

3.4. TYPE SOUNDNESS 27

The proof is then straightforward provided we have a weakening lemma (stated below) in
the case for variables. (In the case for abstraction, the variable for the parameter can—and
must—be chosen different from the variable x.) This closes the β-reduction proof case for
type preservation.

Exercise 9 Write all the details of the proof of value substitution.

The weakening we have used in the proof of type preservation for β-reduction is:

Lemma 6 (Weakening) If ∅ ⊢ V ∶ τ1 then Γ ⊢ V ∶ τ1.

We may actually prove a simplified version adding only one binding at a time, as the general
case follows as a corollary. However, the lemma must also be strengthened.

Remark 1 Strengthening will often be needed for properties of interest in this course, which
are about explicitly-typed terms, or equivalently, typing derivations, and proved by structural
induction, i.e. by induction and case analysis on the structure of the term (or its derivation),
because well-typednessed of subterms may involve a larger typing context than the one used
for the inclosing term. Therefore, properties stated for a term M must hold not under a
particular context in which M is typed but under all extensions of such a context.

Lemma 7 (Weakening, strengthened) If Γ ⊢ M ∶ τ and y ∉ dom(Γ), then Γ, y ∶ τ ′ ⊢
M ∶ τ .

Proof: The proof is by structural induction on M , applying the inversion lemma:

Case M is x: Then x must be bound to τ in Γ. Hence, it is also bound to τ in Γ, y ∶ τ ′. We
conclude by rule Var.

Case M is λx ∶ τ2.M1: W.l.o.g, we may choose x ∉ dom(Γ) and x /= y. We have Γ, x ∶ τ2 ⊢
M1 ∶ τ1 with τ2 → τ1 equal to τ . By induction hypothesis, we have Γ, x ∶ τ2, y ∶ τ

′ ⊢ M1 ∶ τ1.
Thanks to a permutation lemma, we have Γ, y ∶ τ ′, x ∶ τ2 ⊢ M1 ∶ τ1 and we conclude by Rule
Abs.

Case M is M1 M2: easy.

Exercise 10 Write the details of the application case for weakening. (Solution p. 44)

Exercise 11 Try to prove the unstrengthened version and see where you get stuck.
(Solution p. 44)

Lemma 8 (Permutation lemma) If Γ ⊢ M ∶ τ and Γ′ is a permutation of Γ, then Γ′ ⊢
M ∶ τ .

The result is obvious since a permutation of Γ does not change its interpretation as a finite
function, which is all what is used in the typing rules so far (this will no longer be the case
when we extend Γ with type variable declarations). Formally, the proof is by induction
on M .

28 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Type preservation by reduction under an evaluation context.

The first hypothesis isM Ð→ M ′ (1) where, by induction hypothesis, this reduction preserves
types (2). The second hypothesis is ∅ ⊢ E[M] ∶ τ (3) where E is an evaluation context. The
goal is ∅ ⊢ E[M ′] ∶ τ (4).

Observe that typechecking is compositional : only the type of the subexpression in the
hole matters, not its exact form, as stated by the compositionality Lemma, below. The
context case immediately follows from compositionality, which closes the proof of subject
reduction.

Lemma 9 (Compositionality) If ∅ ⊢ E[M] ∶ τ , then, there exists τ ′ such that:

• ∅ ⊢M ∶ τ ′, and

• for every term M ′ such that ∅ ⊢M ′ ∶ τ ′, we have ∅ ⊢ E[M ′] ∶ τ .
The proof is by cases over E; each case is straightforward.

Remark 2 Informally, τ ′ is the type of the hole in the context E, itself of type τ ; we could
write the pseudo judgment ∅ ⊢ E[τ ′] ∶ τ . (This judgment could also be defined by formal
typing rules, of course.)

3.4.2 Proof of progress

Progress (Theorem 3) says that (closed) well-typed terms are either reducible or values. It
is proved by structural induction over the term M . Thus, there is one case per construct in
the syntax of terms.

In the pure λ-calculus, there are just three cases: variable; λ-abstraction; and application.
The case of variables is void, since a variable is never well-typed in the empty environment.
The case of λ-abstractions is immediate, because a λ-abstraction is a value. In the only
remaining case of an application, we show that M is always reducible.

Assume that ∅ ⊢ M ∶ τ1 and M is an application M1 M2. By inversion of typing rules,
there exist types τ1 and τ2 such that ∅ ⊢ M1 ∶ τ2 → τ1 and ∅ ⊢ M2 ∶ τ2. By induction
hypothesis, M1 is either reducible or a value V1. If M1 is reducible, so is M because []M2

is an evaluation context and we are done. Otherwise, by induction hypothesis, M2 is either
reducible or a value V2. If M2 is reducible, so is M because V1 [] is an evaluation context
and we are done. Otherwise, because V1 is a value of type τ1 → τ2, it must be a λ-abstraction
by classification of values (Lemma 10, below), so V1 V2 is a β-redex, hence reducible.

Interestingly, the proof is constructive and corresponds to an algorithm that searches for
the active redex in a well-typed term.

In the last case, we have appealed to the following property:

Lemma 10 (Classification of values) Assume ∅ ⊢ V ∶ τ . Then,

3.4. TYPE SOUNDNESS 29

• if τ is an arrow type, then V is a λ-abstraction;

• . . .

Proof: By cases over V :

• if V is a λ-abstraction, then τ must be an arrow type;

• . . .

Because different kinds of values receive types with different head constructors, this classifi-
cation is injective, and can be inverted, which gives exactly the conclusion of the lemma.

In the pure λ-calculus, classification is trivial, because every value is a λ-abstraction. Progress
holds even in the absence of the well-typedness hypothesis, i.e. in the untyped λ-calculus,
because no term is ever stuck!

As the programming language and its type system are extended with new features, how-
ever, type soundness is no longer trivial. Most type soundness proofs are shallow but large.
Authors are often tempted to skip the “easy” cases, but these may contain hidden traps!

This calls for mechanized proofs that ensure case coverage while trivial cases should be
automatically dischargeable.

Warning! Sometimes, the combination of two features is unsound, even though each fea-
ture, in isolation, is sound. This is problematic, because researchers like studying each
feature in isolation, and do not necessarily foresee problems with the combination. This will
be illustrated in this course by the interaction between references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and used for some
time before they were found to be unsound! For example, this happened for call/cc +
polymorphism in SML/NJ (Harper and Lillibridge, 1991); and for mutable records with
existential quantification in Cyclone (Grossman, 2006).

Soundness versus completeness Because the λ-calculus is a Turing-complete program-
ming language, whether a program goes wrong is an undecidable property. (Assuming that
it is possible to go wrong, i.e., the calculus is not the pure λ-calculus, since progress holds
in λ-calculus even for untyped programs, as we have noticed above.) As a consequence, any
sound, decidable type system must be incomplete, that is, it must reject some valid programs.

Type systems can be compared against one another via encodings, so it is sometimes
possible to prove that one system is more expressive than another. However, whether a type
system is “sufficiently expressive in practice” can only be assessed via empirical means. It
can take a lot of intuition and experience to determine whether a type system is, or is not,
expressive enough in practice.

30 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Exercise 12 The subject reduction is often stated as “ reduction preserve typings”. A typing
of a term M is a pair (Γ, τ) such that Γ ⊢ M ∶ τ . Define a relation ⊑ on typings such that
M ⊑M ′ means that all typings of M are also typings of M ′. Restate subject reduction using
the relation ⊑ and proof it. (Solution p. 44)

3.5 Simple extensions

In this section, we introduce simple extensions to the calculus, mainly adding new constants
and new primitives. These extensions will look very similar in one another and we will see
how they can be factored out in the case of System F.

3.5.1 Unit

This is one of the simplest extension. We just introduce a new type unit and a constant
value () of that type.

τ ∶∶= . . . ∣ unit V ∶∶= . . . ∣ () M ∶∶= . . . ∣ ()
Reduction rules are unchanged, since () is already a value. The following typing rule is
introduced:

Unit

Γ ⊢ () ∶ unit
Exercise 13 Check that type soundness is preserved. (Solution p. 44)

Notice that the classification Lemma is no longer degenerate.

3.5.2 Boolean

V ∶∶= . . . ∣ true ∣ false M ∶∶= . . . ∣ true ∣ false ∣ if M thenM elseM

We add only one evaluation context, since only the condition should be reduced:

E ∶∶= . . . ∣ if [] thenM elseM

In particular, if V then E elseM or if V then E elseM are not evaluation contexts, because
M and N must not be both evaluated before the conditional has been resolved. Instead,
once the condition is a value, the conditional can be reduced to the relevant branch and
dropping the other one, by one of the two new reduction rules:

if true thenM1 elseM2 Ð→ M1 if false thenM1 elseM2 Ð→ M2

We also introduction a new type, bool, to classify booleans.

τ ∶∶= . . . ∣ bool

3.5. SIMPLE EXTENSIONS 31

The new typing rules are:

True

Γ ⊢ true ∶ bool

False

Γ ⊢ false ∶ bool

IfThenElse

Γ ⊢M0 ∶ bool Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ τ

Γ ⊢ if M0 thenM1 elseM2 ∶ τ

Exercise 14 Given the new cases for the classification lemma (without proving them).
Check that progress is preserved. (Solution p. 45)

Exercise 15 Describe the extension of the λ-calculus with integers addition, and multipli-
cation. (We do not ask to recheck the meta-theory, just to give the changes to the syntax
and static and dynamic semantics, as we did above for booleans.) (Solution p. 45)

3.5.3 Pairs

To extend the simply-typed λ-calculus with pairs, we extend values, expressions, and evalu-
ation contexts as follows:

i ∶∶= 1 ∣ 2
M ∶∶= . . . ∣ (M, M) ∣ proji M

V ∶∶= . . . ∣ (V, V)
E ∶∶= . . . ∣ ([], M) ∣ (V, []) ∣ proji []

Notice that the components of the pair are evaluated from left-to-right. At this stage, it could
be left unspecified as the language is pure. However, it should be fixed when we later extend
the language with side effects—even if the user should avoid side effects during evaluation
of the components of a pair. This orientation from left-to-right is somewhat arbitrary—but
more intuitive than the opposite order!

We introduce one new reduction rule (in fact, two rules if we inlinied i):

proji (V1, V2)Ð→ Vi

Product types are introduced to classify pairs, together with two new typing rules:

τ ∶∶= . . . ∣ τ × τ
Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1, M2) ∶ τ1 × τ2
Proj

Γ ⊢M ∶ τ1 × τ2

Γ ⊢ proji M ∶ τi

Exercise 16 Check that subject reduction is preserved when adding pairs.
(Solution p. 45)

Exercise 17 Modify the semantics to evaluate pairs from right to left. Would this be sound?
Would this be still call-by-value? (Solution p. 46)

32 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.5.4 Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V ◇ V
V ∶∶= . . . ∣ inji V
E ∶∶= . . . ∣ inji [] ∣ case [] of V ◇ V

A new reduction rule is introduced:

case inji V of V1 ◇ V2 Ð→ Vi V

Sum types are added to classify sums:

τ ∶∶= . . . ∣ τ + τ
Two new typing rules are introduced:

Inj

Γ ⊢M ∶ τi

Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2 Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 ◇ V2 ∶ τ

Notice A property of the simply-typed λ-calculus is lost: expressions do not have unique
types anymore, i.e. the type of an expression is no longer always determined by the ex-
pression. Uniqueness of types may however be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly. Although, the later variant
is more verbose (and so not chosen in practice) it is easier and thus usually the one choosen
for meta-theoretical studies.

Exercise 18 Describe the extension with the option type.

3.5.5 Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can be destructed;

• new evaluation contexts, but just to propagate reduction under the new constructors.

Then, in each case,

3.5. SIMPLE EXTENSIONS 33

• subject reduction is preserved because types of new redexes are preserved by the new
reduction rules.

• progress is preserved because the type system ensures that the new destructors can
only be applied to values such that at least one of the new reduction rules applies.

Moreover, the extensions are independent: they can be added to the λ-calculus alone or
mixed altogether. Indeed, no assumption about other extensions (the “. . .”) has ever been
made, except for the classification lemma which requires, informally, that values of other
shapes have types of other shapes. This is obviously the case in the extensions we have
presented: the unit has the unit type, pairs have product types, and sums have sum types.

In fact, all these extensions could have been presented as several instances of a more
general extension of the λ-calculus with constants, for which type soundness can be estab-
lished uniformly under reasonable assumptions relating the typing rules and reduction rules
for constants. This is the approach that we will follow in the next chapter (§4).

3.5.6 Recursive functions

Programs in the simply-typed λ-calculus always terminate. In particular, fix points of the
λ-calculus cannot be typed. To recover recursion, we may introduce recursive functions as
follows. Values and expressions are extended with a fix-point construct:

V ∶∶= . . . ∣ µf ∶τ. λx.M M ∶∶= . . . ∣ µf ∶τ. λx.M
A new reduction rule is introduced to unfold recursive calls:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V]M
Types are not extended, as we already have function types, i.e. types won’t tell the difference
between a function and a recursive function. A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves as both an assumption and a goal. This is a typical
feature of recursive definitions.

Notice that we have syntactically restricted recursive definitions to functions. We could
allow the definition of recursive values as well. However, the definition of recursive expres-
sions that are not syntactically values is more difficult, as their semantics may be undefined
and their efficient compilation is problematic—no good solution has been found yet.

3.5.7 A derived construct: let-bindings

The let-binding construct “let x ∶ τ = M1 in M2” can be viewed as syntactic sugar for the
β-redex “(λx ∶τ.M2)M1”. The latter form can be type-checked only by a derivation of the

34 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

following shape:

App

Abs
Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete for let-bindings (a derived
rule is a rule that abbreviates a prefix of a derivation tree):

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

In the derived form let x ∶ τ1 = M1 inM2 the type of M1 must be given explicitly, although
by uniqueness of types, it is fully determined by the expression M1 and is thus redundant. If
we replace the derived form by a primitive form let x =M1 inM2 we could use the following
primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

Remark 3 The primitive form is not necessary a better design choice however. Derived
forms are more economical, since they do not extend the core language, and should be used
whenever possible. Minimizing the number of language constructs is at least as important
as avoiding extra type annotations in an explicitly-typed language. Moreover, removing
redundant type annotations is the problem of type reconstruction and we should not bother
too much about it in the explicitly-typed version of the language.

Sequences The sequence “M1;M2” is a derived construct of let-bindings; it can be viewed
as additional syntactic sugar that expands to let x ∶ unit =M1 inM2 where x#M2.

Exercise 19 Recover the typing rule for sequences from this syntactic suggar.

A derived construct: let rec The construct “let rec (f ∶ τ) x = M1 in M2” can also be
viewed as syntactic sugar for “let f = µf ∶ τ. λx.M1 in M2”. The latter can be type-checked
only by a derivation of the form:

LetMono

FixAbs
Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:
LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2

3.6. EXCEPTIONS 35

3.6 Exceptions

Exceptions are a mechanism for changing the normal order of evaluation (usually, but not
necessarily, in case something abnormal occurred).

When an exception is raised, the evaluation does not continue as usual: Shortcutting
normal evaluation rules, the exception is propagated up into the evaluation context until
some handler is found at which the evaluation resumes with the exceptional value received;
if no handler is found, the exception reaches the toplevel and the result of the evaluation is
the exception instead of a value.

Because exceptions may break the flow of evaluation, they cannot be described as just
new constants and primitives.

3.6.1 Semantics

We extend the language with a constructor form to raise an exception and a destructor form
to catch an exception; we also extend the evaluation contexts:

M ∶∶= . . . ∣ raiseM ∣ tryM withM E ∶∶= . . . ∣ raise [] ∣ try [] withM
However, we do not treat raise V as a value, since raise V stops the normal order of evaluation.
Instead, we introduce three reduction rules to propagate and handle exceptions:

Raise

F [raise V]Ð→ raise V
Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→ M V

Rule Raise propagates an exception one level up in the evaluation contexts, but not through
a handler. This is why the rule uses an evaluation context F , which stands for any evaluation
context E other than try [] withM .

The handling of exceptions is then treated by two specific rules: Rule Handle-Raise

passes an exceptional value to its handler; Rule Handle-Val removes the handler around a
value.

Example Assume that K is λx.λy. y and M Ð→ V . We have the following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V by β

Ð→ V

In particular, we do not have the following reduction sequence, since raise V is not a value,
hence the K (raise V) does not reduce to λy. y:

try K (raise V) with λx.x /Ð→ try λy. y with λx.x Ð→ λy. y

36 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.6.2 Typing rules

We assume given a fixed type exn for exceptional values. The new typing rules are:
Raise

Γ ⊢M ∶ exn

Γ ⊢ raiseM ∶ τ

Try

Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ exn→ τ

Γ ⊢ tryM1 withM2 ∶ τ

There are some subtleties: raise turns an expression of type exn into an exception. Consis-
tently, the handler has type exn→ τ , since it receives as argument the value of type exn that
has been raised. The expression raise M can have any type, since the current computation
is aborted. In try M1 with M2, M2 must return a value of the same type as M1, since the
evaluation will proceed with either branch depending on whether the evaluation ofM1 raises
an exception or returns a value.

Type of exceptions What can we choose for exn? Well, any type could do. Choosing
unit, exceptions would carry no information. Choosing int, exceptions would carry an integer
that could be used, e.g., to report some error code. Choosing string, exceptions would carry
a string that could be used to report error messages. Or better, exception could be of a sum
type to allow any of these alternatives to be chosen when the exception is raised.

This is the approach followed by ML. However, since the set of exceptions is not known
in advance, ML declares a new type exn for exceptions and allows adding new cases to the
sum later on as needed. This is called an extensible datatype. (Until recently, the type of
exceptions was the only extensible datatypes in OCaml, but since verion 4.02, the user may
define his own.)

As a counterpart checking for exceptions can’t be exhaustive without a “catch all” branch,
since further cases could always be added later. Notice that although new constructors may
be added, the type of exception is fixed in the whole program, to exn. This is essential for
type soundness, since the handling and raising of exceptions must agree globally on the type
exn of exceptional values as it is not passed around.

Notice that exception constructors must have closed types since the type exn has no
parameter.

Type soundness How do we state type soundness, since exceptions may be uncaught?
By saying that this is the only “exception” to progress:

Theorem 4 (Progress) A well-typed, irreducible term is either a value or an uncaught
exception. if ∅ ⊢M ∶ τ and M /Ð→ , then M is either v or raise v for some value v.

Exercise 20 Do all well-typed closed programs still terminate in the presence of exceptions?
(Solution p. 46)

3.6. EXCEPTIONS 37

3.6.3 Variations

Structured exceptions We have assumed that there is a unique exception, which could
itself be a sum type. This simulates having multiple exceptions where each one is identified
by a tag and may carry values of different types. However, having mutiple exceptions as
primitive would amount to redefining sum types within the mechanism of exceptions; this
would just bringing more complications without any real gain.

On uncaught exceptions Usage of exceptions may vary a lot in programs: some excep-
tions are used for fatal errors and abort the program while others may be used during normal
computation, e.g. for quickly returning from a deep recursive call. However, an uncaught
exception is often a programming error—even exceptions raised to abort the whole program
must usually be caught for error reporting or cleaning up before exiting. It may be surprising
that uncaught exceptions are not considered as static errors that should be detected by the
type system.

Unfortunately, detecting uncaught exceptions require more expressive type systems and
the existing solutions are often complicated for some limited benefit. This explains why they
are not often used in practice.

The complication comes from the treatment of functions, which have some latent effect
of possibly raising or catching an exception when applied. To be precise, the analysis must
therefore enrich types of functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions are checked in the language Java, but they must be declared. See
Leroy and Pessaux (2000) for an analysis of uncaught exceptions in ML.

Small variation Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel. The semantics could avoid the step-by-step propagation
of exceptions by handling exceptions deeply inside terms. It suffices to replace the three
reduction rules by:

Handle-Val’

try V withM Ð→ V

Handle-Raise’

try F [raise V] withM Ð→ M V

where F is sequence of F -contexts, i.e. a handler-free evaluation context of arbitrary depth.
In this case, uncaught exceptions are of the form F [raise V]. This semantics is perhaps more
intuitive—but it is equivalent.

Exceptions with bindings Benton and Kennedy (2001) have argued for merging let-
bindings with exception handling into a unique form let x =M1 withM2 inM3. The expres-
sion M1 is evaluated first and, if it returns a value, it is substituted for x in M3, as if we
had evaluated let x = M1 in M3; otherwise, i.e., if it raises an exception raise V , then the
exception is handled by M2, as if we had evaluated tryM1 withM2.

38 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

This combined form captures a common pattern in programming that has no elegant
workaround:

let rec read config in path filename (dir :: dirs) →
let fd = open in (Filename.concat dir filename)
with Sys error → read config filename dirs in
read config from fd fd

This form is also better suited for program transformations, as argued by Benton and Kennedy
(2001).

The separate let-binding and exception handling constructs are obviously particular
cases of the new combined construct. Conversely, encoding the new construct let x =
M1 with M2 in M3 with let and try is not so easy. In particular, it is not equivalent
to: try (let x = M1 in M3) with M2! In this expression, M3 could raise an exception that
would then be handled by M2, which is not intended.

There are several encodings in the combined form into simple exceptions, but none of
them is very readable, and all of them introduce some source of inefficiency. For instance,
one may use a sum datatype to tell whether M1 raised an exception:

case (try Val M1 with λy.Exc y) of (Val∶ λx.M3 ◇ Exc∶M2)
Alternatively, one may freeze the continuation M3 while handling the exception:

(try let x =M1 in λ().M3 with λy.λ().M2 y) ()
The extra allocation for the sum or the closure for the continuation are sources of inefficiency
which the primitive combined form can easily avoid.

Exercise 21 Describes the dynamic semantics of the let x = M1 with M2 in M3 construct,
formally. (Solution p. 46)

A similar construct has been added in OCaml, version 4.02, allowing exceptions to be
combined with pattern matching. The previous example can now be written:

let rec read config in path filename (dir :: dirs) →
match open in (Filename.concat dir filename) with
| fd → read config from fd fd
| exception Sys error → read config filename dirs

Exercise 22 (try finalize) A finalizer is some code that should be run in case of both
normal and exceptional evaluation. Write a function finalize that takes four arguments f ,
x, g, and y and returns the application f x with finalizing code g y. i.e. g y should be called
before returning the result of the application of f to x whether it exercutes normally or raises
an exception. (You may try first without using binding mixed with exceptions and then using
it.) this construct.) (Solution p. 46)

3.7. REFERENCES 39

3.7 References

In the ML vocabulary, a reference cell, also called a reference, is a dynamically allocated
block of memory that holds a value and whose content can change over time. A reference
can be allocated and initialized (ref), written (:=), and read (!). Expressions and evaluation
contexts are extended as follows:

M ∶∶= . . . ∣ ref M ∣M ∶=M ∣ !M E ∶∶= . . . ∣ ref [] ∣ [] ∶=M ∣ V ∶= [] ∣ ! []
A reference allocation expression is not a value. Otherwise, by β-reduction, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)
which intuitively should yield 1, would reduce to:

(ref 3) ∶= 1; ! (ref 3)
which intuitively yields 3. How shall we solve this problem? The expression (ref 3) should
first reduce to a value: the address of a fresh cell. That is, not just the content of a cell
matters, but also its address, since writing through one copy of the address should not affect
a future read via another copy.

3.7.1 Language definition

Formally, we extend the simply-typed λ-calculus calculus with memory locations :

M ∶∶= . . . ∣ ℓ V ∶∶= f . . . ∣ ℓ
A memory location is just an atom (that is, a name). The value found at a location ℓ is
obtained by indirection through a memory (or store). A memory µ is a finite mapping
of locations to closed values. A configuration is a pair M / µ of a term and a store. The
operational semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the locations that appear in
M or in the image of µ are in the domain of µ. Initially, the store is empty, and the term
contains no locations, because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

If we wish to start reduction with a non-empty store, we must check that the initial
configuration satisfies the no-dangling-pointers invariant. Because the semantics now reduces
configurations, all existing reduction rules are augmented with a store, which they do not
touch:

(λx ∶τ.M) V / µÐ→ [x↦ V]M / µ
E[M] / µÐ→ E[M ′] / µ′ if M / µÐ→ M ′ / µ′

40 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Three new reduction rules are added:

ref V / µÐ→ ℓ / µ[ℓ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= V / µÐ→ () / µ[ℓ↦ V]

! ℓ / µÐ→ µ(ℓ) / µ
In the last two rules, the no-dangling-pointers invariant guarantees ℓ ∈ dom(µ).

The type system is modified as follows. Types are extended:

τ ∶∶= . . . ∣ ref τ
Three new typing rules are introduced:

Ref

Γ ⊢M ∶ τ

Γ ⊢ ref M ∶ ref τ

Set

Γ ⊢M1 ∶ ref τ Γ ⊢M2 ∶ τ

Γ ⊢M1 ∶=M2 ∶ unit

Get

Γ ⊢M ∶ ref τ

Γ ⊢ !M ∶ τ

Is that all we need? The preceding setup is enough to typecheck source terms, but does not
allow stating or proving type soundness. Indeed, we have not yet answered these questions:
What is the type of a memory location ℓ? When is a configuration M / µ well-typed? A
location ℓ has type ref τ when it points to some value of type τ .

Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ
µ,Γ ⊢ ℓ ∶ ref τ

Then, typing judgments would have the form µ,Γ ⊢ M ∶ τ . typing judgments would no
longer be inductively defined (or else, every cyclic structure would be ill-typed). Instead,
co-induction would be required. Moreover, if the value µ(ℓ) happens to admit two distinct
types1 τ1 and τ2, then ℓ admits types ref τ1 and ref τ2. So, one can write at type τ1 and read
at type τ2: this rule is unsound!

A simpler, and sound, approach is to fix the type of a memory location when it is first
allocated. To do so, we use a store typing Σ, a finite mapping of locations to types. Then,
a location ℓ has type ref τ “when the store typing Σ says so.”

Loc

Σ,Γ ⊢ ℓ ∶ ref Σ(ℓ)
Typing judgments now have the form Σ,Γ ⊢M ∶ τ . The following typing rules for stores and
configurations ensure that the store typing predicts appropriate types

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

Σ,∅ ⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ
Remarks:

1This could happen, for example, in the presence of sum types (described in §3.5.4), when expressions do
not have unique types any longer.

3.7. REFERENCES 41

• This is an inductive definition. The store typing Σ serves both as an assumption (Loc)
and a goal (Store). Cyclic stores are not a problem.

• The store typing is used only in the definition of a “well-typed configuration” and in the
typechecking of locations. Thus, it is not needed for type-checking source programs,
since the store is empty and the empty-store configuration is always well-typed.

3.7.2 Type soundness

The type soundness statements are slightly modified in the presence of the store, since we
now reduce configurations:

Theorem 5 (Subject reduction) Reduction preserves types: if M / µ Ð→ M ′ / µ′ and
⊢M / µ ∶ τ , then ⊢M ′ / µ′ ∶ τ .
Theorem 6 (Progress) If M / µ is a well-typed, irreducible configuration, then M is a
value.

Inlining Config, subject reduction can also be restated as:

Theorem 7 (Subject reduction, expanded) If M / µ Ð→ M ′ / µ′ and Σ,∅ ⊢ M ∶ τ and
⊢ µ ∶ Σ, then there exists Σ′ such that Σ′,∅ ⊢M ′ ∶ τ and ⊢ µ′ ∶ Σ′.

This statement is correct, but too weak—its proof by induction will fail in one case. Let us
look at the case of reduction under a context. The hypotheses are:

M / µÐ→ M ′ / µ′ and Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ

Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)

Then, by the induction hypothesis, there exists Σ′ such that:

Σ′,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′

Here, we are stuck. The context E is well-typed under Σ, but the term M ′ is well-typed
under Σ′, so we cannot combine them. We are missing a key property: the store typing
grows with time. That is, although new memory locations can be allocated, the type of an
existing location does not change. This is formalized by strengthening the subject reduction
statement:

Theorem 8 (Subject reduction, strengthened) If M / µ Ð→ M ′ / µ′ and Σ,∅ ⊢ M ∶ τ

and ⊢ µ ∶ Σ, then there exists Σ′ such that Σ′,∅ ⊢M ′ ∶ τ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′.

At each reduction step, the new store typing Σ′ extends the previous store typing Σ. Growing
the store typing preserves well-typedness (a generalization of the weakening lemma):

42 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Lemma 11 (Stability under memory allocation) If Σ ⊆ Σ′ and Σ,Γ ⊢ M ∶ τ , then
Σ′,Γ ⊢M ∶ τ .

This allows establishing a strengthened version of compositionality:

Lemma 12 (Compositionality) Assume Σ,∅ ⊢ E[M] ∶ τ . Then, there exists τ ′ such
that:

• Σ,∅ ⊢M ∶ τ ′,

• for every Σ′ and M ′, if Σ ⊆ Σ′ and Σ′,∅ ⊢M ′ ∶ τ ′, then Σ′,∅ ⊢ E[M ′] ∶ τ .
Let us now look again at the case of reduction under a context. The hypotheses are:

Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ and M / µÐ→ M ′ / µ′
By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′

∀Σ′,∀M ′, (Σ ⊆ Σ′)⇒ (Σ′,∅ ⊢M ′ ∶ τ ′)⇒ (Σ′,∅ ⊢ E[M ′] ∶ τ ′)
By the induction hypothesis, there exists Σ′ such that:

Σ′,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′

The goal immediately follows.

Exercise 23 Prove subject reduction and progress for simply-typed λ-calculus equipped with
unit, pairs, sums, recursive functions, exceptions, and references.

3.7.3 Tracing effects with a monad

Haskell adopts a different route and chooses to distinguish effectful computations (Peyton Jones and Wadler,
1993; Peyton Jones, 2009).

return ∶ α → IO α

bind ∶ IO α→ (α → IO β)→ IO β

main ∶ IO ()
newIORef ∶ α → IO (IORef α)
readIORef ∶ IORef α → IO α

writeIORef ∶ IORef α → α → IO ()
Haskell offers many monads other than IO. In particular, the ST monad offers references
whose lifetime is statically controlled.

3.7. REFERENCES 43

3.7.4 Memory deallocation

In ML, memory deallocation is implicit. It must be performed by the runtime system,
possibly with the cooperation of the compiler. The most common technique is garbage
collection. A more ambitious technique, implemented in the ML Kit, is compile-time region
analysis (Tofte et al., 2004).

References in ML are easy to typecheck, thanks to the no-dangling-pointers property of
the semantics. Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about aliasing and ownership.
See Charguéraud and Pottier (2008) for citations. See Pottier and Protzenko (2013) for the
language Mezzo designed especially for the explicit control of resources. The meta-theory of
such languages may become quite intricate Pottier (2013).

Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce (2002). For more
details about syntactic type soundness proofs, see Wright and Felleisen (1994).

44 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

3.8 Ommitted proofs and answers to exercises

Solution of Exercise 8

See the statement of bisimilation for System-F in §4.4.5, in particular lemmas 21 and ??.

Solution of Exercise 10

Case M is M1 M2: By inversion of the judgment Γ ⊢ M ∶ τ , we must have Γ ⊢ M1 ∶ τ2 → τ

and Γ ⊢ M2 ∶ τ2 for some τ2. By induction hypothesis, we have Γ, y ∶ τ ′ ⊢ M1 ∶ τ2 → τ and
Γ, y ∶ τ ′ ⊢M2 ∶ τ2, respectively. We conclude by an application of Rule App.

Solution of Exercise 11

As a hint, the problem in the case for abstraction.

Solution of Exercise 12

M ⊑M ′ ⇐⇒ ∀Γ,∀τ, (Γ ⊢M ∶ τ Ô⇒ Γ ⊢M ′
∶ τ)

Subject reduction can then be stated as (Ð→) ⊆ (⊏). We proof it as follows:

Proof: Since (Ð→) is the smallest relation that satisfies rules Beta and Context, it suffices
to show that ⊑ also satisfies rules Beta and Context.

Case Beta: Assume that Γ ⊢ (λx ∶ τ0.M) V ∶ τ Then Γ ⊢ [x ↦ V]M ∶ τ follows by the
substitution Lemma.

Case Context: Asume M ⊑M ′. Let us show E[M] ⊑ E[M ′]. Asume Γ ⊢ E[M] ∶ τ . Then
Γ ⊢ E[M ′] ∶ τ follows by compositinality.

Solution of Exercise 13

Formally, we must revisit all the proofs. Auxiliary lemmas such as permutation and weak-
ening still hold without any problem: in the proof by structural induction, there is a new
case for unit expressions, which is proved by an application of the same rule, Unit but with
possibly a different context Γ.

In the proof of subject reduction, nothing need to be changed.
In the proof of progress, we have a new case for closed expressions, i.e. (), which happens

to be a value, so it trivially satisfied the goal. Notice that although we do not need to
invoke the classification for the new case of the () expression, we still need to recheck the

3.8. OMMITTED PROOFS AND ANSWERS TO EXERCISES 45

classification lemma, which is used in the case for application. The proof of the classification
lemma is achieved by filling in the dots with a new case for a value of type unit that must
be (), so that the classification can still be inverted.

Solution of Exercise 14

The new case for the classification Lemma is that a value of type bool must be a boolean,
i.e. either true or false (5).

For the proof of progress, we assume that ∅ ⊢ M ∶ τ (6) and show that M is either a
value or reducible (4??) by structural induction on M . We have two new cases:

Case M is true or false: In both cases, M is a value.
Case M is if M0 then M1 else M2.: By inversion of typing rules applied to (6), we have

∅ ⊢ M0 ∶ bool, ∅ ⊢ M1 ∶ τ , and ∅ ⊢ M2 ∶ τ . If M0 is a value, then, since it is of type bool, it
must be true or false by (5), and in both cases, M reduces by either one of the two new rules.
Otherwise, by induction hypothesis, M0 myst be reducible, and so is M by rule Context

since if [] thenM1 elseM2 is an evaluation context. This ends the proof.

Solution of Exercise 15

This is very similar to the case of boolean, except that we introduce a denumerable collection
of interger constants (n̄)n∈IN .

V ∶∶= . . . ∣ n̄ M ∶∶= . . . ∣ n ∣M +M ∣M ×M

We add only evaluation contexts:

E ∶∶= . . . ∣ [] +M ∣ V + [] ∣ [] ∗M ∣ V ∗ []
two reduction rules are:

n̄ + m̄Ð→ n +m n̄ ∗ m̄Ð→ n ∗m

and the following typing rules:

Int

Γ ⊢ n̄ ∶ int

Plus

Γ ⊢M1 ∶ int Γ ⊢M2 ∶ int

Γ ⊢M1 +M2 ∶ int

Times

Γ ⊢M1 ∶ int Γ ⊢M2 ∶ int

Γ ⊢M1 ×M2 ∶ int

Solution of Exercise 16

The proof of subject reduction is by cases on the reduction rule. We have two new reduction
rules for each the projection, which can be factorized as follows:

proji (V1, V2)Ð→

46 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

We assume that Γ ⊢ proji (V1, V2) ∶ τ (2??). By inversion of typing of judgment, we know
that the derivation of (2) ends with:

Pair
Γ ⊢ V1 ∶ τ1 (1) Γ ⊢ V2 ∶ τ2 (3)

Proj
Γ ⊢ (V1, V2) ∶ τ1 × τ2

(2)
with τ of the form τ1 → τ2. We must show that Γ ⊢ V ∶i τi which is either one of the
hypotheses (1) or (3).

Solution of Exercise 17

Just exchangeM and V in the definition of evaluation contexts. This does not break sounness
of course. The semantics is still call-by-value.

Solution of Exercise 20

No, because exceptions allow to hide the type of values that they communicate, and one
may create a recursion without noticing it from types.

For instance, take the type exn equal to τ → τ where τ is unit → unit. You may then
define the inverse coercion functions between types τ → τ and τ :

fold = λf ∶τ → τ. λx ∶unit. let z = raise f in ()
unfold = λf ∶τ. try let z = f () in λx ∶τ. x with λy ∶τ → τ. y

Therefore, we may define the term ω as λx. (unfold x) x and the term ω (fold ω) whose
reduction does not terminate.

Solution of Exercise 21

We need a new evaluation context:

E ∶∶= . . . ∣ let x = E withM2 inM3

and the following reduction rules:
Raise

F [raise V]Ð→ raise V
Handle-Val

let x = V withM2 inM3 Ð→ [x ↦ V]M3

Handle-Raise

let x = raise V withM2 inM3 Ð→ M2 V

Solution of Exercise 22

3.8. OMMITTED PROOFS AND ANSWERS TO EXERCISES 47

let finalize f x g y =
let result = try f x with exn → g y; raise exn in

g y; result

This may also be written, more concisely:

let finalize f x g y =
match f x with

| result → g y; result
| exception exn → g y; raise exn

An alternative that does not duplicate the finalizing code and could be inlined is:

type ’a result = Val of ’a | Exc of exn
let finalize f x g y =
let result = try Val (f x) with exn → Exc exn in

g y;
match result with Val x → x | Exc exn → raise exn

As a counterpart, this allocated an intermediate result.

48 CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Chapter 4

Polymorphism and System F

4.1 Polymorphism

Polymorphism is the ability for a term to simultaneously admit several distinct types. Poly-
morphism is indispensable (Reynolds, 1974): if a list-sorting function is independent of the
type of the elements, then it should be directly applicable to lists of integers, lists of booleans,
etc.. In short, it should have polymorphic type:

∀α. (α → α → bool)→ list α→ list α

which can then be instantiated to any of the monomorphic types:

(int → int→ bool)→ list int→ list int (bool→ bool→ bool)→ list bool→ list bool . . .

In the absence of polymorphism, the only ways of achieving this effect are either to manually
duplicate the list-sorting function at every type (no-no!); or to use subtyping and claim that
the function sorts lists of values of any type:

(⊺→ ⊺→ bool)→ list ⊺→ list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.) This leads to loss of
information and subsequently requires introducing an unsafe downcast operation. This was
the approach followed in Java before generics were introduced in 1.5.

Moreover, polymorphism seems to come almost for free, as it is already implicitly present
in simply-typed λ-calculus. Indeed, all types of the compose functions are

(τ1 → τ2)→ (τ0 → τ1)→ τ0 → τ2

among which is

(α1 → α2)→ (α0 → α1)→ α0 → α2

which is principal, as all other types can be recovered by instantiation of the variables. By

49

50 CHAPTER 4. POLYMORPHISM AND SYSTEM F

saying that this term admits the polymorphic type

∀α1α2. (α1 → α2)→ (α0 → α1)→ α0 → α2

we make polymorphism internal to the type system.
Polymorphism is a step on the road towards type abstraction. Intuitively, if a function

that sorts a list has polymorphic type

∀α. (α → α → bool)→ list α→ list α

then it knows nothing about α—it is parametric in α—so it must manipulate the list elements
abstractly: it can copy them around, pass them as arguments to the comparison function,
but it cannot directly inspect their structure. In short, within the code of the list sorting
function, the variable α is an abstract type.

Parametricity In the presence of polymorphism (and in the absence of effects), a type can
reveal a lot of information about the terms that inhabit it. For instance, the polymorphic
type ∀α.α → α has only one inhabitant, namely the identity. Similarly, the type of the list
sorting function

∀α. (α → α → bool)→ list α→ list α

reveals a “free theorem” about its behavior! Basically, sorting commutes with (map f),
provided f is order preserving. Note that there are many inhabitants of this type (e.g. a
function that sorts in reverse order, or a function that removes duplicates) but they all satisfy
this free theorem. This phenomenon was studied by Reynolds 1983 and by Wadler 1989;
2007, among others. An account based on an operational semantics is offered by Pitts 2000.

Ad hoc versus parametric polymorphism Let us begin a short digression. The term
“polymorphism” dates back to a 1967 paper by Strachey (2000), where ad hoc polymorphism
and parametric polymorphism were distinguished. There are two different (and sometimes
incompatible) ways of defining this distinction:

• With parametric polymorphism, a term can admit several types, all of which are in-
stances of a common polymorphic type: int→ int, bool→ bool, . . . and ∀α.α→ α.

With ad hoc polymorphism, a term can admit a collection of unrelated types: int →
int→ int, float→ float→ float, . . . but not ∀α.α → α → α.

• With parametric polymorphism, untyped programs have a well-defined semantics. (Think
of the identity function.) Types are used only to rule out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics: the meaning
of a term can depend upon its type (e.g. 2+2), or, even worse, upon its type derivation
(e.g. λx. show (read x)).

4.2. POLYMORPHIC λ-CALCULUS 51

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢M τ ′ ∶ [α↦ τ ′]τ
Figure 4.1: Typing rules for System F.

By the first definition, Haskell’s type classes (Hudak et al., 2007) are a form of (bounded)
parametric polymorphism: terms have principal (qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc polymorphism: untyped
programs do not have a semantics. This ends the digression.

4.2 Polymorphic λ-calculus

The System F, (also known as: the polymorphic λ-calculus; the second-order λ-calculus; F2)
was independently defined by Girard (1972) and Reynolds (1974).

4.2.1 Types and typing rules

Types of the simply-typed λ-calculus are extended with polymorphic types:

τ ∶∶= α ∣ τ ⇒ τ ∣ ∀α.τ
How are the syntax and semantics of terms extended? There are several variants, depending
on whether one adopts an implicitly-typed or explicitly-typed presentation of terms and a
type-passing or a type-erasing semantics.

In the explicitly-typed variant (Reynolds, 1974), there are term-level constructs for intro-
ducing and eliminating the universal quantifier (we recall the previous rules of simply-typed
λ-calculus in gray):

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

We write F for the set of explicitly-typed terms.

Type variables are explicitly bound and appear in type environments:

Γ ∶∶= ∅ ∣ Γ, x ∶ τ ∣ Γ, α

52 CHAPTER 4. POLYMORPHISM AND SYSTEM F

We extend our previous convention to form environments: Γ, α extends Γ with a new variable
α, provided α # Γ, i.e. α is neither in the domain nor in the image of Γ. We also require that
environments be closed with respect to type variables. That is, we require ftv(T) ⊆ dom(Γ)
to form Γ, x ∶ τ . This additional requirement is a matter of convenience. It allows fewer
judgments, since judgments with open contexts are not allowed. However, open contexts
can always be closed by adding a prefix composed of a sequence of its free type variables.
Hence, a loose definition of contexts (without this requirement) can also be used, and the
differences would be insignificant.

Well-formedness of environments and types may be defined (recursively) by inference rules
(Rule WfEnvVar depends on well-formedness of types while Rule WfTypeVar depends on
well-formedness of environments):

WfEnvEmpty

⊢ ∅

WfEnvVar

⊢ Γ x ∉ dom(Γ) Γ ⊢ τ

⊢ Γ, x ∶ τ

WfEnvTvar

⊢ Γ α ∉ dom(Γ)
⊢ Γ, α

WfTypeVar

⊢ Γ α ∈ Γ

Γ ⊢ α

WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

WfTypeForall

Γ, α ⊢ τ

Γ ⊢ ∀α. τ

There is a choice whether well-formedness of environments should be made explicit or left
implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to every rule where
the environment or some type that appears in the conclusion did not appear in any premise.
Namely:

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Explicit well-formedness is more precise and better suited for mechanized proofs. It is also
recommended for (more) complicated type systems. However, it is a bit verbose and dis-
tracting for System F. The two styles are really equivalent. Formally, we choose to leave
well-formedness implicit. However, for documentation purposes, we will indicate the well-
formedness premises in the definition of typing rules.

4.2.2 Semantics

We need the following reduction for type abstraction:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)
Then, there is a choice regarding whether type abstraction should stop the evaluation, or let
reduction proceed.

4.2. POLYMORPHIC λ-CALCULUS 53

Type-passing semantics In most presentations of System F, type abstraction blocks the
evaluation and is defined as follows:

E ∶∶= []M ∣ V [] ∣ [] τ V ∶∶= λx ∶τ.M ∣ Λα.M
This is a type-passing semantics. Indeed, Λα.((λy ∶ α. y) V) is a value while its type erasure
is (λy. y) ⌈V ⌉ is not—and can be further reduced.

The type-passing semantics is perhaps more natural in a language with a call-by-value
semantics since type abstraction stops evaluation exactly as value abstraction.

However, it does not fit our view that the untyped semantics should pre-exist and that a
type system is only a predicate that selects a subset of the well-behaved terms, since type
abstraction alters the semantics.

In particular, it introduces a discontinuity between monomorphic and polymorphic types.
Assume for example that f is list flattening of type ∀α. list (list α) → list α and ○ is
the composition function Λα1.Λα0.Λα2.λf ∶ α0 → α2. λg ∶ α1 → α0. λx ∶ α1. f g x; then,
the monomorphic function (f int) (○ int (list int) (list (list int))) (f (list int)) reduces to
λx ∶ int. f int (f (list int) x), while its more general polymorphic version

Λα.(f α) (○ α (list (list α)) (list (list α))) (f (list α))
is irreducible. This discontinuity is disturbing especially in an implicitly-typed language such
as ML, where type inference infers the most general version, which behaves less efficiently
than its less general monomorphic variant.

Furthermore, since the type-passing semantics requires both values and types to exist at
runtime, it can lead to a duplication of machinery. Compare type-preserving closure con-
version in type-passing (Minamide et al., 1996) and in type-erasing (Morrisett et al., 1999)
styles.

Type-erasing semantics To recover a type-erasing semantics (also called an untyped
semantics), we need to allow evaluation under type abstraction:

E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα.[] V ∶∶= λx ∶τ.M ∣ Λα.V
Accordingly, we only need a weaker version of ι-reduction:

(Λα.V) τ Ð→ [α ↦ τ]V (ιv)
We now have:

Λα.(λy ∶ α. y) V Ð→ Λα.V

We will show below that this defines a type-erasing semantics, indeed.
As an apparent drawback, the type-erasing semantics does not allow a typecase; however,

typecase can be simulated by viewing runtime type descriptions as values (Crary et al.,
2002).

On the opposite the type-erasing semantics, has several advantages: it does not alter the
semantics of untyped terms; it coincides with the semantics of ML—and, more generally,

54 CHAPTER 4. POLYMORPHISM AND SYSTEM F

with the semantics of most programming languages. It also exhibits difficulties when adding
side effects while the type-passing semantics keeps them hidden.

For all these reasons, we prefer the type-erasing semantics, which we chose in the rest of
this course. Notice that we allow evaluation under a type abstraction as a consequence of
choosing a type-erasing semantics—and not the converse.

The two views may be reconciled by restricting type abstraction to value-forms (which
include values and variables), that is, by only allowing value-forms Λα.M when M is itself
a value-form. Under this restriction, the type-passing and type-erasing semantics coincide.
Indeed, closed type abstractions are then always type abstraction of values, and evaluation
under type abstraction even if allowed may never be used. We will choose this restriction as
a way to preserve type soundness when adding side effects to the language.

Implicitly-typed v.s. explicitly-typed variants We presented the explicitly-typed vari-
ant of System F. This is simpler for the meta-theoretical study while the implicitly typed
version, and in particular its interesting ML subset, may be more convenient to use in prac-
tice. Fortunately, most meta-theoretical properties of the explicitly-typed version can then
be transferred to the implicitly-typed version—so that proofs do not have to be redone in a
different setting when putting theory into practice!

4.2.3 Extended System F with datatypes

System F is quite expressive: it enables the encoding of data structures. For instance, the
Church encoding of pairs in the untyped λ-calculus is actually well-typed in System F:

Pair
△
== Λα1.Λα2.λx1 ∶α1. λx2 ∶α2.Λβ.λy ∶α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)⌈Pair⌉ △
== λx1. λx2. λy. y x1 x2⌈proji⌉ △
== λy. y (λx1. λx2. xi)

Notice the use of first-class polymorphism in the definition of proji. This is general in the
encoding of datatypes.

Natural numbers, List, etc. can also be encoded.

Unit, Pairs, Sums, etc. can also be added to System F as primitives. We can then proceed
as for simply-typed λ-calculus. However, we may also take advantage of the expressive
type system of System F to deal with such extensions in a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension. We may instead add
one typing rule for constants and parametrize the definition by an initial typing environment
∆ for constants. This allows sharing the meta-theoretical developments between the different
extensions.

4.2. POLYMORPHIC λ-CALCULUS 55

Adding primitive pairs Let us first illustrate datatypes on an example, adding primitive
pairs to System F. We will then generalize the presentation to parametrize the extension as
suggested above.

We introduce a new type constructor (⋅ × ⋅) of arity 2 to classify pairs:

τ ∶∶= α ∣ τ → τ ∣ ∀α. τ ∣ τ × τ
Expressions are extended with a constructor (⋅, ⋅) and two destructors proj1 and proj2 with
the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 ×α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

that forms the initial typing environment ∆. We need not add any new typing rule, but
instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and destructors.
Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V∣ proji ∣ proji τ ∣ proji τ τ
We add the two following reduction rules:

proji τ1 τ2 (Pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δpair)
Notice that, for well-typed programs, τi and τ ′i will always be equal, but the reduction will
not check this at runtime. This could be enforced by replacing δ with the following rule:

proji τ1 τ2 (Pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)
The two semantics coincide on well-typed terms, but differ on ill-typed terms where δ′pair may
block when rule δpair would progress, ignoring type errors. Interestingly, using δ′pair simplifies
the proof obligation in subject reduction but introduces a more stronger proof obligation in
progress.

Notice that since pairs are defined by applying the pair constructor to two arguments,
the programmer must first specify the types of the components although those could be
uniquely determined from the arguments of the pair. Even though this is a bit more ver-
bose that strictly necessary, it should not be considered as a problem in an explicitly-typed
presentation, as removing redundant type annotations is the task of type reconstruction.

A general approach Adding other datatypes such as booleans, integers, strings, lists,
trees, etc. and operations on them can be done similarly. However, all these extensions
are quite similar. Hence, we propose a general approach for adding constants to System F,
which can then be instantiated independently—or simultaneously—to each of the previous
cases: provided the dynamic semantics of constraints agree with their static semantics (some
requirements must be satisfied in order to instantiate the general approach), the soundness

56 CHAPTER 4. POLYMORPHISM AND SYSTEM F

of the extension then automatically follows.

We assume given a collection of constants, written with letter c, each of which given
with a fix arity written arity (c). Constants must actually be partitioned into constructors
(written C) and destructors (written d); moreover, we disallow nullary destructors1.

Expressions are extended with constant expressions.

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ ∣ c
The difference between constructors and destructors lies in the fact that full application of
constructors are values while full applications of destructors are not—they must be reduced.
Partial applications of constants are always values. Hence, the following definition of values:

V ∶∶= λx ∶τ.M ∣ Λα.V ∣ C τ1 . . . τi V1 . . . Vn ∣ d τ1 . . . τj V1 . . . Vk
where n is less or equal to the arity of C and k is strictly less than the arity of d. The
semantics of constants is given by providing, for each destructor d a relation δd defined by a
set of δ-rules of the form:

d τ1 . . . τj V1 . . . Vk Ð→M (δd)
We assume given a collection of type constructors G, with their arity, written arity (G).

Types are extended as follows.

τ ∶∶= . . . ∣ G τ1 . . . τn
We assume that types respect the arities of type constructors, i.e. n is equal to arity (G) in
the expressions G τ1 . . . τn.

The typing of constants is given by the initial typing environment ∆. which binds each
constant c of arity n to a type of the form ∀α1. . . .∀αj. τ1 → . . . τn → τ . When c is a
constructor C, we require that the top most type constructor of τ not be an arrow, but
some type constructor G. We then say that C is a G-constructor. We require that ∆ be
well-formed (in the empty environment, hence closed). Constants are typed as variables,
except that their types are looked up in ∆:

Cst

c ∶ τ ∈∆ ⊢ Γ

Γ ⊢ c ∶ τ

Taking typing constraints into account, we may give a more restrictive characterization of
well-typed values: in the presentation above i is at most the number of quantified variables in
the type scheme of the constructor, and whenever n is non zero, i is equal to this number. And
similarly for destructors. For instance, if C is a constructor (respectively, d is a destructor)
of arity q and of type ∀α1 . . . αp. τ

′
1 → . . . τ ′q → τ , then values will contain:

C ∣ C τ1 ∣ . . . C τ1 . . . τp ∣ C τ1 . . . τp V1 ∣ . . . C τ1 . . . τp V1 . . . Vq

1Nullary polymorphic destructors introduce pathological cases to maintain the semantics type-erasing—
for little benefit in return.

4.2. POLYMORPHIC λ-CALCULUS 57

and
c ∣ c τ1 ∣ . . . c τ1 . . . τp ∣ c τ1 . . . τp V1 ∣ . . . c τ1 . . . τp V1 . . . Vq−1

Of course, we need assumptions to relate typing and reduction of constants.

Definition 1 δ-reduction is sound if it preserves typings and ensures progress for primitives.
That is

• If α⃗ ⊢M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢M2 ∶ τ .

• If α⃗ ⊢ M1 ∶ τ and M1 is of the form d τ1 . . . τk V1 . . . Vn where n = arity (d), then there
exists M2 such that M1 Ð→δ M2.

Intuitively, progress for constants means that the domain of destructors is at least as large
as specified by their type in ∆.

We will show below that soundness of δ-rules is sufficient to ensure soundness of the
extension.

For example, to add a unit constant, we only introduce a type constant unit and a
constructor () of arity 0 of type unit. As no primitive is added, δ-reduction is obviously
sound. Hence, the extension of System F with unit is sound.

Exercise 24 (Pairs as constants) Reformulate the extension of System F with pairs as
constants. Check soundness of the δ-rules. (Solution p. 84)

Exercise 25 (Conditional) Give a presentation of boolean with a conditional as constants.
Is this sound? Isn’t there something wrong? Would you know how to fix it?

(Solution p. 84)

Exercise 26 (List) 1) Formulate the extension of System F with lists as constants. 2)
Check that this extension is sound. (Solution p. 84)

Extending System F with a fixpoint The call-by-value fixpoint combinator Z (see §2)
is not typable in System F—indeed this would allow program to loop while all programs
terminate in System F.

However, we may introduce a fixpoint as a binary primitive with the following typing
assumption:

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α→ β ∈ ∆

and the reduction rule:
fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the soundness of this extension: Progress is by construction,
since fix does not destruct values. As for subject reduction, assume Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ .
By inversion of typing rules, τ must be equal to τ2, V1 and V2 must be of respective types(τ1 → τ2) → τ1 → τ2 and τ1 in the typing context Γ. We may then easily build a derivation
of the judgment Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ .

58 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Exercise 27 (Recursion with datatypes) In ML a one-constructor datatype can be used
to emulate recursive types, namely a type Any such that a value of type any → any can be
converted to a value of type any, and conversely. Give the definition in ML. Describe the
extension as the addition of new constants. Verify the soundness of δ-rules.

Use this extension to define a call-by-value fixpoint operator of type

((any → any)→ any → any)→ any→ any

in ML without using let rec or implicit recursive types (the −rectypes option). (See Exercise 7
for a definition of the fix-point in the λ-calculus or in ML with recursive types.)

(Solution p. 85)

4.3 Type soundness

We proof type soundness for System F with constants, assuming the soundness of δ-reduction.
The structure of the proof is similar to the case of simply-typed λ-calculus and follows

from subject reduction and progress. Subject reduction uses the following auxiliary lemmas:
inversion of typing rules (Lemma 13), permutation (Lemma 14), weakening (Lemma 15),
expression substitution (Lemma 16), type substitution (Lemma 17), and compositionality of
typing (Lemma 18).

Lemma 13 (Inversion of typing rules) Assume Γ ⊢M ∶ τ .

• If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
• If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and Γ, x ∶ τ0 ⊢M1 ∶ τ1.

• If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

• If M is a constant c, then c ∈ dom(∆) and ∆(x) = τ .
• If M is M1 τ2 then τ is of the form [α ↦ τ2]τ1 and Γ ⊢M1 ∶ ∀α. τ1.

• If M is Λα.M1, then τ is of the form ∀α. τ1 and Γ, α ⊢M1 ∶ τ1.

Lemma 14 (Permutation) If Γ and Γ′ are two well-formed permutations, then Γ ⊢M ∶ τ

iff Γ ⊢M ∶ τ .

Proof: Formally, the proof is by induction on M . The key is the observation that when Γ
and Γ′ are both well-formed and permutations of one another, they are equivalent as partial
functions, i.e. they give the same bindings and can be extended in the same manner.

Lemma 15 (Weakening) If Γ ⊢M ∶ τ and ⊢ Γ,Γ′, then Γ,Γ′ ⊢M ∶ τ .

4.3. TYPE SOUNDNESS 59

Proof: It suffices to prove the lemma when Γ′ is either x ∶ τ ′ or α, since the general case
follows by induction on the length of Γ′. We may prove both simultaneously, by induction
on M . The proof is similar to the one for simply-typed λ-calculus—we just have more cases.
Cases for value and type abstraction appeal to the permutation lemma. More precisely:

Case M is y: By inversion of typing, the judgment must be derived with rule Var, hence
y ∶ τ is in Γ and a fortiori y ∶ τ is in Γ,Γ′. We may thus conclude by rule Var.

Case M is c: By inversion of typing, the judgment must be derived with rule Cst, hence we
have y ∶ τ is in ∆ and we may conclude with rule Cst.

Case M is λy ∶ τ1.M2: W.l.o.g. we may choose y disjoint from Γ and Γ′ (1). By inversion
of typing, the judgment must be derived with rule Abs, hence Γ, y ∶ τ1 ⊢ M1 ∶ τ2 where τ

is τ1 → τ2. Since Γ, y ∶ τ is well-formed, by (1), both Γ, y ∶ τ1,Γ
′ and Γ,Γ′, y ∶ τ1 are well-

formed (2). By induction hypothesis, we have Γ, x ∶ τ1,Γ
′ ⊢ M1 ∶ τ2. Using the permutation

lemma and (2), we have Γ,Γ′, x ∶ τ1 ⊢M1 ∶ τ2. We conclude with rule Abs.

Case M is Λβ.M1: W.l.o.g, we may choose β disjoint from Γ and Γ′ (3). By inversion of
typing, the judgment must be derived with rule TAbs, hence Γ, β ⊢M1 ∶ τ1 with ∀β.τ1 equal
to τ . Since Γ, β is well-formed, by (3), both Γ, β,Γ′ and Γ,Γ′, β are well-formed (4). By
induction hypothesis, we have Γ, β,Γ′ ⊢ M1 ∶ τ1. We use the permutation lemma to obtain
Γ,Γ′, α ⊢M1 ∶ τ1 and conclude with Rule Tabs.

Case M is M1 M2 or M1 τ1: By inversion of typing, induction hypothesis applied to the
premises, and App or TApp to conclude.

Lemma 16 (Expression substitution, strengthened)
If Γ, x ∶ τ0,Γ′ ⊢M ∶ τ and Γ ⊢M0 ∶ τ0 then Γ,Γ′ ⊢ [x↦M0]M ∶ τ .

We have strengthened the lemma with an arbitrary context Γ′ as for the simply-typed λ-
calculus. We have also generalized the lemma with an arbitrary context Γ on the left and an
arbitrary expression M , as this does not complicate the proof (and the stronger result will
be used later). The proof is similar to the one for the simply-typed λ-calculus, with just a
few more cases. (Details of the proof p. 85)

Exercise 28 Write the details of the proof.

Lemma 17 (Type substitition, strengthened)
If Γ, α,Γ′ ⊢M ∶ τ and Γ ⊢ τ0 then Γ, θΓ′ ⊢ θM ∶ θτ where θ is [α ↦ τ0].
As for expression substitution, we have strengthened the lemma and generalized it using
an arbitrary environment instead of the empty environment, as it does not complicate the
proof, but yields a stronger result. This lemma resembles the one for expression substitutions.

60 CHAPTER 4. POLYMORPHISM AND SYSTEM F

However, the substitution must also apply to the environment Γ′ and the result type τ since
α may appear free in them.

The proof is by induction onM . The interesting cases are for type and value abstraction,
which required the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward. (Details of the proof p. 86)

Exercise 29 Write the details of the proof.

Lemma 18 (Compositionality) If Γ ⊢ E[M] ∶ τ , then there exists a sequence of type
variables α⃗ and τ ′ such that Γ, α⃗ ⊢ M ∶ τ ′ and all M ′ verifying Γ, α⃗ ⊢ M ′ ∶ τ ′ also verify
Γ ⊢ E[M ′] ∶ τ .

Proof: The proof is by case on E. Each case is easy. The main difference with the simply-
typed λ-calculus is that the case for type abstraction Λα.E0 requires to extend the environ-
ment with type variables.

Notice thatM ′ is typechecked in the context Γ extended with α⃗, since the hole in the context
E may be under type abstractions. We use the notation α⃗ for a (possibly empty) sequence
of type variables.

Theorem 9 (Subject Reduction) Reduction preserves typings.
If Γ ⊢M ∶ τ and M Ð→ M ′ then Γ ⊢M ′ ∶ τ .

The proof is by induction over the derivation of M Ð→M ′. Using the previous lemmas and
the subject-reduction assumption for δ-reduction, the proof is straightforward.

Proof: By induction over the derivation of M Ð→ M ′, then by inversion of the typing
derivation of Γ ⊢M ∶ τ (1).

Case (λx ∶τ1.M1) V Ð→ [x ↦ V]M1: By inversion, the typing derivation of (1) is of form:

App

Abs
Γ, x ∶ τ ′ ⊢M1 ∶ τ (2)

Γ ⊢ (λx ∶τ ′.M1) ∶ τ
′ → τ Γ ⊢ V ∶ τ ′ (3)

Γ ⊢ (λx ∶τ ′.M1) V ∶ τ (1)

The value-substitution Lemma applied to (2) and (3) gives the expected result.

Case (Λα.V) τ0 Ð→ [α ↦ τ0]V : By inversion of (1), we have Γ, α ⊢ V ∶ τ1 (4) where
τ is [α ↦ τ0]τ1. The type-substitution Lemma applied to (4) gives the expected result
Γ ⊢ [α ↦ τ0]V ∶ τ .

Case E[M0] Ð→ E[M ′
0]: The hypothesis is M0 Ð→ M ′

0. Assume Γ ⊢ E[M0] ∶ τ . By
compositionality, there is some type τ0 and type variables α⃗ such that Γ, α⃗ ⊢M0 ∶ τ0 (5) and
for all M ′

0 such that Γ, α⃗ ⊢ M ′
0 ∶ τ0, we have Γ ⊢ E[M ′

0] ∶ τ . Therefore it suffices to show
Γ, α⃗ ⊢M ′

0 ∶ τ0, which holds by induction hypothesis applied to (5).

4.3. TYPE SOUNDNESS 61

The classification lemma, which is a key to progress, is slightly modified to account for
polymorphic types and constructed types. We need to state the lemma under an arbitrary
set of type variables α⃗ instead of the empty context—because evaluation is allowed under
type abstractions.

Lemma 19 (Classification) Assume α⃗ ⊢ V ∶ τ

• If τ is an arrow type, then V is either a function or a partial application of a constant
to values.

• If τ is a polymorphic type, then V is either a type abstraction of a value or a partial
application of a constant to types.

• If τ is a constructed type, then V is constructed value.

The last case can be refined by partitioning constructors into their associated type-constructor:
If the top-most type constructor of τ is G, then V is a value constructed with a G-constructor.

The proof is similar to the one for simply-typed λ-calculus.
Progress is restated as follows:

Theorem 10 (Progress, strengthened) A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem has been strengthened, using a sequence of type variables α⃗ for the typing
context instead of the empty environment. It can then be proved by induction and case
analysis on M , relying mainly on the classification lemma and the progress assumption for
δ-reduction.

Proof: By induction on (the derivation of) M . Assume α⃗ ⊢M ∶ τ and M is irreducible.

Case M is x: This is not possible since x is not well-typed in ᾱ.

Case M is c: ThenM is a value (a fully applied constructor or a partially applied destructor),
as expected.

Case M is λx ∶τ.M1: Then M is a value, as expected.

Case M is M1 M2: Then, α⃗ ⊢ M1 ∶ τ2 → τ1. and α⃗ ⊢ M2 ∶ τ2. Since the left application
is an evaluation context, M1 is irreducible. Hence, by induction hypothesis, M1 is a value.
Since the right application of a value is an evaluation context, M2 is irreducible. Hence,
by induction hypothesis, M2 is also a value. Since the application M1 M2 itself cannot be
reduced, M1 is not a function. Since it has an arrow type, it follows from the classification
lemma that it a partial application of a constant to values. Hence, M is itself the application
of a constant to values. Since it cannot be reduced, it follows from the progress assumption
for δ-rules that it is not a full application of a destructor. Hence, it is either a full application
of a constructor or a partial application of a constant to values. In both cases, M is a value.

62 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Case M is Λβ.M1: Then, α⃗, β ⊢M1 ∶ τ1. Since type abstraction is an evaluation context M1

is irreducible. Hence, by induction hypothesis, M1 is a value and so is M .

Case M is M1 τ1: Then, α⃗ ⊢ M1 ∶ ∀α. τ2 with τ equal to [α ↦ τ1]τ2. Since type application
is an evaluation context, M1 is irreducible. Hence, by induction hypothesis, M1 is a value.
Since M is irreducible M1 is not a type abstraction. Since M1 has a polymorphic type, it
follows from the classification lemma that M1 is an application of a constant c to types (as
it is not a type abstraction). Since it is irreducible, it follows from the progress assumption
for δ-rules that c is a destructor or the application is partial. In both cases M is a value.

Theorem 11 (Normalization) Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value reduction. This is a
difficult proof, which generalizes the proof method for the simply-typed λ-calculus. It is due
to Girard (1972) (see also Girard et al. (1990)).

4.4 Type erasing semantics

We have presented the explicitly-typed variant of System F. In this section, we verify that
this semantics is type erasing. Hence, there is an implicitly-typed presentation of System F.

4.4.1 Implicitly-typed System F

The implicitly-typed version of System F, can be defined as follows. The syntax of terms
and their dynamic semantics are those of the untyped λ-calculus extended with constants.
However, we only accept a subset of terms of the λ-calculus, retaining only those that are
the type erasure of a term in F.

We write ⌈F⌉ for the set of implicitly-typed terms and F for the set of explicitly-typed
terms. We use letters a, v, and e to range over implicitly-typed terms, values, and evaluation
contexts, reusing the same notations as for the untyped λ-calculus.

The set of terms may also be characterized by typing rules that operate directly on
unannotated terms. These are obtained from the typing rules of F by dropping all type
information in terms. They are presented in Figure 4.2. We use the prefix if- to distinguish
them from the typing rules for explicit System F.

Unsurprisingly, as a result of erasing type information in terms, the rules that introduce
and eliminate the universal quantifier are no longer syntax-directed.

Remark 4 Notice that the explicit introduction of variable α in the premise of Rule Tabs

contains an implicit side condition α# Γ due to the assumption on the formation of typing
environments.

4.4. TYPE ERASING SEMANTICS 63

if-Var

Γ ⊢ x ∶ Γ(x) if-Cst

Γ ⊢ c ∶∆(c)
if-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

if-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ

Γ ⊢ a ∶ [α ↦ τ0]τ
Figure 4.2: Typing rules for explicitly-typed System F.

In implicitly-typed System F, as in ML, the introduction of type variables in typing
context is often left implicit. (In some extensions of System F, type variables may carry a
kind or a bound and must be explicitly introduced.) If we chose to do so, we would need an
explicit side-condition on Rule Tabs as follows:

if-Tabs-Bis

Γ ⊢ a ∶ τ α# Γ

Γ ⊢ a ∶ ∀α.τ

Omitting the side condition would lead to unsoundness. Below on the left-hand side is a type
derivation for a type cast (Obj.magic in OCaml), which is equivalent to using an ill-formed
context (on the right-hand side):

if-Tabs-Bis

Broken if-Tabs

if-Var
x ∶ α1 ⊢ x ∶ α1

if-Tapp
x ∶ α1 ⊢ x ∶ ∀α1.α1

if-Abs
x ∶ α1 ⊢ x ∶ α2

∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

x ∶ α1, α1 ⊢ x ∶ α1

Broken Var

x ∶ α1 ⊢ x ∶ ∀α1.α1

x ∶ α1 ⊢ x ∶ α2

∅ ⊢ λx ∶α1. x ∶ α1 → α2

Abs

Tapp

Broken Tabs

∅ ⊢ Λα1.Λα2.λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

Tabs

A good intuition is that a judgment Γ ⊢ a ∶ τ corresponds to the logical assertion ∀ᾱ.(Γ⇒(a ∶ τ)), where ᾱ are the free type variables of the judgment, taken in any order. In this
view, Tabs-Bis corresponds to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P

which without the side condition is obviously wrong.

The next lemma, states that the two definitions of ⌈F⌉—or, equivalently, the two type
systems for implicitly-typed System F and explicitly type System F—coincide. The proof is
immediate.

Lemma 20 Γ ⊢ a ∶ τ in implicitly-typed System F if and only if there exists an explicitly-
typed expression M whose erasure is a such that Γ ⊢M ∶ τ .

64 CHAPTER 4. POLYMORPHISM AND SYSTEM F

For example, consider the term a0 in ⌈F⌉ equal to λfxy. (f x, f y). A version that carries
explicit type abstractions and annotations is:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)
Unsurprisingly, this term admits the polymorphic type:

τ1
△
== ∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 ×α2

Perhaps more surprising is the fact that this untyped term can be decorated in a different
way:

Λα1.Λα2.λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)
This term admits the polymorphic type:

τ2
△
== ∀α1.∀α2.(∀α.α → α)→ α1 → α2 → α1 ×α2

This begs the question: which of the two types τ1 or τ2 is more general? Type τ1 requires
the second and third arguments to admit a common type, while type τ2 requires the first
argument to be polymorphic.

Exercise 30 (Distrib pair, disjoint types) Find two terms a1 and a2 such that a1 has
type τ1 type but not type τ2, and conversely for a2. (Just give the terms a1 and a2, you do
not have to prove well-typedness or ill-typedness.) (Solution p. 86)

This suggests that the two types are not comparable, that is, neither one can be an instance
of the other.

Intuitively, one may think semantically of (i.e. interpret) a closed type as the set of terms
of that type, and of instance as inclusion between types. With such a view in mind then τ1
and τ2 are indeed incomparable. This does not imply that a0 does not have a principal type:
there could exist a type τ0 that contains a0 and that is included in the intersection of (the
interpretations of) τ1 and τ2. Indeed, one can do so in a richer system, such as System F ω.

Exercise 31 (Distrib pair in F ω) Only if you know System F ω: find a type τ0 for a0 in
System F ω that is more general than both τ1 and τ2, i.e. from which τ1 and τ2 can be obtained
by rule Inst-Gen. (Solution p. 86)

4.4.2 Type instance

To reason formally, we must first define what it means for τ2 to be an instance of τ1—or,
equivalently, for τ1 to be more general than τ2. Several definitions are possible. In System F,
to be an instance is usually defined by the rule:

Inst-Gen

β⃗ # ∀α⃗. τ

∀α⃗.τ ≤ ∀β⃗. [α⃗ ↦ τ⃗]τ

4.4. TYPE ERASING SEMANTICS 65

Notice that α⃗ and β⃗ stands of (possibly empty) sequences of type variables. One can show
that, if τ1 ≤ τ2, then any term that has type τ1 has also type τ2; that is, the following rule is
admissible2 in the implicitly-typed version:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2

Perhaps surprisingly, the rule is not derivable3 in our presentation of System F. Although,
we have the following derivation,

Gen∗

Inst∗
Γ, β⃗ ⊢ a ∶ ∀α⃗.τ

Γ, β⃗ ⊢ a ∶ [α⃗ ↦ τ⃗]τ
Γ ⊢ a ∶ ∀β⃗.[α⃗ ↦ τ⃗]τ

the premise Γ, β⃗ ⊢ a ∶ ∀α. τ can only be justified from the assumption Γ ⊢ a ∶ ∀α. τ by an
application of weakening (the side condition β⃗ # ∀α⃗. τ of rule Gen ensures that Γ, β⃗ is well-
formed.) Otherwise, in context Γ alone, τ⃗ would not necessarily be well-formed, as required
by rule Gen.

However, in a version of System F that does not introduce type variables explicitly in Γ,
then weakening of type variables would be built-in and implicit and the rule Sub would
become derivable. (This shows that the notion of derivability is somewhat fragile as it
depends on the presentation of the rules.)

We may also wonder what is the counter-part of the instance relation in explicitly-typed
System F. Assume Γ ⊢ M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2? Since
explicitly-typed terms have unique types, the term M of type τ1 cannot itself also have type
τ2. However, we can wrap M with a retyping context that transforms a term of type τ1 to
one of type τ2. Since τ1 ≤ τ2, the types τ1 and τ2 must be of the form ∀α⃗. τ and ∀β⃗. [α⃗ ↦ τ⃗]τ
where β⃗ # ∀α⃗. τ . W.l.o.g, we may assume that β⃗ # Γ (6), as it may always be satisfied up
to a renaming of bound variables β⃗. Then, we have the pseudo-derivation on the left-hand
side (where the weakening lemma is used as a pseudo-typing rule Weakening), which can be
abbreviated by the admissible typing rule Sub given on the right-hand side.

Weakening
Γ ⊢M ∶ ∀α⃗. τ

(6)
β⃗ # ∀α⃗. τ

β⃗ # Γ

Tapp∗
Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs∗
Γ, β⃗ ⊢M τ⃗ ∶ [α⃗↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub
Γ ⊢M ∶ ∀α⃗. τ β⃗ # ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

2A rule is admissible if adding the rule does not change the validity of judgments. That is, it may just
allow for more derivations of already valid judgments.

3A rule is derivable if it can be replaced by a sub-derivation tree with the same premises and conclusion.

66 CHAPTER 4. POLYMORPHISM AND SYSTEM F

In F, we rather write subtyping as a judgment Γ ⊢ τ1 ≤ τ2 instead of the binary relation τ1 ≤ τ2
to also mean Γ ⊢ τ1 and Γ ⊢ τ2 and so simultaneously keep track of the well-formedness of
types.

In the previous example, the subtyping judgment Γ ⊢ τ1 ≤ τ2 has been witnessed by the
wrapping context Λβ⃗.[] τ⃗ . Since this context is only composed of type abstractions and type
applications, it changes the type of the term put in the hole without changing its behavior
and it is called a retyping context. More generally, we may allow arbitrary wrappings of
type abstractions and type applications around expressions. As in the example, they never
change the type erasure. Retyping contexts are thus defined by the following grammar:

R ∶∶= [] ∣ Λα.R ∣ R τ

(Notice that retyping contexts are arbitrarily deep here, by contrast with single-node evalu-
ation contexts E defined earlier.)

We could also define a typing judgment Γ ⊢ R[τ1] ∶ τ2 for retyping contexts as equivalent
to Γ, x ∶ τ1 ⊢ R[x] ∶ τ2 whenever x does not appear in R—or using primitive typing rules.
Then, the following property holds by compositionality of typing: if Γ ⊢ M ∶ τ1 and Γ ⊢
R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2.

We can now give another equivalent definition of subtyping, based on retyping contexts:
Γ ⊢ τ1 ≤ τ2 if and only if there exists a retyping context R such that Γ ⊢ R[τ1] ∶ τ2.

Notice that retyping contexts (e.g. type-instance) can only change topmost polymor-
phism. In particular, they cannot weaken the result types of functions or strengthen the
types of their arguments.

4.4.3 Type containment in System Fη

Type containment is another, more expressive, syntactic notion of instance, introduced
by Mitchell (1988), that can also transform inner parts of types. It can be defined syn-
tactically by the following set of rules:

Inst-Gen

β⃗ # ∀α⃗.τ

∀α⃗. τ ≤ ∀β⃗. [α⃗ ↦ τ⃗]τ
Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
Congruence-→

τ2 ≤ τ1 τ ′1 ≤ τ
′
2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α. τ1 ≤ ∀α. τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

With this larger instance relation, Rule Sub is no longer admissible—as it allows to type
more terms. However, it remains sound. That is, adding Rule Sub as a primitive typing rule
does not break type soundness. The resulting type system is known as System Fη, since it
is also the closure of System F by η-expansion; that is, a term is in System Fη if and only if
it is the η-conversion of a term in System F.

4.4. TYPE ERASING SEMANTICS 67

Exercise 32 1) Show that ∀α. τ ≡ τ whenever α ∉ ftv(τ). 2) Show that rule Distributivity

can be replaced by the weaker rule:
Distrib-Right

α ∉ ftv(τ1)
∀α. (τ1 → τ2) ≤ τ1 → (∀α. τ2)

(Solution p. 87)

One may wonder what System Fη brings to System F that it does not already have. Con-
sider the identity function id in ⌈F⌉; it has type ∀α.α→ α but also many other incomparable
types. For example, it has type (∀α.α)→ ∀α.α → α— even though a function of that type
can never be applied, as there is no value of type ∀α.α that could be passed as argument;
it also has the more interesting type ∀α. (∀α.α → α)→ (α → α). While these types are in-
comparable in ⌈F⌉, they become comparable in System Fη. For example, in System Fη, we
have:

τid ≤ ((∀α.α)→ (∀α.α) ≤ (∀α.α)→ τid
∀β. (β → β)→ (β → β) ≤ ∀β. τid → (β → β)) ≤ ∀β. (∀α.α)→ (β → β)

The type ∀α.α→ α is actually a principal type for id in System Fη. Similarly, the function
ch defined below has a principal type in System Fη:

ch
△
== λx.λy. if M then x else y ∶ ∀β.β → β → β

Still, many expressions do not have most general types in System Fη. To see the difficulty,
consider the application chid of ch to id . How can it be typed? If we keep id poly-
morphic, then chid has type (∀α.α → α) → (∀α.α → α), say τ1; if, on the opposite, we
instantiate id , then chid has type ∀α. (α → α) → (α → α), say τ2—as in ML where type
schemes are automatically instantiated when used. These two types are incomparable in
System F. Although, we have τ1 ≤ τ2 in System Fη (as witnessed by the coercion context
λx ∶∀α.α→ α.Λα.([τ2] α) (x α)) and can thus give chid the type τ2 and still used it at type
τ1, this is more by chance than the general case: If we replace ch by ch3, which chooses
between three arguments, then ch3 id does not have a principal type in System Fη.

System Fη increases the expressiveness of System F by enriching its type instance relation—
without modifying the language of types (and other typing rules than Sub).

To obtain even more principal types, Le Botlan and Rémy (2009) have suggested that
the language of types should be enriched with a new form of quantification ∀α ≥ τ1. τ2
to mean, intuitively, the set of types [α ↦ τ]τ2 when τ ranges over the set of instances
of τ1. This internalizes the instance relation within the language of types. This allows to
give chid the type ∀(β ≥ ∀α.α → α). β → β and recovering (∀α.α → α) → (∀α.α → α) and
∀α. (α → α) → (α → α) by choosing particular instances of ∀α.α→ α for β. By contrast
with System Fη, this approach also works for the more general example of ch3 id .

The language MLF has been design for partial type reconstruction where programs are
partially annotated. The user need only to provide the types of parameters of functions

68 CHAPTER 4. POLYMORPHISM AND SYSTEM F

that are used polymorphically. The type systems is setup to implicitly use available poly-
morphism but never guess polymorphism. Available polymorphism comes either from type
generalization as in ML or from user-provided type annotations. Every expression has a
principal type—according to the given type annotations. See (Le Botlan and Rémy, 2009;
Rémy and Yakobowski, 2008) for details.

4.4.4 A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ . Ideally, a type system should
satisfy the principal typings property (Wells, 2002):

Every well-typed term M admits a principal typing – one whose instances are
exactly the typings of M .

Whether this property holds depends on a definition of instance. The more liberal the
instance relation, the more hope there is of having principal typings.

The instance relations we have previously considered are defined syntactically. The ab-
sence of principal typings with respect to a syntactic definition of instance may result from
a bad choice of the instance relation. To avoid arbitrariness, Wells (2002) introduced a more
semantic notion of instance. He notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every term that admits
θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the largest relation such
that a subtyping principle is admissible.

This definition can be used to prove that a system does not have principal typings, under
any reasonable definition of “instance”. Then, which systems have principal typings? The
simply-typed λ-calculus has principal typings, with respect to a substitution-based notion
of instance (See lesson on type inference). Wells (2002) shows that neither System F nor
System Fη have principal typings. It was shown earlier that System Fη’s instance relation
is undecidable (Wells, 1995; Tiuryn and Urzyczyn, 2002) and that type inference for both
System F and System Fη is undecidable (Wells, 1999).

There are still a few positive results. Some systems of intersection types have principal
typings (Wells, 2002) – but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ and an expression
M is there a type τ for M in Γ such that all other types of M in Γ are instances of τ .
Damas and Milner’s type system (coming up next) does not have principal typings but it
has principal types and decidable type inference.

4.4. TYPE ERASING SEMANTICS 69

4.4.5 Type soundness for implicitly-typed System F

Subject reduction and progress imply the soundness of the explicitly-typed version of System F.
What about the implicitly-typed version? Can we reuse the soundness proof for the explicitly-
typed version? Can we pullback subject reduction and progress from F to ⌈F⌉?

For progress, given a well-typed term a in ⌈F⌉, can we find a term M in F whose erasure
is a and such that M is a value or reduces, and so conclude that a is a value or reduces?
For subject reduction, given a term a1 of type τ in ⌈F⌉ that reduces to a2, can we find a
term M1 in F whose erasure is a1 and show that M1 reduces to a term M2 whose erasure is
a2 to conclude that the type of a2 is the type of a1? In both cases, this reasoning requires
a type-erasing semantics. We claimed that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type ap-
plications on explicitly-typed terms is dropped by type erasure, hence the two reductions
cannot coincide exactly. The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that must be preserved by type erasure, and ι-steps corre-
sponding to the reduction of type applications that disappear during type erasure. This can
be summarized in the following diagram:

M0 M ′
0 M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗

. . .

Mn V

an = v /

/
ι

∗

We say that we establish a bisimulation between reduction on typed-terms and their erasure
up to ι-steps. The bisimulation can be decomposed into a direct and a inverse simulation.

Lemma 21 (Direct simulation) The reduction in F is simulated in ⌈F⌉ up to ι-steps.
Assume Γ ⊢M ∶ τ . Then:
1) If M Ð→ι M ′, then ⌈M⌉ = ⌈M ′⌉
2) If M Ð→βδ M ′, then ⌈M⌉ Ð→βδ ⌈M ′⌉
The inverse direction is more delicate to state, since type erasure is not bijective: there are
usually many expressions of F whose type erasure is a given expression in ⌈F⌉.
Lemma 22 (Inverse simulation) Assume Γ ⊢M ∶ τ and ⌈M⌉Ð→ a. Then, there exists a
term M ′ such that M Ð→∗ιÐ→βδ M

′ and ⌈M ′⌉ = a.
Of course, the semantics can only be type erasing if δ-rules do not themselves depend on
type information. First, we need δ-reduction to be defined on type erasures. We may prove
the theorem directly for some concrete examples of δ-reduction.

However, keeping δ-reduction abstract is preferable to avoid repeating the same reasoning
many times. Then, we must assume that it is such that type erasure establishes a bisimulation
for δ-reduction taken alone.

70 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Assumption on δ. We assume that for any explicitly-typed term M of the form
d τ1 . . . τj V1 . . . Vk such that Γ ⊢M ∶ τ , both of the following properties hold:

(Direct bisimulation) If M Ð→δ M ′, then ⌈M⌉ Ð→δ ⌈M ′⌉.
(Inverse bisimulation) If ⌈M⌉ Ð→δ a, then there exists M ′ such that M Ð→δ M ′ and a is

the type-erasure of M ′.

In most cases, the assumption on δ-reduction is obvious to check. Notice however, that in
general the δ-reduction on untyped terms is larger than the projection of δ-reduction on typed
terms, because it pattern matches on the shapes of values but ignoring types. However, if we
restrict δ-reduction to implicitly-typed terms, then it usually coincides with the projection
of reduction of explicitly-typed terms.

Exercise 33 Consider the explicitly-typed System F with pairs of the exercise 24 (p. 57).
Add pairs in the untyped λ-calculus. Show that δ-reduction in the untyped λ-calculus is larger
than the image of the δ-reduction in the explicitly-typed calculus. Verify that type erasure is
a bisimulation for δ-reduction. (Solution p. 87)

The direct simulation (Lemma 21) is straightforward to establish. (Details of the proof p. 88)

The inverse simulation is slightly more delicate because there may be many antecedents
of a given type erasure. We use a few easy helper lemmas to keep the proof clearer.

Lemma 23

1) A term that erases to ē[a], then M0 is of the form Ē[M] where ⌈Ē⌉ is ē and ⌈M⌉ is
a, and moreover, we may assume that M does not start with a type abstraction nor a
type application.

2) If Ē erases to the empty context then Ē is a retyping context R.

3) If R[M] is in ι-normal form, then R is of the form Λα⃗.[] τ⃗ .
The main helper lemma is :

Lemma 24 (Inversion of type erasure) Assume ⌈M⌉ = a
• If a is x, then M is of the form R[x]
• If a is c, then M is of the form R[c]
• If a is λx. a1, then M is of the form R[λx ∶τ.M1] with ⌈M1⌉ = a1
• If a is a1 a2, then M is of the form R[M1 M2] with ⌈Mi⌉ = ai

The proof is by an induction on M .

4.4. TYPE ERASING SEMANTICS 71

Lemma 25 (Inversion of type erasure for well-typed values) Assume Γ ⊢M ∶ τ and
M is ι-normal. If ⌈M⌉ is a value v, then M is a value V . Moreover,

• If v is λx. a1, then V is Λα⃗.λx ∶τ.M1 with ⌈M1⌉ = a1.
• If v is a partial application c v1 . . . vn then V is R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.

The proof is by induction on M . It uses the inversion of type erasure, then analysis of the
typing derivation to restrict the form of retyping contexts. (Details of the proof p. 88)

Corollary 26 Let M be a well-typed term in ι-normal whose erasure is a

• If a is (λx. a1) v then M is be of the form R[(λx ∶τ.M1) V], with ⌈M1⌉ equal to a1 and⌈V ⌉ equal to v.
• If a is a full application c v1 . . . vn then M is of the form R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.

(Proof p. 88)

We may now prove inverse simulation. It suffices to prove it when M is ι-normal. The
general case follows, since one may first ι-reduce M to a normal form M0, while preserving
typings, thanks to subject reduction and type erasure; the lemma can then be applied toM0

instead of M . Notice that this reasoning relies on the termination of ι-reduction. Indeed, if
ι-reduction could diverge, it is unlikely that the semantics would be type erasing.

Termination of ι-reduction follows indirectly from the termination of reduction in Sys-
tem F. Its direct proof is also immediate, as ι-reduction strictly decreases the number of
type abstractions.

Proof (inverse simulation): The proof is by induction on the reduction of ⌈M⌉. We assume
M is in ι-normal form.

Case ⌈M⌉ is (λx.a1) v : By Corollary 26, M is of the form R[(λx ∶ τ1.M1) V]. Since R is
an evaluation context, M reduces to R[[x ↦ V]M1] whose erasure is [x ↦ v]a1, i.e. a.

Case ⌈M⌉ is e[a1] and a1 Ð→ a2: By Lemma 23, M is of the form Ē[M1] where ⌈Ē⌉ is ē and
⌈M1⌉ is a1. By compositionality (Lemma 18), M1 is well-typed. Since M is ι-normal and Ē

is an evaluation, M1 is also ι-normal. By induction hypothesis, M1 reduces in one βδ step to
a term M2 whose erasure is a2. Hence, by Context, M reduces in one βδ-step to the term
Ē[M2] whose erasure is ē[a2], i.e. a.

Case ⌈M⌉ is a full application (d v1 . . . vn) and reduces to a: By Corollary 26, M is of
the form R[M0] where M0 is d τ⃗ V1 . . . Vn a ⌈Vi⌉ is vi. Since ⌈M0⌉ Ð→ a, by the inverse
assumption for δ-rules, there exists M ′

0 such that M0 Ð→δ M ′
0 and ⌈M ′

0⌉ is a. Let M ′ be
R[M ′

0]. Since R is an evaluation context, we have M Ð→δ M
′ and ⌈M ′⌉ is a.

We may now easily transpose subject reduction and progress from the implicitly-typed ver-
sion to the implicitly-typed version of System F.

72 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Theorem 12 (Type soundness for implicitly-typed System F)
Progress and subject reduction holds in implicitly-typed System F.

Proof: Assume that Γ ⊢ a1 ∶ τ . By Lemma 20, there exists a term M1 such that Γ ⊢ M1 ∶ τ .
and ⌈M1⌉ is a1.

Progress: Let M2 be the ι-normal form of M1. By direct simulation, ⌈M2⌉ is a. By subject
reduction, we have Γ ⊢ M2 ∶ τ . By progress in F, either M2 βδ-reduces and so does a, by
direct simulation (Lemma 21) or M2 is a value and so is its erasure a1 (by observation).

Subject reduction: Assume a1 Ð→ a2. By inverse simulation (Lemma 22), there exists a
term M2 such that M1 Ð→

∗
ιÐ→βδ M2 and ⌈M2⌉ is a2. By subject reduction in F, we have

Γ ⊢M2 ∶ τ . By Lemma 20, we have Γ ⊢ a2 ∶ τ , as expected.

Remarks The design of advanced typed systems for programming languages is usually
done in explicitly-typed version, with a type-erasing semantics in mind, but this is not always
checked in details (and sometimes not even made very clear). While the direct simulation
is usually straightforward, the inverse simulation is often harder. As the type system gets
more complicated, reduction at the level of types also gets more involved. It is important
and not always obvious that type reduction terminates and is rich enough to never block
reductions that could occur in the type erasure.

For example, Crétin and Rémy (2012) extend System Fη with abstraction over retyping
functions, but keep the type systems bridled to preserve the type erasure semantics.

Bisimulation is a standard technique to show that compilation preserves the semantics
given in small-step style. For example, it is heavily used in the CompCert project (Leroy,
2006) to prove the correctness of a compiler from C to assembly code, using the Coq proof
assistant. The compilation from C to assembly code is decomposed into a chain of trans-
formation using a dozen of successive intermediate languages; each of the transformation is
then proved to be semantic preserving using bisimulation techniques.

4.5 Polymorphism and references

————————————————————————-
In this chapter, we have just shown how to extend simply-typed λ-calculus with poly-

morphism. In the previous chapter we have shown how to extend simply-typed λ-calculus
with references. Can these extensions be combined together?

When adding references, we noted that type soundness relies on the fact that every
reference cell (or memory location) has a fixed type. Otherwise, if a location had two types
ref τ1 and ref τ2, one could store a value of type τ1 and read back a value of type τ2. Hence,
it should also be unsound if a location could have type ∀α. ref τ (where α appears in τ) as

http://compcert.inria.fr/

4.5. REFERENCES 73

it could then be specialized to both types ref [α ↦ τ1]τ and ref [α ↦ τ2]τ . By contrast, a
location ℓ can have type ref (∀α. τ): this says that ℓ stores values of polymorphic type ∀α. τ ,
but ℓ, as a value, is viewed with the monomorphic type ref (∀α. τ).
4.5.1 A counter example

Still, if System F is naively extended with references, it allows the construction of polymor-
phic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) =
Λα.ref (α → α) (λz ∶α. z)

in(y bool) ∶= (bool→ bool) not;
!(int→ int) (y (int)) 1 / ∅

∗
Ð→ not 1 / ℓ↦ not

(2) Abstracts α and binds ℓ to y of type ∀α. ref (α → α)
(1) Creates and returns a location ℓ of type ref (α → α)

bound to the identity function λz ∶α. z of type α → α

(3) Writes the location at type bool→ bool
(4) Reads it back at type int→ int

The program is well-typed, but reduces to the stuck expression “not 1”. So what went
wrong? As described on the right-hand side, the fault is that the location is written at type
bool and read back at type int. This is permitted because the location has a polymorphic
type ∀α. ref α → α. So this must be wrong. Indeed, the first reduction step uses the following
rule (where V is λx ∶α.x and τ is α → α).

Context
ref τ V /∅Ð→ ℓ / ℓ↦ V

Λα.ref τ V /∅Ð→ Λα.ℓ / ℓ↦ V

While we have

α ⊢ ref τ V /∅ ∶ ref τ and α ⊢ ℓ / ℓ↦ V ∶ ref τ

We have

⊢ Λα.ref τ V /∅ ∶ ∀α. ref τ but not ⊢ Λα.ℓ / ℓ↦ V ∶ ∀α. ref τ

Hence, the context case of subject reduction breaks.
The typing derivation of Λα.ℓ requires a store typing Σ of the form ℓ ∶ τ and a derivation

of the form (according to Rule Loc given below, page 4.5.2):

Tabs
Σ, α ⊢ ℓ ∶ ref τ

Σ ⊢ Λα.ℓ ∶ ∀α. ref τ

However, the typing context Σ, α is ill-formed as α appears free in Σ. Instead, a well-formed
premise should bind α earlier as in α,Σ ⊢ ℓ ∶ ref τ , but then, Rule Tabs cannot be applied.

By contrast, the expression ref τ V is pure, so Σ may be empty:

Tabs
α ⊢ ref τ V ∶ ref τ

∅ ⊢ Λα.ref τ V ∶ ∀α. ref τ

74 CHAPTER 4. POLYMORPHISM AND SYSTEM F

The expression Λα.ℓ is correctly rejected as ill-typed, so Λα.ref τ V should also be rejected.
There is a fix to the bug known as this mysterious slogan:

One must not abstract over a type variable that might, after evaluation of the
term, enter the store typing.

Indeed, this is was happens in our example. The type variable α which appears in the type
of V is abstracted in front of ref τ V . When ref τ V reduces, α → α becomes the type of the
fresh location ℓ, which appears in the new store typing. This is all well and good, but how
do we enforce this slogan?

In the context of ML, a number of rather complex historic approaches have been followed:
see Leroy (1992) for a survey. Then came Wright (1995), who suggested an amazingly simple
solution, known as the value restriction: only value forms can be abstracted over.

TAbs

Γ, α ⊢ U ∶ τ

Γ ⊢ Λα.U ∶ ∀α.τ

Value forms:

U ∶∶= x ∣ V ∣ Λα.U ∣ U τ

The problematic proof case vanishes, as we now never βδ-reduce under type abstraction,
only ι-reduction is possible. Subject reduction holds again. Let us prove it.

4.5.2 Internalizing configurations

A configuration M / µ is an expression M in a memory µ. Intuitively, the memory can be
viewed as a recursive extensible mutable record. The configuration M / µ may be viewed
as the recursive definition (of values) let rec m ∶ Σ = µ in [ℓ̄ ↦ m.ℓ̄]M where Σ is a store
typing for µ. The store typing rules are coherent with this view. For instance, allocation of
a reference is a reduction of the form:

let rec m ∶ Σ = µ in E[ref τ V]
Ð→ let rec m ∶ Σ, ℓ ∶ τ = µ, ℓ↦ v in E[m.ℓ]

For this transformation to preserve well-typedness, it is clear that the evaluation context
E must not bind any type variable appearing in τ ; otherwise, we are violating the scoping
rules.

Let use clarify the typing rules for configurations:
Config

α⃗ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ

α⃗ ⊢M / µ ∶ τ
Store

∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
α⃗ ⊢ µ ∶ Σ

Closed configurations must be typed in an environment composed of type variables. No new
type variables is never introduced during reduction. These type variables may appear in the
store typing during reduction, there are thus placed in front the store typing and cannot be
generalized.

4.5. REFERENCES 75

Judgments are now of the form α⃗,Σ,Γ ⊢ M ∶ τ although we may see α⃗,Σ,Γ as a whole
typing context Γ′. For locations, we need a new context formation rule:

WfEnvLoc

⊢ Γ Γ ⊢ τ ℓ ∉ dom(Γ)
⊢ Γ, ℓ ∶ τ

This allows locations to appear anywhere. However, in a derivation of a closed term, the
typing context will always be of the form α⃗,Σ,Γ where Σ only binds locations (to arbitrary
types) and Γ does not bind locations.

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′) is:

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)
In System F, typing rules for references need not be primitive. We may instead treat them
as constants of the following types:

ref ∶ ∀α.α→ ref α (!) ∶ ∀α. ref α → α (∶=) ∶ ∀α. ref α→ α→ unit

They are all destructors (event ref) with the obvious arities.

The δ-rules are adapted to carry explicit type parameters:

ref τ V / µÐ→ ℓ / µ[ℓ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= (τ) V / µÐ→ () / µ[ℓ↦ V] !τ ℓ / µÐ→ µ(ℓ) / µ

Type soundness can now be stated as

Lemma 27 δ-rules preserve well-typedness of closed configurations.

Theorem 13 (Subject reduction) Reduction of closed configurations preserves well-typed-
ness.

Lemma 28 A well-typed closed configurationM/µ whereM is a full application of constants
ref, (!), and (∶=) to types and values can always be reduced.

Theorem 14 (Progress) A well typed irreducible closed configuration M/µ is a value.

As a sanity check, the problematic program is now syntactically ill-formed:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in(y bool) ∶= (bool→ bool) not;
!(int→ int) (y (int))1

Indeed, ref (α → α) (λz ∶α. z) is not a value, but the application of a unary destructor to a
value, so the expression Λα.ref (α → α) (λz ∶α. z) is not allowed.

76 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Consequences With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references. This style of introducing references
in System F (or in ML) is not a conservative extension.

Assuming functions map and id of respective types ∀α. list α → list α and ∀α.α → α,
the expression Λα.map α (id α) is now ill-typed. A common work-around is to perform a
manual η-expansion Λα.λy ∶ list α.map α (id α) y. However, in the presence of side effects,
η-expansion is not semantics preserving, so this must not be done blindly.

In practice, the value restriction can be slightly relaxed by enlarging the class of value
forms to a syntactic category of so-called non-expansive terms—terms whose evaluation will
definitely not allocate new reference cells. Non-expansive terms form a strict superset of value
forms. Garrigue (2004) relaxes the value restriction in a more subtle way, which is justified
by a subtyping argument. For instance, the following expressions may be well-typed:

• Λα.((λx ∶τ.U) U) because the inner expression is non-expansive;

• Λα.(let x ∶ τ = U in U), which is its syntactic sugar;

• let x ∶ ∀α. list α = Λα.(M1 M2) inM because α appears only positively in the type of
eappM1M2.

OCaml implements both refinements.
In fact, Λα.M need only be forbidden when α appears negatively in the type of some

exposed expansive terms where exposed subterms are those that do not appear under some
λ-abstraction. For instance, the expression

let x ∶ ∀α. int × (list α) × (α → α) = Λα.(ref (1 + 2), (λx ∶α.x) Nil, λx ∶α.x) inM
may be well-typed because α appears only in the type of the non-expansive exposed expres-
sions λx ∶α.x and positively in the type of expansive expression (λx ∶α.x) Nil.

(This refinement is not implemented in OCaml, though.)

Remark Experience has shown that the value restriction is tolerable. Even though it is
not conservative, the search for better solutions has been pretty much abandoned.

In a type-and-effect system (Lucassen and Gifford, 1988; Talpin and Jouvelot, 1994), or
in a type-and-capability system (Charguéraud and Pottier, 2008), the type system indicates
which expressions may allocate new references, and at which type. There, the value re-
striction is no longer necessary—but these systems are heavy. However, if one extends a
type-and-capability system with a mechanism for hiding state, which remains useful even in
those systems, the need for the value restriction re-appears.

Pottier and Protzenko (2012) are designing a language Mezzo where mutable states is
tracked quite precisely, with permissions, ownership, linear types that even enable a reference
to even change the type of its values over time, which is called strong update.

4.6. DAMAS AND MILNER’S TYPE SYSTEM 77

4.6 Damas and Milner’s type system

Damas and Milner’s type system Milner (1978) offers a restricted form of polymorphism,
while avoiding the difficulties associated with type inference in System F. This type system
is at the heart of Standard ML, OCaml, and Haskell.

The idea behind the definition of ML is to make a small extension of simply-typed λ-
calculus that enables to factor out several occurrences of the same subexpression a1 in a
term of the form [x ↦ a1]a2 using a let-binding form let x = a1 in a2 so as to avoid code
duplication.

Expressions of the simply-typed λ-calculus are extended with a primitive let-binding,
which can also be viewed as a way of annotating some redexes (λx. a2) a1 in the source
program. This actually provides a simple intuition behind Damas and Milner’s type system:
a closed term has type τ if and only if its let-normal form has type τ in simply-typed λ-
calculus. A term’s let-normal form is obtained by iterating the following rewrite rule, in any
context:

let x = a1 in a2 Ð→ a1; [x↦ a1]a2
Notice that we use a sequence starting with a1 and not just [x↦ a1]a2. This is to enforce
well-typedness of a1 in the pathological case where x does not appear free in a2. If we
disallow this pathological case (e.g. well-formedness could require that x always occurs in
a2) then we could just use the more intuitive rewrite rule:

let x = a1 in a2 Ð→ [x↦ a1]a2
This intuition suggests type-checking and type inference algorithms. However, these algo-
rithms are not practical, because they have intrinsic exponential complexity; and separate
compilation prevents reduction to let-normal forms.

In the following, we study a direct presentation of Damas and Milner’s type system,
which does not involve let-normal forms. It is practical, because it leads to an efficient type
inference algorithm (presented in chapter §5); and it supports separate compilation.

4.6.1 Definition

The language ML is usually presented in its implicitly-typed version, where terms are given
by:

a ∶∶= x ∣ c ∣ λx. a ∣ a a ∣ let x = a in a ∣ . . .
The let construct is no longer sugar for a β-redex but a primitive form that will be typed
especially.

The language of types lies between those for simply-typed λ-calculus and System F; it
is stratified between types and type schemes. The syntax of types is that of simply-typed
λ-calculus, but a separate category of type schemes is introduced:

τ ∶∶= α ∣ τ → τ ∣ . . . σ ∶∶= τ ∣ ∀α.σ

78 CHAPTER 4. POLYMORPHISM AND SYSTEM F

iml-Var

Γ ⊢ x ∶ Γ(x) iml-Cst

Γ ⊢ c ∶∆(c)
iml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

iml-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

iml-Let

Γ ⊢ a1 ∶ σ1 Γ, x ∶ σ1 ⊢ a2 ∶ σ2

Γ ⊢ let x = a1 in a2 ∶ σ2

iml-Gen

Γ, α ⊢ a ∶ σ

Γ ⊢ a ∶ ∀α.σ

iml-Inst

Γ ⊢ a ∶ ∀α.σ

Γ ⊢ a ∶ [α ↦ τ]σ
Figure 4.3: Typing rules for ML

All quantifiers must appear in prenex position, so type schemes are less expressive than
System-F types. We often write ∀α⃗. τ as a short hand for ∀α1. . . .∀αn. τ . When viewed as
a subset of System F, one must think of type schemes are the primary notion of types, of
which types are a subset.

An ML typing context Γ binds program variables to type schemes. In the implicitly-typed
presentation, type variables are often introduced implicitly and not part of Γ. However, we
keep below the equivalent presentation where type variables are declared in Γ. Judgments
now take the form Γ ⊢ a ∶ σ. Types form a subset of type schemes, so type environments
and judgments can contain types too.

The standard, non-syntax-directed presentation of ML is given in Figure 4.3. Rule Let

moves a type scheme into the environment, which Var can exploit. Rule Abs and App are
unchanged. λ-bound variables receive a monotype. Rule Gen and Inst are as in implicitly-
typed System F, except that type variables are instantiated with monotypes.

For example, here is a type derivation that exploits polymorphism (writing Γ for f ∶

∀α.α → α.) for an implicitly-typed term (omitting the iml- prefix of typing rules):

Let

Gen

Abs

Var
α, z ∶ α ⊢ z ∶ α

α ⊢ λz. z ∶ α → α

∅ ⊢ λz. z ∶ ∀α.α → α

Γ ⊢ f ∶ ∀α.α → α
Var

Γ ⊢ f ∶ int→ int
Inst

Γ ⊢ f 0 ∶ int
App

Γ ⊢ f ∶ ∀α.α→ α
Var

Γ ⊢ f ∶ bool→ bool
Inst

Γ ⊢ f true ∶ bool
App

Γ ⊢ (f 0, f true) ∶ int × bool
Pair

∅ ⊢ let f = λz. z in (f 0, f true) ∶ int × bool

Notice that Rule Gen is used above Let (on the left-hand side), and Inst is used below
Var. In fact, we will see below that every type derivation can be transformed into one of
this form.

As a counter-example, the term λf. (f 0, f true) is ill-typed. Indeed, as it contains no
“let” construct, it is type-checked exactly as in simply-typed λ-calculus, where it is ill-typed,
because f must be assigned a type τ that must simultaneously be of the form int → τ1 and
bool → τ2, but there is no such type. Recall that this term is well-typed in implicitly-typed
System F because f can be assigned, for instance, the polymorphic type ∀α.α → α.

4.6. DAMAS AND MILNER’S TYPE SYSTEM 79

eml-Var

Γ ⊢ x ∶ Γ(x) eml-Cst

Γ ⊢ c ∶ ∆(c)
eml-Abs

Γ, x ∶ τ0 ⊢M ∶ τ

Γ ⊢ λx ∶τ0.M ∶ τ0 → τ

eml-App

Γ ⊢M1 ∶ τ2 → τ1 Γ ⊢M2 ∶ τ2

Γ ⊢M1 M2 ∶ τ1

eml-Let

Γ ⊢M1 ∶ σ1 Γ, x ∶ σ1 ⊢M2 ∶ σ2

Γ ⊢ let x ∶ σ =M1 inM2 ∶ σ2

eml-Tabs

Γ, α ⊢M ∶ σ

Γ ⊢ Λα.M ∶ ∀α.σ

eml-Tapp

Γ ⊢M ∶ ∀α.σ

Γ ⊢M τ ∶ [α ↦ τ]σ
Figure 4.4: Typing rules for eML (explicitly-typed ML)

While we rather use implicitly-typed terms in programs, we usually prefer to use an
explicitly-typed presentation of ML in proofs. We thus identify a subset of terms of System F
whose type erasure coincide with terms of ML. The subset of terms is defined by the follow
syntax:

M ∈ eML ∶∶= x ∣ c ∣ λx ∶τ .M ∣M M ∣ Λα.M ∣M τ ∣ let x ∶ σ =M inM . . .

where τ and σ are ML-types and type schemes and not arbitrary System-F types. The typing
rules for explicitly-typed terms are given on Figure 4.4.

These are restrictions of the typing rules of System-F to terms and types of ML. Therefore,
if Γ ⊢eML M ∶ σ then Γ ⊢F M ∶ σ. In particular, explicitly-typed terms of ML have unique
typing derivations—and actually unique types—as in System-F.

Unfortunately, the converse is not true—when M is syntactically in ML and Γ and σ are
well-formed in eML, of course. Hence, the relation ⊢eML cannot be defined as the restriction
of ⊢F to ML environments terms and type schemes.

Exercise 34 Find a term M that is syntactically in eML and a type scheme σ such that
Γ ⊢F M ∶ σ holds but Γ ⊢eML M ∶ σ does not hold. (Solution p. 89)

4.6.2 Syntax-directed presentation

Explicitly-typed terms of ML have unique typing derivations—and actually unique types—as
in System-F. By contrast with explicitly-typed terms, implicitly-typed terms have several
types, since parameters of functions are not annotated, but also several typing derivations,
since places for type abstraction and type applications are not specified either, much as in
System F.

Interestingly, there is a syntax-directed presentation of implicitly-typed ML terms where
the shape of typing derivations is entirely determined by the term and is thus unique. Taking
the explicitly-typed view, this amounts to restricting the source terms so that there is no
choice for placing type abstraction and type applications.

80 CHAPTER 4. POLYMORPHISM AND SYSTEM F

xml-Tabs

Γ, α⃗ ⊢ Q ∶ τ

Γ ⊢ Λα⃗.Q ∶ ∀α⃗. τ

xml-Abs

Γ, x ∶ τ0 ⊢ Q ∶ τ

Γ ⊢ λx ∶τ0.Q ∶ τ0 → τ

xml-App

Γ ⊢ Q1 ∶ τ2 → τ1 Γ ⊢ Q2 ∶ τ2

Γ ⊢ Q1 Q2 ∶ τ1

xml-LetGen

Γ, α⃗ ⊢ Q1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢ Q2 ∶ τ2

Γ ⊢ let x ∶ ∀α⃗. τ1 = Λα⃗.Q1 in Q2 ∶ τ2

xml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x τ⃗ ∶ [α⃗↦ τ⃗]τ

xml-CstInst

∀α⃗. τ =∆(c)
Γ ⊢ c τ⃗ ∶ [α⃗↦ τ⃗]τ

Figure 4.5: Typing rules for xML

norm-Var

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ ∀α⃗. τ ⇒ Λα⃗.x α⃗

norm-Tabs

Γ, α ⊢M ∶ σ⇒N

Γ ⊢ Λα.M ∶ ∀α.σ⇒ Λα.N

norm-Tapp

Γ ⊢M ∶ ∀α.σ⇒ Λα.N

Γ ⊢M τ ∶ [α↦ τ]σ⇒ [α↦ τ]N
norm-Cst

∀α⃗. τ =∆(c)
Γ ⊢ c ∶ ∀α⃗. τ ⇒ Λα⃗.c α⃗

norm-Let

Γ ⊢M1 ∶ σ1 ⇒N1 Γ, x ∶ σ1 ⊢M2 ∶ ∀α⃗. τ ⇒ Λα⃗.Q α⃗# N1, σ1

Γ ⊢ let x ∶ σ1 =M1 inM2 ∶ ∀α⃗. τ ⇒ Λα⃗.let x ∶ σ1 = N1 in Q

norm-App

Γ ⊢M1 ∶ τ2 → τ1 ⇒ Q1 Γ ⊢M2 ∶ τ2 ⇒ Q2

Γ ⊢M1 M2 ∶ τ1 ⇒ Q1 Q2

norm-Abs

Γ, x ∶ τ0 ⊢M ∶ τ ⇒ Q

Γ ⊢ λx ∶τ0.M ∶ τ0 → τ ⇒ λx ∶τ0.Q

Figure 4.6: Normalization of ML derivations

Let xML be the subset of explicitly-typed ML defined by the following grammar

N ∈ xML ∶∶= Λα⃗.Q
Q ∶∶= x τ⃗ ∣ Q Q ∣ λx ∶τ.Q ∣ let x ∶ σ = N in Q

where τ here ranges over simple types and such that all type variables are fully instantiated.
That is, we request that the arity of τ⃗ in x τ⃗ be the arity of α⃗ in the type scheme ∀α⃗. τ

assigned to the variable x. In particular, all Q-terms are typed with simple types.

Specializing the typing rules of eML (Figure 4.4) to the syntax of xML gives the typing
rules of xML on Figure 4.5. By construction, terms of xML are a syntactic subset of terms
of eML. By construction, we also have if Γ ⊢xML M ∶ σ then Γ ⊢eML M ∶ σ.

Conversely, we wish to show that any term M typable in eML can be mapped to a term
N typable in xML that has the same type erasure. For this purpose, we define on Figure 4.6
a normalization judgment Γ ⊢ M ∶ σ ⇒ N by inference rules, which can also be read as an
algorithm that performs:

4.6. DAMAS AND MILNER’S TYPE SYSTEM 81

• Type η-expansion of every occurrence of a variable according to the arity of its type
scheme (Rule Var). This ensures that every occurrence of a type variable will be fully
specialized—hence assigned a monomorphic type.

• Strong ι-reduction, i.e. type β-reduction (Rule Tapp): this cancels type applications
of type abstractions. As a result, elaborated terms do not contain any ι-redex.

The translation is well-defined for all eML terms, since it follows the structure of the typing
derivation in eML. Formally, if Γ ⊢eML M ∶ σ holds then Γ ⊢ M ∶ σ ⇒ N holds. The proof is
by induction on M and all cases are obvious.

Moreover, if Γ ⊢ M ∶ σ holds, then Γ ⊢xML N ∶ σ also holds and M and N have the same
erasure. The proof is also by induction on M . The preservation of erasure is immediate.
The only non obvious cases for well-typedness of N are Norm-Tapp, which performs strong
ι-reduction and uses type substitution (Lemma 17), and Norm-Let, which extrudes type
abstractions.

Another way to look at the normalization of terms is as a rewriting of the typing deriva-
tions so that all applications of Inst come immediately after Var and all applications of Gen

come immediately above rule Let or at the bottom of the derivation—as imposed by the
grammar of xML terms where Q-terms can only have monomorphic types.

In summary, any term of eML can be rearranged as a term of xML with the same type
erasure. By dropping type information in terms of xML, we then obtain a syntax-directed
presentation of implicitly-typed ML, called sML:

xml-Tabs

Γ, α⃗ ⊢M ∶ τ

Γ ⊢ Λα⃗.M ∶ ∀α⃗. τ

sml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

sml-App

Γ ⊢ a2 ∶ τ2 Γ ⊢ a1 ∶ τ2 → τ1

Γ ⊢ a1 a2 ∶ τ1

sml-LetGen

Γ, α⃗ ⊢ a1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

sml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ [α⃗↦ τ⃗]τ

sml-CstInst

∀α⃗. τ =∆(c)
Γ ⊢ c ∶ [α⃗ ↦ τ⃗]τ

Then, the judgments Γ ⊢ML a ∶ τ and Γ ⊢sML a ∶ τ are equivalent.

However, for type inference, we rather use the equivalent presentation in Figure 4.7 called
iML (or the inference type system) where type variables are not explicitly declared in the
typing context—hence, the side condition for generalization on rule Let.

In this final system, type substitution (Lemma 17), which we will use for type inference,
can be restated as follows:

Lemma 29 (Type Substitution) Typings are stable by substitution.
If Γ ⊢ a ∶ τ then ϕΓ ⊢ a ∶ ϕτ . for any substitution ϕ.

82 CHAPTER 4. POLYMORPHISM AND SYSTEM F

ml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

ml-App

Γ ⊢ a2 ∶ τ2 Γ ⊢ a1 ∶ τ2 → τ1

Γ ⊢ a1 a2 ∶ τ1

ml-LetGen

Γ ⊢ a1 ∶ τ1 α⃗ # Γ Γ, x ∶ ∀α⃗. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

ml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ [α⃗↦ τ⃗]τ

ml-VarCst

∀α⃗. τ = ∆(c)
Γ ⊢ c ∶ [α⃗ ↦ τ⃗]τ

Figure 4.7: Syntax-directed rules for ML

4.6.3 Type soundness for ML

Since ML is a subset of ⌈F⌉, which has been proved sound, we know that ML is sound,
i.e. that ML programs cannot go wrong. This also implies that progress holds in ML.
However, we do not know whether subject reduction holds for ML. Indeed, ML expressions
could reduce to System F expressions that are not in the ML subset. Most proofs of subject
reduction for implicitly-typed ML work directly with implicitly-typed terms. See for instance
(Wright and Felleisen, 1994; Pottier and Rémy, 2005).

Subject-reduction in eML The proof of subject reduction follows the same schema as for
System F (Theorem 9). The main part of the proof works almost unchanged. However, it uses
auxiliary lemmas (inversion, permutation, weakening, type substitution, term substitution,
compositionality) that all need to be rechecked, since those lemmas conclude with typing
judgments in F that may not necessarily hold in eML. Unsurprisingly, all proofs can be easily
adjusted.

An indirect proof reusing subject-reduction in System F We also present an indi-
rect proof that reuses subject reduction and progress in System F and the syntax-directed
presentation of ML.

To establish subject-reduction in ML, let a1 be an implicitly-typed ML term such that
both α⃗ ⊢ML a1 ∶ σ and a1 Ð→ a2 hold. There exists an explicitly-typed term M1 such that
α⃗ ⊢eML M1 ∶ σ and ⌈M1⌉ = a1. By normalization, we may elaborate M1 into a term N1 of
xML such that α⃗ ⊢xML N1 ∶ σ and the ⌈N1⌉ = ⌈M1⌉. Moreover, N1 is by construction ι-normal.
Since xML is a subset of System F, we have α⃗ ⊢F N1 ∶ σ. By inverse simulation in System F
(Lemma 22), there exists N2 in F whose type erasure is a2 and such that N1 Ð→β N2 (since
N1 is ι-normal). We show below that there exists a strong ι-reduction M2 of N2 that is in
xML and such that α⃗ ⊢xML N2 ∶ σ. Therefore, we have α⃗ ⊢eML M2 ∶ σ and since the type
erasure of M2 is that of N2, i.e. a2, we have α⃗ ⊢ML a2 ∶ σ, as expected.

It thus remains to check that given a term N1 such that Γ ⊢xML N1 ∶ σ and N1 Ð→β N2,
there exists a termM2 in xML that is a strong ι-reduction of N2 and such that Γ ⊢xML N2 ∶ σ.
This can be decomposed into the existence ofM2 and type preservation by strong ι-reduction.

4.6. DAMAS AND MILNER’S TYPE SYSTEM 83

The β-reduction step may occur in any evaluation context and is one of two forms. If it
is a normal β-reduction: (λx ∶τ.Q) V Ð→ [x ↦ V]Q
it preserves syntactic membership in eML, because since x is bound to a type and its occur-
rences in M cannot be specialized. However, if it is a let-reduction

let x ∶ ∀α⃗. τ = V in QÐ→ [x↦ V]Q
then occurrences of x in Q, which are of the form x τ⃗ , become V τ⃗ and may contain ι-
redexes—which are not allowed in xML. Fortunately, V is necessarily of the form Λα⃗.V ′

where the arity of α⃗ is equal to that of τ⃗ . Hence, we may immediately perform a sequence of
ι-reduction that brings the term back into xML and in ι-normal form. Notice however that
this ι-redex is not in general in a call-by-value evaluation context. Indeed, x may appear
under an abstraction in M . Hence, this is a strong reduction step.

For type reduction, we need to ensure that strong ι-reduction is also type-preserving.
This is an easy auxiliary proof—but not a consequence of subject reduction, which we have
only proved for reduction in call-by-value evaluation contexts.

84 CHAPTER 4. POLYMORPHISM AND SYSTEM F

4.7 Ommitted proofs and answers to exercises

Solution of Exercise 24

As in the case where pairs are primitive, we introduce one constructor (⋅, ⋅) of arity 2 and
and two destructors proj1 and proj2 of arity 1, with the following types in ∆

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 ×α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

and the two reduction rules:

proji τ1 τ2 (Pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δi)
We then only need to verify that δi preserves types and ensure progress.

Case Type preservation: Assume that Γ ⊢ proji τ1 τ2 (Pair τ ′1 τ ′2 V1 V2) ∶ τ . By inversion,
it must be the case that τ is equal to τi and Γ ⊢ Vi ∶ τi holds, which ensures our goal Γ ⊢ Vi ∶ τ .

Case Progress : Assume that Γ ⊢ M ∶ τ and M is of the form proji τ1 τ2 V . By the
inversion lemma, τ must be a product type τ1 × τ2 such that Γ ⊢ V ∶ τ1 × τ2. By the
classification lemma, V must be a pair, i.e. of a form Pair τ1 τ2 V1 V2. Hence, M reduces to
Vi by δi.

Solution of Exercise 25

We introduce a new type constructor bool, two nullary constructors true and false of type
bool and one ternary destructor ifcase of type ∀α. .bool → α → α → α with two reduction
rules:

ifcase τ true V1 V2 Ð→ V1 ifcase τ false V1 V2 Ð→ V2

This extension is sound.
However, it defines a strict semantics for the conditional, while a lazy semantics is ex-

pected: indeed, since the destructor is ternary, ifcase τ V0 [] M and ifcase τ V0 V1 [] are
evaluations contexts, which allows to reduce the two branches before selecting the right one.

An easy fix is to introduce iflazy τ M0 M1 M2 as syntactic sugar for

(ifcase τ M0 (λ() ∶unit.M1) (λ() ∶unit.M2)) ()
and exposing it to the user, while hiding the primitive ifcase from the user.

Solution of Exercise 26

1) We introduce a new unary type constructor list ; two constructors Nil ⋅ and Cons of types
∀α. list α and ∀α.α → list α → list α; and one destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α→ β)→ β

4.7. OMMITTED PROOFS AND ANSWERS TO EXERCISES 85

with the two reduction rules:

matchlist τ (Nil τ ′) Vn Vc Ð→ Vn
matchlist τ (Cons τ ′ Vh Vt) Vn Vc Ð→ Vc Vh Vt

2) Ommitted.

Solution of Exercise 27

In ML, we may define the datatype:

type any = Fold of (any → any)

This can be simulated by adding a new type any, a constructor Any and a destructor unany
of types (any → any)→ any and any → (any → any), respectively, with the following reduction
rule:

unfold (Fold V)Ð→ V δany

Let us check soundness of this extension:
Case Type preservation: Assume that Γ ⊢ unfold (Fold V) ∶ τ . By inversion, we known

that τ is any → any and that Γ ⊢ V ∶ any → any, which shows our goal Γ ⊢ V ∶ τ .
Case Progress : Assume that Γ ⊢ unfold V ∶ τ . By inversion, τ must be any → any and

Γ ⊢ V ∶ any holds. By classification, V must be Fold V0. Hence, unfold V reduces.
The fixpoint can be defined in the λ-calculus (or in ML with recursive types) as :

let zfix g = (fun x → x x) (fun z → g (fun v → z z v))

We may implement zfix in ML without recursive tyes as:

type any = Fold of (any → any);;
let unfold (Fold x) = x;;
let zfix g =
(fun x → unfold (x (Fold x)))
(fun z → Fold (g (fun v → unfold ((unfold z) z) v)));;

Proof of Lemma 16

Assume Γ, x ∶ τ0,Γ′ ⊢M ∶ τ (1) and Γ ⊢M0 ∶ τ0 (2). We show Γ,Γ′ ⊢ [x ↦M0]M ∶ τ (3). by
induction and cases on M and applying the inversion lemma to (1).

Case M is x: By (1), it must be the case that τ is equal to τ0. Hence, the goal (3) is
Γ,Γ′ ⊢M0 ∶ τ0, which follows from the hypothesis (2) by weakening.

Case M is y when y /= x : By (1), y ∶ τ is in dom(Γ, x ∶ τ0,Γ′), actually in dom(Γ,Γ′), since
y is not x. Hence the goal (3) follows by Rule Var.

Case M is c: By (1), c ∶ τ is in ∆. Hence, the goal (3) follows by Rule Var.

86 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Case M is λy ∶τ1.M1: By (1), τ is of the form τ2 → τ1 and Γ, x ∶ τ0,Γ′, y ∶ τ2 ⊢ M1 ∶ τ1 holds.
By induction hypothesis, we have Γ,Γ′, y ∶ τ2 ⊢ [x ↦ M0]M1 ∶ τ1. By rule Abs, we have
Γ,Γ′ ⊢ λy ∶τ2. [x ↦M0]M1 ∶ τ1, which is the goal (3).

Case M is Λα.M1: By (1), we have Γ, x ∶ τ,Γ′, α ⊢ M1 ∶ τ1 and τ is equal to ∀α. τ1.
By induction hypothesis, we have Γ,Γ′, α ⊢ [x ↦ M0]M1 ∶ τ1. By rule Tabs, we have
Γ ⊢ Λα.[x↦M0]M1 ∶ ∀α. τ1, which is the goal (3).

Case M is M1 M2 or M is M1 τ1: Immediate.

Proof of Lemma 17

The proof is by induction onM using inversion of the typing derivation of Γ, α,Γ′ ⊢M ∶ τ (1).
We write θ for [α ↦ τ]. We must show Γ, θΓ′ ⊢ θM ∶ θτ (2).

CaseM is x: By (1), we have x ∶ τ must be in Γ, α,Γ′. If x ∶ τ is in Γ, then by well-formedness
of types, α does not appear free in τ . Hence θτ is τ and x ∶ θτ is in Γ. Otherwise, x ∶ τ is
in Γ′ and x ∶ θτ is in θΓ′. In both cases, x ∶ θτ is in Γ, θΓ′. Hence, the conclusion follows by
Rule Var.

Case M is c: By (1), we have c ∶ τ is in ∆ and τ is closed. Hence θτ is equal to τ and c ∶ θτ
is still in ∆. Thus, the conclusion (2) follows by Rule Const.

Case M is λx ∶ τ0.M1: By (1) and inversion, we have Γ, α,Γ′, x ∶ τ0 ⊢ M1 ∶ τ1 where τ is
τ0 → τ1. By induction hypothesis, Γ, θ(Γ′, x ∶ τ0) ⊢ M1 ∶ τ1, i.e. Γ, θΓ′, x ∶ θτ0 ⊢ θM1 ∶ θτ1. By
Rule Abs, we have Γ, θΓ′ ⊢ λx ∶θτ0. θM1 ∶ θτ0 → θτ1, i.e. (2).

Case M is Λβ.M1: By (1) and inversion, we have Γ, α,Γ′, β ⊢ M1 ∶ τ1 where τ is ∀β. τ1. By
induction hypothesis, we have Γ, θ(Γ′, β) ⊢ θM1 ∶ θτ1, which is equal to Γ, θΓ′, β ⊢ θM1 ∶ θτ1.
By rule Tabs, we Γ, θΓ′ ⊢ Λβ.θM1 ∶ ∀β. θτ , i.e. i.e. (2).

Case M is M1 M2 or M is M1 τ1: Immediate.

Solution of Exercise 30

Take, for instance, λf.λx.λy. (f y, f x) for a1 (notice the inverse order of fields in the pair)
and λf.λx.λy. (f (f x), f (f y)) for a2.
Solution of Exercise 31

Choose, for instance,

Λα1.Λα2.Λϕ1.Λϕ2.(∀α.ϕ1(α)→ ϕ2(α))→ ϕ1(α1)→ ϕ1(α2)→ ϕ2(α1) ×ϕ2(α1)
for τ0. We recover τ1 by choosing the constant functions λα.αi for ϕi and τ2 by choosing the
identity λα.α for both ϕ1 and ϕ2.

4.7. OMMITTED PROOFS AND ANSWERS TO EXERCISES 87

Solution of Exercise 32

1) Both directions follow from rule Inst-Gen, just applying the substitution α ↦ α for the
direct implication and just generalizing over α for the reverse.

2) Rule Distrib-Right is a particular case of Distributivity, indeed. Assuming α ∉

ftv(τ1), and using the previous equivalence (1), we have

Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
τ1 ≤ ∀α. τ1 (1)

(∀α. τ1)→ (∀α. τ2) ≤ τ1 → (∀α. τ2) Congruence-→

∀α. (τ1 → τ2) ≤ τ1 → (∀α. τ2) Trans

Conversely, we have the following derivation:

Distrib-Right

Congruence-∀

Congruence-→
Inst-Gen ∀α. τ1 ≤ τ1

τ1 → τ2 ≤ (∀α. τ1)→ τ2

∀α. (τ1 → τ2) ≤ ∀α. (∀α. τ1)→ τ2

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)

Solution of Exercise 33

We extend the λ-calculus with a binary constructor Pair and two unary destructors proji
for i in {1,2} with the δ-rules:

proji (Pair v1 v2)Ð→δ vi
The reduction proj1 (Pair v (λx.Pair Pair)) Ð→δ v is correct, even though the right
component of the pair is ill-typed, hence δ-reduction is larger than the type-erasure of δ-
reduction on explicitly typed terms. Still, it contains it (direct simulation); and it does not
contains more (inverse simulation) when we restrict to well-typed expressions. Both cases
are really easy:

Proof: Let M be of the form proji τ1 τ2 V0 such that Γ ⊢M ∶ τ . By inversion of typing rules,
Γ ⊢ V0 ∶ τ1 × τ2. By the classification lemma, V0 is of the form Pair τ1 τ2 V1 V2. Observe that
M reduces to Vi (1); and ⌈M⌉ is proji (pair ⌈V1⌉ ⌈V2⌉) which reduces to ⌈Vi⌉ (2).

Case direct : Assume M Ð→δ M
′. Then, M ′ is Vi and by (2), ⌈M⌉Ð→δ ⌈Vi⌉.

Case inverse: Assume that ⌈M⌉ Ð→δ a. Since reduction is deterministic in the untyped
calculus a must be ⌈Vi⌉. Hence, we may take Vi for M

′.

88 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Proof of Lemma 21

Assume Γ ⊢M ∶ τ and M Ð→ M ′. We reason by induction on the proof of reduction.

Case (Λ(α)M0) τ Ð→ι M0[τ/α]: Observe that both M and M ′ erases to ⌈M0⌉.
Case (λx.M1) M2 Ð→β M1[M2/x]: Then M erases to (λx. ⌈M1⌉) ⌈M1⌉ which reduces to⌈M1⌉[⌈M2⌉/x] which is the erasure of M ′

Case proji τ1 τ2 (V1, V2)Ð→δ Vi: The conclusion follows by assumption on δ-rules.

Case M is E[N] and M ′ is E[N ′] and N Ð→z N ′: By induction hypothesis, we know that
a certain relation (equality when z is ι or Ð→z otherwise) holds between ⌈M⌉ and ⌈N⌉. By
rule congruence for ι and rule Context otherwise, the same relation holds between ⌈E[M]⌉
and ⌈E⌉[⌈N⌉], i.e. between ⌈M⌉ and ⌈N⌉.

Proof of Lemma 25

Case v is λx. a1: By inversion of type erasure, M is of the form R[λx ∶τ.M1] where ⌈M1⌉ is
a1. Since R is ι-normal, it is of the form Λα.[] τ . since λx ∶ τ.M1 is an arrow type, τ must
be empty.

Case v is a partial application c v1 . . . vn: We show that then V is R[c τ⃗ V1 . . . Vn] with⌈Vi⌉ = vi by induction on n. If n is zero, then by inversion of type erasure, M is of the form
R[c] as expected. Otherwise, by inversion of type erasure, M is an application Rn[M1 M2]
where ⌈M1⌉ is the partial application c v1 . . . vn−1 and ⌈M2⌉ is vn. By induction hypothesisM1

is R1[c τ⃗ V1 . . . Vn−1] with ⌈Vi⌉ = vi. Since R1 is in an evaluation context, it is ι-normal, hence
of the form Λᾱ1.[] τ̄1. From the arity of c, the type of M1 is an arrow type. Thus τ̄1 must be
empty. Since R is applied to M2 it cannot be a type abstraction either. Hence, R1 is empty.
Moreover, by induction hypothesis M2 is a value Vn. Hence M is Rn[c τ⃗ V1 . . . Vn−1 Vn], as
expected.

Proof of Corollary 26

By Lemma 24, M is of the form R[M0 M2] where ⌈M0⌉ is a value v, which is either λx. a1
or the partial application c v1 . . . vn−1 and ⌈M2⌉ is v. Since R is an evaluation context,
M0 M2 is in ι-normal form. Since [] M2 is an evaluation context, M0 is in ι-normal form.
By Lemma 25, M0 a value V0. Since V0 [] is an evaluation context, M2 is in ι-normal form.
By 25, it must be a value V0.

Moreover, by Lemma 25, V0 is either

• Λα.λx ∶τ.M1. Since V0 is in application position α must actually be empty. Then M is
of the form R[(λx ∶τ.M1) V], as expected.

4.7. OMMITTED PROOFS AND ANSWERS TO EXERCISES 89

• R0[c τ⃗ V1 . . . Vn−1]. Since V0 is in an evaluation R0 is ι-normal, thus of the form
Λα⃗.[] τ̄0. Since V0 in application position α⃗ must be empty. From the arity of d, the
application is partial and has an arrow type, hence τ̄0 must be empty. Then, taking V
for Vn, the term M is of the form R[c τ⃗ V1 . . . Vn], as expected.

Solution of Exercise 34

Take (λx ∶τ0.Λα.λα ∶y. y)M0 for M where Γ ⊢ M0 ∶ τ0. We have Γ ⊢F M ∶ ∀α.α → α where
M is syntactically in ML, but cannot be typed in ML because function bodies cannot have
polymorphic types.

90 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Chapter 5

Type reconstruction

5.1 Introduction

We have viewed a type system as a 3-place predicate over a type environment, a term, and
a type. So far, we have been concerned with logical properties of the type system, namely
subject reduction and progress. However, one should also study its algorithmic properties:
is it decidable whether a term is well-typed?

We have seen three different type systems, simply-typed λ-calculus, ML, and System F,
of increasing expressiveness. In each case, we have presented an explicitly-typed and an
implicitly-typed version of the language and shown a close correspondence between the two
views, thanks to a type-erasing semantics.

We argued that the explicitly-typed version is often more convenient for studying the
meta-theoretical properties of the language. Which one should we used for checking well-
typedness? That is, in which language should we write programs?

The typing judgment is inductively defined, so that, in order to prove that a particular
instance holds, one exhibits a type derivation. A type derivation is essentially a version of
the program where every node is annotated with a type. Checking that a type derivation is
correct is usually easy: it basically amounts to checking equalities between types. However,
type derivations are too verbose to be tractable by humans! Requiring every node to be
type-annotated is not practical.

A more practical, common approach consists in requesting just enough annotations to
allow types to be reconstructed in a bottom-up manner. In other words, one seeks an algo-
rithmic reading of the typing rules, where, in a judgment Γ ⊢ M ∶ τ , the parameters Γ and
M are inputs, while the parameter τ is an output. Moreover, typing rules should be such
that a type appearing as output in a conclusion should also appear as output in a premise
or as input in the conclusion; and input in the premises should be input of the conclusion or
an output of other premises.

This way, types need never be guessed, just looked up into the typing context, instanti-

91

92 CHAPTER 5. TYPE RECONSTRUCTION

ated, or checked for equality. This is exactly the situation with explicitly-typed presentations
of the typing rules. This is also the traditional approach of Pascal, C, C++, Java, etc.: for-
mal procedure parameters, as well as local variables, are assigned explicit types. The types
of expressions are synthesized bottom-up.

However, this implies a lot of redundancies: Parameters of all functions need to be
annotated, even when their types are obvious from context; Primitive let-bindings, recursive
definitions, injection into sum types need to be annotated. As the language grows, more
and more constructs require type annotations, e.g. type applications and type abstractions.
Type annotations may quickly obfuscate the code and large explicitly-typed terms are so
verbose that they become intractable by humans! Hence, programming in the implicitly-
typed version is more appealing.

For simply-typed λ-calculus and ML, it turns out that this is possible: whether a term
is well-typed is decidable, even when no type annotations are provided! We first present
type inference in the case of simply-typed λ-calculus taking advantage of the simplicity to
introduce type constraints as a useful intermediate to mediate between the typing rules and
the type-inference algorithms. We then extend type-constraint to perform type inference for
ML.

For System F, type inference is undecidable. Since programming in explicitly-typed
System F is not practically feasible, some amount of type reconstruction must still be done.
Typically, the algorithm is incomplete, i.e. it rejects terms that are perhaps well-typed, but
the user may always provide more annotations—and at least the fully annotated version
is always accepted if well-typed. We will present very briefly several techniques for type
reconstruction in System F.

5.2 Type inference for simply-typed λ-calculus

The type inference algorithm for simply-typed λ-calculus, is due to Hindley. The idea behind
the algorithm is simple. Because simply-typed λ-calculus is a syntax-directed type system,
an unannotated term determines an isomorphic candidate type derivation, where all types
are unknown: they are distinct type variables. For a candidate type derivation to become an
actual, valid type derivation, every type variable must be instantiated with a type, subject
to certain equality constraints on types. For instance, at an application node, the type of
the operator must match the domain type of the operator.

Thus, type inference for the simply-typed λ-calculus decomposes into constraint gener-
ation followed by constraint solving. Simple types are first-order terms. Thus, solving a
collection of equations between simple types is first-order unification. First-order unification
can be performed incrementally in quasi-linear time, and admits particularly simple solved
forms.

5.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS 93

⟪Γ ⊢ x ∶ τ⟫ = Γ(x) = τ
⟪Γ ⊢ λx. a ∶ τ⟫ = ∃α1α2.(⟪Γ, x ∶ α1 ⊢ a ∶ α2⟫ ∧ τ = α1 → α2) if α1, α2 # Γ, τ

⟪Γ ⊢ a1 a2 ∶ τ⟫ = ∃α.(⟪Γ ⊢ a1 ∶ α→ τ⟫ ∧ ⟪Γ ⊢ a2 ∶ α⟫) if α # Γ, τ

Figure 5.1: constraint generation for simply-typed λ-calculus

5.2.1 Constraints

At the interface between the constraint generation and constraint solving phases is the
constraint language. It is a logic: a syntax, equipped with an interpretation in a model.

There are two syntactic categories: types and constraints.

τ ∶∶= α ∣ F τ⃗

C ∶∶= true ∣ false ∣ τ = τ ∣ C ∧C ∣ ∃α.C
A type is either a type variable α or an arity-consistent application of a type constructor F .
(The type constructors are unit, ×, +, →, etc.) An atomic constraint is truth, falsity, or an
equation between types. Compound constraints are built on top of atomic constraints via
conjunction and existential quantification over type variables.

Constraints are interpreted in the Herbrand universe, that is, in the set of ground types:

t ∶∶= F t⃗

Ground types contain no variables. The base case in this definition is when F has arity zero.
We assume that there should be at least one constructor of arity zero, so that the model is
non-empty. A ground assignment φ is a total mapping of type variables to ground types. By
homomorphism, a ground assignment determines a total mapping of types to ground types.

The interpretation of constraints takes the form of a judgment, φ ⊢ C, pronounced: φ
satisfies C, or φ is a solution of C. This judgment is inductively defined:

φ ⊢ true
φτ1 = φτ2

φ ⊢ τ1 = τ2

φ ⊢ C1 φ ⊢ C2

φ ⊢ C1 ∧C2

φ[α↦ t] ⊢ C
φ ⊢ ∃α.C

A constraint C is satisfiable if and only if there exists a ground assignment φ that satisfies C.
We write C1 ≡ C2 when C1 and C2 have the same solutions. The problem “given a constraint
C, is C satisfiable?” is first-order unification.

Type inference is reduced to constraint solving by defining a mapping ⟪Γ ⊢ a ∶ τ⟫ of
candidate judgments to constraints, as given in Figure 5.1. Thanks to the use of existential
quantification, the names that occur free in ⟪Γ ⊢ a ∶ τ⟫ are a subset of those that occur
free in Γ or τ . This allows the freshness side conditions to remain local—there is no need to
informally require “globally fresh” type variables.

94 CHAPTER 5. TYPE RECONSTRUCTION

5.2.2 A detailed example

Let us perform type inference for the closed term λfxy. (f x, f y). The problem is to
construct and solve the constraint ⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫, say C. It is possible (and, for
a human, easier) to mix these tasks. A machine, however, could generate and solve in two
successive phases. There are several advantages in doing this. This leads to simpler, easier
to maintain code, as the generation of constraints deals with the complexity of the source
language which solving may ignore; moreover, adding new construct to the language does
not (in general) require new forms of constraints and can thus reuse the solving algorithm
unchanged.

Solving the constraint means to find all possible ground assignments for α0 that satisfy the
constraint. Typically, this is done by transforming the constraint into successive equivalent
constraints until some constraint that is obviously satisfiable and from which solutions may
be directly read.

Performing constraint generation for the 3 λ-abstractions, we have:

C = ∃α1α2.

⎛⎜⎜⎜⎜⎝
∃α3α4.

⎛⎜⎝
∃α5α6.(⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫

α4 = α5 → α6
)

α2 = α3 → α4

⎞⎟⎠
α0 = α1 → α2

⎞⎟⎟⎟⎟⎠
In the following, let Γ stand for (f ∶ α1;x ∶ α3;y ∶ α5). We may hoist up existential quantifiers,
using the rule:

(∃α.C1) ∧C2 ≡ ∃α.(C1 ∧C2) if α# C2

Hence, hoisting α3 and α4, and α5 and α6 twice, we get:

C ≡ ∃α1α2α3α4α5α6.(⟪Γ ⊢ (f x, f y) ∶ α6⟫
α4 = α5 → α6 ∧ α2 = α3 → α4 ∧ α0 = α1 → α2

)
We may eliminate a type variable that has a defining equation with the rule:

∃α.(C ∧α = τ) ≡ [α ↦ τ]C if α # τ

By successive elimination of α4 then α2, we get:

C ≡ ∃α1α3α5α6.(⟪Γ ⊢ (f x, f y) ∶ α6⟫
α0 = α1 → α3 → α5 → α6

)
Let us now perform constraint generation for the pair, hoisted the resulting existential quan-
tifiers, and eliminated a type variable (α6).

C ≡ ∃{ α1α3α5

α6α7α8
} .
⎛⎜⎜⎜⎝

⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α7 × α8 = α6

α1 → α3 → α5 → α6 = α0

⎞⎟⎟⎟⎠
≡ ∃{ α1α3α5

α7α8
} .
⎛⎜⎜⎜⎝

⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α1 → α3 → α5

→ α7 ×α8 = α0

⎞⎟⎟⎟⎠

5.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS 95

Let us focus on the first application, perform constraint generation for the variables f and
x (recall that Γ stands for (f ∶ α1;x ∶ α3;y ∶ α5)), and eliminate a type variable (α9):

C1 = ⟪Γ ⊢ f x ∶ α7⟫ = ∃α9.(⟪Γ ⊢ f ∶ α9 → α7⟫⟪Γ ⊢ x ∶ α9⟫) = ∃α9.(α1 = α9 → α7

α3 = α9
) ≡ α1 = α3 → α7 = C2

Applying this simplification under a context, with the rule:

C1 ≡ C2 ⇒ R[C1] ≡ R[C2]
we have:

C ≡ ∃α1α3α5α7α8.
⎛⎜⎝
α1 = α3 → α7⟪Γ ⊢ f y ∶ α8⟫
α0 = α1 → α3 → α5 → α7 × α8

⎞⎟⎠
We may simplify the right-hand application analogously.

C ≡ ∃α1α3α5α7α8.(α1 = α3 → α7 ∧ α1 = α5 → α8

α0 = α1 → α3 → α5 → α7 × α8
)

We may apply transitivity at α1, structural decomposition, and eliminate three type variables
(α1, α5, α8):

C ≡ ∃α1α3α5α7α8.(α1 = α3 → α7 ∧ α3 = α5 ∧ α7 = α8

α0 = α1 → α3 → α5 → α7 × α8
)

≡ ∃α3α7. (α0 = (α3 → α7)→ α3 → α3 → α7 × α7z)
We have now reached a solved form. To sum up, we have checked the following equivalence
holds:

⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫ ≡ ∃α3α7. ((α3 → α7)→ α3 → α3 → α7 × α7 = α0)
Hence, the ground types of λfxy. (f x, f y) are all ground types of the form

(t3 → t7)→ t3 → t3 → t7 × t7

In other words, (α3 → α7)→ α3 → α3 → α7 × α7 is a principal type for λfxy. (f x, f y).
The language OCaml implements a form of this type inference algorithm:

fun f x y → (f x, f y);;
− : (’a → ’b) → ’a → ’a → ’b ∗ ’b = ⟨fun⟩

This technique is used also by Standard ML and Haskell.

In the simply-typed λ-calculus, type inference works just as well for open terms. For
instance, the term λxy. (f x, f y) has a free variable, namely f . The type inference problem
is to construct and solve the constraint ⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫. We have already done
so... with only a slight difference: α1 and α2 are now free, so they cannot be eliminated.

96 CHAPTER 5. TYPE RECONSTRUCTION

One can check the following equivalence:

⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫ ≡ ∃α3α7. (α1 = α3 → α7 ∧ α2 = α3 → α3 → α7 × α7)
In other words, the ground typings of λxy. (f x, f y) are all ground typings of the form:

((f ∶ t3 → t7), t3 → t3 → t7 × t7)
Remember that a typing is a pair of an environment and a type.

5.2.3 Soundness and completeness of type inference

Definition 2 (Typing) A pair (Γ, τ) is a typing of a if and only if dom(Γ) = fv(a) and
the judgment Γ ⊢ a ∶ τ is valid.

The type inference problem is to determine whether a term a admits a typing, and, if possible,
to exhibit a description of the set of all of its typings.

Up to a change of universes, the problem reduces to finding the ground typings of a term.
(For every type variable, introduce a nullary type constructor. Then, ground typings in the
extended universe are in one-to-one correspondence with typings in the original universe.)

Theorem 15 (Soundness and completeness) φ ⊢ ⟪Γ ⊢ a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .

In other words, assuming dom(Γ) = fv(a), φ satisfies the constraint ⟪Γ ⊢ a ∶ τ⟫ if and
only if (φΓ, φτ) is a (ground) typing of a. The direct implication is soundness; the reverse
implication is completeness. The proof is by structural induction over a. (Proof p. 124)

Exercise 35 (Recommended) Write the details of the proof.

Corollary 30 Let fv(a) = {x1, . . . , xn}, where n ≥ 0. Let α0, . . . , αn be pairwise distinct type
variables. Then, the ground typings of a are described by ((xi ∶ φαi)i∈1..n, φα0) where φ ranges
over all solutions of ⟪(xi ∶ αi)i∈1..n ⊢ a ∶ α0⟫.
Corollary 31 Let fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪∅ ⊢ a ∶ α⟫ ≡ true.
5.2.4 Constraint solving

A constraint solving algorithm is typically presented as a (non-deterministic) system of
constraint rewriting rules that must enjoy the following properties: reduction is meaning-
preserving, i.e. C1 Ð→ C2 implies C1 ≡ C2; reduction is terminating; and every normal form
is either “false” (literally) or satisfiable. The normal forms are called solved forms.

Our constraints are equations on first-order terms. They can be solved by first-order
unification. The algorithm can be described as constraint solving. However, in order to

5.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS 97

(∃ᾱ.U1) ∧U2 Ð→ ∃ᾱ.(U1 ∧U2) (extrusion)

if ᾱ# U2

α = ǫ ∧ α = ǫ′ Ð→ α = ǫ = ǫ′ (fusion)

F α⃗ = F τ⃗ = ǫ Ð→ α⃗ = τ⃗ ∧ F α⃗ = ǫ (decomposition)

F τ1 . . . τi . . . τn = ǫ Ð→ ∃α.(α = τi ∧F τ1 . . . α . . . τn = ǫ) (naming)

if τi is not a variable ∧ α # τ1, . . . , τn, ǫ

F τ⃗ = F ′ τ⃗ ′ = ǫ Ð→ false (clash)

if F ≠ F ′

U Ð→ false (occurs check)

if U is cyclic

U[false] Ð→ false (error propag.)

α = α = ǫ Ð→ α = ǫ (elim dupl.)

F τ⃗ Ð→ true (elim triv.)

U ∧ true Ð→ U (elim true)

Figure 5.2: Solving unification constraints

describe an efficient algorithm, we first extend the syntax of constraints and replace ordinary
binary equations with multi-equations, following Pottier and Rémy (2005, §10.6):

U ∶∶= true ∣ false ∣ ǫ ∣ U ∧U ∣ ∃ᾱ.U
A multi-equation ǫ is a multi-set of types. Its interpretation is given by

∀τ ∈ ǫ, φτ = t

φ ⊢ ǫ

That is, φ satisfies ǫ if and only if φ maps all members of ǫ to a single ground type.

Simplification rules are given in Figure 5.2. (See Pottier and Rémy (2005, §10.6) for a
detailed presentation.) The last three rules in gray are administrative.

The occurs check is defined as follows: we say that α dominates β (with respect to U) if
U contains a multi-equation of the form F τ1 . . . β . . . τn = α = A constraint U is cyclic if
and only if its domination relation is cyclic. A cyclic constraint is unsatisfiable: indeed, if φ
satisfies U and if α is a member of a cycle, then the ground type φα must be a strict subterm
of itself, a contradiction. Thus, the occurs-check rewriting rule is meaning-preserving.

A solved form is either false or ∃ᾱ.U , where U is a conjunction of multi-equations, ev-
ery multi-equation contains at most one non-variable term, no two multi-equations share a
variable, and the domination relation is acyclic. Every solved form that is not false is satisfi-
able. Indeed, a solution is easily constructed by well-founded recursion over the domination
relation.

98 CHAPTER 5. TYPE RECONSTRUCTION

Remarks Viewing a unification algorithm as a system of rewriting rules makes it easy to
explain and reason about.

In practice, following Huet (1976), first-order unification is implemented on top of an
efficient union-find data structure (Tarjan, 1975). Its time complexity is quasi-linear (i.e.
growing in the inverse of the Ackermann function).

Unification on first-order terms can also be implemented in linear time, but with a more
complex algorithm and a higher constant that makes it behave worse than the quasi-linear
time algorithm. Moreover, while the quasi-linear time algorithm works as well when types
are regular trees— by just removing the occur check—the linear time algorithm only works
with finite trees and thus cannot be used for type inference in the presence of equi-recursive
types.

Closing remarks Thanks to type inference, conciseness and static safety are not in-
compatible. Furthermore, an inferred type is sometimes more general than a programmer-
intended type. Type inference helps reveal unexpected generality.

5.3 Type inference for ML

Two presentations of type inference for Damas and Milner’s type system are possible: One of
Milner’s classic algorithms 1978, W or J ; see Pottier’s old course notes for details (Pottier,
2002, §3.3); or a constraint-based presentation Pottier and Rémy (2005). We favor the latter,
but quickly review the former first.

5.3.1 Milner’s Algorithm J
Milner’s Algorithm J expects a pair Γ ⊢ a, produces a type τ , and uses two global variables, V
and ϕ. Variable V is an infinite fresh supply of type variables; ϕ is an idempotent substitution
(of types for type variables), initially the identity. The fresh primitive is defined as:

fresh = do α ∈ V; do V ← V ∖ {α}; return α

The Algorithm J is given on Figure 5.3 in monadic style. The algorithm mixes generation
and solving of equations. This lack of modularity leads to several weaknesses: proofs are
more difficult; correctness and efficiency concerns are not clearly separated (if implemented
literally, the algorithm is exponential in practice); adding new language constructs duplicates
solving of equations; generalizations, such as the introduction of subtyping, are not easy.
Furthermore, Algorithm J works with substitutions, instead of constraints. Substitutions
are an approximation to solved forms for unification constraints. Working with substitutions
means using most general unifiers, composition, and restriction. Working with constraints
means using equations, conjunction, and existential quantification.

5.3. TYPE INFERENCE FOR ML 99

J (Γ ⊢ x) = let ∀α1 . . . αn.τ = Γ(x)
do α′1, . . . , α

′
n = fresh, . . . , fresh

return [αi ↦ α′i]ni=1(τ) – take a fresh instance
J (Γ ⊢ λx. a1) = do α = fresh

do τ1 = J (Γ;x ∶ α ⊢ a1)
return α → τ1 – form an arrow type

J (Γ ⊢ a1 a2) = do τ1 = J (Γ ⊢ a1)
do τ2 = J (Γ ⊢ a2)
do α = fresh
do ϕ← mgu(ϕ(τ1) = ϕ(τ2 → α)) ○ ϕ
return α – solve τ1 = τ2 → α

J (Γ ⊢ let x = a1 in a2) = do τ1 = J (Γ ⊢ a1)
let σ = ∀∖ftv(ϕ(Γ)). ϕ(τ1) – generalize
return J (Γ;x ∶ σ ⊢ a2)

(∀∖ᾱ. τ quantifies over all type variables other than ᾱ.)

Figure 5.3: Type inference algorithm for ML

5.3.2 Constraint-based type inference for ML

Type inference for Damas and Milner’s type system involves slightly more than first-order
unification: there is also generalization and instantiation of type schemes. So, the constraint
language must be enriched. We proceed in two steps: still within simply-typed λ-calculus,
we present a variation of the constraint language; building on this variation, we introduce
polymorphism.

How about letting the constraint solver, instead of the constraint generator, deal with
environment access and construction? That is, the syntax of constraints is as follows:

C ∶∶= . . . ∣ x = τ ∣ def x ∶ τ in C
The idea is to interpret constraints in such a way as to validate the equivalence law:

def x ∶ τ in C ≡ [x ↦ τ]C
The def form is an explicit substitution form. More precisely, here is the new interpretation
of constraints. As before, a valuation φ maps type variables α to ground types. In addition,
a valuation ψ maps term variables x to ground types. The satisfaction judgment now takes
the form φ,ψ ⊢ C. The new rules of interest are:

ψx = φτ

φ,ψ ⊢ x = τ

φ,ψ[x ↦ φτ] ⊢ C
φ,ψ ⊢ def x ∶ τ in C

(All other rules are modified to just transport ψ.) Constraint generation becomes a mapping
of an expression a and a type τ to a constraint ⟪a ∶ τ⟫. There is no longer a need for the

100 CHAPTER 5. TYPE RECONSTRUCTION

⟪x ∶ τ⟫ = x = τ

⟪λx. a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧ α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

Figure 5.4: Constraints with program variables

parameter Γ. Constraint generation is defined in Figure 5.4

Theorem 16 (Soundness and completeness) Assume fv(a) = dom(Γ). Then, φ,φΓ ⊢⟪a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .

Corollary 32 Assume fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪a ∶ α⟫ ≡ true.
This variation shows that there is freedom in the design of the constraint language, and that
altering this design can shift work from the constraint generator to the constraint solver, or
vice-versa.

Enriching constraints To permit polymorphism, we must extend the syntax of con-
straints so that a variable x denotes not just a ground type, but a set of ground types.

However, these sets cannot be represented as type schemes ∀ᾱ. τ , because constructing
these simplified forms requires constraint solving. To avoid mingling constraint generation
and constraint solving, we use type schemes that incorporate constraints, called constrained
type schemes. The syntax of constraints and of constrained type schemes is:

C ∶∶= τ = τ ∣ C ∧C ∣ ∃α.C ∣ x ⪯ τ ∣ σ ⪯ τ ∣ def x ∶ σ in C
σ ∶∶= ∀ᾱ[C]. τ

Both x ⪯ τ and σ ⪯ τ are instantiation constraints. The latter form is introduced so as to
make the syntax stable under substitutions of constrained type schemes for variables. As
before, def x ∶ σ in C is an explicit substitution form.

The idea is to interpret constraints in such a way as to validate the equivalence laws:

def x ∶ σ in C ≡ [x↦ σ]C (∀ᾱ[C]. τ) ⪯ τ ′ ≡ ∃ᾱ.(C ∧ τ = τ ′) if ᾱ # τ ′

Using these laws, a closed constraint can be rewritten to a unification constraint (with a
possibly exponential increase in size). The new constructs do not add much expressive
power. They add just enough to allow a stand-alone formulation of constraint generation.

The interpretation of constraints must be redefined since the environment ψ now maps
program variables to sets of ground types. The environment φ still maps type variables to
ground types. Hence, a type variable α still denotes a ground type. A variable x now denotes

5.3. TYPE INFERENCE FOR ML 101

a set of ground types. Instantiation constraints are interpreted as set membership. The rules
for the new form of constraints are:

φτ ∈ ψx

φ,ψ ⊢ x ⪯ τ

φτ ∈ (φψ)σ
φ,ψ ⊢ σ ⪯ τ

φ,ψ[x ↦ (φψ)σ] ⊢ C
φ,ψ ⊢ def x ∶ σ in C

The interpretation of ∀ᾱ[C]. τ under φ and ψ, written (φψ)(∀ᾱ[C]. τ) is the set of all φ′τ ,
where φ and φ′ coincide outside ᾱ and where φ′ and ψ satisfy C:

(φψ)(∀ᾱ[C]. τ) △
== {φ′τ ∣ (φ′ ∖ ᾱ = φ ∖ ᾱ) ∧ (φ′, ψ ⊢ C)}

If C is empty, then (φψ)(∀ᾱ[C]. τ) is {(φ[ᾱ↦ t])τ}. If ᾱ and C are empty, then (φψ)τ is φτ .

For instance, the interpretation of ∀α[∃β.α = β → γ]. α → α under φ and ψ is the set of
all ground types of the form (t → φγ) → (t → φγ), where t ranges over ground types. This
is also the interpretation of an unconstrained typed scheme, namely ∀β. (β → γ)→ (β → γ).
In fact, this is a general situation:

Lemma 33 Every constrained type scheme is equivalent to a standard type scheme.

This result holds because constraints can be reduced to unification constraints, which have
either no solution or a principal solution. This is an important property as it implies that
type inference problems have principal solutions and typable programs have principal types.
The property would not hold with more general constraints, such as subtyping constraints.
However, we may then generalize type schemes to constrained type schemes as a way to
factor several possible types and recover principality of type inference. Then, type inference
may have principal constrained type schemes.

Notice that if x does not appear free in C, def x ∶ σ in C is equivalent to C—whether
or not the constraints appearing in σ are solvable. To enforce the constraints in σ to be
solvable, we use a variant of the def construct:

let x ∶ σ in C
△
== def x ∶ σ in ((∃α.x ⪯ α) ∧C)

Expanding the constraint type scheme σ of the form ∀ᾱ[C]. τ and simplifying, an equivalent
definition is:

let x ∶ ∀ᾱ[C]. τ in C ′ △
== ∃ᾱ.C ∧ def x ∶ ∀ᾱ[C]. τ in C ′

This is equivalent to providing a direct interpretation of let-bindings as:

(φψ)σ /= ∅ φ,ψ[x↦ (φψ)σ] ⊢ C
φ,ψ ⊢ let x ∶ σ in C

Constraint generation for ML is defined in Figure 5.5. The abbreviation La M is a principal
constrained type scheme for a: its intended interpretation is the set of all ground types that
a admits.

102 CHAPTER 5. TYPE RECONSTRUCTION

⟪x ∶ τ⟫ = x ⪯ τ

⟪λx. a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧ α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

⟪let x = a1 in a2 ∶ τ⟫ = let x ∶ La1 M in ⟪a2 ∶ τ⟫
La M = ∀α[⟪a ∶ α⟫]. α

Figure 5.5: Constraint generation for ML

Lemma 34 (Constraint equivalences) The following equivalences hold:

(1) ∃α.(⟪a ∶ α⟫ ∧ α = τ) ≡ ⟪a ∶ τ⟫ if α # τ

(2) La M ⪯ τ ≡ ⟪a ∶ τ⟫
(3) [x ↦ La1 M]⟪a2 ∶ τ⟫ ≡ ⟪[x↦ a1]a2 ∶ τ⟫

Proof: (1) is by induction on the definition of ⟪a ∶ τ⟫; (2) is by definition of La M, expansion
of the instantiation constraint and (1); (3) is by induction on ⟪a ∶ τ⟫ and (2).

Another key property is that the constraint associated with a let construct is equivalent to
the constraint associated with its let-normal form.

Lemma 35 (let expansion) ⟪let x = a1 in a2 ∶ τ⟫ ≡ ⟪a1; [x ↦ a1]a2 ∶ τ⟫.
Expansion of let-binding terminates, since it can be seen as reducing the family of redexes
marked as let-bindings. The resulting expression has no let-binding and its constraint has
no def-constraint. Hence, its interpretation is the same as constraints for the simply-typed
λ-calculus. This gives another specification of ML: a closed program is well-typed in ML if
and only if its let-expansion is typable with simple types.

Constraint generation for ML can still be implemented in linear time and space.

Lemma 36 The size of ⟪a ∶ τ⟫ is linear in the sum of the sizes of a and τ .

The statement of soundness and completeness keeps its previous form, but Γ now contains
Damas-Milner type schemes. Since Γ binds variables to type schemes, we define φ(Γ) as the
point-wise mapping of (φ∅) to Γ.

Theorem 17 (Soundness and completeness) Assume fv(a) = dom(Γ). Then, φ,φΓ ⊢⟪a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .

5.3. TYPE INFERENCE FOR ML 103

Key points Notice that constraint generation has linear complexity ; constraint generation
and constraint solving are separate. This makes constraints suitable for use in an efficient
and modular implementation. In particular, the constraint language remains small as the
programming language grows.

5.3.3 Constraint solving by example

For our running example, assume that the initial environment Γ0 stands for assoc ∶ ∀αβ.α →
list (α × β) → β. That is, the constraints considered next are implicitly wrapped within the
context def Γ0 in []. Let a stand for the term:

λx.λl1. λl2. let assocx = assoc x in (assocx l1,assocx l2)
One may anticipate that assocx receives a polymorphic type scheme, which is instantiated
twice at different types. Let Γ stand for x ∶ α0; l1 ∶ α1; l2 ∶ α2. Then, the constraint ⟪a ∶ α⟫ is,
after a few minor simplifications:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀γ1 [∃γ2.(assoc ⪯ γ2 → γ1
x ⪯ γ2

)] . γ1 in
∃β1β2.(β = β1 × β2

∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Constraint solving can be viewed as a rewriting process that exploits equivalence laws. Be-
cause equivalence is, by construction, a congruence, rewriting is permitted within an arbitrary
context. For instance, environment access is allowed by the law

let x ∶ σ inR[x ⪯ τ] ≡ let x ∶ σ inR[σ ⪯ τ]
where R is a context that does not bind x. Thus, within the context def Γ0; Γ in [], we have
the following equivalence:

assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2 ≡ ∃αβ.(α → list (α × β)→ β = γ2 → γ1) ∧ α0 = γ2

By first-order unification, we have the following sequence of simplifications:

∃γ2.(∃αβ. (α →list (α × β)→ β = γ2→γ1) ∧α0 = γ2)
≡ ∃γ2. (∃αβ. (α = γ2 ∧ list (α × β)→ β = γ1) ∧α0 = γ2)
≡ ∃γ2. (∃β.(list (γ2 × β)→ β = γ1) ∧α0 = γ2)
≡ ∃β.(list (α0 × β)→ β = γ1)

Hence,

∀γ1[∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)]. γ1 ≡ ∀γ1[∃β.(list (α0 × β)→ β = γ1)]. γ1
≡ ∀γ1β[list (α0 × β)→ β = γ1]. γ1
≡ ∀β.list (α0 × β)→ β

104 CHAPTER 5. TYPE RECONSTRUCTION

We have used the rule:

∀α[∃β.C]. τ ≡ ∀αβ[C]. τ if β # τ

The initial constraint has now been simplified down to:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in
let assocx ∶ ∀β. list (α0 × β)→ β in

∃β1β2.(β = β1 × β2
∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎠
The simplification work spent on assocx’s type scheme was well worth the trouble, because
we are now going to duplicate the simplified type scheme.

The subconstraint ∃γ2. (assocx ⪯ γ2 → βi ∧ li ⪯ γ2) where i ∈ {1,2}, is rewritten:
∃γ2. (∃β. (list (α0 × β)→ β = γ2 → βi) ∧ αi = γ2)

≡ ∃β. (list (α0 × β)→ β = αi → βi)
≡ ∃β. (list (α0 × β) = αi ∧ β = βi)
≡ list (α0 × βi) = αi

The initial constraint has now been simplified down to:

∃α0α1α2β.
⎛⎜⎝
α = α0 → α1 → α2 → β

def Γ in let assocx ∶ ∀β. list (α0 × β)→ β in ∃β1β2. (β = β1 × β2
∀i ∈ {1,2}, list (α0 × βi) = αi)

⎞⎟⎠
Now, the context def Γ in let assocx ∶ . . . in [] can be dropped, because the constraint that it
applies to contains no occurrences of x, l1, l2, or assocx. The constraint becomes:

∃α0α1α2β.
⎛⎜⎝
α = α0 → α1 → α2 → β

∃β1β2. (β = β1 × β2
∀i ∈ {1,2}, list (α0 × βi) = αi)

⎞⎟⎠
that is, by extrusion:

∃α0α1α2ββ1β2.
⎛⎜⎝
α = α0 → α1 → α2 → β

β = β1 × β2
∀i ∈ {1,2}, list (α0 × βi) = αi

⎞⎟⎠
Finally, by eliminating a few auxiliary variables:

∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)
We have shown the following equivalence between constraints:

def Γ0 in ⟪a ∶ α⟫ ≡ ∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)
That is, the principal type scheme of a relative to Γ0 is

La M = ∀α[⟪a ∶ α⟫]. α ≡ ∀α0β1β2. α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2

5.3. TYPE INFERENCE FOR ML 105

Again, constraint solving can be explained in terms of a small-step rewrite system. Again,
one checks that every step is meaning-preserving, that the system is normalizing, and that
every normal form is either literally “false” or satisfiable.

Rewriting strategies Different constraint solving strategies lead to different behaviors
in terms of complexity, error explanation, etc. See Pottier and Rémy (2005) for details on
constraint solving. See Jones (1999b) for a different presentation of type inference, in the
context of Haskell.

In all reasonable strategies, the left-hand side of a let constraint is simplified before the
let form is expanded away. This corresponds, in Algorithm J , to computing a principal type
scheme before examining the right-hand side of a let construct.

Complexity Type inference forML is DEXPTIME-complete (Kfoury et al., 1990; Mairson,
1990), so any constraint solver has exponential complexity. This is assuming that types are
printed as trees. If one allows to return types are dags graphs instead of types, the complexity
is EXPTIME-complete.

This is, of course, worse case complexity, which does not contradict the observation that
ML type inference works well in practice.

If fact, this good behavior can be explain by the results of McAllester (2003): under
the hypotheses that types have bounded size and let forms have bounded left-nesting depth,
constraints can be solved in linear time, or in quasi-linear time if recursive types are allowed.

When the size of types in unbounded, one may reach worst case complexity but right-
nesting let-bindings as in Mairson original example:

let mairson =
let f = fun x → (x, x) in
(∗ ... n times ... ∗)
let f = fun x → f (f x) in
f (fun z → z)

This term can be placed in the context let x = ... in () to ignore the time spent outputing
the result type.

However, this right-nesting of let-bindings is not a problem if types remain bounded,
because each let-bound expression can be simplified to a type of bounded size before being
duplicated.

On the opposite, in a left-nesting of let-binding local variables may have to be extruded
step by step from the inner bindings to its enclosing binding, sometimes all the way up to
the root, leading to a quadratic complexity when the nesting is proportional to the size of
the program.

Principal constraint type schemes In constraint generation, we introduced principal
constraint type scheme La M as an abbreviation for ∀α[⟪a ∶ α⟫]. α. However, using the equiv-

106 CHAPTER 5. TYPE RECONSTRUCTION

Lx M = ∀α[x ⪯ α]. α
Lλx. a M = ∀α1α2[def x ∶ α2 in La M ⪯ α1]. α2 → α1

if α1, α2 # a

La1 a2 M = ∀α1α2[La1 M ⪯ α2 → α1 ∧ La2 M ⪯ α2]. α1

if α1, α2 # a1, a2

L let x = a1 in a2 M = ∀α[let x ∶ La1 M in La2 M ⪯ α]. α
Figure 5.6: Constraint generation with principal constraint type schemes

alence between ⟪a ∶ τ⟫ and La M ⪯ τ , we may conversely use principal constraint type schemes
in place of program constraints. This leads to an alternative presentation of constraint
generation described in Figure 5.6. (Compare it with the previous definition in Figure 5.5).

5.3.4 Type reconstruction

Type inference should not just return a principal type for an expression; it should also
perform type reconstruction, i.e. elaborate the implicitly-typed input term into an explicitly-
typed one.

The elaborated term is not unique, since redundant type abstractions and type applica-
tions may always be used. Moreover, some non principal type schemes may also be used for
local let-bindings—even if the final type is principal.

For example the implicitly-typed term let x = λy. y in x 1 may be explicitly typed as
either one of

let x ∶ int→ int = λy ∶ int. y in x 1 let x ∶ ∀α.α→ α = Λx.λx ∶ int. x in x int 1

Which one is better? Monomorphic terms can be compiled more efficiently, so removing
useless polymorphism may be useful.

However, one usually infers more general explicitly-typed terms. Given explicitly-typed
terms M and M ′ with the same type erasure, we say that M is more general than M ′ if all
let-bindings are assigned more general type schemes in M than in M ′, i.e.:

for all decompositions of M into C[let x ∶ σ = M1 in M2], then there is a corre-
sponding decomposition of M ′ (i.e. one where C and C ′ have the same erasure)
as C ′[let x ∶ σ′ =M ′

1 inM
′
2] where σ is more general than σ′.

A type reconstruction is principal if it is more general than any other type reconstruction of
the same term. Core ML admits principal type reconstructions. A principal typing derivation
can be seeked for in canonical form, as defined in 4.6.2.

A term in canonical form is uniquely determined up to reordering of type abstractions
and type applications by the type schemes of bound program variables and of how they are

5.3. TYPE INFERENCE FOR ML 107

instanced. We may keep track of such information during constraint resolution by keeping
the binding constraints def x ∶ C in C and its derived form let x ∶ C in C, and the instantiation
constraints x ⪯ τ of the original constraint—instead of removing them once solved. We call
them persistent constraints. We thus forbid the removal, as well as the extrusion of persistent
constraints by restricting the equivalence of constraints accordingly.

Rewriting rules used for constraint resolution can easily be adapted to retain the persis-
tent constraints—and thus preserve the restricted notion of equivalence. Then, the binding
structure of the constraint remains unchanged during simplification and is isomorphic to the
binding structure of the expression it came from. (Persistent nodes could actually be labeled
by their corresponding nodes in the original expression.)

In practice, we mark nodes of the persistent constraints as resolved when they could
have been dropped in the normal resolution process—so that they need not be considered
anymore during the resolution. For example, we use the rule

def x ∶ σ inR[x ⪯ τ] ≡ def x ∶ σ inR[x ⪯ τ ∧ σ ⪯ τ]
for environment access, where the original constraint x ⪯ τ is kept and marked as resolved
but is not removed. Similarly, a constraint def x ∶ σ in C can be marked as resolved, which
we write def x ∶ σ in C, whenever x may only appears free in removable constraints of C. A
resolved form of a constraint is an equivalent persistent constraint, such that dropping all
persistent nodes is an equivalent constraint in solved forms.

For example, reusing the running example and notations of the previous section, let us
find a term M whose erasure a is defined as:

λx.λl1. λl2. let assocx = assoc x in (assocx l1,assocx l2)
The principal type scheme La M is, by definition:

∀α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀γ1 [∃γ2.(assoc ⪯ γ2 → γ1
x ⪯ γ2

)] . γ1 in
∃β1β2.(β = β1 × β2

∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. α

Since x ∶ α9 is in Γ, the inner constraint can be resolved as follows:

∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)
≡ ∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2 ∧α0 ⪯ γ2) ≡ assoc ⪯ α0 → γ1 ∧ x ⪯ α0

The other instantiation may be solved similarly, leading to the equivalent constraints:

assoc ⪯ α0 → γ1 ∧ ∀αβ.α→ list (α × β)→ β ⪯ α0 → γ1 ∧ x ⪯ α0

≡ assoc ⪯ α0 → γ1 ∧ ∃αβ.(α = α0 ∧ list (α × β)→ β = γ1) ∧ x ⪯ α0

≡ ∃β.(assoc ⪯ α0 → list (α0 × β)→ β ∧ list (α0 × β)→ β = γ1 ∧ x ⪯ α0)

108 CHAPTER 5. TYPE RECONSTRUCTION

Hence, the type scheme of assoc is equivalent to

∀β[assoc ⪯ α0 → list (α0 × β)→ β ∧ x ⪯ α0]. list (α0 × β)→ β

and La1 M is equivalent to:

∀α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀β [assoc ⪯ α0 → list (α0 × β)→ β ∧ x ⪯ α0] .
list (α0 × β)→ β in

∃β1β2.(β = β1 × β2
∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. α

Simplifying the remaining instantiation constraints in a similar way, we end up with the
following resolved type scheme for La M:

∀α0β1β2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

def Γ in

let assocx ∶ ∀γ [assoc ⪯ α0 → list (α0 × γ)→ γ

x ⪯ α0
] . list (α0 × γ)→ γ in

∀i ∈ {1,2}, assocx ⪯ list (α0 × βi)→ βi ∧ li ⪯ list (α0 × βi)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2

This is a resolved form, from which we may build the elaboration of a1:

Λα0β1β2.λx ∶α0. λl1 ∶ list (α0 × β1). λl2 ∶ list (α0 × β2).
let assocx = Λγ.assoc α0 γ x in (assocx β1 l1,assocx β2 l2)

Type abstractions are determined by their corresponding type scheme in the resolved con-
straint; for instance, the type abstraction for the let-bound variable assocx is γ while the
toplevel type abstraction is α0α1β2. Type annotations on abstractions are determined by
Γ, which here contains x ∶ α0; l1 ∶ list (α0 × α1); l2 ∶ list (α0 × α2). Type applications are
inferred locally by looking at their corresponding type instantiations in the resolved con-
straints. For instance, we read from the constraint that assocx is let-bound with the type
scheme ∀γ. list (α0 × γ) → γ (we dropped the constraint which is solved and equivalent to
true) and that its i-th occurrence is used at type list (α0 × βi) → βi. Matching the former
against the latter gives the substitution γ ↦ βi. Thefefore, the type application for the i’s
occurrence is be βi.

Modular type reconstruction One criticism of our appoach is that the mecanism for
type reconstruction is based on program typing constraints and not on type constraint alone.
Hence, we do not have a clear separation of separation of concerns. Modularity can be
achieved by defining for each construct of the language taken independently the constraint
generation together with the elaboration of this construct once the constraint will have been
solved. See Pottier (2014) for details.

5.4. TYPE ANNOTATIONS 109

Principal type reconstruction Notice that while the constraint framework enforces the
inference of principal types, since it transforms the original constraint into an equivalent
constraint, it does not enforce type reconstruction to be principal. Indeed, in a constraint
∃α.C, the existentially bound type variable α may be instantiated to any type that satisfies
the constraint C and not necessarily the most general one.

Interestingly, however, the default strategy for constraint resolution always returns prin-
cipal type reconstructions. That is, variables are never arbitrarily instantiated, although this
would be allowed by the specification.

Exercise 36 (Minimal derivations) On the opposite, one may seek for less general typ-
ing derivations where all let-expressions are as instantiated as possible. Do such derivations
exists? In fact no: there are examples where there are two minimal incomparable type re-
constructions and others with smaller and smaller type reconstructions but no smallest one.
Find examples of both kinds. (Solution p. 125)

Exercise 37 (Closed types) Explain why ML modules in combination with the value-
restriction break the principal type property: that is, there are programs that are typable
but that do not have a principal type. Hint: ML signatures of ML modules must be closed.

(Solution p. 125)

5.4 Type annotations

Damas and Milner’s type system has principal types: at least in the core language, no type
information is required. This is very lightweight, but a bit extreme: sometimes, it is useful
to write types down, and use them as machine-checked documentation. Let us, then, allow
programmers to annotate a term with a type:

a ∶∶= . . . ∣ (a ∶ τ)
Typing and constraint generation are obvious:

Annot

Γ ⊢ a ∶ τ

Γ ⊢ (a ∶ τ) ∶ τ ⟪(a ∶ τ) ∶ τ ′⟫ = ⟪a ∶ τ⟫ ∧ τ = τ ′
Type annotations are erased prior to runtime, so the operational semantics is not affected.
In particular, it is still type-erasing.

Notice that annotations here do not help type more terms, as erasure of type annotations
preserves well-typedness: Indeed, the constraint ⟪(a ∶ τ) ∶ τ ′⟫ implies the constraint ⟪a ∶ τ ′⟫.
That is, in terms of type inference, type annotations are restrictive : they lead to a principal
type that is less general, and possibly even to ill-typedness. For instance, λx.x has principal
type scheme ∀α.α → α, whereas (λx.x ∶ int → int) has principal type scheme int → int, and(λx.x ∶ int → bool) is ill-typed.

110 CHAPTER 5. TYPE RECONSTRUCTION

5.4.1 Explicit binding of type variables

We must be careful with type variables within type annotations, as in, say:

(λx.x ∶ α→ α) (λx.x + 1 ∶ α → α) let f = (λx.x ∶ α→ α) in (f 0, f true)
Does it make sense, and is so, what does it mean? A short answer is that it does not mean
anything, because α is unbound. “There is no such thing as a free variable” (Alan Perlis).
A longer answer is that it is necessary to specify how and where variables are bound.

How is α bound? If α is existentially bound, or flexible, then both (λx.x ∶ α → α) and(λx.x + 1 ∶ α→ α) should be well-typed. If it is universally bound, or rigid, only the former
should be well-typed.

Where is α bound? If α is bound within the left-hand side of this “let” construct, then
let f = (λx.x ∶ α → α) in (f 0, f true) should be well-typed. On the other hand, if α is bound
outside this “let” form, then this code should be ill-typed, since no single ground value of α
is suitable.

Programmers should explicitly bind type variables. We extend the syntax of expressions
as follows:

a ∶∶= . . . ∣ ∃ᾱ.a ∣ ∀ᾱ.a
It now makes sense for a type annotation (a ∶ τ) to contain free type variables—as long as
these type variables have been introduced in some enclosing term.

Since terms can now contain free type variables, some side conditions have to be updated
(e.g., ᾱ # Γ, a in Gen). The new (and updated) typing rules are as follows:

Exists

Γ ⊢ [α⃗↦ τ⃗]a ∶ τ
Γ ⊢ ∃ᾱ.a ∶ τ

Forall

Γ ⊢ a ∶ τ ᾱ # Γ

Γ ⊢ ∀ᾱ.a ∶ ∀ᾱ. τ

⎛⎜⎜⎝
Gen

Γ ⊢ a ∶ τ ᾱ# Γ, a

Γ ⊢ a ∶ ∀ᾱ. τ

⎞⎟⎟⎠
As type annotations, the introduction of type variables are erased prior to runtime.

Exercise 38 Define the erasure of implicitly-typed terms and show that the erasure of a
well-typed term is well-typed. Use this to justify the soundness of the extension of ML with
type annotations with explicit introduction of type variables.

Constraint generation for the existential form is straightforward:

⟪(∃ᾱ.a) ∶ τ⟫ = ∃ᾱ.⟪a ∶ τ⟫ if ᾱ # τ

The type annotations inside a contain free occurrences of ᾱ. Thus, the constraint ⟪a ∶ τ⟫
contains such occurrences as well, which are bound by the existential quantifier.

For example, the expression λx1. λx2.∃α.((x1 ∶ α), (x2 ∶ α)) has principal type scheme
∀α.α → α → α×α. Indeed, the generated constraint is of the form ∃α.(⟪x1 ∶ α⟫∧⟪x2 ∶ α⟫∧. . .),
which requires x1 and x2 to share a common (unspecified) type.

Perhaps surprisingly, constraint generation for the universal case is more difficult. A
term a has type scheme, say, ∀α.α → α if and only if a has type α → α for every instance of

5.4. TYPE ANNOTATIONS 111

α, or, equivalently, for an abstract α. To express this in terms of constraints, we introduce
universal quantification in the constraint language:

C ∶∶= . . . ∣ ∀α.C
Its interpretation is as expected:

∀t, φ[α↦ t], ψ ⊢ C
φ,ψ ⊢ ∀α.C

(To solve these constraints, we will use an extension of the unification algorithm called
unification under a mixed prefix—see §5.4.3.)

The need for universal quantification in constraints arises when polymorphism is required
by the programmer, as opposed to inferred by the system. Constraint generation for the
universal form is somewhat subtle. A naive definition fails :

⟪∀ᾱ.a ∶ τ⟫ = ∀ᾱ.⟪a ∶ τ⟫ if ᾱ# τ Wrong!

This requires τ to be simultaneously equal to all of the types that a assumes when ᾱ varies.
For instance, with this incorrect definition, one would have:

⟪∀α.(λx.x ∶ α → α) ∶ int→ int⟫
= ∀α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.(⟪λx.x ∶ α → α⟫ ∧ α = int) ≡ ∀α.(true ∧α = int) ≡ false

A correct definition is:

⟪∀ᾱ.a ∶ τ⟫ = ∀ᾱ.∃γ.⟪a ∶ γ⟫ ∧ ∃ᾱ.⟪a ∶ τ⟫
This requires a to be well-typed for all instances of ᾱ and requires τ to be a valid type for
a under some instance of ᾱ.

However, a problem with this definition is that the term a is duplicated, which can lead
to exponential complexity. Fortunately, this can be avoided modulo a slight extension of the
constraint language (Pottier and Rémy, 2003, p. 112). The solution defines:

⟪∀ᾱ.a ∶ τ⟫ = let x ∶ ∀α⃗, β[⟪a ∶ β⟫]. β in x ⪯ τ

where the new constrain form satisfies the equivalence:

let x ∶ ∀α⃗, β⃗[C1]. τ in C2 ≡ ∀α⃗.∃β⃗.C1 ∧ def x ∶ ∀α⃗, β⃗[C1]. τ in C2

Annotating a term with a type scheme, rather than just a type, is now just syntactic sugar:

(a ∶ ∀ᾱ. τ) △
== ∀ᾱ.(a ∶ τ) if ᾱ# a

In that particular case, constraint generation is in fact simpler:

⟪(a ∶ ∀ᾱ. τ) ∶ τ ′⟫ ≡ ∀ᾱ.⟪a ∶ τ⟫ ∧ (∀ᾱ. τ) ⪯ τ ′

112 CHAPTER 5. TYPE RECONSTRUCTION

Exercise 39 Check this equivalence.

Examples Consider the following two examples:

⟪(∃α.(λx.x + 1 ∶ α → α)) ∶ int→ int⟫
≡ ∃α.⟪(λx.x + 1 ∶ α → α) ∶ int→ int⟫
≡ ∃α.(α = int)
≡ true

⟪(∀α.(λx.x + 1 ∶ α → α)) ∶ int → int⟫
⊩ ∀α.∃γ.⟪(λx.x + 1 ∶ α → α) ∶ γ⟫
≡ ∀α.∃γ.(α = int ∧ α → α = γ)
≡ ∀α.α = int
≡ false

The left-hand side example is well-typed: The system infers that α must be int. Because
α is a local type variable, it does not appear in the final constraint. The right-hand side
example is ill-typed: The system checks that α is used in an abstract way, which is not the
case here, since the code implicitly assumes that α is int. By contrast, the following example
is well-typed:

⟪(∀α.(λx.x ∶ α→ α)) ∶ int→ int⟫
= ∀α.∃γ.⟪(λx.x ∶ α→ α) ∶ γ⟫ ∧ ∃α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.∃γ.α→ α = γ ∧ ∃α.α = int
≡ true

The system checks that α is used in an abstract way, which is indeed the case here. It also
checks that, if α is appropriately instantiated, the code admits the expected type int→ int.

The two next examples are similar and show the importance of the scope of existential
variables. In the first one, the variable α is bound outside the let construct;

⟪∃α.(let f = (λx.x ∶ α→ α) in (f 0, f true)) ∶ γ⟫
≡ ∃α.(let f ∶ α → α in ∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ))
≡ ∃αγ1γ2.(α → α = int→ γ1 ∧ α → α = bool→ γ2 ∧ γ1 × γ2 = γ)
⊩ ∃α.(α = int ∧ α = bool)
≡ false

Then f receives the monotype α → α and the example is ill-typed. In the other example, α
is bound within the let construct:

⟪let f = ∃α.(λx.x ∶ α→ α) in (f 0, f true) ∶ γ⟫
≡ let f ∶ ∀β[∃α.(α→ α = β)]. β in ∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ)
≡ let f ∶ ∀α.α → α in ∃γ1γ2.(. . .)
≡ ∃γ1γ2.(int = γ1 ∧ bool = γ2 ∧ γ1 × γ2 = γ)
≡ int × bool = γ

Here, the term ∃α.(λx.x ∶ α → α) has the same principal type scheme as λx.x, namely
∀α.α → α, which is the type scheme that f receives.

5.4. TYPE ANNOTATIONS 113

Type annotations in the real world For historical reasons, type variables are not
explicitly bound in OCaml. (Retrospectively, that’s bad!) They are implicitly existentially
bound at the nearest enclosing toplevel let construct. In Standard ML, type variables are
implicitly universally bound at the nearest enclosing toplevel let construct. In Glasgow
Haskell, type variables are implicitly existentially bound within patterns: ‘A pattern type
signature brings into scope any type variables free in the signature that are not already in
scope’ Peyton Jones and Shields (2004). Constraints help understand these varied design
choices uniformly.

5.4.2 Polymorphic recursion

Recall below the typing rule FixAbs for recursive functions, which leads to the derived typing
LetRec for recursive definitions:

FixAbs

Γ, f ∶ τ ⊢ λx. a ∶ τ

Γ ⊢ µf.λx.a ∶ τ

LetRec

Γ, f ∶ τ1 ⊢ λx. a1 ∶ τ1 ᾱ # Γ, a1 Γ, f ∶ ∀ᾱ. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let rec f x = a1 in a2 ∶ τ2

These rules require occurrences of f to have monomorphic type within the recursive definition
(that is, within λx. a1). This is visible also in terms of type inference, as the two following
constraints are equivalent:

⟪let rec f x = a1 in a2 ∶ τ⟫ ≡ let f ∶ ∀αβ[let f ∶ α→ β;x ∶ α in ⟪a1 ∶ β⟫]. α → β in ⟪a2 ∶ τ⟫
On the right-hand side, all occurrences of f within a1 have the same type α → β. This
is problematic in some situations, most particularly when defining functions over nested
algebraic data types (Bird and Meertens, 1998; Okasaki, 1999).

This problem is solved by introducing polymorphic recursion, that is, by allowing µ-bound
variables to receive a polymorphic type scheme, using the following typing rules:

FixAbsPoly

Γ, f ∶ σ ⊢ λx. a ∶ σ

Γ ⊢ µf.λx.a ∶ σ

LetRecPoly

Γ, f ∶ σ ⊢ λx. a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ

Γ ⊢ let rec f x = a1 in a2 ∶ τ

This extension of ML is due to Mycroft (1984).
In System F, there is no problem to begin with; no extension is necessary. Polymorphic

recursion alters, to some extent, Damas and Milner’s type system. Now, not only let-
bound, but also µ-bound variables receive type schemes. The type system is no longer
equivalent, up to reduction to let-normal form, to simply-typed λ-calculus. This has two
noticeable consequences: monomorphization, a technique employed in some ML compilers
Tolmach and Oliva (1998); Cejtin et al. (2007), is no longer possible; besides, type inference
becomes problematic!

Type inference for ML with polymorphic recursion is undecidable Henglein (1993). It is
equivalent to the undecidable problem of semi-unification. Yet, type inference in the presence
of polymorphic recursion can be made simple by relying on a mandatory type annotation.

114 CHAPTER 5. TYPE RECONSTRUCTION

The syntax and typing rules for recursive definitions become:
FixAbsPoly

Γ, f ∶ σ ⊢ λx. a ∶ σ

Γ ⊢ µ(f ∶ σ).λx.a ∶ σ
LetRecPoly

Γ, f ∶ σ ⊢ λx. a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ

Γ ⊢ let rec (f ∶ σ) = λx. a1 in a2 ∶ τ
The type scheme σ no longer has to be guessed. With this feature, contrary to what was
said earlier (p. 109), type annotations are not just restrictive: they are sometimes required
for type inference to succeed. The constraint generation rule becomes:

⟪let rec (f ∶ σ) = λx. a1 in a2 ∶ τ⟫ = let f ∶ σ in (⟪λx. a1 ∶ σ⟫ ∧ ⟪a2 ∶ τ⟫)
It is clear that f receives type scheme σ both inside and outside of the recursive definition.

5.4.3 Unification under a mixed prefix

Unification under a mixed prefix means unification in the presence of both existential and
universal quantifiers. We extend the basic unification algorithm with support for universal
quantification. The solved forms are unchanged: universal quantifiers are always eliminated.

In short, in order to reduce ∀ᾱ.C to a solved form, where C is itself a solved form—see
(Pottier and Rémy, 2003, p. 109) for details:

• If a rigid variable is equated with a constructed type, fail.
For example, ∀α.∃βγ.(α = β → γ) is false.

• If two rigid variables are equated, fail.
For example, ∀αβ.(α = β) is false.

• If a free variable dominates a rigid variable, fail.
For example, ∀α.∃β.(γ = α → β) is false.

• Otherwise, one can decompose C as ∃β̄.(C1 ∧C2), where ᾱβ̄ # C1 and ∃β̄.C2 ≡ true; in
that case, ∀ᾱ.C reduces to just C1.

For example, ∀α.∃βγ1γ2.(β = α → γ ∧ γ = γ1 → γ2) reduces to just ∃γ1γ2.(γ = γ1 → γ2).
The constraint ∀α.∃β.(β = α→ γ) is equivalent to true.

OCaml implements a form of unification under a mixed prefix. This is illustrated by the
following interactive OCaml session:

let module M : sig val id : ’a → ’a end = struct let id x = x + 1 end in M.id

Values do not match: val id : int → int
is not included in val id : ’a → ’a

This gives rise to a constraint of the form ∀α.α = int, while the following example gives rise
to a constraint of the form ∃β.∀α.α = β:

5.5. EQUI- AND ISO-RECURSIVE TYPES 115

let r = ref (fun x → x) in
let module M : sig val id : ’a → ’a end = struct let id = !r end in M.id;;

Values do not match: val id : ’ a → ’ a
is not included in val id : ’a → ’a

5.5 Equi- and iso-recursive types

Product and sum types alone do not allow describing data structures of unbounded size, such
as lists and trees. Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values. For every k, the type of lists of length at
most k is expressible using this grammar. However, the type of lists of unbounded length is
not: “A list is either empty or a pair of an element and a list.” We need something like this:

list α ◇ unit + α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?
There are two standard approaches to recursive types, dubbed the equi-recursive and

iso-recursive approaches. In the equi-recursive approach, a recursive type is equal to its
unfolding. In the iso-recursive approach, a recursive type and its unfolding are related via
explicit coercions.

5.5.1 Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗

is no longer interpreted inductively. Instead, types are the regular trees built on top of this
signature. If desired, it is possible to use finite syntax for recursive types:

τ ∶∶= α ∣ µα.(F τ⃗)
We do not allow the seemingly more general µα.τ , because µα.α is meaningless, and µα.β
or µα.µβ.τ are useless. If we write µα.τ , it should be understood that τ is contractive, that
is, τ is a type constructor application. For instance, the type of lists of elements of type α
is:

µβ.(unit + α × β)
Each type in this syntax denotes a unique regular tree, sometimes known as its infinite
unfolding. Conversely, every regular tree can be expressed in this notation (possibly in more
than one way).

If one builds a type-checker on top of this finite syntax, then one must be able to decide
whether two types are equal, that is, have identical infinite unfoldings.

116 CHAPTER 5. TYPE RECONSTRUCTION

This can be done efficiently, either via the algorithm for comparing two DFAs, or by uni-
fication. (The latter approach is simpler, faster, and extends to the type inference problem.)

One can also prove Brandt and Henglein (1998) that equality is the least congruence
generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive. This axiomatization does not directly lead to an efficient
algorithm for deciding equality, though. In the presence of equi-recursive types, structural
induction on types is no longer permitted—but we never used it anyway. It remains true that
F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2—this was used in our Subject Reduction proofs. It remains true
that F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was used in our Progress proofs. So, the reasoning
that leads to type soundness is unaffected.

Exercise 40 Prove type soundness for the simply-typed λ-calculus in Coq. Then, change
the syntax of types from Inductive to CoInductive.

How is type inference adapted for equi-recursive types? The syntax of constraints is
unchanged: they remain systems of equations between finite first-order types, without µ’s.
Their interpretation changes: they are now interpreted in a universe of regular trees. As
a result, constraint generation is unchanged ; constraint solving is adapted by removing the
occurs check.

Exercise 41 Describe solved forms and show that every solved form is either false or satis-
fiable.

Here is a function that measures the length of a list:

µ(length).λx.case x of λ().0 ◇ λ(y, z).1 + length z

Type inference gives rise to the cyclic equation β = unit+α×β, where length has type β → int.
That is, length has principal type scheme: ∀α. (µβ.unit+α×β)→ int or, equivalently, principal
constrained type scheme: ∀α[β = unit+α×β]. β → int. The cyclic equation that characterizes
lists was never provided by the programmer, but was inferred.

OCaml implements equi-recursive types upon explicit request, launching the interactive
session with the command “ocaml -rectypes”:

type (’a, ’b) sum = Left of ’a | Right of ’b

type (’a, ’b) sum = Left of ’a | Right of ’b

let rec length x = function Left () → 0 | Right (y, z) → 1 + length z

val length : ((unit, ’b ∗ ’a) sum as ’a) → int = ⟨fun⟩

5.5. EQUI- AND ISO-RECURSIVE TYPES 117

Notice that -rectypes is only an option which is not on by default. Equi-recursive types
are simple and powerful, but in practice, they are perhaps too expressive. Continuing with
in the -rectype option:

let rec map f = function [] → [] | y :: z → map f y :: map f z

val map : ’a → (’b list as ’b) → (’c list as ’c) = ⟨fun⟩

map (fun x → x + 1) [1; 2]

This expression has type int but is used with type ’a list as ’a

map () [[]; [[]]]

− : ’a list as ’a = [[]; [[]]]

Equi-recursive types allow this nonsensical version of map to be accepted, thus delaying
the detection of a programmer error. Hence, by default, OCaml typechecker reject type
cycles that do not involve an object type or a variant type. In a normal OCaml session (no
-rectypes), the following is still accepted, though:

let f x = x#hello x;;

val f : (< hello : ’a → ’b; .. > as ’a) → ’b = ⟨fun⟩

OCaml implements a partial occurs check that stops at object and variant types: equi-
recursive types are allowed provided every infinite path crosses an object or a variant type.

5.5.2 Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new type constructors D via
(possibly mutually recursive) declarations:

D α⃗ ≈ τ (where ftv(τ) ⊆ ᾱ)
Each such declaration adds a unary constructor foldD and a unary destructor unfoldD with
the following types and the new reduction rule:

foldD ∶ ∀ᾱ. τ →D α⃗ unfoldD ∶ ∀ᾱ.D α⃗ → τ unfoldD (foldD v)Ð→ v

Ideally, iso-recursive types should not have any runtime cost. One solution is to compile
constructors and destructors away into a target language with equi-recursive types. Another
solution is to see iso-recursive types as a restriction of equi-recursive types where the source
language does not have equi-recursive types but instead two unary destructors foldD and
unfoldD with the semantics of the identity function. Subject reduction does not hold in
the source language, but only in the full language with iso-recursive types. Applications of
destructors can also be reduced at compile time.

Note that iso-recursive types are less expressive than equi-recursive types, as there is no
counter-part to the Uniqueness typing rule.

118 CHAPTER 5. TYPE RECONSTRUCTION

For, example iso-recursive lists can be defined as follows. A parametrized, iso-recursive
type of lists is: list α ≈ unit + α × list α. The empty list is: foldlist (inj1 ()) ∶ ∀α. list α. A
function that measures the length of a list is:

µ(length).λxs.case (unfoldlist xs) of λ().0 ◇ λ(x, xs).1 + length xs ∶ ∀α. list α → int

One folds upon construction and unfolds upon deconstruction.

In the iso-recursive approach, types remain finite. The type list α is just an application
of a type constructor to a type variable. As a result, type inference is unaffected. The occurs
check remains.

5.5.3 Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with structural, labeled prod-
ucts and sums. This suppresses the verbosity of explicit folds and unfolds as well as the
fragility and inconvenience of numeric indices—instead, named record fields and data con-
structors are used. For instance,

foldlist (inj1 ()) is replaced with Nil ()
An algebraic data type constructor D is introduced via a record type or variant type defini-
tion:

D α⃗ ≈∏
ℓ∈L

ℓ ∶ τℓ or D α⃗ ≈∑
ℓ∈L

ℓ ∶ τℓ

The set L denotes a finite set of record labels or data constructors {ℓ1 . . . ℓn}, which is fixed
for a given definition. Algebraic data type definitions can be mutually recursive.

The record type definition D α⃗ ≈∏ℓ∈L ℓ ∶ τℓ introduces a record n-ary constructor and n
record unary destructors with the following types:

C ∶∶= . . . ∣ {ℓ1 = ⋅ , . . . ℓn = ⋅ } d ∶∶= . . . ∣ (⋅ .ℓ1) ∣ . . . (⋅ .ℓn)
{ℓ1 = ⋅ , . . . ℓn = ⋅ } ∶ ∀α⃗. τℓ1 → . . . τℓn →D α⃗ ⋅ .ℓ ∶ ∀α⃗.D α⃗ → τℓ

The variant type definition D α⃗ ≈ ∑ℓ∈L ℓ ∶ τℓ introduces unary variant constructors and
variant destructor of arity n + 1 with the following types:

C ∶∶= . . . ∣ (ℓ ⋅) d ∶∶= . . . ∣ case ⋅ of [ℓ1 ∶ ⋅ ◇ . . . ℓn ∶ ⋅] ℓ ∶ ∀α⃗. τℓ →D α⃗

case ⋅ of [ℓ1 ∶ ⋅ ◇ . . . ℓn ∶ ⋅] ∶ ∀α⃗β.D α⃗ → (τℓ1 → β)→ . . . (τℓn → β)→ β

For example, an algebraic data type of lists is list α ≈ Nil ∶ unit+Cons ∶ α× list α gives rise to:

case ⋅ of [Nil ∶ ⋅ ◇ . . .Cons ∶ ⋅] ∶ ∀αβ. list α → (unit → β)→ ((α × list α)→ β)→ β

Nil ∶ ∀α.unit→ list α
Cons ∶ ∀α. (α × list α)→ list α

5.6. HM(X) 119

hm-Var

σ = Γ(x) C ⊩ ∃σ

C,Γ ⊢ x ∶ σ

hm-Abs

C, (Γ, x ∶ τ0) ⊢ a ∶ τ
C,Γ ⊢ λx. a ∶ τ0 → τ

hm-App

C,Γ ⊢ a1 ∶ τ2 → τ1 C,Γ ⊢ a2 ∶ τ2

C,Γ ⊢ a1 a2 ∶ τ1

hm-Let

C,Γ ⊢ a1 ∶ σ C, (Γ, x ∶ σ) ⊢ a2 ∶ τ
C,Γ ⊢ let x = a1 in a2 ∶ τ

hm-Gen

C ∧C0,Γ ⊢ a ∶ τ α⃗ # C,Γ

C ∧ ∃α⃗.C0,Γ ⊢ a ∶ ∀ᾱ[C0]. τ
hm-Inst

C,Γ ⊢ a ∶ ∀α⃗[C0]. τ
C ∧C0,Γ ⊢ a ∶ τ

hm-Sub

C,Γ ⊢ a ∶ τ1 C ⊩ τ1 ≤ τ2

C,Γ ⊢ a ∶ τ2

hm-Exists

C,Γ ⊢ a ∶ τ α⃗ # Γ, τ

∃α⃗.C,Γ ⊢ a ∶ τ

Figure 5.7: Typing rules for HM(X)

A function that measures the length of a list is:

µ(length).λx.case x of Nil ∶ λ().0 ◇ Cons ∶ λ(y, z).1 + length z ∶ ∀α. list α → int

Mutable record fields In OCaml, a record field can be marked mutable. This introduces
an extra binary destructor for writing this field: (⋅ .ℓ ← ⋅) of type ∀α⃗.D τ⃗ → τℓ → unit.
However, this also makes record construction a destructor since, when fully applied it is not
a value but it allocates a piece of store and returns its location. Thus, due to the value
restriction, the type of such expressions cannot be generalized.

5.6 HM(X)

Soundness and completeness of type inference are in fact easier to prove if one adopts a
constraint-based specification of the type system, as in the language HM(X) introduced by
Odersky et al. (1999).

In HM(X), judgments take the form C,Γ ⊢ a ∶ τ , called a constrained typing judgments.
Read under the assumption C and typing environment Γ, the program a has type τ . Here
C constrains free type variables of the judgment while Γ provides the type of free program
variables of a. The constraint C ranges over first-order typing constraints—except that we
require type constraints to have no free program variables. In a constrained typing judgment
C,Γ ⊢ a ∶ τ ,

The parameter X in HM(X) stands for the logic of the constraint language. We have so
far only consider constraints with an equality predicate. However, the equality replaced may
be by an asymmetric subtyping predicate ≤, which makes the language of constraints richer.

The typing rules also use an entailment predicate C ⊩ C ′ between constraints that is
more general than constraint equivalence. Entailment is defined as expected: C ⊩ C ′ if and
only if any ground assignment that satisfies C also satisfies C ′.

120 CHAPTER 5. TYPE RECONSTRUCTION

Typing rules for HM(X) are presented in Figure 5.7. Moreover, judgment are taken up to
constraint equivalence. The constraint ∃σ in the premise of Rule hm-Var is an abbreviation
for ∃ᾱ.C0 where σ is ∀ᾱ[C0]. τ . A valid judgment is one that has a derivation with those
typing rules. In a valid judgment, C may not be satisfiable. A program is well-typed in
environment Γ if it has a valid judgment C,Γ ⊢ a ∶ τ for some τ and satisfiable constraint C.

When considering equality only constraints, HM(=) is in fact equivalent to ML: if Γ and τ
contain only Damas-Milner’s type schemes, then Γ ⊢ a ∶ τ in ML if and only if true,Γ ⊢ a ∶ τ
in HM(X). Moreover, if C,Γ ⊢ a ∶ τ in HM(X) and ϕ is an idempotent solution of C, we
have true,Γϕ ⊢ a ∶ τϕ in HM(X) where (⋅)ϕ translates HM(X) type schemes into ML type
schemes—applying the substitution ϕ on the fly.

As for ML, there is an equivalent syntax-directed presentation of the typing rules. How-
ever, we may take advantage of program variables in constraints to go one step further and
mix the constraint C (without free program variables) and the typing environment Γ into
a single constraint C now with possibly free program variables. Judgments take the form
C ⊢ a ∶ τ where C constrains type variables and assign constrained type schemes to program
variables. The type system, called PCB(X), is described on Figure 5.8. It is equivalent to
HM(X)—see (Pottier and Rémy, 2005) for the precise comparison.

For example of a derivation in PCB(X), let a be let y = λx.x in y y:

Let

Fun

Var

x ⪯ α ⊢ x ∶ α

let x ∶ α0 in x ⪯ α ⊢ λx.x ∶ α0 → α
App

Var

y ⪯ β2 → β1 ⊢ y ∶ β2 → β1

Var

y ⪯ β2 ⊢ y ∶ β2

y ⪯ β2 → β1 ∧ y ⪯ β2 ⊢ y y ∶ β1

Exists
C ⊢ a ∶ β1

∃β2.C ⊢ a ∶ β1

where C is
let y ∶ ∀αα0[let x ∶ α0 in x ⪯ α]. α0 → α in y ⪯ β2 → β1 ∧ y ⪯ β2

The constraint C can be simplified as follows:

∃β2.C = ∃β2. let y ∶ ∀αα0[α0 = α]. α0 → α in y ⪯ β2 → β1 ∧ y ⪯ β2
≡ ∃β2. let y ∶ ∀α.α → α in y ⪯ β2 → β1 ∧ y ⪯ β2
≡ ∃β2α1α2. α1 → α1 = β2 → β1 ∧ α2 → α2 = β2
≡ ∃α. β1 = α→ α

Hence, we also have ∃α. β1 = α → α ⊢ a ∶ β1. This is a valid judgment, but not a satisfiable
one. However, by rule pcb-Sub and pcb-Exists, we have ∃β1. (∃α. β1α → α)∧β1 = β → β) ⊢
a ∶ β → β, which is equivalent to true ⊢ a ∶ β → β and is both valid and satisfiable.

The type inference algorithm for ML is sound and complete for PCB(X):

– Soundness: ⟪a ∶ τ⟫ ⊢ a ∶ τ . The constraint inferred for a typing validates the typing.

– Completeness: If C ⊢ a ∶ τ then C ⊩ ⟪a ∶ τ⟫. The constraint inferred for a typing is
more general than any constraint that validates the typing.

5.7. TYPE RECONSTRUCTION IN SYSTEM F 121

pcb-Var

C ⊩ x ⪯ τ

C ⊢ x ∶ τ

pcb-Abs

C ⊢ a ∶ τ

let x ∶ τ0 in C ⊢ a ∶ τ0 → τ

pcb-App

C1 ⊢ a1 ∶ τ2 → τ1 C2 ⊢ a2 ∶ τ2

C1 ∧C2 ⊢ a1 a2 ∶ τ1

pcb-Let

C1 ⊢ a1 ∶ τ1 C2 ⊢ a2 ∶ τ2

let x ∶ ∀V[C1]. τ1 in C2 ⊢ let x = a1 in a2 ∶ τ2

pcb-Sub

C ⊢ a ∶ τ1

C ∧ τ1 ≤ τ2 ⊢ a ∶ τ2

pcb-Exists

C ⊢ a ∶ τ α # τ

∃α.C ⊢ a ∶ τ

Figure 5.8: Typing rules for PCB(X)

Note Our presentation of HM(X) is incomplete. See also Skalka and Pottier (2002) for a
more recent presentation of HM(X) and Pottier and Rémy (2005) for a detailed presentation
of several variants of HM(X).

Our proof of type soundness for ML only applies for HM(=). One may prove type
soundness for HM(X) in the general case for some logic X, under the axiom that the arrow
type constructor is contra-variant for subtyping. See Pottier and Rémy (2005).

5.7 Type reconstruction in System F

Type checking in explicitly-typed System F is easy. Still, an implementation must carefully
deal with variable bindings and renaming when applying type substitutions. However, as we
have seen, programming with fully-explicit types is unpractical.

Full type inference in System F has long been an open problem, until Wells (1999) proved
it undecidable by showing that it is equivalent to the semi-unification problem which was
earlier proved undecidable. (Notice that the full type-inference problem is not directly related
to second-order unification but rather to semi-unification.)

Hence, we must perform partial type inference in System F. Either type inference is
incomplete, or some amount of type annotations must be provided. Several solutions are
used in practice. They alleviate the need for a lot of redundant type annotations.

5.7.1 Type inference based on Second-order unification

Full type inference is equivalent to semi-unification. However, type inference becomes equiv-
alent to second-order unification if all the positions of type abstractions and type applications
are explicit, while types are themselves left implicit. That is, if terms are

M ∶∶= x ∣ λx ∶?.M ∣M M ∣ Λ?.M ∣M ?

where the question marks stand for type variables and types to be inferred. Although, the
problem of second-order unification is undecidable, there are semi-algorithms that often work
well in common cases. This method was proposed by Pfenning (1988).

122 CHAPTER 5. TYPE RECONSTRUCTION

Var-I

τ = Γ(x)
Γ ⊢ x ⇑ τ

Abs-C

Γ, x ∶ τ0 ⊢ a ⇓ τ

Γ ⊢ λx. a ⇓ τ0 → τ

App-I

Γ ⊢ a1 ⇑ τ2 → τ1 Γ ⊢ a2 ⇓ τ2

Γ ⊢ a1 a2 ⇑ τ1

I-C

Γ ⊢ a ⇑ τ

Γ ⊢ a ⇓ τ

Annot-I

Γ ⊢ a ⇓ τ

Γ ⊢ (a ∶ τ) ⇑ τ
Abs-I

Γ, x ∶ τ0 ⊢ a ⇑ τ

Γ ⊢ λx ∶τ0. a ⇑ τ0 → τ

Figure 5.9: Bidirectional type checking for the simply-typed λ-calculus .

In fact, partial type inference based on second-order unification can be mixed with type
checking. Explicit polymorphism may be reintroduced as in explicitly-typed System F while
explicitly-controlled implicit instantiation can be performed as above by second-order unifi-
cation. The source language is:

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ ∣ λx ∶?.M ∣M ? ∣ let f = Λ?α1. . . .Λ
?αn.M inM

The new let-binding form is used to declare type arguments that will be made implicit.
Then, every occurrence of such a variable automatically adds type-application holes at the
corresponding positions and type parameters will be inferred using second-order unification.
This amounts to understanding the new let-binding form as follows:

let f = Λ?α1. . . .Λ
?αn.M1 inM2

△
== let f = Λα1. . . .Λαn.M1 in [f ↦ f ? . . . ?]M2

Type inference in this language still reduces to second-order unification.

5.7.2 Bidirectional type inference

Type-checking in explicit simply-typed λ-calculus is easy because typing rules have an algo-
rithmic reading. This implies that they are syntax directed, but also that judgments can be
read as functions where some arguments are inputs and others are output. In the implicit
calculus, the rules are still syntax-directed, but some of them do not have an obvious algo-
rithmic reading. Typically, Γ and a would be inputs and τ is an output in the judgment
Γ ⊢ a ∶ τ , which we may represent as Γ↑ ⊢ a↑ ∶ τ ↓. However, in the rule for abstraction:

Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

the type τ0 is used both as input (in the premise) and as an output in the conclusion. Hence,
type-checking the implicit simply-typed λ-calculus is not straightforward. In some cases, the
type of the function may be known, e.g. when the function is an argument to an expression
of a known type. Then, it suffices to check the proposed type is indeed correct.

Formally, we need algorithmic reading of the typing judgment, depending on whether
the return type is known or unknown. We may split the typing judgment Γ ⊢ a ∶ τ into two

5.7. TYPE RECONSTRUCTION IN SYSTEM F 123

App-I

Var-I
Γ ⊢ f ⇑ τ

Γ, x ∶ τ1 ⊢ x ⇑ τ1

Γ, x ∶ τ1 ⊢ x ⇓ τ1
C-I

Var-I

Γ ⊢ λx.x ⇓ τ1 → τ1
Abs-C

Abs-C

I-C
Γ ⊢ f (λx.x) ⇑ τ2
Γ ⊢ f (λx.x) ⇓ τ2

∅ ⊢ λf ∶τ. f (λx.x) ⇓ τ → τ2

Figure 5.10: Example of bidirectional derivation

judgments Γ ⊢ a ⇓ τ to check that a may be assigned the type τ and Γ ⊢ a ⇑ τ to infer the
type τ of a (or with information flows Γ↑ ⊢ a↑ ⇓ τ ↑ and Γ↑ ⊢ a↑ ⇑ τ ↓. Both judgments are
recursively defined by the rules of Figure ??: the checking mode can call the inference mode
when needed; conversely, annotations may be used to turn inference mode into checking
mode. (As a particular case, annotations on type abstractions enable the inference mode.)

An example of bidirectional derivation is given on Figure 5.10. The type τ stands for(τ1 → τ1)→ τ2 and the environment Γ is f ∶ τ .

The bidirectional method can be extended to deal with polymorphic types, but it is more
complicated. The idea, due to Cardelli (1993), was popularized by Pierce and Turner (2000),
and Odersky et al. (2001) and is still being improved Dunfield (2009).

Predicative polymorphism Predicative polymorphism is an interesting subcase of bidi-
rectional type inference in the presence of predicative polymorphism. Predicative polymor-
phism is a restriction of impredicative polymorphism as can be found in System F. With
predicative polymorphism, types are stratified so that polymorphic types can only be in-
stantiated with simple types.

Interestingly, partial type inference can then still reduced to typing constraints under a
mixed prefix (Rémy, 2005; Jones et al., 2006). Unfortunately, predicative polymorphism is
too restrictive for use in programming languages: as polymorphic values often need to be
put in data-structures whose constructors are polymorphic but impredicative polymorphism
does not allow implicit instantiation of polymorphic constructors by polymorphic types.

One may also use a hierarchy of types where polymorphic types of rank n can be instan-
tiated with polymorphic types of a strictly lower rank. This increases expressiveness but F
is still more expressive than the union of all Fn.

Type inference with first-order constraints does not work for higher ranks.

Local type inference A simpler approach than global bidirectional type inference pro-
posed by Pierce and Turner and improved by Odersky et al. is to perform bidirectional type
inference locally, i.e. by considering for each node only a small context surrounding it.

124 CHAPTER 5. TYPE RECONSTRUCTION

Subtyping Interestingly, bidirectional type inference can easily be extended to work in the
presence of subtyping, which is not the case for methods based on second order unification.

5.7.3 Partial type inference in MLF

The language MLF (Le Botlan and Rémy, 2009; Rémy and Yakobowski, 2008) is an exten-
sion of System F especially designed for partial type inference—in fact for type inference
a la ML within System F. That is, the inference algorithm performs first-order unification
and aggressive ML-style let-generalization, but in the presence of second-order types. Inter-
estingly, only parameters of functions that are used polymorphically need to be annotated
in MLF; type abstractions and type annotation are always left implicit. However, for the
purpose of type inference, MLF introduces richer types that enable to write “more principal
types”, but that are also harder to read. The type inference method for MLF can be seen
as a generalization of the constraint-based type inference for ML that handles polymorphic
types.

5.8 Proofs and Solution to Exercises

Proof of Theorem 15

We proof φ ⊢ ⟪Γ ⊢ a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ by induction on a. We prove both implica-
tions independently because reasoning with equivalence is error-prone, since the arguments
are similar but often not quite the same in both directions. The proof is thus a bit lengthy,
but all cases are easy.

Case a is x: Assume φΓ ⊢ a ∶ φτ . By inversion of typing, this judgment must be derived by
rule Var. Hence, φτ = φΓ(x). By definition of satisfiability this implies φ ⊢ τ = Γ(x). By
definition of typing constraint, this is φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. By definition of typing constraint, this is φ ⊢ τ = Γ(x).
By inversion of satisfiability we must have φτ = φΓ(x). Hence, by rule Var, we have φΓ ⊢
a ∶ φτ .

Case a is a1 a2: Assume φΓ ⊢ a ∶ φτ . By rule App, there exists τ2 such that φΓ ⊢ a1 ∶ τ2 → φτ

and φΓ ⊢ a2 ∶ τ2. Let β # Γ and φ′ be φ,β ↦ τ2. We have φ′Γ ⊢ a1 ∶ φ′β → τ and φ′Γ ⊢ a2 ∶ β.
Hence, by induction hypothesis φ′ ⊢ ⟪Γ ⊢ a1 ∶ β → τ⟫ and φ′ ⊢ ⟪Γ ⊢ a2 ∶ β⟫. Thus,
φ ⊢ ∃β.⟪Γ ⊢ a1 ∶ β → τ⟫ ∧ ⟪Γ ⊢ a2 ∶ β⟫. i.e. φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. We have φ ⊢ ∃β.⟪Γ ⊢ a2 ∶ β⟫ ∧ ⟪Γ ⊢ a1 ∶ β → τ⟫.
We may assume w.l.o.g. that β # φ. There must exist φ′ of the form φ,β ↦ τ2 such that
φ′ ⊢ ⟪Γ ⊢ a2 ∶ β⟫ ∧ ⟪Γ ⊢ a1 ∶ β → τ⟫. By induction hypothesis, this implies φ′Γ ⊢ a2 ∶ φ′β
and φ′Γ ⊢ a1 ∶ φ′β → τ , i.e. φΓ ⊢ a2 ∶ τ2 and φΓ ⊢ a1 ∶ φτ2 → τ . By rule App, we have
φΓ ⊢ a1 a2 ∶ φτ .

5.8. PROOFS AND SOLUTION TO EXERCISES 125

Case a is λx. a1: Assume φΓ ⊢ a ∶ φτ . We may assume w.l.o.g. that x # Γ. By rule Fun,
there must exist τ1 and τ2 such that φΓ, x ∶ τ2 ⊢ a1 ∶ τ1 and φτ = τ2 → τ1. Let β1 and β2 be
disjoint from Γ and φ′ be φ,β2 ↦ τ2, β1 ↦ τ1. Then, both φ′(Γ, x ∶ β2) ⊢ a1 ∶ φ′β1 and φ′τ =
φ′(β2 → β1) hold. By induction hypothesis, φ′ ⊢ ⟪Γ, x ∶ β2 ⊢ a1 ∶ τ1⟫ and φ′ ⊢ τ = β2 → β1
Therefore, φ ⊢ ∃β1β2.⟪Γ, x ∶ β2 ⊢ a1 ∶ β1⟫ ∧ τ = β2 → β1. That is, φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. By definition of constraints, we have φ ⊢ ∃β1β2.⟪Γ, x ∶
β2 ⊢ a1 ∶ β1⟫∧τ = β2 → β1 for some x disjoint from Γ. We may assume w.l.o.g. that β1, β2 # φ.
There must exist φ′ of the form φ,β2 ↦ τ2, β1 ↦ τ1 such that φ′ ⊢ ⟪Γ, x ∶ β2 ⊢ a1 ∶ τ1⟫ and
φ′ ⊢ τ = β2 → β1. By induction hypothesis, φ′(Γ, x ∶ β2) ⊢ a1 ∶ φ′β1 and φ′τ = φ′(β2 → β1).
That is, φΓ, x ∶ τ2 ⊢ a1 ∶ τ1 and φτ = τ2 → τ1. Hence, by rule Fun, we have φΓ ⊢ a ∶ φτ .

Solution of Exercise 36

See Bjørner (1994).

Solution of Exercise 37

Consider the module struct f = let f = λx.x in f f end. In core ML, the expression has
principal type α → α—but α cannot be generalized. Hence, sig f ∶ ∀α.α → α end is not a
signature for this module; nor is sig f ∶ α → α end since it is not a well-formed one. Correct
signatures are sig f ∶ τ → τ end for any τ , but they do not have a best element.

126 CHAPTER 5. TYPE RECONSTRUCTION

Chapter 6

Existential types

Compilation is type-preserving when each intermediate language is explicitly typed, and each
compilation phase transforms a typed program into a typed program in the next intermediate
language.

Type preserving compilation is interesting for several reasons: it can help debug the
compiler; types can be used to drive optimizations; types can also be used to produce proof-
carrying code; proving that types are preserved during compilation can be the first step
towards proving that the semantics is preserved Chlipala (2007).

Besides, type-preserving compilation is quite challenging as it exhibits an encoding of
programming constructs into programming language that usually requires richer type sys-
tems. Sometimes, an encoding later becomes a programming idiom that is used directly in
the source language. There are several examples: closure conversion requires an extension
of the language with existential types, which happens to very useful on their own. Closures
are themselves a simple form of objects. Defunctionalization may be done manually on some
particular programs, e.g. in web applications to monitor the computation.

A classic paper by Morrisett et al. 1999 shows how to go from System F to “Typed
Assembly Language”, while preserving types along the way. Its main passes are:

1. CPS conversion fixes the order of evaluation, names intermediate computations, and
makes all function calls tail calls;

2. closure conversion makes environments and closures explicit, and produces a program
where all functions are closed;

3. allocation and initialization of tuples is made explicit;

4. the calling convention is made explicit, and variables are replaced with (an unbounded
number of) machine registers.

127

128 CHAPTER 6. EXISTENTIAL TYPES

In general, a type-preserving compilation phase involves not only a translation of terms,
mapping M to JMK, but also a translation of types, mapping τ to JτK, with the property:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often enough to guess
what the translation of terms will be.

6.1 Towards typed closure conversion

First-class functions may appear in the body of other functions. hence, their own body may
contain free variables that will be bound to values during the evaluation in the execution
environment. Because they can be returned as values, and thus used outside of their defini-
tion environment, they must store their execution environment in their value. A closure is
the packaging of the code of a first-class function with its runtime environment, so that it
becomes closed, i.e. independent of the runtime environment and can be passed to another
function and applied in another runtime environment. Closures can also be used to represent
recursive functions and objects in the object-as-record-of-methods paradigm.

In the following, the source calculus has unary λ-abstractions, which can have free vari-
ables, while the target calculus has binary λ-abstractions, which must be closed. In the
target language, we also use pattern matching over tuples. The translation will be naive,
insofar as it will not handle functions of multiple arguments in a special way. One could
argue that this is a feature, not a limitation, and that “uncurrying” (if desired) should be
a separate type-preserving pass anyway. But closure conversion can also be easily extended
to n-ary functions.

There are at least two variants of closure conversion: In the closure-passing variant, the
closure and the environment are a single memory block; In the environment-passing variant,
the environment is a separate block, to which the closure points. The impact of this choice on
the term translations is minor. Closure-passing better supports simple recursive functions;
but this is less obvious with mutually recursive ones. Closure-passing optimizes the case
of closed functions: they is no need to create a closure—the code pointer can be passed
directly Steckler and Wand (1997). However, its impact on the type translations is more
important: the closure-passing variant requires more type-theoretic machinery (recursive
types and rows).

The closure-passing variant is as follows:

Jλx. aK = let code = λ(clo, x). let (, x1, . . . , xn) = clo in JaK in(code, x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in

let code = proj0 clo in
code (clo, Ja2K)

6.1. TOWARDS TYPED CLOSURE CONVERSION 129

where {x1, . . . , xn} is fv(λx. a) (the variables code and clo must be suitably fresh). Note that
the layout of the environment must be known only at the closure allocation site, not at the
call site. In particular, proj0 clo need not know the size of clo.

The environment-passing variant is as follows:

Jλx. aK = let code = λ(env , x). let (x1, . . . , xn) = env in JaK in(code, (x1, . . . , xn))
Ja1 a2K = let (code, env) = Ja1K in

code (env , Ja2K)
where {x1, . . . , xn} = fv(λx. a).

To understand type-preserving closure conversion, let us first focus on the environment-
passing variant. How can closure conversion be made type-preserving? The key issue is
to find a sensible definition of the type translation. In particular, what is the translation
of a function type, Jτ1 → τ2K ? Let us examine the closure allocation code again. Suppose
Γ ⊢ λx. a ∶ τ1 → τ2. Suppose, without loss of generality (see Remark 5), that dom(Γ) is exactly
fv(λx. a), i.e. {x1, . . . , xn}. If Γ is x1 ∶ τ ′1; . . . ;xn ∶ τ

′
n, we write JΓK for x1 ∶ Jτ ′1K; . . . ;xn ∶ Jτ

′
nK.

By abuse of notation, we also use JΓK in a type position to mean the tuple type Jτ ′1K×. . .×Jτ ′nK.

By hypothesis, we have JΓK, x ∶ Jτ1K ⊢ JaK ∶ Jτ2K, so env has type JΓK, code has type(JΓK × Jτ1K) → Jτ2K, and the entire closure has type ((JΓK × Jτ1K) → Jτ2K) × JΓK. So, can we
adopt ((JΓK × Jτ1K)→ Jτ2K) × JΓK as a definition of Jτ1 → τ2K ?

Naturally not. This definition is mathematically ill-formed, as we cannot use Γ out of
the blue! That is, we cannot have a translation of Jτ1 → τ2K that depends on the type of free
variables of a! Indeed. we need a uniform translation of types, not just because it is nice
to have one, but because it describes a uniform calling convention. If closures with distinct
environment sizes or layouts receive distinct types, then we will be unable to translate well-
typed code: if . . . then λx.x + y else λx.x. Furthermore, we want function invocations to be
translated uniformly, without knowledge of the size and layout of the closure’s environment.

The only sensible solution is: ∃α.((α × Jτ1K) → Jτ2K) × α. An existential quantification
over the type of the environment abstracts away the differences in size and layout. Enough
information is retained to ensure that the application of the code to the environment is valid:
this is expressed by letting the variable α occur twice on the right-hand side.

The existential quantification also provides a form of security. The caller cannot do
anything with the environment except pass it as an argument to the code. In particular,
it cannot inspect or modify the environment. For instance, in the source language, the
following coding style guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (! x + 2); ! x
After closure conversion, the reference x is reachable via the closure of f . A malicious,
untyped client could write an odd value to x. However, a well-typed client is unable to do
so. This encoding is not just type-preserving, but also fully abstract: it preserves (a typed

130 CHAPTER 6. EXISTENTIAL TYPES

version of) observational equivalence (Ahmed and Blume, 2008).

Remark 5 In order to support the hypothesis dom(Γ) = fv(λx. a) at every λ-abstraction, it
is possible to introduce an (admissible) weakening rule:

Weakening

Γ1; Γ2 ⊢ a ∶ τ x# a

Γ1;x ∶ τ
′; Γ2 ⊢ a ∶ τ

If the weakening rule is applied eagerly at every λ-abstraction, then the hypothesis is met, and
closures have minimal environments. (In some cases, one may not use minimal environments,
e.g. to allow sharing of environments between several closures.)

6.2 Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ
As in the case of universals, there are type-passing and type-erasing interpretations of the
terms and typing rules and, in the latter interpretation, there are explicit and implicit ver-
sions. Let us first look at the type-erasing interpretation with an explicit notation for
introducing and eliminating existential types.

6.2.1 Existential types in Church style (explicitly typed)

The existential quantifier are introduced and eliminated as follows:
Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢M1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness of the conclusion.
If well-formedness conditions were explicit in judgments, this could be equivalently defined
as Γ ⊢ τ2, as it would imply α# τ2 since the last premise implies α # Γ.

Notice the imperfect duality between existential and universals, reminded below:
TAbs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢M ∶ ∀α. τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
This suggests a simpler elimination form, perhaps like this:

Γ ⊢M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ
Broken!

6.2. EXISTENTIAL TYPES 131

Informally, this could mean that, if M has type τ for some unknown α, then it has type τ ,
where α is “fresh”. Unfortunately, this is a broken rule, as we could immediately universally
quantify over α and conclude that Γ ⊢ M ∶ ∀α. τ . This is nonsense! Replacing the premise
Γ, α ⊢ M ∶ ∃α.τ by the conjunction Γ ⊢M ∶ ∃α.τ and α ∈ dom(Γ) would make the rule even
more permissive, so it wouldn’t help.

A correct elimination rule must force the existential package to be used in a way that
does not rely on the value of α. Hence, the elimination rule must have control over the user
or continuation of the package—that is, over the term M2. The restriction α # τ2 prevents
writing “let α,x = unpackM1 in x”, which would be equivalent to the unsound “unpackM”
discussed above. The fact that α is bound within M2 forces it to be treated abstractly. In
fact, M2 must be polymorphic in α. The rule could be written:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α# τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Or, more economically:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢M0 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 M0 ∶ τ2

where M0 would evaluate to a value of the form Λα.λx.M2.

One could even view “unpack” as a constant with all the types (∃α.τ1) → (∀α. (τ1 →
τ2)) → τ2. or, letting β range over τ2, all types ∀β. (∃α.τ) → (∀α. (τ → β)) → β or even
better, ∃α.τ → ∀β. ((∀α. (τ → β)) → β), since β should not occur free in τ . We thus
introduce a family of constants “unpack∃α.τ” with type ∃α.τ → ∀β. ((∀α. (τ → β)) → β).
Notice that the variable β, which stands for τ2, is bound prior to α, so it naturally cannot
be instantiated to a type that refers to α. This reflects the side condition α # τ2. If desired,
“pack∃α.τ” could also be viewed as a constant of type ∀α. (τ → ∃α.τ). Similarly, we may
introduce a constant pack with all the types [α ↦ τ ′]τ → ∃α.τ , which we may factor as the
following types ∀α. (τ → ∃α.τ).

In summary, System F with existential types can also be presented by introducing two
families of constants of constants with the following types:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ) unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β) (∆∃)
These can be read as follows: for any α, if you have a τ , then, for some α, you have a τ ;
conversely, if, for some α, you have a τ , then, (for any β,) if you wish to obtain a β out
of ∃α. τ , you must present a function which, for any α, obtains a β out of a τ . This is
somewhat reminiscent of ordinary first-order logic: ∃x.F is equivalent to, and can be defined
as, ¬(∀x.¬F).

One can go one step further and entirely encode existential types into universal types.
This encoding is actually a small example of type-preserving translation! The type transla-

132 CHAPTER 6. EXISTENTIAL TYPES

tion is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

There is actually little choice for the term translation, if the translation is to be type-
preserving:

Jpack∃α.τK ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK→ β). k α x

Junpack∃α.τK ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

This encoding is a continuation-passing transform. This encoding is due to Reynolds 1983,
although it has more ancient roots in logic.

When existential are presented as constrants, their semantics is defined by seeing pack∃α.τ
as a unary constructor and unpack∃α.τ as a unary destructor with the following reduction
rule:

unpack∃α.τ0 (pack∃α.τ τ ′ V) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V (δ∃)

Exercise 42 Show that this δ-rule satisfies the progress and subject reduction assumptions
for constants with the types in ∆∃. (You may assume that the standard lemmas still hold.)

(Solution p. 169)

Exercise 43 The δ∃ reduction for existential is permissive it allows reducing of ill-typed
terms. Give a more restrictive version of the rule. What will need to be changed in the proof
of subject reduction and proress for the δ-rule (Exercise 42)? (Solution p. 169)

Notice that our δ∃-reduction reduces an “unpack of a pack” to a polymorphic function
that applies its argument to the packed value. This is still a form of continuation-passing-
style encoding. It seems more natural to treat unpack∃α.τ as a binary destructor to avoid
this intermediate step and have the more intuitive reduction rule:

unpack∃α.τ0 (pack∃α.τ τ ′ V) τ1 (Λα.λx ∶τ.M) Ð→ [x↦ V][α↦ τ ′]M (δ∃)
However, this does not fit in our framework and notion of arity for constants where all type
arguments must be passed first and not interleaved with value arguments. Our framework
could be extended to the above δ-rules for existentials, but the presentation would become
cumbersome.

Alternatively, if existential are primitive, their semantics is defined by extending values
and evaluation contexts as follows:

V ∶∶= . . . ∣ pack τ ′, V as τ E ∶∶= . . . ∣ pack τ ′, [] as τ ∣ let α,x = unpack [] inM

6.2. EXISTENTIAL TYPES 133

and by adding the following reduction rule:

let α,x = unpack (pack τ ′, V as τ) inM Ð→ [α ↦ τ ′][x ↦ V]M

Exercise 44 Check that the proofs of subject reduction and progress for System F extend to
existential types. (Just check the new cases, assuming that the standard lemmas still hold.)

The reduction rule for existential destructs its arguments. Hence, let α,x = unpackM1 inM2

cannot be reduced unless M1 is itself a packed expression, which is indeed the case when M1

is a value (or in head normal form). This contrasts with let x ∶ τ =M1 inM2 where M1 need
not be evaluated and may be an application (e.g. in call-by-name or with strong reduction).

Exercise 45 The reduction of let α,x = unpack M1 in M2 could be problematic when M1

is not a value. Illustrate this on an example (You may use the following hint if needed:
lanoitidnocaesu.) (Solution p. 169)

One may wonder whether the pack construct is not too verbose: isn’t the type witness
type annotation τ ′ in rule Pack superfluous? The type τ0 of M is fully determined by M
and the given type ∃α.τ of the packed value. Checking that τ0 is of the form [α ↦ τ ′]τ is
the matching problem for second-order types, which is simple. However, the reduction rule
need the witness type τ ′. If it were not available, it would have to be computed during
reduction. The reduction rule would then not be pure rewriting. The explicitly-typed
language need the witness type for simplicity, while in the surface language, it could be
omitted and reconstructed by second-order matching.

6.2.2 Implicitly-typed existential types

Intuitively, pack and unpack are just type information that can be dropped by type erasure.
More precisely, the erasure of pack τ ′,M as ∃α. τ∃α. τ isM and the erasure of let α,x = unpackM1 inM2

is a let-binding let x =M1 inM2. After type-erasure, the following typing rules for existential
types in implicit-typed System F:

if-Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

if-Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, that the let-binding is not typechecked as syntactic sugar for an immediate applica-
tion. Its semantics remains the same.

E ∶∶= . . . let x = [] inM let x = V inM Ð→ [x↦ V]M
Is the semantics still type-erasing? Yes, it is, but there is a subtlety! This is only true in
call-by-value. In a call-by-name semantics, a let-bound expression is not reduced prior to

134 CHAPTER 6. EXISTENTIAL TYPES

substitution of the argument, that is, the rule would be:

let x = a1 in a2 Ð→ [x ↦ a1]a2
With existential types, this breaks subject reduction! This was first noticed by Sørensen and Urzyczyn
(2006). See also (Fujita and Schubert, 2009, §9).

To see this, let τ0 be ∃α. (α → α)→ (α → α) and let v0 be a value of type bool. Then,
let v1 and v2 two values of type τ0 with incompatible witness types, taking for instance,
λf.λx.1+(f (1 + x)) and λf.λx.not (f (not x)). Let v be the function λb. if b then v1 else v2
of type bool → τ0, which returns either one of V1 or V2 depending on its argument b. We
then have the reduction

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

The typing judgment ∅ ⊢ a1 ∶ ∃α.α → α holds, while ∅ ⊢ a2 ∶ τ does not hold for any τ .
Indeed, the term a1 is well-typed since v v0 has type τ0, hence x can be assumed of type(β → β)→ (β → β) for some unknown type β and λy. y is of type β → β. However, without
the outer existential type v v0 can only be typed with (∀α.α → α) → ∃α. (α → α), because
the value returned by the function need different witnesses for α. This is demanding too
much on its argument and the outer application is ill-typed.

One may wonder whether the syntax should not allow the implicit introduction of un-
packing instead. For instance, one could argue that if some expression is the expansion of a
well-typed let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x↦ a1]a2 ∶ τ2
However, this rule is not quite satisfactory as it does not have a logical flavor. Moreover, it
fixes the previous example, but does not help with the general case: Pick a1 that is not yet a
value after one reduction step. Then, after let-expansion reduce one of the two occurrences
of a1. The result is no longer of the form [x↦ a1]a2.

In summary, existential types are tricky: The subject reduction property breaks if re-
duction is not restricted to expressions in head-normal forms. Unrestricted reduction is still
safe because well-typedness may eventually be recovered by further reduction steps—so that
progress will never break.

Interestingly, the CPS encoding of existential types (1) enforces the evaluation of the
packed value (2) before it can be unpacked (3) and substituted(4):

Junpack a1 (λx. a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x ↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of Jpack aK, i.e. is(λk.λx. k x) JaK, so that a is always a value v. However, a need not be a value. What is

6.2. EXISTENTIAL TYPES 135

essential is again that a1 be reduced to some head normal form λk. JaK k.

6.2.3 Existential types in ML

What if one wished to extend ML with existential types? Full type inference for existential
types is undecidable, just like type inference for universals. However, introducing existential
types in ML is easy if one is willing to rely on user-supplied annotations that indicate where
to pack and unpack.

This iso-existential approach was suggested by Läufer and Odersky (1994). Iso-existential
types are explicitly declared, much as datatypes:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗ unpackD ∶ ∀ᾱγ.D α⃗→ (∀β̄. (τ → γ))→ γ

(Compare with basic iso-recursive types, where β̄ = ∅.)

Unfortunately, the “type scheme” of unpackD is not an ML type scheme. A solution is to
make unpackD a binary primitive construct, rather than a constant, with an ad hoc typing
rule:

UnpackD

Γ ⊢M1 ∶ D τ⃗ Γ ⊢M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML version. The term M2

must be polymorphic, which Gen can prove.

Iso-existential types are perfectly compatible withML type inference. The constant packD
admits an ML type scheme, so it is not problematic. The construct unpackD leads to this
constraint generation rule (cf. §5):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ. (⟪M1 ∶D α⃗⟫ ∧∀β̄.⟪M2 ∶ τ → τ2⟫)
where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ # M1,M2, τ2. Note that a universally quantified con-
straint appears where polymorphism is required.

In practice, Läufer and Odersky suggest fusing iso-existential types with algebraic data
types. The somewhat bizarre Haskell syntax for this is:

dataD α⃗ = forall β̄.ℓ τ

where ℓ is a data constructor. The elimination construct ⟪caseM1 of ℓ x →M2 ∶ τ2⟫ and is
typed as follows:

⟪caseM1 of ℓ x→M2 ∶ τ2⟫ = ∃ᾱ. (⟪M1 ∶D α⃗⟫ ∧∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫)
where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

136 CHAPTER 6. EXISTENTIAL TYPES

Examples Define Any ≈ ∃β.β. The following code that attempts to extract the raw content
of a package fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧∀β.⟪λx.x ∶ β → τ2⟫ ⊩ ∀β.β = τ2 ≡ false

Now, define D α ≈ ∃β.(β → α) × β. A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫

Remark 6 We reuse the type D α ≈ ∃β.(β → α)×β of frozen computations, defined above.
Assume given a list l of elements of type D τ1. Assume given a function g of type τ1 → τ2.
We may transform the list into a new list l′ of frozen computations of type D τ2 (without
actually running any computation).

List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

We may generalize the code into a functional that receives g and and l as arguments and
returns l′. Unfortunately, the following code does not typecheck:

let lift g l = List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

The problem is that, in expression let α,x = unpack M1 in M2, occurrences of x can only
be passed to polymorphic functions so that the type α of x does not escape from its scope.
That is first-class existential types calls for first-class universal types as well!

Mitchell and Plotkin (1988) note that existential types offer a means of explaining ab-
stract types. For instance, the type:

∃stack.{ empty ∶ stack; push ∶ int × stack → stack; pop ∶ stack → option (int × stack) }
specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too awkward, and that
existential types alone do not allow designing module systems Harper and Pierce (2005).
Montagu and Rémy (2009) make existential types more flexible in several important ways,
and argue that they might explain modules after all.

6.2.4 Existential types in OCaml

Amusingly, existential types were first available in OCaml via abstract types and first-
class modules. There are now also available as a degenerate case of Generalized Algebraic
DataTypes (GADT) which coincides with the appraoached described above.

For example, one may defined the previous datatype of frozen computations:

6.3. TYPED CLOSURE CONVERSION 137

type ’a d = D : (’b → ’a) ∗ ’b → ’a d
let freeze f x = D (f, x)
let run (D (f, x)) = f x

Here is the equivalent, more verbose code with modules:

module type D = sig type b type a val f : b → a val x : b end

let freeze (type u) (type v) f x =
(module struct type b = u type a = v let f = f let x = x end : D);;

let unfreeze (type u) (module M : D with type a = u) = M.f M.x

6.3 Typed closure conversion

Equipped with existential types, we may now revisit type closure conversion.

6.3.1 Environment-passing closure conversion

Remember that we came to the conclusion that the translation of arrow types Jτ1 → τ2K must
be ∃α.((α×Jτ1K)→ Jτ2K)×α. Let us show that we may translate expressions so as to preserve
well-typedness, i.e. so that Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK. Assume Γ ⊢ λx.M ∶ τ1 → τ2
and dom(Γ) = {x1, . . . xn} = fv(λx ∶τ1.M). We may now hide the dependence on Γ using an
existential type:

Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =
λ(env ∶ JΓK, x ∶ Jτ1K). let (x1, . . . xn ∶ JΓK) = env in JMK in

pack JΓK, (code , (x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) × α
∶ ∃α.((α × Jτ1K)→ Jτ2K) × α = Jτ1 → τ2K

In the case of application, assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1 and take:

JM M1K = let α, (code ∶ (α × Jτ1K)→ τ2, env ∶ α) = unpack JMK in code (env , JM1K)
∶ Jτ2K

For recursive functions we may use the “fix-code” variant (Morrisett and Harper, 1998):

Jµf.λx.aK = let rec code (env , x) =
let f = pack (code, env) in let (x1, . . . , xn) = env in JaK in

pack (code, (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.a). The translation of applications is unchanged as recursive
and non-recursive functions have an identical calling convention. This translation builds
recursive code, avoiding a recursive closure, hence the code is easy to type. Unfortunately,
as a counterpart, a new closure is allocated at every call, which is the weak point of this
variant.

138 CHAPTER 6. EXISTENTIAL TYPES

Instead, the “fix-pack” variant (Morrisett and Harper, 1998) uses an extra field in the
environment to store a back pointer to the closure:

Jµf.λx.aK = let code = λ(env , x). let (f, x1, . . . , xn) = env in JaK in
let rec clo = (code, (clo, x1, . . . , xn)) in clo

where {x1, . . . , xn} = fv(µf.λx.a). Hence, we avoid rebuilding the closure at every call by
creating a recursive closure. However, this requires, in general, recursively-defined values
and closures are now cyclic data structures.

Here is how the “fix-pack” variant is type-checked. Assume Γ ⊢ µf ∶ τ1 → τ2.λx.M ∶ τ1 →
τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =
λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K). let (f, x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) × α)

in clo

This implements monomorphic recursion, as by default inML. To allow the recursive function
to be polymorphic, we can generalize the encoding afterwards:

JΛβ⃗.µf ∶ τ1 → τ2.λx.MK = Λβ⃗.Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined. This allows the indirect compilation of poly-
morphic recursive functions as long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly compile polymor-
phically recursive functions into polymorphic closure.

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

Λβ̄.λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f, x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K = Λβ⃗.

pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) ×α)
in clo

In summary, the environment-passing closure conversion is simple, but it requires the
introduction of recursive non-functional values let rec x = V in M . While this is a useful
construct, it really alters the operational semantics and requires updating the type soundness
proof (as recursive non-functional values were not permitted so far).

6.3. TYPED CLOSURE CONVERSION 139

6.3.2 Closure-passing closure conversion

Recall the closure-passing variant:

Jλx. aK = let code = λ(clo, x). let (, x1, . . . , xn) = clo in JaK in(code, x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in let code = proj0 clo in code (clo, Ja2K)

where {x1, . . . , xn} = fv(λx. a).
There are two difficulties to typecheck this: first, a closure is a tuple, whose first field—the

code pointer—should be exposed, while the number and types of the remaining fields—the
environment—should be abstract; second, the first field of the closure contains a function
that expects the closure itself as its first argument.

To describe this, we use two type-theoretic mechanisms; first existential quantification
over the tail of a tuple (a.k.a. a row) to allow the environment to remain abstract; and
recursive types to allow the closure to points to itself.

Tuples, rows, row variables Let us first introduce extensible tuples. The standard tuple
types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1× . . .×τn) was sugar for Π (τ1; . . . ; τn; ǫ). Let us introduce row variables and
allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is not known. The
typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)
Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables. Projection does not care about the
fields beyond i. Thanks to row variables, this can be expressed in terms of parametric
polymorphism: proji ∶ ∀α1 . . . αiρ.Π (α1; . . . αi;ρ)→ αi.

Remark 7 Rows were invented by Wand (1988) and improved by Rémy (1994b) in order to
ascribe precise types to operations on records. The case of tuples, presented here, is simpler.
Rows are used to describe objects in OCaml (Rémy and Vouillon, 1998). Rows are explained
in depth by Pottier and Rémy (2005).

140 CHAPTER 6. EXISTENTIAL TYPES

Back to closure-passing closure conversion Rows and recursive types allow to define
the translation of types in the closure-passing variant:

Jτ1 → τ2K = ∃ρ.µα.Π (((α × Jτ1K)→ Jτ2K) ;ρ)
ρ describes the environment represented as a row of fields, which is abstract; α is the concrete
type of the closure that is to refer to recursively; Π (((α × Jτ1K)→ Jτ2K) ;ρ) is a tuple that
begins with a code pointer of type (α × Jτ1K) → Jτ2K and continues with the environment ρ.
See the “fix-type” encoding proposed by Morrisett and Harper (1998).

Notice that the type is ∃ρ. µα. τ and not µα. ∃ρ. τ : The type of the environment is fixed
once for all and does not change at each recursive call. Notice that ρ appears only once,
which may seem surprising. Usually, an existential type variable appears both at positive
and negative occurrences. Here, the variable α appear only at a negative occurrence, but in
a recursive part of the type that can be unfolded.

To help checking well-typedness of the encoding, let Clo(R) abbreviate the concrete type
of a closure of row R and UClo(R) its unfolded version:

Clo(R) △
== µα.Π ((α × Jτ1K)→ Jτ2K;R)

UClo(R) △
== Π ((Clo(R) × Jτ1K)→ Jτ2K;R)

The encoding of arrow types Jτ1 → τ2K is ∃ρ.Clo(ρ). The encoding of abstactions and appli-
cations is:

Jλx ∶τ1.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let (, x1, . . . , xn) ∶ UCloJΓK = unfold clo in JMK in

pack JΓK, (fold (code, x1, . . . , xn)) as ∃ρ.Clo(ρ)
JM1 M2K = let ρ, clo = unpack JM1K in

let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K = proj0 (unfold clo) in
code (clo, JM2K)

where {x1, . . . , xn} = fv(λx ∶τ1.M).
In the closure-passing variant, recursive functions can be translated as follows:

Jµf.λx.aK = let code = λ(clo, x).
let f = clo in let (, x1, . . . , xn) = clo in JaK in(code, x1, . . . , xn)

where {x1, . . . , xn} = fv(µf.λx.a). No extra field or extra work is required to store or construct
a representation of the free variable f : the closure itself plays this role. However, this untyped
code can only be typechecked when recursion is monomorphic.

Exercise 46 Carefully check well-typedness of the above translation with monomorphic re-
cursion.

6.3. TYPED CLOSURE CONVERSION 141

To adapt this encoding to polymorphic recursion, the problem is that recursive occur-
rences of f are rebuilt from the current invocation of the closure, this with the same type
since the closure is invoked after type specialization.

By contrast, in the environment passing encoding, the environment contained a polymor-
phic binding for the recursive calls that was filled with the closure before its invocation, i.e.
with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive closure as in the
type-passing version, to allow typechecking in System F.

Remark 8 One could think of changing the encoding of closure types Jτ1 → τ2K to make
the encoding work. However, although this should be possible in some more expressive type
systems, there seems to be no easy way to do so and certainly not within System F.

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗.λ(clo ∶ CloJΓf K, x ∶ Jτ1K).
let (code, f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) = unfold clo in JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) =
Λβ⃗.pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)

in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗ are free variables of
Clo(R). Here, a polymorphic recursive function is directly compiled into a polymorphic re-
cursive closure. Notice that the type of closures is unchanged, so the encoding of applications
is also unchanged.

Optimizing representations Closure-passing and environment-passing closure conver-
sions cannot be mixed because the calling-convention (i.e., the encoding of application)
must be uniform. However, their is some flexibility in the representation of the closure. For
instance, the following change is completely local:

Jλx. aK = let code = λ(clo, x). let (, (x1, . . . , xn)) = clo in JaK in(code, (x1, . . . , xn))
This allows for sharing the closure (or part of it) may be shared when many definitions share
the same closure,

6.3.3 Mutually recursive functions

Can we compile mutually recursive functions µ(f1, f2).(λx1. a1, λx2. a2), say a?

142 CHAPTER 6. EXISTENTIAL TYPES

The environment passing encoding is as follows:

JaK = let codei = λ(env , x). let (f1, f2, x1, . . . , xn) = env in JaiK in
let rec env = (clo1, clo2, x1, . . . , xn)
and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

Notice that we can share the environment inside the two closures. The closure passing
encoding is:

JaK = let codei = λ(clo, x). let (, f1, f2, x1, . . . , xn) = clo in JaiK in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

Here the environment cannot be shared between the two closures, since they belong to
tuples of different size. Unless the runtime, in particular the garbage collector, supports such
an operation as returning the tail of a tuple without allocating a new tuple. Then we could
write:

JaK = let code1 = λ(clo, x). let (, , f1, f2, x1, . . . , xn) = clo in Ja1K in
let code2 = λ(clo, x). let (, f1, f2, x1, . . . , xn) = clo in Ja2K in
let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn)
and clo2 = clo1.tail

in clo1, clo2

Here clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn) of clo1 without allo-
cating a new tuple.

Encoding of objects The closure-passing representation of mutually recursive functions
is similar to the representation of objects in the object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq) {meth m1 = ai; . . .meth mq = ai}
Given arguments for parameter x1, . . .xn, it builds recursive methods m1, . . .mn. A class
can be compiled into an object closure:

letm ={ m1 = λ(m,x1, . . . xq). Ja1K;
⋮

mp = λ(m,x1, . . . xq). JapK } in
λx1, . . . xq. (m,x1, . . . xq)

6.3. TYPED CLOSURE CONVERSION 143

Each mi is bound to the code for the corresponding method. All codes are combined into a
record of codes. Then, calling method mi of an object p is (proj0 p).mi p.

Let us write the typed version of this encoding. Let τi be the type of Mi and row R

describe the types of (x1, . . . xq). Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R)
its unfolding.

Fields R are hidden in an existential type µα.Π({(mi ∶ α → τi)i∈I};ρ):
letm ={ m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K;

⋮

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK } in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.
Typed encoding of objects were first studied in the 90’s to understand what objects

really are in a type setting. These encodings are in fact type-preserving compilation of
(primitive) objects. There are several variations on these encodings. See Bruce et al. (1999)
for a comparison. See Rémy (1994a) for an encoding of objects in (a small extension of) ML
with iso-existentials and universals. See Abadi and Cardelli (1996, 1995) for more details on
primitive objects.

Summary

Type-preserving compilation is rather fun. (Yes, really!) It forces compiler writers to make
the structure of the compiled program fully explicit, in type-theoretic terms. In practice,
building explicit type derivations, ensuring that they remain small and can be efficiently
typechecked, can be a lot of work.

Because we have focused on type preservation, we have studied only naive closure con-
version algorithms. More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand 1997. These versions can be made type-preserving.

Defunctionalization, an alternative to closure conversion, offers an interesting challenge,
with a simple solution. See, for instance Pottier and Gauthier (2006). Designing an effi-
cient, type-preserving compiler for an object-oriented language is quite challenging. See, for
instance, Chen and Tarditi (2005).

One may think that references in System F could be translated away by making the
store explicit. In fact, this can be done, but not in System F, nor even in System F ω: the
translation is quite tricky and in order for the translation to be well-typed the type system
must be reach enough to express monotonicity of the store in a context where the store is
itself recursively defined. See Pottier (2011) for details.

144 CHAPTER 6. EXISTENTIAL TYPES

Exercise 47 (CPS conversion) Here is an untyped version of call-by-value CPS conver-
sion:

JV K = λk. k LV M
JM1 M2K = λk. JM1K (λx1. JM2K (λx2. x1 x2 k))

LxM = x
L()M = ()

L(V1, V2)M = (LV1M, LV2M)
Lλx.MM = λx. JMK

Is this a type-preserving transformation? (Solution p. 169)

Chapter 7

Overloading

7.1 An overview

Overloading occurs when several definitions of an identifier may be visible simultaneously
at the same occurrence in a program. An interpretation of the program (and a fortiori
a run of the program) must choose the definition that applies at this occurrence. This
is called overloading resolution. Overloading resolution may use quite different strategies
and techniques. All sorts of identifiers may be subject to overloading: variables, labels,
constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by normal scoping rules,
where in this case, a definition is just temporarily inaccessible by another one, but only the
last definition is visible.

7.1.1 Why use overloading?

There are several reasons to use overloading.

Overloading may just be a naming convenience that allows reusing the same identifier for
similar but different operations. This avoids name mangling such as suffixing similar names
by type information: printing functions, e.g. print int, print string, etc.; numerical operations,
e.g. (+), .+ etc.); or numerical constants e.g. 0, 0., etc. In this respect, it may help with
modularity. In the absence of overloading, the naming discipline (including name mangling
conventions) must be known globally to avoid name clashes, which breaks compositionality.
Isolated identifiers with no particular naming convention may still interfere between different
developments and cannot be used together unless fully qualified. This problem does not dis-
appear with overloading but it may be minimized—as long as overloading is not ambiguous.
Hence, in some sense, overloading allows to think more abstractly, in terms of operations
rather than of particular implementations. For instance, calling to string conversion lets the
system check whether one definition is available according to the type of the argument.

145

146 CHAPTER 7. OVERLOADING

Overloading definitions may also be used to provided type dependent functions. That is,
a function may be defined for all types τ[α] but with an implementation depending on the
type of α by provided several overloaded definitions for different types τ[τi]. For instance, a
marshaling function of type ∀α.α→ string may execute different code for each base type α.

Overloading definitions may be ad hoc, i.e. completely unrelated for each type—or just
share a same type schema. For example 0 could mean either the integer zero or the empty
list; and “×” could mean either the integer product or string concatenation.

Conversely, overloaded definitions may depend solely on the type structure (i.e. on
whether the argument is a sum, a product, etc.) so that definitions can be derived me-
chanically for all types from their definitions on base types. Such overloaded functions are
called polytypic functions. Typical examples are marshaling functions, or the generation
of random values for arbitrary types as used in the Quickcheck tool for Haskell. etc. Still,
polytypic definition often need to be specialize at some particular types. For example, one
may use a polytypical definition of printing, so that printing is available at all types, but
define specialized versions of printing at some particular types.

7.1.2 Different forms of overloading

There are many variants of overloading. They can be classified by how overloading is intro-
duced and resolved.

The first elements of classification are the restrictions on overloading definitions. Can
arbitrary definitions be overloaded? For instance, can numerical values be overloaded? Are
all overloaded definitions of the same symbol instances of a common type scheme? Are
these type schemes arbitrary? Are overloaded definitions primitive (pre-existing), automatic
(generated mechanically from other definitions), or user-defined? Can overloaded definitions
overlap? Can overloaded definitions have a local scope?

However, the main element of classification remains the resolution strategy—which may
indirectly constraint the way overloading is introduced. We distinguish between static and
dynamic resolutions strategies.

Static resolution of overloading has a very simple semantics since the meaning of the
program can be determined statically by deciding for each overloaded symbol which actual
definition of the symbol should be used. Hence, it replaces each occurrence of an overloaded
symbol by an actual implementation at the appropriate type. Therefore static overload-
ing does not increase expressiveness per say, since the user could have chosen the appro-
priate implementation in the first place. Still, static overloading may significantly reduce
verbosity—and increase modularity and abstraction, as explained above.

Conversely, dynamic resolution increrases expressiveness, as the choice of the implemen-
tation may now depend on the dynamic of the program execution. However, it is also much
more involved, since the semantics of the language usually need extra machinary to support
the dynamic resolution. For example, the resolution of some occurrence of a polymorphic

http://en.wikipedia.org/wiki/QuickCheck

7.1. AN OVERVIEW 147

function may depend on the type of its arguments, so that different calls of the function
at different types can make different choices. The resolution is driven by information made
available at runtime: it could at worse require full type information. In some restrictions,
partial type information may be sufficient, and sometimes some type-related information can
be used instead of types themselves, such as tags, dictionaries, etc. These can be attached
to values (as tags in object oriented languages), or passed as extra arguments at runtime (as
dictionaries in Haskell).

7.1.3 Static overloading

The language SML has a very limited form of overloading where overloaded definitions are
primitive: they include an exhaustive list of overloaded definitions for numerical operators,
plus automatically generated overloaded definitions for all record accessors. The resolution is
static and fails if overloading cannot be unambiguously resolved at outermost let-definitions.
For example, let twice x = x + x is rejected in SML at toplevel, since + could be either the
addition on either integers or floats.

In the language Java, overloading is not primitive but automatically generated by sub-
typing: when a class extends another one and a method is redefined, the older definition
is still visible, but at another type, hence the method is overloaded. This overloading is
then statically resolved by choosing the most specific definition. There is always a best
choice—according to static knowledge. This static resolution of overloading in Java comes
in complement to the dynamic dispatch of method calls. This is often a source of confusion
for programmers who often expect a dynamic resolution of overloading and as a result mis-
understand the semantics of their programs. For instance, an argument may have a runtime
type that is a subtype of the best known compile-time type, and perhaps a more specific
definition could have been used if overloading were resolved dynamically.

However convenient, static resolution of overloading is quite limited. Moreover, it does
not fit very well with first-class functions and polymorphism. Indeed, with static overloading,
λx.x + x is rejected when + is overloaded, as it cannot be resolved. The function must be
manually specialized at some type for which + is defined. This argues in favor of some form
of dynamic overloading that allows to delay resolution of overloaded symbols at least until
polymorphic functions have been sufficiently specialized.

7.1.4 Dynamic resolution with a type passing semantics

The most ambitious approach to dynamic overloading is to pass types at runtime and dis-
patch on the runtime type, using a general typecase construct.

Runtime type dispatch is the most general approach as it does not impose much restric-
tion on the introduction of overloaded definitions It uses an explicitly-typed calculus (e.g.
System F)—with a type passing semantics—extended with a typecase construct. However,

148 CHAPTER 7. OVERLOADING

the runtime cost of typecase may be high, unless type patterns are significantly restricted.
Moreover, one pays even when overloading is not used, since types are always passed around,
even when overloading is not used, unless the compiler uses aggressive program analyzes to
detech these sitiations and optimize type computations away. Monomorphization may also
be used to allow more static resolution in such cases. Ensuring exhaustiveness of type
matching is often a difficult task in this context.

The ML& calculus by Castagna (1997) offers a general overloading mechanism based
on type dispatch. It is an extension of System F with intersection types, subtyping, and
type matching. An expressive type system keeps track of exhaustiveness; type matching
functions are first-class and can be extended or overridden. The language allows overlapping
definitions with a best match resolution strategy.

7.1.5 Dynamic overloading with a type erasing semantics

To avoid the expensive cost of typecase, one may restrict the overloaded definitions, so that
full type information is not needed and only an approximation of types, such as tags, may
be used for overloading resolution. This is one possible approach to object-orientation in
the method as overloading functions paradigm where object classes are used to dynamically
select the appropriate method. This is also an approach used in some scheme dialects known
as generics.

In fact, one may get more freedom by detaching tags from values and passing tags—
or almost equivalently passing the actually implementations grouped into dictionaries—as
extra runtime arguments. A side advantage of this approach is that the semantics can be
described without changing the runtime environment, i.e. the representation of values, as
an elaboration process that introduces abstractions and applications for implementations
of overloaded symbols. Schematically, one transforms unresolved overloaded symbols into
extra abstractions and passes actual implementations (or abstractions of implementations)
around as extra arguments. Hopefully, overloaded symbols can be resoled when their types
are sufficiently specialized and before they are actually needed.

For example, a program context let f = λx.x + x in [] can be elaborated into let f =
λ(+). λx. x + x in []. If f 1.0 is placed in the hole of this original program context, it can
then be elaborated to f (+.) 1.0, which can be placed in the hole of the elaborated program
context. Elaboration can be performed after typechecking by translating the typing deriva-
tion. After elaboration, types are no longer needed and can be erased. Monomorphization
or other simplifications may reduce the number of abstractions and applications introduced
by overloading resolution.

This technique has been widely explored—under different facets—in the context of ML:
Type classes, introduced very early by Wadler and Blott (1989) are still the most popular and
widely used framework. Other contemporary solutions have been proposed by Rouaix (1990)
and Kaes (1992). Simplifications of type classes have also been proposed by Odersky et al.

7.2. MINI HASKELL 149

(1995) but did not take over, because of their restrictions. Recent works on type classes is
still going on Morris and Jones (2010).

In the rest of this chapter we introduce a tiny language called Mini Haskell that models
the essence of Haskell type classes; at the end we also discuss implicit arguments as a less
structured but simpler way of introducing dynamic overloading in a programming language.

7.2 Mini Haskell

Mini Haskell—or MH for short—is a simplification of Haskell to avoid most of the difficulties of
type classes but keeping their essence: it is restricted to single parameter type classes and no
overlapping instance definitions; it is close in expressiveness and simplicity to A second look
at overloading by Odersky et al. but closer to Haskell in style—it can be easily generalized
by lifting restrictions without changing the framework.

The language MH is explicitly typed. In this section, we first present some examples in
MH, and then describe the language and its elaboration into System F. We introduce an
implicitly-typed version of MH and its elaboration in the next section.

7.2.1 Examples in MH

An equality class and several instances many be defined in Mini Haskell as follows:

class Eq (X) { equal : X → X → Bool }
inst Eq (Int) { equal = primEqInt }
inst Eq (Char) { equal = primEqChar }
inst Λ(X) Eq (X) ⇒ Eq (List (X))
{ equal = λ(l1 : List X) λ(l2 : List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 → equal X h1 h2 && equal (List X) t1 t2 }

This code declares a class (dictionary) of type Eq(X) that contains definitions for equal : X → X → X

and creates two concrete instances (dictionaries) of type Eq(Int) and Eq(Char), and a function
that, given a dictionary for Eq(X), builds a dictionary for type List(X). This code can be
elaborated by explicitly building dictionaries as records of functions:

type Eq (X) = { equal : X → X → Bool }
let equal X (EqX : Eq X) : X → X → Bool = EqX.equal

let EqInt : Eq Int = { equal = (primEqInt : Int → Int → Bool) }
let EqChar : Eq Char = { equal = primEqChar }

let EqList X (EqX : Eq X) : Eq (List X) =
{ equal = λ(l1 : List X) λ(l2 : List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 →

150 CHAPTER 7. OVERLOADING

equal X EqX h1 h2 && equal (List X) (EqList X EqX) t1 t2 }

Classes may themselves depend on other classes (called superclasses), which realizes a form
of class inheritance.

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

The class definition declares a new class (dictionary) Ord (X) that contains a method Ord(X)

that depends on a dictionary Eq(X) and contains a method lt : X → X → Bool. The instance
definition builds a dictionary Ord(Int) from the existing dictionary Eq Int and the primitive
(<) for lt. The two declarations are elaborated into:

type Ord (X) = { Eq : Eq (X); lt : X → X → Bool }
let EqOrd X (OrdX : Ord X) : Eq X = OrdX.Eq
let lt X (OrdX : Ord X) : X → X → Bool = OrdX.lt
let OrdInt : Ord Int = { Eq = EqInt; lt = (<) }

So far, we have just defined type classes and some instances. We may write a function
that uses these overloaded definitions. When overloading cannot be resolved statically, the
function will be abstracted other one or several additional arguments, called dictionnar-
ies, that will carry the appropriate definitions for the unresolved overloaded symbols. For
example, consider the following definition in Mini Haskell:

let rec search : ∀(X) Ord X ⇒ X → List X → Bool =
Λ(X) λ(x : X) λ(l : List X)
match l with [] → false | h::t → equal x h || search X x t

This code is elaborated into:

let rec search X (OrdX : Ord X) (x : X) (l : List X) : Bool =
match l with [] → false
| h:: t → equal X (EqOrd X OrdX) x h || search X OrdX x t

Using the overloading function, as in search Int 1 [1; 2; 3] will then elaborate into the code
search Int OrdInt 1 [1; 2; 3] where a dictionary OrdInt of the appropriate type has been built
and passed as an additional argument. Here, the target language is the explicitly-typed
System F, which has a type erasing semantics, hence the type argument Int may be dropped
while the dictionary argument OrdInt is retained: the code that is actually executed is thus
search OrdInt 1 [1; 2; 3] (where type information has been stripped off OrdInt itself).

7.2.2 The definition of Mini Haskell

Class declarations and instance definitions are restricted to the toplevel. Their scope is the
whole program. In practice, a program p is a sequence of class declarations and instance and
function definitions given in any order and ending with an expression. For simplification,

7.2. MINI HASKELL 151

p ∶∶= H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . un ∶ τn

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 ∶M1, . . . un ∶Mn

P ∶∶= K α

P⃗ ∶∶= P1, . . . Pn
Q ∶∶= K τ

Q⃗ ∶∶= Q1, . . . Qn

σ ∶∶= ∀α⃗. Q⃗⇒ T

T ∶∶= τ ∣ Q
Figure 7.1: Syntax of MH expressions and types

we assume that instance definitions do not depend on function definitions, which may then
come last as part of the expression in a recursive let-binding.

Instance definitions are interpreted recursively and their definition order does not matter.
We may assume, w.l.o.g., that instance definitions come after all class declarations. The order
of class declaration matters, since they may only refer to other class constructors that have
been previously defined.

For sake of simplification, we restrict to single parameter classes. The syntax of MH
programs is defined in Figure 7.1. Letter p ranges over source programs. A program p is
a sequence H1 . . .Hp h1 . . . hq M , of class declaration H1 . . .Hp, followed by a sequence of
instance definitions h1 . . . hq, and ending with an expression M .

A class declarationH is of the form class P⃗ ⇒ K α {ρ}. It defines a new class (constructor)
K, parametrized by α. Every class (constructor) K must be defined by one and only one
class declaration. So we may say that H is the declaration of K and write HK.

Letter u ranges over overloaded symbols, also called methods. The row ρ of the form
u1 ∶ τ1, . . . un ∶ τn declares overloaded symbols ui of class K. An overloaded symbol cannot be
declared twice in a program; it cannot be repeated twice in the same class (hence the map
i↦ ui is injective) and cannot be declared in two different classes. The row ρ (and thus each
of its field type τi) must not contain any other free variable than α.

The class depends on a sequence of subclasses P⃗ of the form K1 α, . . .Kn α, which is called
a typing context. Each clause Ki α can be read as an assumption “given an instance of class
Kı at type α” and P⃗ as the conjunction of these assumptions. We say that classes Ki’s are
superclasses of K which we write Ki ≺ K. They must have been previously defined. This
ensures that the relation ≺ is acyclic. We require that all Ki’s are independent, i.e. there
doa not exists i and j such that Kj ≺ Ki.

An instance definition h is of the form inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}. It defines an instance
of a class K at type G β⃗ where G is a datatype constructor, i.e. neither an arrow type nor
a class constructor. A class constructor K may appear in Q but not in τ . An instance
definition defines the methods of a class at the required type: r is a record of methods

152 CHAPTER 7. OVERLOADING

u1 =M1, . . . un =Mn.

An instance definition is also parametrized by a typing context P⃗ of the formK1 α1, . . .Kk αk
where variables αi’s are included in β⃗. This typing context is is not related to the typing
context of its class declaration HK, but to the set of classes that the implementations of the
methods depend on.

Restrictions The restriction to types of the form K′ α′ in typing contexts and class dec-
larations, and to types of the form K′ (G′ α⃗′) in instances are for simplicity. Generalization
are possible and discussed later (§7.4).

7.2.3 Semantics of Mini Haskell

The semantics of Mini Haskell is given by elaborating source programs into System F extended
with record types and recursive definitions. Record types are provided as data types. They
are used to represent dictionaries. Record labels are used to encode overloaded identifiers
u. We may use overloaded symbols as variables as well: this amounts to reserving a subset
of variables xu indexed by overloaded symbols and writing u as a shortcut for xu. We use
letter N instead of M for elaborated terms, to distinguish them from source terms. For
convenience, we write ⇒ in System F as an alias for →, which we use when the argument is
a (record representing a) dictionary. Type schemes in the target language take the form σ

described on Figure 7.1. Notice that types T are stratified: they are either dictionary types
K τ or a regular type τ that does not contain dictionary types.

Class declaration The elaboration of a class declaration HK of the form class K1 α, . . . Kn
α ⇒ K α {ρ} consists of several parts. It first declares a record type that will be used as a
dictionary to carry both the methods and the dictionaries of its immediate superclasses. A
class need not contain subdictionaries recursively, since if Kj ≺ Ki, then a dictionary for Ki
already contains a sub-dictionary for Kj , to which K has access via Ki so it does need not
have one itself. The row ρ of the class definition only lists the class methods. Hence, we
extend it with fields for sub-dictionaries and define the record type:

K α ≈ {ρK} where ρK is uKK1
∶ K1 α, . . . u

K
Kn

∶ Kn α,ρ.

This record type declaration is collected to appear in the program prelude.

Then, for each u ∶ Tu in ρK, we define the program context:

Ru
△
== let u ∶ σu = Nu in [] where σu

△
== ∀α.K α⇒ Tu and Nu

△
== Λα.λz ∶K α. (z.u)

Let the composition R1 ○R2 of two contexts be the context R1[R2] obtained by placing R2

in the hole of R1. The elaboration JHKK of a single class declaration HK is the composition:

JHKK
△
== Ru1 ○ . . .Run where K α ≈ {u1 ∶ T1, . . . un ∶ Tn}

7.2. MINI HASKELL 153

that defines accessors for each field of the class dictionary. We also define the typing envi-
ronment ΓH as an abbreviation for u1 ∶ σu1 , . . . un ∶ σun .

The elaboration JH1 . . .HpK of all class definitions is the composition JH1K○ . . . JHpK of the
elaboration of each. We also define ΓH1...Hn

as the concatenation ΓH1
, . . .ΓHn

of individual
typing environments.

Instance definition In an instance declaration h of the form inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r},
The typing context P⃗ describes the dictionaries that must be available on type parameters
β⃗ for constructing the dictionary K (G β⃗), but that cannot yet be built because they depend
on some unknown type β in β⃗.

As mentioned above P⃗ is not related to the typing context of the class declaration HK.
To see this, assume that class K′ is an immediate superclass of K, so that the creation of the
dictionary K α requires the existence of a dictionary K′ α; then, an instance declaration K G
(where G is nullary) need not be parametrized over a dictionary of type K′ G, as either such
a dictionary can already be built, hence the instance definition does not require it, or it will
never be possible to build one, as instance definitions are recursively defined so all of them
are already visible—and the program must be rejected.

We restrict typing context K1 α1, . . .Kk αk to canonical ones defined as satisfying the two
following conditions: (1) αi is some βj in β⃗; and (2) if Ki and Kj are related, i.e. Ki ≺ Kj
or Kj ≺ Ki or Ki = Kj . then αi and αj are different. The latter condition avoids having two
dictionaries Ki β and Kj β when, e.g., Ki ≺ Kj since the former is contained in the latter.

The elaboration of an instance declaration h is a triple (zh,Nh, σh) where zh is an identifier
to refer to the elaborated body Nh of type

σh
△
== ∀β1 . . . βp.K1 α1⇒ . . .Kk αk ⇒ K (G β⃗)

(Variables α1, . . . αk are among β1, . . . βp and may contain repetitions, as explained above.)

The expression Nh builds a dictionary of type K (G β⃗), given k dictionaries (where k may
be zero) of respective types K1 β1, . . .Kk βk and is defined as:

Nh △
== Λβ1. . . .Λβp. λ(z1 ∶K1 α1). . . . λ(zk ∶Kk αk).{uK

K′
1

= q1, . . . u
K
K′n
= qn, u1 = N

h
1 , . . . um = N

h
m}

The types of fields are as prescribed by the class definition K, but specialized at type G β⃗.
That is, qi is a dictionary expression of type K′i (G β⃗) whose exact definition is postponed
until the elaboration of dictionaries in §7.2.6. The term Nh

i is the elaboration of Mi where
u1 =M1, . . . um =Mm is r; it is described in the next section (§7.2.4). For clarity, we write z
instead of x when a variable binds a dictionary or a function building a dictionary. Notice
that the expressions qi and Nh

i sees the type variables β1, . . . βp and the dictionary parameters
z1 ∶ K1 α1, . . . zk ∶ Kk αk.

154 CHAPTER 7. OVERLOADING

The elaboration of all instance definitions is the program context:

Jh⃗K
△
== let rec (z⃗h ∶ σ⃗h) = N⃗h in []

that recursively binds all instance definitions in the hole.

Program Finally, the elaboration of a complete program H⃗ h⃗ M is

JH⃗ h⃗ MK
△
== (JH⃗K ○ Jh⃗K)[M] = let u⃗ ∶ σ⃗u = N⃗u in let rec (z⃗h ∶ σ⃗h) = N⃗h in N

Hence, the expression N , which is the elaboration ofM , and all expressions Nh are typed (and
elaborated) in the environment ΓH⃗h⃗ equal to ΓH⃗ , Γh⃗: the environment ΓH⃗ declares functions
to access components of dictionaries (both sub-dictionaries and definitions of overloaded
symbols) while the environment Γh⃗, declares functions to build dictionaries.

7.2.4 Elaboration of expressions

The elaboration of expressions is defined by a judgment Γ ⊢M ↝N ∶ σ where Γ is a System F
typing context, M is the source expression, N is the elaborated expression and σ its type
in Γ. In particular, Γ ⊢M ↝N ∶ σ implies Γ ⊢ N ∶ σ in System F.

We write q for dictionary terms, which are the following subset of System-F terms:

q ∶∶= u ∣ z ∣ q τ ∣ q q
Variables u and z are just particular cases of variables x. Variable u is used for methods
(and access to subdictionaries), while variable z is used for dictionary parameters and for
class instances, i.e. dictionaries or functions building dictionaries.

The rules for elaboration of expressions are described in Figure 7.2. Most of them just
wrap the elaboration of their sub-expressions. In rule Let, we require σ to be canonical,
i.e. of the form ∀α⃗. P⃗ ⇒ T where P⃗ is itself empty or canonical (see page 153). Rules App

and Abs do not apply to overloaded expressions of type σ but only to simple expressions of
type τ .

The interesting rules are the elaboration of overloaded expressions, and in particular of
missing abstractions (Rule OAbs) and applications (Rule OApp) of dictionaries. Rule OAbs

pushes dictionary abstractions in the context Γ as prescribed by the expected type. On the
opposite, Rule OApp searches for an appropriate dictionary-building function and applies it
to the required sub-directionary.

The premise Γ ⊢ q ∶ Q of rule OApp also triggers the elaboration of dictionaries. This
judgment is just the typability in System F—but restricted to dictionary expressions. That
is, it searches for a well-typed dictionary expression. The restriction to dictionary expres-
sions ensures that under reasonable conditions the search is decidable—and coherent. The
elaboration of dictionaries reads the typing rules of System F restricted to dictionaries as an
algorithm, where Γ and Q are given and q is inferred. This is described in detail in §7.2.6.

7.2. MINI HASKELL 155

Var

x ∶ σ ∈ Γ

Γ ⊢ x ↝ x ∶ σ

Inst

Γ ⊢M ↝N ∶ ∀α.σ

Γ ⊢M τ ↝ N τ ∶ [α ↦ τ]σ
Gen

Γ, α ⊢M ↝N ∶ σ

Γ ⊢ Λα.M ↝ Λα.N ∶ ∀α.σ

Let

Γ ⊢M1 ↝N1 ∶ σ Γ, x ∶ σ ⊢M2 ↝N2 ∶ τ

Γ ⊢ let x ∶ σ =M1 inM2 ↝ let x ∶ σ = N1 in N2 ∶ τ

Abs

Γ, x ∶ τ ′ ⊢M ↝N ∶ τ

Γ ⊢ λx ∶τ ′.M ↝ λx ∶τ ′.N ∶ τ ′ → τ

App

Γ ⊢M1 ↝N1 ∶ τ2 → τ1 Γ ⊢M2 ↝ N2 ∶ τ2

Γ ⊢M1 M2 ↝N1 N2 ∶ τ1

OAbs

Γ, x ∶ Q ⊢M ↝N ∶ σ x #M

Γ ⊢M ↝ λx ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢M ↝N ∶ Q⇒ σ Γ ⊢ q ∶ Q

Γ ⊢M ↝N q ∶ σ

Figure 7.2: Elaboration of expressions

By construction, elaboration produces well-typed expressions: that is ΓH⃗h⃗ ⊢ M ↝ N ∶ τ

implies that is ΓH⃗h⃗ ⊢ N ∶ τ .

7.2.5 Summary of the elaboration

An instance declaration h of the form:

inst ∀β⃗. K1 α1, . . .Kk αk ⇒ K τ⃗ {u1 =M1, . . . l;um =Mm}
is translated into

λ(z1 ∶K1 α1) λ(zp ∶Kk αk).{uKK′
1

= q1, . . . u
K
K′n
= qn, u1 = N1, . . . um = Nm}

where uK
K′
i

∶ τi are the superclasses fields, Γh is β⃗,K1 α1, . . .Kk αk, and the following elaboration

judgments ΓH⃗h⃗,Γ
h ⊢ qi ∶ τi and ΓH⃗h⃗,Γ

h ⊢ Mi ↝ Ni ∶ τi hold. Finally, given the program p

equal to H⃗ h⃗ M , we elaborate M as N such that ΓH⃗h⃗ ⊢M ↝N ∶ ∀ᾱ. τ .
Notice that ∀ᾱ. τ is an unconstrained type scheme. Otherwise, N could elaborate into

an abstraction over dictionaries, which could turn a computation into a function that is not
reduced: this would not preserve the intended semantics.

More generally, we must be careful to preserve the intended semantics of source pro-
grams. For this reason, in a call-by-value setting, we must not elaborate applications into
abstractions, since this could delay and perhaps duplicate the order of evaluations. We just
pick the obvious solution, that is to restrict rule Let so that either σ is of the form ∀ᾱ. τ or
M1 is a value or a variable.

156 CHAPTER 7. OVERLOADING

In a language with a call-by-name semantics, an application is not evaluated until it
is needed. Hence adding an abstraction in front of an application should not change the
evaluation order M1 M2. We must in fact compare:

let x1 = λy. let x2 = V1 V2 inM2 in [x1 ↦ x1 q]M1 (1)
let x1 = let x2 = λy.V1 V2 in [x2 ↦ x2 q]M2 inM1 (2)

The order of evaluation of V1 V2 is preserved. However, the Haskell language is call-by-need
and not call-by-name! Hence, applications are delayed as in call-by-name but shared and
only reduced once. The application V1 V2 will be reduced once in (1), but as many types as
there are occurrences of x2 in M2 in (2).

The final result will still be the same in both cases if the language has no side effects,
but the intended semantics may be changed regarding the complexity.

Coherence The elaboration may fail for several reasons: The input expression may not
obey one of the restrictions we have requested; a typing may occur during elaboration of
an expression; or or some dictionary cannot be build. If elaboration fails, the program p is
rejected, of course.

When the elaboration of p succeeds, it should return a term JpK that is well-typed in
F and that defines the semantics of p. However, although terms are explicitly-typed, their
elaboration may not be unique! Indeed, they might be several ways to build dictionaries of
some given type, as we shall see below (§7.2.6).

We may distinguish two situations: in the worst case, a source program may elaborate
to several completely unrelated programs; in the better case, all possible elaborations may
in fact be equivalent programs: we say that the elaboration is coherent and the programs
has a deterministic semantics given by any of its elaboration.

Opening a parenthesis, what does it mean for programs be equivalent? There are several
notions of program equivalence:

• If programs have a denotational semantics, the equivalence of programs should be the
equality of their denotations.

• As a subcase, two programs having a common reduct should definitely be equivalent.
However, this will in general not be complete: values may contain functions that are
not identical, but perhaps reduce to the same value whenever applied to equivalent
arguments.

• This leads to the notion of observational equivalence. Two expressions are observation-
ally equivalent (at some observable type, such as integers) if their are indistinguishable
whenever they are put in arbitrary (well-typed) contexts of the observable type.

End of parenthesis.

7.2. MINI HASKELL 157

D-OVar

x ∶ σ ∈ Γ

Γ ⊢ x ∶ σ

D-Inst

Γ ⊢ q ∶ ∀α.σ

Γ ⊢ q τ ∶ [α↦ τ]σ
D-App

Γ ⊢ q1 ∶ Q1 ⇒ Q2 Γ ⊢ q2 ∶ Q1

Γ ⊢ q1 q2 ∶ Q2

Figure 7.3: Typing rules for dictionaries

For instance, two different elaborations algorithms that consistently change the repre-
sentation of dictionaries (e.g. by ordering records in reverse order), may be equivalent if we
cannot observe the representation of dictionaries.

Returning to the coherence problem, the only source of non-determinism in Mini Haskell
is the elaboration of dictionaries. Hence, to ensure coherence, it suffices that two dictionary
values of the same type are always equal. This does not mean that there is a unique way
of building dictionaries, but that all ways are equivalent as they eventually return the same
dictionary.

7.2.6 Elaboration of dictionaries

The elaboration of dictionaries is based on typing rules of System F—but restricted to a sub-
set of the language. The relevant typing rules are given in Figure 7.3. However, elaboration
significantly differs from type inference since the judgment Γ ⊢ q ∶ Q is used for inferring q
rather than τ . The judgment can be read as: in type environment Γ, a dictionary of type
Q can be constructed by the dictionary expression q. As for type inference, elaboration of
dictionaries is simplified by finding an appropriate syntax-directed presentation of the typ-
ing rules—but directed by the structure of the type of the expected dictionary instead of
expressions.

Elaboration is also driven by the bindings available in the typing environment. These
may be dictionary constructors zh, given by instance definitions; dictionary accessors uK,
given by class declarations; dictionary arguments z, given by the local typing context. This
suggests the presentation of the typing rules in Figure 7.4.

Dictionary values Let us first consider the elaboration of dictionary values, i.e. dictionary
expressions that do not use dictionary parameters or projections. Thus, their derivation may
only use D-OVar-Inst. They are typed in the environment ΓH⃗h⃗, which does not contain free
type variables. They actually do not access dictionaries, and only use the environment Γh⃗.
Hence, all occurrences of D-OVar-Inst are of the form:

D-OVar-Inst

z ∶ ∀β⃗. P1 ⇒ . . . Pn⇒ K (G β⃗) ∈ Γh⃗ Γh⃗ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi
Γh⃗ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)

158 CHAPTER 7. OVERLOADING

D-OVar-Inst

z ∶ ∀β⃗. P1⇒ . . . Pn⇒ K (G β⃗) ∈ Γ ∀i ∈ 1..n, Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi
Γ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)

D-Proj

u ∶ ∀α.K′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ

Γ ⊢ u τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α

Figure 7.4: Algorithmic typing rules for dictionaries

and the premise Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi is itself recursively built in the same way with this single
rule. This rule can be read as a recursive definition, where Γ is constant, Q is the input type
of the dictionary, and q is the output dictionary. This reading is deterministic if there is no
choice in finding z ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) in Γ. The binding z can only be a binding
zh introduced as the elaboration of some class instance h at type Γβ⃗, Hence, it suffices that
instance definitions never overlap for zh to be uniquely determined; if recursively each qi
is unique, then z τ⃗ q⃗ also is. Under this hypothesis, the elaboration is always unique and
therefore coherent.

Definition 3 (Overlapping instances) Two instances inst ∀β⃗1. P⃗ ⇒ K (G1 β⃗1) {r1} and
inst ∀β⃗2. P⃗ ⇒ K (G2 β⃗2) {r2} of a class K overlap if the type schemes ∀β⃗1.K (G1 τ⃗1) and
∀β⃗2.K (G2 τ⃗2) have a common instance, i.e. in the current setting, if G1 and G2 are equal.

Overlapping instances are an inherent source of incoherence, as it means that for some type Q
(in the common instance), a dictionary of type Q may (possibly) be built using two different
implementations.

Dictionary expressions Dictionary expressions may compute on dictionaries: they may
extract sub-dictionaries or build new dictionaries from other dictionaries received as argu-
ment. Indeed, in overloaded code, the exact type is not fully known at compile type, hence
dictionaries must be passed as arguments, from which superclass dictionaries may be ex-
tracted (actually must be extracted, as we forbade to pass a class and one of its super class
dictionaries simultaneously).

Dictionaries are typically typed in the typing environment ΓH⃗h⃗,Γ
h where Γh binds the

local typing context, i.e. assumptions z ∶ K′ β about dictionaries received as arguments.
Hence, rules D-Proj and D-Var may now apply, i.e. the elaboration of expressions uses the
three rules of 7.4. This can still be read as a backtracking proof search algorithm. The proof
search always terminates, since premises always have strictly smaller Q than the conclusion
when using the lexicographic ordering of the height of τ and then the reverse order of class
inheritance: when no rule applies, the search fails; when rule D-Var applies, the search ends

7.3. IMPLICITLY-TYPED TERMS 159

with a successful derivation; when rule D-Proj applies, the premise is called with a smaller
problem since the height is unchanged and K′ τ⃗ with K′ ≺ K; when D-Ovar-Inst applies, the
premises are called at type Ki τj where τj is subtype of τ⃗ , hence of a strictly smaller height.

Non determinism However, non-overlapping of class instances is no more sufficient to
prevent from non determinism. For instance, the introductory example of §7.2.1 defines two
instances EqInt and OrdInt where the later contains an instance of the former. Hence, a
dictionary of type EqInt may be obtained, either directly as EqInt, or indirectly as Eq OrdInt,
by projecting the Eq sub-dictionary of class Ord Int. In fact, the latter choice could then be
reduced at compile time and be equivalent to the first one.

One could force more determinism by fixing a strategy for elaboration. Restrict the use
of rule D-Proj to cases where Q is P–when D-OVar-Inst does not apply. However, since
the two elaborations paths are equivalent, the extra flexibility is harmless and may perhaps
be useful freedom for the compiler.

Example of elaboration In our introductory example, the typing environment ΓH⃗h⃗ is
(we remind both the informal and formal names of variables):

equal
△
== uequal ∶ ∀α.Eq α⇒ α → α → bool,

EqInt
△
== zIntEq ∶ Eq int

EqList
△
== zListEq ∶ ∀α.Eq α⇒ Eq (list α)

EqOrd
△
== uOrd

Eq ∶ ∀α.Ord α⇒ Eq α

lt
△
== ult ∶ ∀α.Ord α⇒ α → α → bool

When elaborating the body of the search function, we have to infer a dictionary for EqOrd X OrdX

in the local context X, OrdX : Ord X. Using formal notations, dictionaries are typed in the
environment Γ equal to Γ0, α, z ∶ Ord α. and EqOrd is uOrdEq . We have the following derivation:

D-Proj

D-OVar-Inst

Γ ⊢ z ∶ uOrd
Eq ∶ Ord α → Eq α

D-Var

Γ ⊢ z ∶ Ord α

Γ ⊢ uOrd
Eq α z ∶ Eq α

7.3 Implicitly-typed terms

Our presentation of Mini Haskell is explicitly typed. Since we remain within an ML-like
type system where type schemes are not first-class, we may leave some type information
implicit. But how much? Class declarations define both the structure of dictionaries—a
record type definition and its accessors—and the type scheme of overloaded symbols. Since,
we inferring type schemes is out of the scope of ML-like type inference, class declarations

160 CHAPTER 7. OVERLOADING

must remain explicit. Instance definitions are turned into recursive polymorphic definitions,
which in ML require type scheme annotations. So they instance definitions also remain
explicit. Fortunately, all remaining core language expressions, i.e. the body of instance
definitions and the final program expression can be left implicit.

For instance, the example program in the introduction can be rewritten more concisely.

class Eq (X) { equal : X → X → Bool }
inst Eq (Int) { equal = primEqInt }
inst Eq (Char) { equal = primEqChar }
inst Λ(X) Eq (X) ⇒ Eq (List (X))
{ Eq = λ(l1) λ(l2) match l1, l2 with

| [],[] → true | [], | [], → false
| h1 ::t1 , h2 ::t2 → Eq h1 h2 && Eq t1 t2 }

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

let rec search x l = match l with [] → false | h::t → equal x h || search x t
let b = search Int 1 [1; 2; 3];;

The missing type information can rebuilt by type inference.

Type inference To perform type inference in Mini Haskell, the idea is to see dictionary
types K τ , which can only appear in type schemes and not in types, as a type constraint
to mean “there exists a dictionary of type K α”. That is, we may read the type scheme
∀α⃗. P⃗ ⇒ τ as the constraint type scheme ∀α⃗[P⃗]. τ where P⃗ is seen as a type predicate, say
a dictionary predicate. Therefore, we extend constraints with dictionary predicates:

C ∶∶= . . . ∣ K τ

On ground types, a constraint K t is satisfied if one can build a dictionary of type K t in
the initial environment ΓH⃗h⃗ (that contains all class and instance declarations)—formally,
if there exists a dictionary expression q such that ΓH⃗h⃗ ⊢ q ∶ K t. Then satisfiability of
class-membership constraints is (with its unfolded version on the right):

Instance

K φτ

φ ⊢ K τ

Instance

ΓH⃗h⃗ ⊢ ρ ∶ K φτ

φ ⊢ K τ

We use entailment to reason with class-membership constraints. For every class declaration
class K1 α1, . . . Kn αn⇒ K α {ρ}, we have:

K α ⊩ K1 α1 ∧ . . . Kn αn (K1)
This rule allows to decompose any set of simple constraints into a canonical one.

Proof: Assume φ ⊢ K α, i.e. by Rule Instance Γ
H⃗h⃗
⊢ q ∶ K (φα) for some dictionary q.

From the class declaration in Γ
H⃗h⃗

, we know that K α is a record type definition that contains

7.3. IMPLICITLY-TYPED TERMS 161

fields uKKi
of type Ki αi. Hence, the dictionary value q contains field values of types Ki (φα).

Therefore, we have φ ⊢ Ki α for all i in 1..n, which implies φ ⊢ K1 α ∧ . . . Kn α.

For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp⇒ K (G β⃗) {r}, we have

K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (K2)
This rule allows to decompose any class constraint into a conjunction of simple constraints
(i.e. of the form K α).

Proof: Let h be the above instance definition. We proof both directions separately:

Case ê: Assume φ ⊢ Ki βi for i in {1, . . . p}. By Rule Instance, for each i, there exists a
dictionary qi such that Γ

H⃗h⃗
⊢ qi ∶ Ki (φβi). Hence, Γ

H⃗h⃗
⊢ xh β⃗ q1 . . . qp ∶ K (G (φβ⃗)), i.e. by

Rule Instance φ ⊢ K (G β⃗).

Case ⊩: Assume, φ ⊢ K (G β⃗). i.e. there exists a dictionary q such that Γ
H⃗h⃗
⊢ q ∶ K (G (φβ⃗)).

By inversion of typing (and non-overlapping of instance declarations), the only way to build
such a dictionary is by an application of zh. Hence, q must be of the form xh β⃗ q1 . . . qp
with Γ

H⃗h⃗
⊢ qi ∶ Ki (φβi). By Rule Instance, this means φ ⊢ Ki βi for every i, which implies

φ ⊢ K1 β1 ∧ . . . Kp βp.

Notice that the equivalence (K2) still holds in an open-world assumption where new instance
clauses may be added later, because another future instance definition cannot overlap with
existing ones.

If class instances may overlap, the ⊩ direction does not hold anymore; the rewriting rule:

K (G β⃗)Ð→ K1 β1 ∧ . . . Kp βp

remains sound (the inverse entailment holds, and thus type inference still infer sound typ-
ings), but it is incomplete (type inference could miss some typings).

We also use the following equivalence: for every class K and type constructor G for which
there is no instance of K:

K (G β⃗) ≡ false (K3)
This rule allows to report failure as soon as a constraint of the form K (G τ⃗) for which there
is not instance of K for G appears.

Proof: The ê direction is a tautology, so it suffices to prove the ⊩ direction. By contradiction.
Assume φ ⊢ K (G β⃗). This implies the existence of a dictionary q such that Γ

H⃗h⃗
⊢ q ∶ K (G

(φβ⃗)). Then, there must be some xh in Γ whose type scheme is of the form ∀β⃗. P⃗ ⇒ K (G β⃗),
i.e. there must be an instance of class K for G.

162 CHAPTER 7. OVERLOADING

Notice that the equivalence is only an inverse entailment in an open world assumption: when
there is not instance of K at type G, the rewriting rule K (G β⃗)Ð→ false remains sound, but
it is incomplete.

We are now fully equipped for type inference. Constraint generation is unchanged: see
Figure 5.6. A constraint type scheme can then always be decomposed into one of the form
∀ᾱ[P1 ∧ P2]. τ where ftv(P1) ∈ ᾱ and ftv(P2)# ᾱ. The constraints P2 can then be extruded
to the enclosing context if any, so that we are just left with P1, and thus a well-formed type
scheme ∀α⃗. P⃗ ⇒ τ with a typing context P⃗ .

To check well-typedness of a program H⃗ h⃗ a, we must check that: each expression ah and
the expression a are well-typed, in the environment used to elaborate them. This amounts
to checking:

• ΓH⃗h⃗,Γ
h ⊢ ah ∶ τh where τh is given. That is, that def ΓH⃗h⃗,Γ

h in Lah M ⪯ τh ≡ true holds;

• ΓH⃗h⃗ ⊢ a ∶ τ for some τ . That is, that def ΓH⃗h⃗ in ∃α. La M ⪯ α ≡ true holds.

However, typechecking is not sufficient: type reconstruction should also return an explicitly-
typed term M than can in turn be elaborated into some term N of System F, i.e. such that
Γ ⊢ a↝M ∶ τ .

Type reconstruction Type reconstruction can be performed as described in §5.3.4 by
keeping persistent constraints during resolution. As in ML, there may be several ways to re-
construct programs, which we may solve by requesting explicitly-typed terms to be canonical
and principal.

Coherence When the source language is implicitly-typed, the elaboration from the source
language into System F code is the composition of type reconstruction with elaboration of
explicitly typed terms.

Hence, even though the elaboration is coherent for explicitly-typed terms, this may not
be true for implicitly-typed terms. There are two potential problems:

• The language has principal constrained type schemes, but the elaboration requests
unconstrained type schemes.

• Ambiguities could be hidden (and missed) by non principal type reconstructions.

Toplevel unresolved constraints The restrictions we put on class declarations and in-
stance definitions ensure that the type system has principal constrained schemes (and prin-
cipal typing reconstructions).

However, this does not imply that there are principal unconstrained type schemes. For
example, assume that the principal constrained type scheme is ∀α[K α]. α → α and the
typing environment contains two instances of K G1 and K G2 of class K. Constraint-free

7.3. IMPLICITLY-TYPED TERMS 163

instances of this type scheme are G1→ G1 and G2→ G2 but ∀α.α → α is certainly not one.
Not only neither choice is principal, but worse, the two choices would elaborate in expressions
with different (and non-equivalent) semantics. Elaboration should fail in such cases.

This problem may appear while typechecking the final expression a in ΓH⃗h⃗ that request
an unconstrained type scheme ∀α. τ It may also occur when typechecking the body of an
instance definition h, which requests an explicit type scheme ∀β⃗[Q⃗]. τ in ΓH⃗h⃗ or, equivalently,

a type τ in ΓH⃗h⃗, β⃗, Q⃗. Consider, for example:

class Num (X) { 0 : X, (+) : X → X → X }
inst Num Int { 0 = Int.(0), (+) = Int.(+} }
inst Num Float { 0 = Float.(0), (+) = Float.(+} }
let zero = 0 + 0;

The type of zero or zero + zero is ∀α[Num α]. α while several class instances are possible
for Num X . The semantics of the program is thus undetermined. Another example is:

class Readable (X) { read : descr → X }
inst Readable (Int) { read = read int }
inst Readable (Char) { read = read char }
let v = read (open in())

The type of v is ∀α[Readable α].unit → α—and several classes are possible for Readable α.
This program is also rejected.

Inaccessible constraint variables In the previous examples, the incoherence arise from
the obligation to infer unconstrained toplevel type schemes. A similar problem may occur
with isolated constraints in a type scheme. For instance, assume that let x = a1 in a2
elaborates to let x ∶ ∀α[K α]. int → int = N1 in N2. All applications of x in N2 will lead to
an unresolved constraint K α for some fresh α since neither the argument nor the context of
this application can determine the value of the type parameter α. Still, a dictionary of type
K τ must be given before N1 can be executed.

Although x may not be used in N2, in which case, all elaborations of the expression may
be coherent, we may still raise an error, since an unusable local definition is certainly useless,
hence probably a programmer’s mistake. The error may then be raised immediately, at the
definition site, instead of at every use of x.

The open-world view When there is a single instance K G for a class K that appears in
an unresolved or isolated constraint K α, the problem formally disappears, as all possible
type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons, as an extension
of the program with another non-overlapping correct instance declaration would make the
program become ambiguous.

164 CHAPTER 7. OVERLOADING

Formally, this amounts to saying that the program must be coherent in its current form,
but also in all possible extensions with well-typed class definitions. This is taking an open-
world view.

On the importance of principal type reconstruction A source of incoherence is
when some class constraint remains undetermined. Some (usually arbitrary) less general
elaboration could cover the problem—but the source program would remain incoherent.
Hence, in order to detect programs with ambiguous semantics, it is essential that type
reconstruction is principal. A program can still be specialized but only after it has been
proved coherent. This freedom may actually be very useful for optimizations. Consider for
example, the program

let twice = λ(x) x + x in twice (twice 1)

whose principal type reconstruction is:

let twice : ∀(X) [Num X] X → X = Λ(X) [Num X] λ(x) x + x in

twice Int (twice Int) 1

This program is coherent. It’s natural elaboration is

let twice X NumX = λ(x : X) x (plus NumX) x in

twice Int NumInt (twice Int NumInt 1)

However, it can also be elaborated to

let twice = λ(x : Int) x (plus NumInt) x in twice (twice 1)

avoiding the generalization of twice; moreover, the overloaded application plus NumInt can
now be statically reduced, leading to:

let twice = λ(x : Int) x Int.(+) x in twice (twice 1)

Overloading by return types All previous ambiguous examples are overloaded by their
return types: For instance, in 0 : X, the value 0 has an overloaded type that is not constraint
by the argument; in read : descr → X, the return type is under specified, independently of
the type of the argument.

To avoid such cases, Odersky et al. has suggested to prevent overloading by return types
by requesting that overloaded symbols of a class K α have types of the form α → τ . The
above examples would then be rejected by this definition.

In fact, disallowing overloading by return types—in addition to our previous restrictions—
suffices to ensure that all well-typed programs are coherent. Moreover, untyped programs can
then be given a direct semantics (which of course coincides with the semantics obtained by
elaboration). Many interesting examples of overloading actually fits in this restricted subset.
However, overloading by returns types is also found useful in several cases and Haskell allows
it, using default rules to resolve ambiguities. This is still an arguable design choice in the
Haskell community.

7.4. VARIATIONS 165

7.4 Variations

Changing the representation of dictionaries An overloaded method call u of a class K
is elaborated into an application u q of u to a dictionary expression q of class K. The function
u and the representation of the dictionary are both defined in the elaboration of the class K
and need not be known at the call site. This leaves some flexibility in the representation of
dictionaries. For example, we have used records to represent dictionaries, but tuples would
have been sufficient.

Going one step further, dictionaries need not contain the methods themselves but enough
information from which the methods may be recovered. For example, dictionaries may be
replaced by a derivation tree that proves the existence of the dictionary. This derivation
tree may be concisely represented and passed around instead of the dictionary itself and be
used and interpreted at at the call site to dispatch to the appropriate implementation of the
method. Such an approach has been followed by Furuse (2003b).

This change of representation can also elegantly be explained as a type preserving com-
pilation of dictionaries called concretization and described in Pottier and Gauthier (2006).
It is somehow similar to defunctionalization and also requires that the target language is
equipped with GADT (Guarded Abstract Data Types).

Multi-parameter type classes To allow multi-parameter type classes, we may extend
the syntax of class definitions as follows:

class P⃗ ⇒ K α⃗ {ρ}
where free variables of P⃗ must be bound in α⃗. The current framework can easily be extended
to handle multi-parameter type classes. For example, Collections may be represented by a
type C whose elements are of type E and defined as follows:

class Collection C E { find : C → E → Option(E), add : C → E → C }
inst Collection (List X) X { find = List.find, add = λ(c)λ(e) e::c }
inst Collection (Set X) X { ... }

However, the class Collection does not provide the intended intuition that collections are
homogeneous. Indeed, we may define:

let add2 c x y = add (add c x) y
add2 : ∀(C, E, E’) Collection C E, Collection C E’ ⇒ C → E → E’ → C

This is accepted assuming that collections are heterogeneous. Although, this is unlikely the
case, no contradiction can be assumed. However, if collections are indeed homogeneous,
no instance of heterogeneous collections will ever be provided and the above code is overly
general. As a result, uses of collections have unresolved often parameters, which would be
resolved, if we had a way to tell the system that collections are homogeneous.

The solution is to add a clause to say that the parameter C determines the parameter E:

166 CHAPTER 7. OVERLOADING

class Collection C E | C → E { ... }

Then, because C determines E, the two instances E and E′ must be equal in C. Type
dependencies also reduce overlapping between class declarations, since fewer instances of a
class make sense. Hence they also allow example that would have to be rejected if type
dependencies could not be expressed.

Associated types Associated types are an alternative to functional dependencies. They
allow a class to declare its own type functions. Correspondingly, instance definitions must
provide a definition for all associated types—in addition to values for overloaded symbols.

For example, the Collection class becomes a single parameter class with an associated
type definition:

class Collection E {
type C : ∗ → ∗

find : C → E → Option E
add : C → E → C

}
inst Collection Eq X ⇒ Collection X {type C = List E, ... }
inst Collection Eq X ⇒ Collection X {type C = Set E, ... }

Associated types increase the expressiveness of type classes.

Overlapping instances In practice, overlapping instances may be desired! This seems
in contradiction with the fact that overlapping instances are a source of incoherence. For
example, one could provide a generic implementation of sets provided an ordering relation on
elements, but also provide a more efficient version for bit sets. When overlapping instances
are allowed, further rules are needed to disambiguate the overloading resolution and preserve
coherence. For instance, priority rules may be used. An interesting resolution strategy is to
give priority to the most specific match.

However, the semantics depend on some particular resolution strategy and becomes more
fragile. See Jones et al. (1997) for a discussion. See also Morris and Jones (2010) for a recent
new proposal. For example, the definitions:

inst Eq(X) { equal = (=) }
inst Eq(Int) { equal = primEqInt }

could elaborate into the creation of both a generic dictionary and a specialized one.

let Eq X : Eq X= { equal = (=) }
let EqInt : Eq Int = { equal = primEqInt }

Then, EqInt or Eq Int are two dictionaries of type Eq Int but with different implementations.

7.4. VARIATIONS 167

Restriction that are harder to lift We have made several restrictions to the definition
of type classes. Some can be lifted at the price of some tolerable complication. Relaxing
other restrictions, even if it could make sense in theory, would raise serious difficulties in
practice.

For example, allowing constrained type schemes of the form K τ instead of the restricted
form K α would affect many aspects of the language and it would becomes much more difficult
to control the termination of constrained resolution and of the elaboration of dictionaries.

Allowing class instances of the form inst ∀β⃗. P⃗ ⇒ K τ {ρ} where τ is G τ⃗ and not just
G β⃗, it would become difficult to check non-overlapping of class instances.

Implicit values

Implicit values are a mecanism that allows to build values from types. The implies a way
to populate an environement of definitions that can be used to build implicit values and a
mecanism to introduce place holders where values should be build from their types.

Implicits values have been used in the language Scala for implicit conversions Sca (but
they can do more). An extension of OCaml with implicit values is beeing prototyped.
Implicit values have also been proposed as an alternative to Haskell type classes Oliveira et al.
(2012).

Conclusions

Methods as overloading functions One approach to object-orientation is to see meth-
ods as overloaded functions. Then, objects carry class tags that can be used at runtime to find
the best matching definition. This approach has been studied in detail by Millstein and Chambers
(1999). See also Bonniot (2002, 2005).

Summary Static overloading is not a solution for polymorphic languages. Dynamics over-
loading must be used instead. The implementation of type classes in the Haskell language
has proved quite effective: it is a practical, general, and powerful solution to dynamic over-
loading. Moreover, it works relatively well in combination with ML-like type inference.

However, besides the simplest case of overloading on which every one agrees, some useful
extensions often come with serious drawbacks, and they is not yet an agreement on the best
design compromises. In Haskell, the design decisions have often been in favor of expressive-
ness, but then loosing some of the properties and the canonicity of the minimalistic initial
design.

Dynamic overloading is a typical and very elegant use of elaboration. The programmer
could in principle write the elaborated program manually, explicitly building and passing

168 CHAPTER 7. OVERLOADING

dictionaries around, but this would be cumbersome, tricky, error prone, and it would sig-
nificantly obfuscate the code. Instead, the elaboration mechanism does this automatically,
without arbitrary choices (in the minimal design) and with only local transformations that
preserve the structure of the source program.

Further reading For an all-in-one explanation of Haskell-like overloading, see The essence
of Haskell by Odersky et al. See also the Jones’s monograph Qualified types: theory and
practice. For a calculus of overloading see the ML& calculus proposed by Castagna (1997).

Recently, type classes have also been added to Coq Sozeau and Oury (2008). Interest-
ingly, the elaboration of proof terms need not be coherent which makes it a simpler situation
for overloading.

7.5. OMMITTED PROOFS AND ANSWERS TO EXERCISES 169

7.5 Ommitted proofs and answers to exercises

Solution of Exercise 42

We first need to show that the δ∃ preserves typings. Assume that

Γ ⊢ unpack∃α.τ1 (pack∃α.τ τ ′ V) ∶ τ0
By inversion of typing, τ1 and τ0 must be equal to τ and ∀β. (∀α. τ → β) → β, respectively,
and the judgment Γ ⊢ V ∶ [α ↦ τ ′]τ must hold. Let Γ′ be Γ, β, y ∶ ∀α. τ → β. By weakening,
we have Γ′ ⊢ V ∶ [α ↦ τ ′]τ . We then have Γ′ ⊢ y τ ′ V ∶ β and finally, we have

Γ ⊢ Λβ.λy ∶∀α. τ → β. y τ ′ V ∶ τ0

as expected.
We then need to show that δ∃ satisfies progress, i.e., a full well typed application of

unpack∃α.τ can always be reduced. Assume that Γ ⊢ unpack∃α.τ V ∶ τ0. By inversion of typing,
we must have Γ ⊢ V ∶ ∃α. τ . By the classification lemma (to be extended and rechecked), V
must be an existential value, i.e. of the form pack∃α.τ1 τ0 V0. Hence, unpack∃α.τ V reduces by
δ∃.

Solution of Exercise 43

We just force τ1 to coincide with τ :

unpack∃α.τ (pack∃α.τ τ ′ V) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V (δ∃)
The proof of subject reduction will know by construction that τ0 is τ instead of learning it
by inversion of typing. Conversely for progress, we will have to show that τ1 and τ are equal
by inversion so that δ∃ can be applied.

Solution of Exercise 45

LetM1 be if M then V1 else V2 where Vi is of the form pack τi, Vi as ∃ατ and the two witnesses
τ1 and τ2 differ. There is no common type for the unpacking of the two possible results V1
and V2. The choice between those two possible results must be made, by evaluating M1,
before unpacking.

Solution of Exercise 47

The answer is in the 2007–2008 exam.

http://gallium.inria.fr/~fpottier/mpri/corrige-2008.pdf

170 CHAPTER 7. OVERLOADING

Bibliography

▷ A tour of scala: Implicit parameters. Part of scala documentation.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order
systems. Information and Computation, 125(2):78–102, March 1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems.
Science of Computer Programming, 25(2–3):81–116, December 1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiv-
alence. In ACM International Conference on Functional Programming (ICFP), pages
157–168, September 2008.

▷ Lennart Augustsson. Implementing Haskell overloading. In FPCA ’93: Proceedings of the
conference on Functional programming languages and computer architecture, pages 65–73,
New York, NY, USA, 1993. ACM. ISBN 0-89791-595-X.

▷ Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional programming.
J. Funct. Program., 11(4):395–410, 2001.

▷ Richard Bird and Lambert Meertens. Nested datatypes. In International Conference on
Mathematics of Program Construction (MPC), volume 1422 of Lecture Notes in Computer
Science, pages 52–67. Springer, 1998.

Nikolaj Skallerud Bjørner. Minimal typing derivations. In In ACM SIGPLAN Workshop on
ML and its Applications, pages 120–126, 1994.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, École des Mines de Paris,
November 2005.

▷ Daniel Bonniot. Type-checking multi-methods in ML (a modular approach). In Workshop
on Foundations of Object-Oriented Languages (FOOL), January 2002.

▷ Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informaticæ, 33:309–338, 1998.

171

http://doi.acm.org/10.1145/224164.224198
http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
http://doi.acm.org/10.1145/165180.165191
http://research.microsoft.com/en-us/um/people/akenn/sml/exceptionalsyntax.pdf
ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
http://cristal.inria.fr/~bonniot/bonniot02.ps
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz

172 BIBLIOGRAPHY

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108–133, November 1999.

Luca Cardelli. An implementation of f¡:. Technical report, DEC Systems Research Center,
1993.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science Series. Birkäuser, Boston, 1997.

▷ Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The MLton com-
piler, 2007.

▷ Arthur Charguéraud and François Pottier. Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP), pages 213–224,
September 2008.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symposium on Principles of Programming Languages (POPL), pages
38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 54–65, June 2007.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type era-
sure semantics. Journal of Functional Programming, 12(6):567–600, November 2002.

Julien Crétin and Didier Rémy. Extending System F with Abstraction over Erasable Co-
ercions. In Proceedings of the 39th ACM Conference on Principles of Programming Lan-
guages, January 2012.

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 15–26, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-509-3. doi: http://doi.acm.org/10.1145/1596627.1596631.

▷ Ken-etsu Fujita and Aleksy Schubert. Existential type systems with no types in terms.
In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 112–126, 2009. doi: 10.1007/
978-3-642-02273-9 10.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In Ohori (2003), pages
376–393. ISBN 3-540-20536-5.

http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://mlton.org/
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://dx.doi.org/10.1007/978-3-642-02273-9_10

BIBLIOGRAPHY 173

▷ Jun Furuse. Extensional polymorphism by flow graph dispatching. In Asian Symposium on
Programming Languages and Systems (APLAS), volume 2895 of Lecture Notes in Com-
puter Science. Springer, November 2003b.

▷ Jacques Garrigue. Relaxing the value restriction. In Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science, pages 196–213. Springer, April 2004.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thèse d’état, Université Paris 7, June 1972.

▷ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, 1990.

▷ Dan Grossman. Quantified types in an imperative language. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):429–475, May 2006.

▷ Bob Harper and Mark Lillibridge. ML with callcc is unsound. Message to the TYPES
mailing list, July 1991.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 8, pages 293–345. MIT Press, 2005.

▷ Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253–289, April 1993.

▷ J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1969.

▷ Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: be-
ing lazy with class. In ACM SIGPLAN Conference on History of Programming Languages,
June 2007.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . ., ω. PhD thesis,
Université Paris 7, September 1976.

▷ John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.

▷ Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95: Proceedings of
the seventh international conference on Functional programming languages and computer
architecture, pages 160–169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999a.

http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.paultaylor.eu/stable/prot.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf
http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://doi.acm.org/10.1145/224164.224198

174 BIBLIOGRAPHY

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

▷ Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

▷ Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193–204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

▷ Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloquium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206–220. Springer, May 1990.

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89–101, 1965.

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Transactions on Programming Languages and Systems, 16(5):1411–1430, September
1994.

▷ Didier Le Botlan and Didier Rémy. Recasting MLF. Information and Computation, 207(6):
726–785, 2009. ISSN 0890-5401. doi: 10.1016/j.ic.2008.12.006.

▷ Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD thesis, Université Paris
7, June 1992.

▷ Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM Symposium on Principles of Programming Languages (POPL),
pages 42–54, January 2006.

▷ Xavier Leroy and François Pessaux. Type-based analysis of uncaught exceptions. ACM
Trans. Program. Lang. Syst., 22(2):340–377, 2000. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/349214.349230.

▷ John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM Symposium
on Principles of Programming Languages (POPL), pages 47–57, January 1988.

http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.journals.cambridge.org/abstract_S0956796806006034
http://dx.doi.org/10.1007/3-540-52590-4_50
http://doi.acm.org/10.1145/363744.363749
http://www.cs.luc.edu/laufer/papers/toplas94.pdf
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/exceptions-toplas.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf

BIBLIOGRAPHY 175

▷ Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time.
In ACM Symposium on Principles of Programming Languages (POPL), pages 382–401,
1990.

▷ David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques and
Applications (RTA), volume 2706 of Lecture Notes in Computer Science, pages 436–451.
Springer, June 2003.

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In ECOOP
’99: Proceedings of the 13th European Conference on Object-Oriented Programming, pages
279–303, London, UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

▷ Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, December 1978.

▷ Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In ACM
Symposium on Principles of Programming Languages (POPL), pages 271–283, January
1996.

▷ John C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76(2–3):211–249, 1988.

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470–502, 1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules with open existential
types. In ACM Symposium on Principles of Programming Languages (POPL), pages 63–
74, January 2009.

J. Garrett Morris and Mark P. Jones. Instance chains: type class programming without
overlapping instances. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, pages 375–386, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi: http://doi.acm.org/10.1145/1863543.1863596.

▷ Greg Morrisett and Robert Harper. Typed closure conversion for recursively-defined func-
tions (extended abstract). In International Workshop on Higher Order Operational Tech-
niques in Semantics (HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528–569,
May 1999.

http://doi.acm.org/10.1145/96709.96748
http://www.autoreason.com/rta03.ps
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf

176 BIBLIOGRAPHY

▷ Alan Mycroft. Polymorphic type schemes and recursive definitions. In International Sympo-
sium on Programming, volume 167 of Lecture Notes in Computer Science, pages 217–228.
Springer, April 1984.

▷ Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber. Functional
logic overloading. pages 233–244, 2002. doi: http://doi.acm.org/10.1145/565816.503294.

▷ Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In FPCA
’95: Proceedings of the seventh international conference on Functional programming lan-
guages and computer architecture, pages 135–146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

▷ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

▷ Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In
ACM Symposium on Principles of Programming Languages (POPL), pages 41–53, 2001.

Atsushi Ohori, editor. Programming Languages and Systems, First Asian Symposium,
APLAS 2003, Beijing, China, November 27-29, 2003, Proceedings, volume 2895 of Lecture
Notes in Computer Science, 2003. Springer. ISBN 3-540-20536-5.

▷ Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

▷ Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design and Implementation,
PLDI ’12, pages 35–44, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi:
10.1145/2254064.2254070.

▷ Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. Online lecture notes, January 2009.

▷ Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Manuscript, April
2004.

▷ Simon Peyton Jones and Philip Wadler. Imperative functional programming. In ACM
Symposium on Principles of Programming Languages (POPL), pages 71–84, January 1993.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In LFP
’88: Proceedings of the 1988 ACM conference on LISP and functional programming, pages
153–163, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X. doi: http://doi.acm.
org/10.1145/62678.62697.

▷ Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

http://dx.doi.org/10.1007/3-540-12925-1_41
http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195
http://eprints.kfupm.edu.sa/73647/1/73647.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://doi.acm.org/10.1145/2254064.2254070
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.cse.ogi.edu/~mbs/pub/scoped/
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://www.cis.upenn.edu/~bcpierce/tapl/

BIBLIOGRAPHY 177

▷ Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems, 22(1):1–44, January 2000.

▷ Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321–359, 2000.

▷ François Pottier. Notes du cours de DEA “Typage et Programmation”, December 2002.

François Pottier. A typed store-passing translation for general references. In Proceedings of
the 38th ACM Symposium on Principles of Programming Languages (POPL’11), Austin,
Texas, January 2011. Supplementary material.

François Pottier. Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming, 23(1):38–144, January 2013.

François Pottier. Hindley-Milner elaboration in applicative style. In Proceedings of the
2014 ACM SIGPLAN International Conference on Functional Programming (ICFP’14),
September 2014.

▷ François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretiza-
tion. Higher-Order and Symbolic Computation, 19:125–162, March 2006.

François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. Sub-
mitted for publication, October 2012.

François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’13), pages 173–184, September 2013.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489.
MIT Press, 2005.

▷ François Pottier and Didier Rémy. The essence of ML type inference. Draft of an extended
version. Unpublished, September 2003.

▷ Didier Rémy. Simple, partial type-inference for System F based on type-containment. In
Proceedings of the tenth International Conference on Functional Programming, September
2005.

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and
record types. In International Symposium on Theoretical Aspects of Computer Software
(TACS), pages 321–346. Springer, April 1994a.

http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz

178 BIBLIOGRAPHY

▷ Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming: Types,
Semantics and Language Design. MIT Press, 1994b.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

Didier Rémy and Boris Yakobowski. Efficient Type Inference for the MLF language: a
graphical and constraints-based approach. In The 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), pages 63–74, Victoria, BC, Canada,
September 2008. doi: http://doi.acm.org/10.1145/1411203.1411216.

▷ John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer, April 1974.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-
cessing 83, pages 513–523. Elsevier Science, 1983.

▷ John C. Reynolds. Three approaches to type structure. In International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), volume 185 of Lecture Notes
in Computer Science, pages 97–138. Springer, March 1985.

François Rouaix. Safe run-time overloading. In Proceedings of the 17th ACM Conference on
Principles of Programming Languages, pages 355–366, 1990. doi: http://doi.acm.org/10.
1145/96709.96746.

▷ Christian Skalka and François Pottier. Syntactic type soundness for HM(X). In Workshop
on Types in Programming (TIP), volume 75 of Electronic Notes in Theoretical Computer
Science, July 2002.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping. In Science of Computer Programming, 1994.

Morten Heine Sørensen and Pawel Urzyczyn. Studies in Logic and the Foundations of Math-
ematics, chapter Lectures on the Curry-Howard Isomorphism. Elselvir Science Inc, 2006.

▷ Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiène Tahar, Otmame
Ait-Mohamed, and César Muñoz, editors, TPHOLs 2008: Theorem Proving in Higher
Order Logics, 21th International Conference, Lecture Notes in Computer Science. Springer,
August 2008.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transactions on
Programming Languages and Systems, 19(1):48–86, 1997.

ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop1.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7
http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz
http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps

BIBLIOGRAPHY 179

▷ Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1–2):11–49, April 2000.

▷ Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP ’02: Proceedings of
the seventh ACM SIGPLAN international conference on Functional programming, pages
167–178, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

▷ Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
Computation, 11(2):245–296, 1994.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, April 1975.

▷ Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is unde-
cidable. Information and Computation, 179(1):1–18, 2002.

▷ Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17(3):245–265,
September 2004.

▷ Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language interop-
erability via source translation. Journal of Functional Programming, 8(4):367–412, July
1998.

▷ Philip Wadler. Theorems for free! In Conference on Functional Programming Languages
and Computer Architecture (FPCA), pages 347–359, September 1989.

▷ Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer
Science, 375(1–3):201–226, May 2007.

▷ Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium on Principles of Programming Languages (POPL), pages 60–76, January 1989.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

▷ J. B. Wells. The essence of principal typings. In International Colloquium on Automata,
Languages and Programming, volume 2380 of Lecture Notes in Computer Science, pages
913–925. Springer, 2002.

▷ J. B. Wells. The undecidability of Mitchell’s subtyping relation. Technical Report 95-019,
Computer Science Department, Boston University, December 1995.

▷ J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1–3):111–156, 1999.

http://dx.doi.org/10.1023/A:1010000313106
http://doi.acm.org/10.1145/581478.581495
http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950
http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://dx.doi.org/10.1017/S0956796898003086
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

180 BIBLIOGRAPHY

▷ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8
(4):343–356, December 1995.

▷ Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, November 1994.

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Introduction
	Overview of the course
	Requirements
	About Functional Programming
	About Types
	Acknowledgment

	The untyped -calculus
	Syntax
	Semantics
	Strong v.s. weak reduction strategies
	Call-by-value semantics

	Answers to exercises

	Simply-typed lambda-calculus
	Syntax
	Dynamic semantics
	Type system
	Type soundness
	Proof of subject reduction
	Proof of progress

	Simple extensions
	Unit
	Boolean
	Pairs
	Sums
	Modularity of extensions
	Recursive functions
	A derived construct: let-bindings

	Exceptions
	Semantics
	Typing rules
	Variations

	References
	Language definition
	Type soundness
	Tracing effects with a monad
	Memory deallocation

	Ommitted proofs and answers to exercises

	Polymorphism and System F
	Polymorphism
	Polymorphic lambda-calculus
	Types and typing rules
	Semantics
	Extended System F with datatypes

	Type soundness
	Type erasing semantics
	Implicitly-typed System F
	Type instance
	Type containment in System F
	A definition of principal typings
	Type soundness for implicitly-typed System F

	References
	A counter example
	Internalizing configurations

	Damas and Milner's type system
	Definition
	Syntax-directed presentation
	Type soundness for ML

	Ommitted proofs and answers to exercises

	Type reconstruction
	Introduction
	Type inference for simply-typed lambda-calculus
	Constraints
	A detailed example
	Soundness and completeness of type inference
	Constraint solving

	Type inference for ML
	Milner's Algorithm J
	Constraints
	Constraint solving by example
	Type reconstruction

	Type annotations
	Explicit binding of type variables
	Polymorphic recursion
	mixed-prefix

	Equi- and iso-recursive types
	Equi-recursive types
	Iso-recursive types
	Algebraic data types

	
	Type reconstruction in System F
	Type inference based on Second-order unification
	Bidirectional type inference
	Partial type inference in MLF

	Proofs and Solution to Exercises

	Existential types
	Towards typed closure conversion
	Existential types
	Existential types in Church style (explicitly typed)
	Implicitly-typed existential types
	Existential types in ML
	Existential types in OCaml

	Typed closure conversion
	Environment-passing closure conversion
	Closure-passing closure conversion
	Mutually recursive functions

	Overloading
	An overview
	Why use overloading?
	Different forms of overloading
	Static overloading
	Dynamic resolution with a type passing semantics
	Dynamic overloading with a type erasing semantics

	Mini Haskell
	Examples in MH
	The definition of Mini Haskell
	Semantics of Mini Haskell
	Elaboration of expressions
	Summary of the elaboration
	Elaboration of dictionaries

	Implicitly-typed terms
	Variations
	Ommitted proofs and answers to exercises

