
A package for booleans expressions

Didier Rémy

October 6, 2006

Abstract

This package provides macros for combining booleans expressions, for
which there is poor support in low-level TEX or even LATEX. By contrast
with the package ifthen, boolean expressions are first class values. We
represent booleans in Church’s style: we need not and ”ifthenelse”, as
applying then to two arguments will just pick the right branch.

1 Boolean expressions throw examples

Consider the following expressions:

\def \b {\AND{\TRUE}{\OR {\FALSE}{\TRUE}}}

\b->\AND {\TRUE }{\OR {\TRUE }{\FALSE }}

We can turn the expression into a conditional that will take two arguments and
evaluate one according to the condition. \IF{\b}{Yes}{No}, producing “Yes ”.

Note that if we use the conditional several times it will be evaluated several
times. We may evaluate a boolean and bind its value to a command as follows:

\defboolval{\bv}{\b}

\bv#1#2->#1

Of course, we may now replace \b by \bv in the above expression, i.e. write
\IF{\bv}{Yes}{No} leading to the same resultThe macro \newboolval is equiv-
alent to \letboolval except that it is an error if the command name passed as
first argument is already bound.

We could as well have required evaluation in the first place:

\letboolval{\bv}{\AND{\TRUE}{\OR {\FALSE}{\TRUE}}}

\bv#1#2->#1

One may observe that there is no difference between \bv and \TRUE.

\TRUE#1#2->#1

For convenience also provide n-ary versions \ANDL and \ORL of \AND and \OR op-
erations, using comma-separated arguments (forming a single latex argument).
Finally, here is a large example that summarizes all operators.

1

\def \b
{\ANDL

{\ANDL{},%
\ANDL{\TRUE},%
\ANDL{\TRUE ,\NOT \FALSE},\TRUE ,\NOT {\FALSE},%
\ORL{},%
\ORL{\FALSE},%
\ORL {\NOT \TRUE,\FALSE}}}

\letboolval {\bv} {\b}

\b->\ANDL {\ANDL {},\ANDL {\TRUE },\ANDL {\TRUE ,\NOT \FALSE

},\TRUE ,\NOT {\FALSE },\ORL {},\ORL {\FALSE },\ORL {\NOT

\TRUE ,\FALSE }}

Which we may evaluate to a boolean value:

\letboolval {\bv} {\b}

\bv#1#2->#1

Boolean constanst and operators have uppercase names to avoid conflict
with basic latex commands or other packages.

In some contexts, when there is no conflict, one may use the command
\BooleanLowerNames to define lowercase abbreviations for all uppercase names.

2 Lifting primitive TEX conditionals

The TEX primitive are rather inconvenient to use, as they require the use of ad
hoc patterns. We lift the most frequent patterns as LATEX church booleans.

The most general command is \booltex which takes a TEX condition as
argument and returns a boolean expression. For example,

\def \b {\booltex{\ifnum 1>2}}

\b->\booltex {\ifnum 1>2}

of which we may also force evaluation to a boolean value, as for any other
boolean expresssion.

\def \b {\booltex{\ifnum 1>2}}
\letboolval \bv {\texbool{\ifnum 1>2}}

\bv#1#2->#2

We may also combine it with other expressions, indeed, as in:

\ORL{\texbool{\ifnum 1>2},\texbool{\ifhmode}}{Yes}{No}

which evaluates to “Yes ”
Other lifting primitives are:

2

• \ifequalbool takes two arguments and returns true if both arguments
are equal.

For TEX experts, this is equivalent to the following definition (except
for the names of \testa and \testb):
#1#2->\def\testa{#1}\def\testb{#2}\texbool{\ifx\testa\testb}

Putting the argument in a macro first avoids the pitfall of \ifx #1#2

when one of the argument is empty. However, in some cases, one may
need the primitive TEX test \ifx.

• \ifemptybool is equivalent to \ifequalbool{}, that is, it simply tests
its argument for emptiness.

• \ifxbool is a shorthand for #1#2->\texbool{\ifx #1#2}. This is usu-
ally true if the two arguments expands to the same token, except for
pathological cases such as when one of the argument is empty. See the
TEX-book for details.

• \ifybool is a shorthand for the common TEX idiom that puts only the
first argument in a macro before testing, so as to avoid the empty argument
pitfall. However, it keeps the second arguemt as given, as this is usually
a macro whose definition and not the macro itself should be used for
comparisson. #1#2->\def \test{#1}\ifxbool{\test}{#2}.

3 String matching

This package also defines string matching, mamely three macros \ifstrprefix,
\ifstrinfix, \ifstrsuffix to analyze strings of tokens.

They take two arguments, a pattern sequence and a string. The pattern is
search for in the string. The macros returns a boolean that tells whether the

3

pattern is a prefix, infix, or suffix of the string. Here are examples:

Command followed by
{search in}{Y}{N} Expansion

\ifstringinfix{search in} Y

\ifstringinfix{search} Y

\ifstringinfix{ear} Y

\ifstringinfix{in} Y

\ifstringinfix{ } Y

\ifstringinfix{ch in} Y

\ifstringinfix{searchin} N

\ifstringinfix{ing} N

\ifstringprefix{sea} Y

\ifstringprefix{in} N

\ifstringprefix{thesea} N

\ifstringsuffix{in} Y

\ifstringsuffix{ch in} Y

\ifstringsuffix{sea} N

An more general auxiliary function \stringmatch is actually used for sharing
all comparissons. It takes an extra parameter as first argument that is the
action to performed after matching. This actions must three-argument function
receiving in order, a boolean value that tells whether the match succeeded, the
prefix and the suffix (which are meaningless in case of failure).

For example the following action may be defined:

\def\gnu#1#2#3{#3{#1_#2}{draft}}
to cut off the infix and return a default value. Then, we have:

\stringmatch {\gnu }{job}{ifjobname} evaluates to “if name ”

\stringmatch {\gnu }{draft}{ifjobname} evaluates to “draft ”

4

