
Which simple types have a unique inhabitant?

Gabriel Scherer Didier Rémy
INRIA

{gabriel.scherer,didier.remy}@inria.fr

Abstract
We study the question of whether a given type has a unique in-
habitant modulo program equivalence. In the setting of simply-
typed lambda-calculus with sums, equipped with the strong βη-
equivalence, we show that uniqueness is decidable. We present a
saturating focused logic that introduces irreducible cuts on positive
types “as soon as possible”. Backward search in this logic gives an
effective algorithm that returns either zero, one or two distinct in-
habitants for any given type. Preliminary application studies show
that such a feature can be useful in strongly-typed programs, in-
ferring the code of highly-polymorphic library functions, or “glue
code” inside more complex terms.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory

Keywords Unique inhabitants, proof search, simply-typed lambda-
calculus, focusing, canonicity, sums, saturation, code inference

1. Introduction
In this article, we answer an instance of the following question:
“Which types have a unique inhabitant”? In other words, for which
type is there exactly one program of this type? Which logical
statements have exactly one proof term?

To formally consider this question, we need to choose one
specific type system, and one specific notion of equality of pro-
grams – which determines uniqueness. In this article, we work with
the simply-typed λ-calculus with atoms, functions, products and
sums as our type system, and we consider programs modulo βη-
equivalence. We show that unique inhabitation is decidable in this
setting; we provide and prove correct an algorithm to answer it, and
suggest several applications for it. This is only a first step: simply-
typed calculus with sums is, in some sense, the simplest system in
which the question is delicate enough to be interesting. We hope
that our approach can be extended to richer type systems – with
polymorphism, dependent types, and substructural logics.

The present version is identical to the short version, except for
the Appendix which contains a detailed presentation of the algo-
rithm (Appendix A), and proof arguments for the formal results (Ap-
pend B).

[Copyright notice will appear here once ’preprint’ option is removed.]

1.1 Why unique?
We see three different sources of justification for studying unique-
ness of inhabitation: practical use of code inference, programming
language design, and understanding of type theory.

In practice, if the context of a not-yet-written code fragment de-
termines a type that is uniquely inhabited, then the programming
system can automatically fill the code. This is a strongly princi-
pal form of code inference: it cannot guess wrong. Some forms of
code completion and synthesis have been proposed (Perelman, Gul-
wani, Ball, and Grossman 2012; Gvero, Kuncak, Kuraj, and Piskac
2013), to be suggested interactively and approved by the program-
mer. Here, the strong restriction of uniqueness would make it suit-
able for a code elaboration pass at compile-time: it is of differ-
ent nature. Of course, a strong restriction also means that it will
be applicable less often. Yet we think it becomes a useful tool
when combined with strongly typed, strongly specified program-
ming disciplines and language designs – we have found in prelimi-
nary work (Scherer 2013) potential use cases in dependently typed
programming. The simply-typed lambda-calculus is very restricted
compared to dependent types, or even the type systems of ML, Sys-
tem F, etc. used in practice in functional programming languages;
but we have already found a few examples of applications (Sec-
tion 5). This shows promises for future work on more expressive
type systems.

For programming language design, we hope that a better un-
derstanding of the question of unicity will let us better understand,
compare and extend other code inference mechanisms, keeping the
question of coherence, or non-ambiguity, central to the system.
Type classes or implicits have traditionally been presented (Wadler
and Blott 1989; Stuckey and Sulzmann 2002; Oliveira, Schrijvers,
Choi, Lee, Yi, and Wadler 2014) as a mechanism for elaboration,
solving a constraint or proof search problem, with coherence or
non-ambiguity results proved as a second step as a property of
the proposed elaboration procedure. Reformulating coherence as a
unique inhabitation property, it is not anymore an operational prop-
erty of the specific search/elaboration procedure used, but a seman-
tic property of the typing environment and instance type in which
search is performed. Non-ambiguity is achieved not by fixing the
search strategy, but by building the right typing environment from
declared instances and potential conflict resolution policies, with a
general, mechanism-agnostic procedure validating that the result-
ing type judgments are uniquely inhabited.

In terms of type theory, unique inhabitation is an occasion
to take inspiration from the vast literature on proof inhabitation
and proof search, keeping relevance in mind: all proofs of the
same statement may be equally valid, but programs at a given
type are distinct in important and interesting ways. We use focus-
ing (Andreoli 1992), a proof search discipline that is more canon-
ical (enumerates less duplicates of each proof term) than simply
goal-directed proof search, and its recent extension into (maximal)
multi-focusing (Chaudhuri, Miller, and Saurin 2008).

1 2015/10/10

1.2 Example use cases
Most types that occur in a program are, of course, not uniquely
inhabited. Writing a term at a type that happens to be uniquely in-
habited is a rather dull part of the programming activity, as they are
no meaningful choices. While we do not hope unique inhabitants
would cure all instances of boring programming assignment, we
have identified two areas where they may be of practical use:

• inferring the code of highly parametric (strongly specified) aux-
iliary functions
• inferring fragments of glue code in the middle of a more com-

plex (and not uniquely determined) term

For example, if you write down the signature of flip
∀αβγ.(α → β → γ) → (β → α → γ) to document your stan-
dard library, you should not have to write the code itself. The types
involved can be presented equivalently as simple types, replacing
prenex polymorphic variables by uninterpreted atomic types (X, Y,
Z. . .). Our algorithm confirms that (X → Y → Z) → (Y →
X → Z) is uniquely inhabited and returns the expected program –
same for curry and uncurry, const, etc.

In the middle of a term, you may have forgotten whether the
function proceedings excepts a conf as first argument and a
year as second argument, or the other way around. Suppose a
language construct ?! that infers a unique inhabitant at its ex-
pected type (and fails if there are several choices), understand-
ing abstract types (such as year) as uninterpreted atoms. You can
then write (?! proceedings icfp this year), and let the pro-
gramming system infer the unique inhabitant of either (conf →
year → proceedings) → (conf → year → proceedings)
or (conf → year → proceedings) → (year → conf →
proceedings) depending on the actual argument order – it would
also work for conf ∗ year→ proceedings, etc.

1.3 Aside: Parametricity?
Can we deduce unique inhabitation from the free theorem of a
sufficiently parametric type? We worked out some typical exam-
ples, and our conclusion is that this is not the right approach. Al-
though it was possible to derive uniqueness from a type’s paramet-
ric interpretation, proving this implication (from the free theorem
to uniqueness) requires arbitrary reasoning steps, that is, a form of
proof search. If we have to implement proof search mechanically,
we may as well work with convenient syntactic objects, namely
typing judgments and their derivations.

For example, the unary free theorem for the type of composition
∀αβγ.(α→ β)→ (β → γ)→ (α→ γ) tells us that for any sets
of terms Sα, Sβ , Sγ , if f and g are such that, for any a ∈ Sα we
have f a ∈ Sβ , and for any b ∈ Sβ we have g b ∈ Sγ , and
if t is of the type of composition, then for any a ∈ Sα we have
t f g a ∈ Sγ . The reasoning to prove unicity is as follows. Suppose
we are given functions (terms) f and g. For any term a, first define
Sα

def
= {a}. Because we wish f to map elements of Sα to Sβ , define

Sβ
def
= {f a}. Then, because we wish g to map elements of Sβ to

Sγ , define Sγ
def
= {g (f a)}. We have that t f g a is in Sγ , thus

t f g is uniquely determined as λa. g (f a).
This reasoning exactly corresponds to a (forward) proof search

for the type α → γ in the environment α, β, γ, f : α → β, g :
β → γ. We know that we can always start with a λ-abstraction
(formally, arrow-introduction is an invertible rule), so introduce x :
α in the context and look for a term of type γ. This type has no head
constructor, so no introduction rules are available; we shall look for
an elimination (function application or pair projection). The only
elimination we can perform from our context is the application f x,
which gives a β. From this, the only elimination we can perform is
the application g (f x), which gives a γ. This has the expected goal

type: our full term is λx. g (f x). It is uniquely determined, as we
never had a choice during term construction.

1.4 Formal definition of equivalence
We recall the syntax of the simply-typed lambda-calculus types
(Figure 1), terms (Figure 2) and neutral terms. The standard typing
judgment ∆ ` t : A is recalled in Figure 3, where ∆ is a
general context mapping term variables to types. The equivalence
relation we consider, namely βη-equivalence, is defined as the least
congruence satisfying the equations of Figure 4. Writing t : A
in an equivalence rule means that the rule only applies when the
subterm t has type A – we only accept equivalences that preserve
well-typedness.

A,B,C,D ::= types
|X,Y, Z atoms
| P,Q positive types
| N,M negative types

P,Q ::= A+B strict positive
N,M ::= A→ B | A ∗B strict negative
Pat, Qat ::= P,Q | X,Y, Z positive or atom
Nat,Mat ::= N,M | X,Y, Z negative or atom

Figure 1. Types of the simply-typed calculus

t, u, r ::= terms
| x, y, z variables
| λx. t λ-abstraction
| t u application
| (t, u) pair
| πi t projection (i ∈ {1, 2})
| σi t sum injection (i ∈ {1, 2})
| δ(t, x1.u1, x2.u2) sum elimination (case split)

n,m := x, y, z | πi n | n t neutral terms

Figure 2. Terms of the lambda-calculus with sums

∆, x : A ` t : B

∆ ` λx. t : A→ B

∆ ` t : A→ B ∆ ` u : A

∆ ` t u : B

∆ ` t : A ∆ ` u : B

∆ ` (t, u) : A ∗B
∆ ` t : A1 ∗A2

∆ ` πi t : Ai

∆, x : A ` x : A
∆ ` t : Ai

∆ ` σi t : A1 +A2

∆ ` t : A1 +A2

∆, x1 : A1 ` u1 : C ∆, x2 : A2 ` u2 : C

∆ ` δ(t, x1.u1, x2.u2) : C

Figure 3. Typing rules for the simply-typed lambda-calculus

(λx. t) u→β u[t/x] (t : A→ B) =η λx. t x

πi (t1, t2)→β ti (t : A ∗B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui[t/xi]

∀C[�], C[t : A+B] =η δ(t, x.C[σ1 x], x.C[σ2 x])

Figure 4. βη-equivalence for the simply-typed lambda-calculus

2 2015/10/10

We distinguish positive types, negative types, and atomic types.
The presentation of focusing (subsection 1.6) will justify this dis-
tinction. The equivalence rules of Figure 4 make it apparent that
the η-equivalence rule for sums is more difficult to handle than the
other η-rule, as it quantifies on any term contextC[�]. More gener-
ally, systems with only negative, or only positive types have an eas-
ier equational theory than those with mixed polarities. In fact, it is
only at the end of the 20th century (Ghani 1995; Altenkirch, Dybjer,
Hofmann, and Scott 2001; Balat, Di Cosmo, and Fiore 2004; Lind-
ley 2007) that decision procedures for equivalence in the lambda-
calculus with sums were first proposed.

Can we reduce the question of unicity to deciding equivalence?
One would think of enumerating terms at the given type, and
using an equivalence test as a post-processing filter to remove
duplicates: as soon as one has found two distinct terms, the type
can be declared non-uniquely inhabited. Unfortunately, this method
does not give a terminating decision procedure, as naive proof
search may enumerate infinitely many equivalent proofs, taking
infinite time to post-process. We need to integrate canonicity in the
structure of proof search itself.

1.5 Terminology
We distinguish and discuss the following properties:

• provability completeness: A search procedure is complete for
provability if, for any type that is inhabited in the unrestricted
type system, it finds at least one proof term.
• unicity completeness: A search procedure is complete for unic-

ity if it is complete for provability and, if there exists two proofs
distinct as programs in the unrestricted calculus, then the search
finds at least two proofs distinct as programs.
• computational completeness: A search procedure is computa-

tionally complete if, for any proof term t in the unrestricted cal-
culus, there exists a proof in the restricted search space that is
equivalent to t as a program. This implies both previous notions
of completeness.
• canonicity: A search procedure is canonical if it has no dupli-

cates: any two enumerated proofs are distinct as programs. Such
procedures require no filtering of results after the fact. We will
say that a system is more canonical than another if it enumer-
ates less redundant terms, but this does not imply canonicity.

There is a tension between computational completeness and ter-
mination of the corresponding search algorithm: when termination
is obtained by cutting the search space, it may remove some com-
putational behaviors. Canonicity is not a strong requirement: we
could have a terminating, unicity-complete procedure and filter du-
plicates after the fact, but have found no such middle-ground. This
article presents a logic that is both computationally complete and
canonical (Section 3), and can be restricted (Section 4) to obtain a
terminating yet unicity-complete algorithm (Section ??).

1.6 Focusing for a less redundant proof search
Focusing (Andreoli 1992) is a generic search discipline that can
be used to restrict redundancy among searched proofs; it relies on
the general idea that some proof steps are invertible (the premises
are provable exactly when the conclusion is, hence performing this
step during proof search can never lead you to a dead-end) while
others are not. By imposing an order on the application of invertible
and non-invertible proof steps, focusing restricts the number of
valid proofs, but it remains complete for provability and, in fact,
computationally complete (§1.5).

More precisely, a focused proof system alternates between two
phases of proof search. During the invertible phase, rules recog-
nized as invertible are applied as long as possible – this stops

when no invertible rule can be applied anymore. During the non-
invertible phase, non-invertible rules are applied in the following
way: a formula (in the context or the goal) is chosen as the focus,
and non-invertible rules are applied as long as possible.

For example, consider the judgment x : X + Y ` X + Y . In-
troducing the sum on the right by starting with a σ1 ? or σ2 ? would
be a non-invertible proof step: we are permanently committing to
a choice – which would here lead to a dead-end. On the contrary,
doing a case-split on the variable x is an invertible step: it leaves all
our options open. For non-focused proof search, simply using the
variable x : X + Y as an axiom would be a valid proof term. It is
not a valid focused proof, however, as the case-split on x is a pos-
sible invertible step, and invertible rules must be performed as long
as they are possible. This gives a partial proof term δ(x, y.?, z.?),
with two subgoals y : X ` X + Y and z : X ` X + Y ; for
each of them, no invertible rule can be applied anymore, so one can
only focus on the goal and do an injection. While the non-focused
calculus had two syntactically distinct but equivalent proofs, x and
δ(x, y.σ1 y, z.σ2 z), only the latter is a valid focused proof: re-
dundancy of proof search is reduced.

The interesting steps of a proof are the non-invertible ones. We
call positive the type constructors that are “interesting to intro-
duce”. Conversely, their elimination rule is invertible (sums). We
call negative the type constructors that are “interesting to elimi-
nate”, that is, whose introduction rule is invertible (arrow and prod-
uct). While the mechanics of focusing are logic-agnostic, the po-
larity of constructors depends on the specific inference rules; linear
logic needs to distinguish positive and negative products. Some fo-
cused systems also assign a polarity to atomic types, which allows
to express interesting aspects of the dynamics of proof search (pos-
itive atoms correspond to forward search, and negative atoms to
backward search). In Section 2 we present a simple focused variant
of natural deduction for intuitionistic logic.

1.7 Limitations of focusing
In absence of sums, focused proof terms correspond exactly to β-
short η-long normal forms. In particular, focused search is canoni-
cal (§1.5). However, in presence of both polarities, focused proofs
are not canonical anymore. They correspond to η-long form for
the strictly weaker eta-rule defined without context quantification
x : A+B =weak-η δ(t, x.σ1 x, y.σ2 y).

This can be seen for example on the judgment z : Z, x : Z →
X + Y ` X + Y , a variant on the previous example where the
sum in the context is “thunked” under a negative datatype. The
expected proof is δ(x z, y1.σ1 y1, y2.σ2 y2), but the focused
discipline will accept infinitely many equivalent proof terms, such
as δ(x z, y1.σ1 y1, y2.δ(x z, y

′
1.σ1 y

′
1, .σ2 y2)). The result of

the application x z can be matched upon again and again without
breaking the focusing discipline.

This limitation can also be understood as a strength of focusing:
despite equalizing more terms, the focusing discipline can still
be used to reason about impure calculi where the eliminations
corresponding to non-invertible proof terms may perform side-
effects, and thus cannot be reordered, duplicated or dropped. As
we work on pure, terminating calculi – indeed, even adding non-
termination as an uncontrolled effect ruins unicity – we need a
stronger equational theory than suggested by focusing alone.

1.8 Our idea: saturating proof search
Our idea is that instead of only deconstructing the sums that appear
immediately as the top type constructor of a type in context, we
shall deconstruct all the sums that can be reached from the context
by applying eliminations (function application and pair projection).
Each time we introduce a new hypothesis in the context, we satu-
rate it by computing all neutrals of sum type that can be built using

3 2015/10/10

this new hypothesis. At the end of each saturation phase, all the
positives that could be deduced from the context have been decon-
structed, and we can move forward applying non-invertible rules on
the goal. Eliminating negatives until we get a positive and match-
ing in the result corresponds to a cut (which is not reducible, as the
scrutinee is a neutral term), hence our technique can be summarized
as “Cut the positives as soon as you can”.

The idea was inspired by Sam Lindley’s equivalence procedure
for the lambda-calculus with sums, whose rewriting relation can be
understood as moving case-splits down in the derivation tree, until
they get blocked by the introduction of one of the variable appear-
ing in their scrutinee (so moving down again would break scoping)
– this also corresponds to “restriction (A)” in Balat, Di Cosmo, and
Fiore (2004). In our saturating proof search, after introducing a new
formal parameter in the context, we look for all possible new scruti-
nees using this parameter, and case-split on them. Of course, this is
rather inefficient as most proofs will in fact not make use of the re-
sult of those case-splits, but this allows to give a common structure
to all possible proofs of this judgment.

In our example z : Z, x : Z → X + Y ` X + Y , the
saturation discipline requires to cut on x z. But after this sum has
been eliminated, the newly introduced variables y1 : X or y2 : Y
do not allow to deduce new positives – we would need a new Z
for this. Thus, saturation stops and focused search restarts, to find
a unique normal form δ(x z, y1.σ1 y1, y2.σ2 y2). In Section 3 we
show that saturating proof search is computationally complete and
canonical (§1.5).

1.9 Termination
The saturation process described above does not necessarily termi-
nate. For example, consider the type of Church numerals special-
ized to a positiveX+Y , that is,X+Y → (X+Y → X+Y)→
X + Y . Each time we cut on a new sum X + Y , we get new ar-
guments to apply to the function (X + Y → X + Y), giving yet
another sum to cut on.

In the literature on proof search for propositional logic, the
usual termination argument is based on the subformula property:
in a closed, fully cut-eliminated proof, the formulas that appear
in subderivations of subderivations are always subformulas of the
formulas of the main judgment. In particular, in a logic where
judgments are of the form S ` Awhere S is a finite set of formulas,
the number of distinct judgments appearing in subderivations is
finite (there is a finite number of subformulas of the main judgment,
and thus finitely many possible finite sets as contexts). Finally,
in a goal-directed proof search process, we can kill any recursive
subgoals whose judgment already appears in the path from the root
of the proof to the subgoal. There is no point trying to complete a
partial proof Pabove of S ` A as a strict subproof of a partial proof
Pbelow of the same S ` A (itself a subproof of the main judgment):
if there is a closed subproof for Pabove, we can use that subproof
directly for Pbelow, obviating the need for proving Pabove in the first
place. Because the space of judgments is finite, a search process
forbidding such recurring judgments always terminates.

We cannot directly apply this reasoning, for two reasons.

• Our contexts are mapping from term variables to formulas or,
seen abstractly, multisets of formulas; even if the space of pos-
sible formulas is finite for the same reason as above, the space
of multisets over them is still infinite.
• Erasing such multiset to sets, and cutting according to the non-

recurrence criteria above, breaks unicity completeness (§1.5).
Consider the construction of Church numerals by a judgment
of the form x : X, y : X → X ` X . One proof is just x, and
all other proofs require providing an argument of type X to the

function y, which corresponds to a subgoal that is equal to our
goal; they would be forbidden by the no-recurrence discipline.

We must adapt these techniques to preserve not only provability
completeness, but also unicity completeness (§1.5). Our solution is
to use bounded multisets to represent contexts and collect recursive
subgoals. We store at most M variables for each given formula, for
a suitably chosen M such that if there are two different programs
for a given judgment ∆ ` A, then there are also two different
programs for b∆cM ` A, where b∆cM is the bounded erasure
keeping at most M variables at each formula.

While it seems reasonable that such a M exists, it is not intu-
itively clear what its value is, or whether it is a constant or depends
on the judgment to prove. Could it be that a given goal A is prov-
able in two different ways with four copies of X in the context, but
uniquely inhabited if we only have three X?

In Section 4 we prove that M def
= 2 suffices. In fact, we prove

a stronger result: for any n ∈ N, keeping at most n copies of each
formula in context suffices to find at least n distinct proofs of any
goal, if they exist.

For recursive subgoals as well, we only need to remember at
most 2 copies of each subgoal: if some Pabove appears as the
subgoal of Pbelow and has the same judgment, we look for a closed
proof of Pabove. Because it would also have been a valid proof for
Pbelow, we have found two proofs for Pbelow: the one using Pabove

and its closed proof, and the closed proof directly. Pabove itself
needs not allow new recursive subgoal at the same judgment, so
we can kill any subgoal that has at least two ancestors with the
same judgment while preserving completeness for unicity (§1.5).

1.10 Contributions
We show that the unique inhabitation problem for simply-typed
lambda-calculus for sums is decidable, and propose an effective
algorithm for it. Given a context and a type, it answers that there
are zero, one, or “at least two” inhabitants, and correspondingly
provides zero, one, or two distinct terms at this typing. Our al-
gorithm relies on a novel saturating focused logic for intuition-
istic natural deduction, with strong relations to the idea of maxi-
mal multi-focusing in the proof search literature (Chaudhuri, Miller,
and Saurin 2008), that is both computationally complete (§1.5) and
canonical with respect to βη-equivalence.

We provide an approximation result for program multiplicity of
simply-typed derivations with bounded contexts. We use it to show
that our terminating algorithm is complete for unicity (§1.5), but it
is a general result (on the common, non-focused intuitionistic logic)
that is of independent interest.

Finally, we present preliminary studies of applications for code
inference. While extension to more realistic type systems is left
for future work, simply-typed lambda-calculus with atomic types
already allow to encode some prenex-polymorphic types typically
found in libraries of strongly-typed functional programs.

2. Intuitionistic focused natural deduction
In Figure 5 we introduce a focused natural deduction for intuition-
istic logic, as a typing system for the simply-typed lambda-calculus
– with an explicit let construct. It is relatively standard, strongly
related to the linear intuitionistic calculus of Brock-Nannestad and
Schürmann (2010), or the intuitionistic calculus of Krishnaswami
(2009). We distinguish four judgments: Γ; ∆ `inv t : A is the in-
vertible judgment, Γ `foc t : Pat the focusing judgment, Γ ` t ⇑ A
the non-invertible introduction judgment and Γ ` n ⇓ A the non-
invertible elimination judgment. The system is best understood by
following the “life cycle” of the proof search process (forgetting
about proof terms for now), which initially starts with a sequent to
prove of the form ∅; ∆ `inv ? : A.

4 2015/10/10

Γ ::= varmap(Nat) negative or atomic context
∆ ::= varmap(A) general context

INV-PAIR
Γ; ∆ `inv t : A Γ; ∆ `inv u : B

Γ; ∆ `inv (t, u) : A ∗B

INV-SUM
Γ; ∆, x : A `inv t : C Γ; ∆, x : B `inv u : C

Γ; ∆, x : A+B `inv δ(x, x.t, x.u) : C

INV-ARR
Γ; ∆, x : A `inv t : B

Γ; ∆ `inv λx. t : A→ B

INV-END
Γ,Γ′ `foc t : Pat

Γ; Γ′ `inv t : Pat

FOC-INTRO
Γ ` t ⇑ P

Γ `foc t : P

FOC-ATOM
Γ ` n ⇓ X

Γ `foc n : X

FOC-ELIM
Γ ` n ⇓ P Γ;x : P `inv t : Qat

Γ `foc let x = n in t : Qat

INTRO-SUM
Γ ` t ⇑ Ai

Γ ` σi t ⇑ A1 +A2

INTRO-END
Γ; ∅ `inv t : Nat

Γ ` t ⇑ Nat

ELIM-PAIR
Γ ` n ⇓ A1 ∗A2

Γ ` πi n ⇓ Ai

ELIM-START
(x : Nat) ∈ Γ

Γ ` x ⇓ Nat

ELIM-ARR
Γ ` n ⇓ A→ B Γ ` u ⇑ A

Γ ` n u ⇓ B

Figure 5. Cut-free focused natural deduction for intuitionistic
logic

During the invertible phase Γ; ∆ `inv ? : A, invertible rules
are applied as long as possible. We defined negative types as those
whose introduction in the goal is invertible, and positives as those
whose elimination in the context is invertible. Thus, the invertible
phase stops only when all types in the context are negative, and the
goal is positive or atomic: this is enforced by the rule INV-END. The
two contexts correspond to an “old” context Γ, which is negative or
atomic (all positives have been eliminated in a previous invertible
phase), and a “new” context ∆ of any polarity, which is the one
being processed by invertible rule. INV-END only applies when the
new context Γ′ is negative or atomic, and the goal Pat positive or
atomic.

The focusing phase Γ `foc ? : Pat is where choices are made:
a sequence of non-invertible steps will be started, and continue as
long as possible. Those non-invertible steps may be eliminations in
the context (FOC-ELIM), introductions of a strict positive in the goal
(FOC-INTRO), or conclusion of the proof when the goal is atomic
(FOC-ATOM).

In terms of search process, the introduction judgment Γ ` ? ⇑
A should be read from the bottom to the top, and the elimination
judgment Γ ` ? ⇓ A from the top to the bottom. Introductions
correspond to backward reasoning (to prove A1 + A2 it suffices
to prove Ai); they must be applied as long as the goal is positive,
to end on negatives or atoms (INTRO-END) where invertible search
takes over. Eliminations correspond to forward reasoning (from the
hypothesis A1 ∗ A2 we can deduce Ai) started from the context
(ELIM-START); they must also be applied as long as possible, as they
can only end in the rule FOC-ELIM on a strict positive, or in the rule
FOC-ATOM on an atom.

Sequent-style left invertible rules The left-introduction rule for
sums INV-SUM is sequent-style rather than in the expected natural
deduction style: we only destruct variables found in the context, in-
stead of allowing to destruct arbitrary expressions. We also shadow
the matched variable, as we know we will never need the sum again.

Let-binding The proof-term let x = n in t used in the
FOC-ELIM rule is not part of the syntax we gave for the simply-typed
lambda-calculus in Section 1.4. Indeed, focusing re-introduces a re-
stricted cut rule which does not exist in standard natural deduction.
We could write t[n/x] instead, to get a proper λ-term – and indeed
when we speak of focused proof term as λ-term this substitution is
to be understood as implicit. We prefer the let syntax which better
reflects the dynamics of the search it witnesses.

We call letexp(t) the λ-term obtained by performing let-
expansion (in depth) on t, defined by the only non-trivial case:

letexp(let x = n in t)
def
= letexp(t)[letexp(n)/x]

Normality If we explained let x = n in t as syntactic sugar
for (λx. t) n, our proofs term would contain β-redexes. We prefer
to explain them as a notation for the substitution t[n/x], as it is
then apparent that proof term for the focused logic are in β-normal
form. Indeed, x being of strictly positive type, it is necessarily a
sum and is destructed in the immediately following invertible phase
by a rule INV-SUM (which shadows the variable, never to be used
again). As the terms corresponding to non-invertible introductions
Γ ` n ⇓ P are all neutrals, the substitution creates a subterm of
the form δ(n, x.t, x.u) with no new redex.

One can also check that proof terms for judgments that do not
contain sums are in η-long normal form. For example, a subterm
of type A → B is either type-checked by an invertible judgment
Γ; ∆ `inv t : A → B or an elimination judgment Γ ` n ⇓
A → B. In the first case, the invertible judgment is either a sum
elimination (excluded by hypothesis) or a function introduction
λx. u. In the second case, because an elimination phase can only
end on a positive or atomic type, we know that immediately below
is the elimination rule for arrows: it is applied to some argument,
and η-expanding it would create a β-redex.

Fact 1. The focused intuitionistic logic is complete for provability.
It is also computationally complete (§1.5).

2.1 Invertible commuting conversions
The invertible commuting conversion (or invertible commutative
cuts) relation (=icc) expresses that, inside a given invertible phase,
the ordering of invertible step does not matter.

δ(t, x.λy1. u1, x.λy2. u2) =icc λy. δ(t, x.u1[y/y1], x.u2[y/y2])

δ(t, x.(u1, u2), x.(r1, r2)) =icc

(δ(t, x.u1, x.r1), δ(t, x.u2, x.r2))

δ(t, x.δ(u, y.r1, y.r
′
1), x.δ(u, y.r2, y.r

′
2)) =icc

δ(u, y.δ(t, x.r1, x.r2), x.δ(t, x.r′1, x.r
′
2))

This equivalence relation is easily decidable. We could do with-
out it. We could force a specific operation order by restricting typ-
ing rules, typically by making ∆ a list to enforce sum-elimination
order, and requiring the goal C of sum-eliminations to be positive
or atomic to enforce an order between sum-eliminations and in-
vertibles utintroductions. We could also provide more expressive
syntactic forms (parallel multi-sums elimination (Altenkirch, Dyb-
jer, Hofmann, and Scott 2001)) and normalize to this more canon-
ical syntax. We prefer to make the non-determinism explicit in the
specification. Our algorithm uses some implementation-defined or-
der for proof search, it never has to compute (=icc)-convertibility.

5 2015/10/10

Note that there are term calculi (Curien and Munch-Maccagnoni
2010) inspired from sequent-calculus, where commuting conver-
sions naturally correspond to computational reductions, which
would form better basis for studying normal forms than λ-terms.
In the present work we wished to keep a term language resembling
functional programs.

3. A saturating focused system
In this section, we introduce the novel saturating focused proof
search, again as a term typing system that is both computationally
complete (§1.5) and canonical. It serves as a specification of our
normal forms; our algorithm shall only search for a finite subspace
of saturated proofs, while remaining unicity complete.

Saturated focusing logic is a variant of the previous focused
natural deduction, where the focusing judgment Γ `foc t : Pat is
replaced by a saturating judgment Γ; Γ′ `sat t : Pat. The system is
presented in Figure 6; the rules for non-invertible elimination and
introductions, and the invertible rules, are identical to the previous
ones and have not been repeated.

(rules for Γ ` t ⇑ A and Γ ` n ⇓ A as in Figure 5)
(invertible rules, except INV-END, as in Figure 5)

SINV-END
Γ; Γ′ `sat t : Pat

Γ; Γ′ `sinv t : Pat

SAT-INTRO
Γ ` t ⇑ P

Γ; ∅ `sat t : P

SAT-ATOM
Γ ` n ⇓ X

Γ; ∅ `sat n : X

SAT
(n̄, P̄) ⊆ {(n, P) | (Γ,Γ′ ` n ⇓ P) ∧ n uses Γ′}

Γ,Γ′; x̄ : P̄ `sinv t : Qat ∀x ∈ x̄, t uses x
Γ; Γ′ `sat let x̄ = n̄ in t : Qat

x ∈ ∆

x uses ∆

(∃n ∈ n̄, n uses ∆) ∨ t uses ∆

let x̄ = n̄ in t uses ∆

(t1 uses ∆) ∨ (t2 uses ∆)

δ(x, x.t1, x.t2) uses ∆

(t uses ∆) ∨ (u uses ∆)

t u uses ∆

(other (t uses ∆): simple or-mapping like for t u)

Figure 6. Cut-free saturating focused intuitionistic logic

In this new judgment, the information that a part of the context is
“new”, which is available from the invertible judgment Γ; Γ′ `sinv
t : A, is retained. The “old” context Γ has already been saturated,
and all the positives deducible from it have already been cut – the
result of their destruction is somewhere in the context. In the new
saturation phase, we must cut all new sums, that were not available
before, that is, those that use Γ′ in some way. It would not only be
inefficient to cut old sums again, it would break canonicity (§1.5):
with redundant formal variables in the context our algorithm could
wrongly believe to have found several distinct proofs.

The right-focusing rules SAT-INTRO and SAT-ATOM behave ex-
actly as FOC-INTRO and FOC-ATOM in the previous focused system.
But they can only be used when there is no new context.

When there is a new context to saturate, the judgment must
go through the SAT rule – there is no other way to end the proof.
The left premise of the rule, corresponding to the definition in SAT,
quantifies over all strictly positive neutrals that can be deduced
from the old and new contexts combined (Γ,Γ′), but selects those
that are “new”, in the sense that they use at least one variable com-
ing from the new context fragment Γ′. Then, we simultaneously
cut on all those new neutrals, by adding a fresh variable for each
of them in the general context, and continuing with an invertible

phase: those positives need to be deconstructed for saturation to
start again.

The n uses Γ′ restriction imposes a unique place at which
each cut, each binder may be introduced in the proof term: exactly
as soon as it becomes defineable. This enforces canonicity by elim-
inating redudant proofs that just differ in the place of introduction
of a binder, or bind the same value twice. For example, consider
the context Γ

def
= (x : X, y : X → (Y + Y)), and suppose we

are tryind to find all distinct terms of type Y . During the first sat-
uration phase (∅; Γ `sat ? : Y), we would build the neutral term
y x of type Y + Y ; it passes the test y x uses Γ as it uses both
variables of Γ. Then, the invertible phase Γ; z : Y + Y `sinv ? : Y
decomposes the goal in two subgoals Γ; z : Y `sat ? : Y . Without
the n uses Γ′ restriction, the SAT rule could cut again on y x, with
would lead, after the next invertible phase, to contexts of the form
Γ, z : Y ; z′ : Y . But it is wrong to have two distinct variables of
type Y here, as there should be only one way to build a Y .

The relation n uses Γ′ is defined structurally on proof terms
(or, equivalently, their typing derivations). Basically, a term “uses”
a context if it uses at least one of its variables; for most terms, it is
defined as a big “or” on its subterms. The only subtlety is that the
case-split δ(x, x.t1, x.t2) does not by itself count as a use of the
split variable: to be counted as “used”, either t1 or t2 must use the
shadowing variable x.

Finally, the last condition of the SAT rule (∀x ∈ x̄, t uses x)
restricts the saturated variables listed in the let-binding to be only
those actually used by the term. In terms of proof search, this
restriction is applied after the fact: first, cut all positives, then search
for all possible subproofs, and finally trim each of them, so that
it binds only the positives it uses. This restriction thus does not
influence proof search, but it ensures that there always exist finite
saturating proofs for inhabited types, by allowing proof search
to drop unnecessary bindings instead of saturating them forever.
Consider Church numerals on a sum type, X + Y → (X + Y →
X+Y)→ X+Y , there would be no finite saturating proof without
this restriction, which would break provability completeness.

Theorem 1 (Canonicity of saturating focused logic). If we have
Γ; ∆ `sinv t : A and Γ; ∆ `sinv u : A in saturating focused logic
with t 6=icc u, then t 6=βη u.

Theorem 2 (Computational completeness of saturating focused
logic). If we have ∅; ∆ `inv t : A in the non-saturating focused
logic, then for some u =βη t we have ∅; ∆ `sinv u : A in the
saturating focused logic.

4. Two-or-more approximation
A complete presentation of the content of this section, along with
complete proofs, is available as a research report (Scherer 2014).

Our algorithm bounds contexts to at most two formal variables
at each type. To ensure it correctly predicts unicity (it never claims
that there are zero or one programs when two distinct programs
exist), we need to prove that if there exists two distinct saturated
proofs of a goal A in a given context Γ, then there already exist
two distinct proofs of A in the context bΓc2, which drops variables
from Γ so that no formula occurs more than twice.

We formulate this property in a more general way: instead of
talking about the cut-free proofs of the saturating focused logics,
we prove a general result about the set of derivations of a typing
judgment ∆ ` ? : A that have “the same shape”, that is, that erase
to the same derivation of intuitionistic logic b∆c1 ` A, where
b∆c1 is the set of formulas present in ∆, forgetting multiplicity.
This result applies in particular to saturating focused proof terms,
(their let-expansion) seen as programs in the unfocused λ-calculus.

6 2015/10/10

We define an explicit syntax for “shapes” S in Figure 7, which
are in one-to-one correspondence with (variable-less) natural de-
duction proofs. It also define the erasure function btc1 from typed
λ-terms to typed shapes.

S, T := typed shapes
| A,B,C,D axioms
| λA. S λ-abstraction
| S T application
| (S, T) pair
| πi S projection
| σi S sum injection
| δ(S, A.T1, B.T2) sum destruction

bx : Ac1
def
= A bλx : A. tc1

def
= λA. btc1

bt uc1
def
= btc1 buc1 b(t, u)c1

def
= (btc1, buc1)

bπi tc1
def
= πi btc1 bσi tc1

def
= σi btc1

bδ((t : A+B), y.u, z.r)c1
def
= δ(btc1, A.buc1, B.brc1)

Figure 7. Shapes of variable-less natural deduction proofs

The central idea of our approximation result is the use of count-
ing logics, that counts the number of λ-terms of different shapes.
A counting logic is parametrized over a semiring1 K; picking the
semiring of natural numbers precisely corresponds to counting the
number of terms of a given shape, counting in the semiring {(0, 1)}
corresponds to the variable-less logic (which only expresses inhab-
itation), and counting in finite semirings of support {0, 1, . . . ,M}
corresponds to counting proofs with approximative bounded con-
texts of size at most M .

The counting logic, defined in Figure 8, is parametrized over
a semiring (K, 0K , 1K ,+K ,×K). The judgment is of the form
S :: Φ `K A : a, where S is the shape of corresponding logic
derivation, Φ is a context mapping formulas to a multiplicity in K,
A is the type of the goal being proven, and a is the “output count”,
a scalar of K.

Let us write #S the cardinal of a set S and b∆c# for the
“cardinal erasure” of the typing context ∆, defined as #{x | (x :
A) ∈ ∆}. We can express the relation between counts in the
semiring N and cardinality of typed λ-terms of a given shape:

Lemma 1. For any environment ∆, shape S and type A, the
following counting judgment is derivable:

S :: b∆c# `N A : #{t | ∆ ` t : A ∧ btc1 = S}

Note that the counting logic does not have a convincing dynamic
semantics – the dynamic semantics of variable-less shapes them-
selves have been studied in Dowek and Jiang (2011). We only use
it as a reasoning tool to count programs.

If φ : K → K′ map the scalars of one semiring to another,
and Φ is a counting context in K, we write bΦcφ its erasure in K′

defined by bΦcφ(A)
def
= φ(Φ(A)). We can then formulate the main

result on counting logics:

Theorem 3 (Morphism of derivations). If φ : K → K′ is
a semiring morphism and S :: Φ `K A : a is derivable, then
S :: bΦcφ `K′ A : φ(a) is also derivable.

To conclude, we only need to remark that the derivation count
is uniquely determined by the multiplicity context.

1 A semiring (K, 0K , 1K ,+K ,×K) is defined as a two-operation alge-
braic structure where (0K ,+K) and (1K ,×K) are monoids, (+K) com-
mutes and distributes over (×K) (which may or may not commute), 0K
is a zero/absorbing element for (×K), but (+K) and (×K) need not have
inverses (Z’s addition is invertible so it is a ring, N is only a semiring).

(Φ,Ψ)
def
= A 7→ (Φ(A) +K Ψ(A))

(A : 1)
def
=

{
A 7→ 1K
B 6= A 7→ 0K

COUNT-AXIOM
A :: Φ `K A : Φ(A)

COUNT-INTRO-ARR
S :: Φ, A : 1 `K B : a

λA. S :: Φ `K A→ B : a

COUNT-ELIM-ARR
S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1 × a2

COUNT-INTRO-PAIR
S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1, S2) :: Φ `K A ∗B : a1 × a2

COUNT-ELIM-PAIR
S :: Φ `K A1 ∗A2 : a

πi S :: Φ `K Ai : a

COUNT-INTRO-SUM
S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a

COUNT-ELIM-SUM
S :: Φ `K A+B : a1

T1 :: Φ, A : 1 `K C : a2 T2 :: Φ, B : 1 `K C : a3

δ(S, A.T1, B.T2) :: Φ `K C : a1 × a2 × a3

Figure 8. Counting logic over (K, 0K , 1K ,+K ,×K)

Lemma 2 (Determinism). If we have both S :: Φ `K A : a and
S :: Φ `K A : b then a =K b.

Corollary 1 (Counting approximation). If φ is a semiring mor-
phism and bΦcφ = bΨcφ then S :: Φ `K A : a and S :: Ψ `K
A : b imply φ(a) = φ(b).

Approximating arbitrary contexts into zero, one or “two-or-
more” variables corresponds to the semiring 2̄ of support {0, 1, 2},
with commutative semiring operations fully determined by 1+1 =
2, 2 + a = 2, and 2× 2 = 2. Then, the function n 7→ min(2, n) is
a semiring morphism from N to 2̄, and the corollary above tells us
that number of derivations of the judgments ∆ ` A and b∆c2 ` A
project to the same value in {0, 1, 2}. This results extend to any n,
as {0, 1, . . . , n} can be similarly given a semiring structure.

5. Search algorithm
The saturating focused logic corresponds to a computationally
complete presentation of the structure of canonical proofs we are
interested in. From this presentation it is extremely easy to derive
a terminating search algorithm complete for unicity – we moved
from a whiteboard description of the saturating rules to a working
implementation of the algorithm usable on actual examples in ex-
actly one day of work. The implementation (?) is around 700 lines
of readable OCaml code.

The central idea to cut the search space while remaining com-
plete for unicity is the two-or-more approximation: there is no need
to store more than two formal variables of each type, as it suffices to
find at least two distinct proofs if they exist – this was proved in the
Section 4. We use a plurality monad Plur, defined in set-theoretic
terms as Plur(S)

def
= 1 + S + S × S, representing zero, one or “at

least two” distinct elements of the set S. Each typing judgment is
reformulated into a search function which takes as input the con-
text(s) of the judgment and its goal, and returns a plurality of proof
terms – we search not for one proof term, but for (a bounded set

7 2015/10/10

of) all proof terms. Reversing the usual mapping from variables to
types, the contexts map types to pluralities of formal variables.

In the search algorithm, the SINV-END rule does merely pass
its new context Γ′ to the saturation rules, but it also trims it by
applying the two-or-more rule: if the old context Γ already has
two variables of a given formula Nat, drop all variables for Nat

from Γ′; if it already has one variable, retain at most one variable
in Γ′. This corresponds to an eager application of the variable-use
restriction of the SAT rule: we have decided to search only for terms
that will not use those extraneous variables, hence they are never
useful during saturation and we may as well drop them now. This
trimming is sound, because it corresponds to an application of the
SAT rule that would bind the empty set. Proving that it is complete
for unicity is the topic of Section 4.

To effectively implement the saturation rules, a useful tool is a
selection function (called select oblis in our prototype) which
takes a selection predicate on positive or atomic formulas Pat, and
selects (a plurality of) each negative formula Nat from the context
that might be the starting point of an elimination judgment of the
form Γ ` n ⇓ Pat, for a Pat accepted by the selection predicate. For
example, if we want to proveX and there is a formula Y → Z ∗X ,
this formula will be selected – although we don’t know yet if we
will be able to prove Y . For each such Pat, it returns a proof
obligation, that is either a valid derivation of Γ ` n ⇓ Pat, or
a request, giving some formula A and expecting a derivation of
Γ ` ? ⇑ A before returning another proof obligation.

The rule SAT-ATOM (Γ; ∅ `sat ? : X) uses this selection function
to select all negatives that could potentially be eliminated into
a X , and feeding (pluralities of) answers to the returned proof
obligations (by recursively searching for introduction judgments)
to obtain (pluralities of) elimination proofs of X .

The rule SAT uses the selection function to find the negatives
that could be eliminated in any strictly positive formula and tries
to fullfill (pluralities of) proof obligations. This returns a binding
context (with a plurality of neutrals for each positive formula),
which is filtered a posteriori to keep only the “new” bindings –
that use the new context. The new binding are all added to the
search environment, and saturating search is called recursively. It
returns a plurality of proof terms; each of them results in a proof
derivation (where the saturating set is trimmed to retain only the
bindings useful to that particular proof term).

Finally, to ensure termination while remaining complete for
unicity, we do not search for proofs where a given subgoal occurs
strictly more than twice along a given search path. This is easily
implemented by threading an extra “memory” argument through
each recursive call, which counts the number of identical subgoals
below a recursive call and kills the search (by returning the “zero”
element of the plurality monad) at two. Note that this does not
correspond to memoization in the usual sense, as information is
only propagated along a recursive search branch, and never shared
between several branches.

This fully describes the algorithm, which is easily derived from
the logic. It is effective, and our implementation answers instantly
on all the (small) types of polymorphic functions we tried. But it is
not designed for efficiency, and in particular saturation duplicates a
lot of work (re-computing old values before throwing them away).

In Appendix A, we give a presentation of the algorithm as a sys-
tem of inference rules that is terminating and deterministic. Using
the two-or-more counting approximation result (Corollary 1) of the
next section, we can prove the correctness of this presentation.

Theorem 4. Our unicity-deciding algorithm is terminating and
complete for unicity.

The search space restrictions described above are those neces-
sary for termination. Many extra optimizations are possible, that

can be adapted from the proof search literature – with some care to
avoid losing completness for unicity. For example, there is no need
to cut on a positive if its atoms do not appear in negative positions
(nested to the left of an odd number of times) in the rest of the goal.
We did not develop such optimizations, except for two low-hanging
fruits we describe below.

Eager redundancy elimination Whenever we consider selecting
a proof obligation to prove a strict positive during the saturation
phase, we can look at the negatives that will be obtained by cutting
it. If all those atoms are already present at least twice in the context,
this positive is redundant and there is no need to cut on it. Dually,
before starting a saturation phase, we can look at whether it is
already possible to get two distinct neutral proofs of the goal from
the current context. In this case it is not necessary to saturate at all.

This optimization is interesting because it significantly reduces
the redundancy implied by only filtering of old terms after com-
puting all of them. Indeed, we intuitively expect that most types
present in the context are in fact present twice (being unique tends
to be the exception rather than the rule in programming situations),
and thus would not need to be saturated again. Redundancy of sat-
uration still happens, but only on the “frontier formulas” that are
present exactly once.

Subsumption by memoization One of the techniques necessary
to make the inverse method (McLaughlin and Pfenning 2008) com-
petitive is subsumption: when a new judgment is derived by for-
ward search, it is added to the set of known results if it is not sub-
sumed by a more general judgment (same goal, smaller context)
already known.

In our setting, being careful not to break computational com-
pleteness, this rule becomes the following. We use (monotonic)
mutable state to grow a memoization table of each proved subgoal,
indexed by the right-hand-side formula. Before proving a new sub-
goal, we look for all already-computed subgoals of the same right-
hand-side formula. If one exists with exactly the same context, we
return its result. But we also return eagerly if there exists a larger
context (for inclusion) that returned zero result, or a smaller context
that returned two-or-more results.

Interestingly, we found out that this optimization becomes un-
sound in presence of the empty type 0 (which are not yet part of the
theory, but are present as an experiment in our implementation). Its
equational theory tells us that in an inconsistent cotnext (0 is prov-
able), all proofs are equal. Thus a type may have two inhabitants in
a given context, but a larger context that is inconsistent (allows to
prove 0) will have a unique inhabitant, breaking monotonicity.

6. Evaluation
In this section, we give some practical examples of code inference
scenarios that our current algorithm can solve, and some that it
cannot – because the simply-typed theory is too restrictive.

The key to our application is to translate a type using prenex-
polymorphism into a simple type using atoms in stead of type vari-
ables – this is semantically correct given that bound type variables
in System F are handled exactly as simply-typed atoms. The ap-
proach, of course, is only a very first step and quickly shows it
limits. For example, we cannot work with polymorphic types in the
environment (ML programs typically do this, for example when
typing a parametrized module, or type-checking under a type-class
constraint with polymorphic methods), or first-class polymorphism
in function arguments. We also do not handle higher-kinded types
– even pure constructors.

6.1 Inferring polymorphic library functions
The Haskell standard library contains a fair number of polymorphic
functions with unique types. The following examples have been

8 2015/10/10

checked to be uniquely defined by their types:

fst : ∀αβ. α ∗ β → α
curry : ∀αβγ. (α ∗ β → γ)→ α→ β → γ

uncurry : ∀αβγ. (α→ β → γ)→ α ∗ β → γ

either : ∀αβγ.(α→ γ)→ (β → γ)→ α+ β → γ

When the API gets more complicated, both types and terms
become harder to read and uniqueness of inhabitation gets much
less obvious. Consider the following operators chosen arbitrarily in
the lens (Kmett TODOa) library.

(<.) :: Indexable i p => (Indexed i s t -> r)
-> ((a -> b) -> s -> t) -> p a b -> r

(<.>) :: Indexable (i, j) p => (Indexed i s t -> r)
-> (Indexed j a b -> s -> t) -> p a b -> r

(%@~) :: AnIndexedSetter i s t a b
-> (i -> a -> b) -> s -> t

non :: Eq a => a -> Iso’ (Maybe a) a

The type and type-class definitions involved in this library
usually contain first-class polymorphism, but the documenta-
tion (Kmett TODOb) provides equivalent “simple types” to help
user understanding. We translated the definitions of Indexed,
Indexable and Iso using those simple types. We can then check
that the first three operators are unique inhabitants; non is not.

6.2 Inferring module implementations or type-class instances
The Arrow type-class is defined as follows:

class Arrow (a : * -> * -> *) where
arr :: (b -> c) -> a b c
first :: a b c -> a (b, d) (c, d)
second :: a b c -> a (d, b) (d, c)
(***) :: a b c -> a b’ c’ -> a (b, b’) (c, c’)
(&&&) :: a b c -> a b c’ -> a b (c, c’)

It is self-evident that the arrow type (→) is an instance of
this class, and no code should have to be written to justify this:
our prototype is able to infer that all those required methods are
uniquely determined when the type constructor a is instantiated
with an arrow type. This also extends to subsequent type-classes,
such as ArrowChoice.

As most of the difficulty in inferring unique inhabitants lies in
sums, we study the “exception monad”, that is, for a fixed type X ,
the functor α 7→ X + α. Our implementation determines that its
Functor and Monad instances are uniquely determined, but that its
Applicative instance is not.

Indeed, the type of the Applicative method ap specializes to
the following: ∀αβ. X + (α → β) → X + α → X + β. If both
the first and the second arguments are in the error case X , there is
a non-unique choice of which error to return in the result.

This is in fact a general result on applicative functors for types
that are also monads: there are two distinct ways to prove that a
monad is also an applicative functor.

ap :: Monad m => m (a -> b) -> m a -> m b
ap mf ma = do ap mf ma = do

f <- mf a <- ma
a <- ma f <- mf
return (f a) return (f a)

Note that the type of bind for the exception monad, namely
∀αβ. X + α → (α → X + β) → X + β, has a sum type
thunked under a negative type. It is one typical example of type
which cannot be proved unique by the focusing discipline alone,
which is correctly recognized unique by our algorithm.

6.3 Non-applications
Here are two related ideas we wanted to try, but that do not fit in
the simply-typed lambda-calculus; the uniqueness algorithm must
be extended to richer type systems to handle such applications.

We can check that specific instances of a given type-class are
canonically defined, but it would be nice to show as well that
some of the operators defined on any instance are uniquely defined
from the type-class methods – although one would expect this to
often fail in practice if the uniqueness checker doesn’t understand
the equational laws required of valid instances. Unfortunately, this
would require uniqueness check with polymorphic types in context
(for the polymorphic methods).

Another idea is to verify the coherence property of a set of de-
clared instances by translating instance declarations into terms, and
checking uniqueness of the required instance types. In particular,
one can model the inheritance of one class upon another using a
pair type (Comp α as a pair of a value of type Eq α and Comp-
specific methods); and the system can then check that when an in-
stance of Eq X and Comp X are declared, building Eq X directly
or projecting it from CompX correspond to βη-equivalent elabora-
tion witnesses. Unfortunately, all but the most simplistic examples
require parametrized types and polymorphic values in the environ-
ment to be faithfully modelled.

6.4 On impure host programs
The type system in which program search is performed does not
need to exactly coincide with the ambiant type system of the host
programming language, for which the code-inference feature is
proposed – forcing the same type-system would kill any use from
a language with non-termination as an effect. Besides doing term
search in a pure, terminating fragment of the host language, one
could also refine search with type annotations in a richer type
system, eg. using dependent types or substructural logic – as long
as the found inhabitants can be erased back to host types.

However, this raises the delicate question of, among the unique
βη-equivalence class of programs, which candidate to select to be
actually injected into the host language. For example, the ordering
or repetition of function calls can be observed in a host language
passing impure function as arguments, and η-expansion of func-
tions can delay effects. Even in a pure language, η-expanding sums
and products may make the code less efficient by re-allocating data.
There is a design space here that we have not explored.

7. Conclusion
7.1 Related work
Previous work on unique inhabitation The problem of unique
inhabitation for the simply-typed lambda-calculus (without sums)
has been formulated by Mints (1981), with early results by Babaev
and Solov’ev (1982), and later results by Aoto and Ono (1994);
Aoto (1999) and Broda and Damas (2005).

These works have obtained several different sufficient condi-
tions for a given type to be uniquely inhabited. While these can-
not be used as an algorithm to decide unique inhabitation for any
type, it reveals fascinating connections between unique inhabitation
and proof or term structures. Some sufficient criterions are formu-
lated on the types/formulas themselves, other on terms (a type is
uniquely inhabited if it is inhabited by a term of a given structure).

A simple criterion on types given in Aoto and Ono (1994) is that
“negatively non-duplicated formulas”, that is formulas where each
atom occurs at most once in negative position (nested to the left of
an odd number of arrows), have at most one inhabitant. This was
extended by Broda and Damas (2005) to a notion of “deterministic”
formulas, defined using a specialized representation for simply-
typed proofs named “proof trees”.

9 2015/10/10

https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types
https://github.com/ekmett/lens/wiki/Types

Aoto (1999) proposed a criterion based on terms: a type is
uniquely inhabited if it “provable without non-prime contraction”,
that is if it has at least one inhabitant (not necessarily cut-free)
whose only variables with multiple uses are of atomic type. Re-
cently, Bourreau and Salvati (2011) used game semantics to give an
alternative presentation of Aoto’s results, and a syntactic character-
ization of all inhabitants of negatively non-duplicated formulas.

Those sufficient conditions suggest deep relations between
the static and dynamics semantics of restricted fragments of the
lambda-calculus – it is not a coincidence that contraction at non-
atomic type is also problematic in definitions of proof equivalence
coming from categorial logic (Dosen 2003). However, they give
little in the way of a decision procedure for all types – conversely,
our decision procedure does not by itself reveal the structure of the
types for which it finds unicity.

An indirectly related work is the work on retractions in simple
types (A is a retract of B if B can be surjectively mapped into
A by a λ-term). Indeed, in a type system with a unit type 1, a
given type A is uniquely inhabited if and only if it is a retract of 1.
Stirling (2013) proposes an algorithm, inspired by dialogue games,
for deciding retraction in the lambda-calculus with arrows and
products; but we do not know if this algorithm could be generalized
to handle sums. If we remove sums, focusing already provides an
algorithm for unique inhabitation.

Counting inhabitants Broda and Damas (2005) remark that nor-
mal inhabitants of simple types can be described by a context-free
structure. This suggests, as done in Zaoinc (1995), counting terms
by solving a set of polynomial equations. Further references to such
“grammatical” approaches to lambda-term enumeration and count-
ing can be found in Dowek and Jiang (2011).

Of particular interest to us was the recent work of Wells and
Yakobowski (2004). It is similar to our work both in terms of
expected application (program fragment synthesis) and methods,
as it uses (a variant of) the focused calculus LJT (Herbelin 1994)
to perform proof search. It has sums (disjunctions), but because
it only relies on focusing for canonicity it only implements the
weak notion of η-equivalence for sums: as explained in Section 1.7,
it counts an infinite number of inhabitants in presence of a sum
thunked under a negative. Their technique to ensure termination of
enumeration is very elegant. Over the graph of all possible proof
steps in the type system (using multisets as contexts: an infinite
search space), they superimpose the graph of all possible non-
cyclic proof steps in the logic (using sets as contexts: a finite search
space). Termination is obtained, in some sense, by traversing the
two in lockstep. We took inspiration from this idea to obtain our
termination technique: our bounded multisets can be seen as a
generalization of their use of set-contexts.

Non-classical theorem proving and more canonical systems
Automated theorem proving has motivated fundamental research
on more canonical representations of proofs: by reducing the num-
ber of redundant representations that are equivalent as programs,
one can reduce the search space – although that does not necessar-
ily improve speed, if the finer representation requires more book-
keeping. Most of this work was done first for (first-order) classical
logic; efforts porting them to other logics (linear, intuitionistic,
modal) were of particular interest, as it often reveals the general
idea behind particular techniques, and is sometimes an occasion to
reformulate them in terms closer to type theory.

An important brand of work studies connection-based, or
matrix-based, proof methods. They have been adapted to non-
classical logic as soon as Wallen (1987). It is possible to present
connection-based search “uniformly” for many distinct logics (Ot-
ten and Kreitz 1996), changing only one logic-specific check to
be performed a posteriori on connections (axiom rules) of proof

candidates. In intuitionistic setting, that would be a comparison
on indices of Kripke Worlds; it is strongly related to labeled log-
ics (Galmiche and Méry 2013). On the other hand, matrix-based
methods rely on guessing the number of duplications of a formula
(contractions) that will be used in a particular proof, and we do
not know whether that can be eventually extended to second-order
polymorphism – by picking a presentation closer to the original
logic, namely focused proofs, we hope for an easier extension.

Some contraction-free calculi have been developed with auto-
mated theorem proving for intuitionistic logic in mind. A presen-
tation is given in Dyckhoff (1992) – the idea itself appeared as
early as Vorob’ev (1958). The idea is that sums and (positive) prod-
ucts do not need to be deconstructed twice, and thus need not be
contracted on the left. For functions, it is actually sufficient for
provability to implicitly duplicate the arrow in the argument case
of its elimination form (A → B may have to be used again to
build the argument A), and to forget it after the result of appli-
cation (B) is obtained. More advanced systems typically do case-
distinctions on the argument type A to refine this idea, see Dyck-
hoff (2013) for a recent survey. Unfortunately, such techniques to
reduce the search space break computational completeness: they
completely remove some programmatic behaviors. Consider the
type Stream(A,B)

def
= A ∗ (A → A ∗B) of infinite streams

of state A and elements B: with this restriction, the next-element
function can be applied at most once, hence Stream(X,Y) → Y
is uniquely inhabited in those contraction-free calculi. (With focus-
ing, only negatives are contracted, and only when picking a focus.)

Focusing was introduced for linear logic (Andreoli 1992), but
is adaptable to many other logics. For a reference on focusing for
intuitionistic logic, see Liang and Miller (2007). To easily elaborate
programs as lambda-terms, we use a natural deduction presentation
(instead of the more common sequent-calculus presentation) of
focused logic, closely inspired by the work of Brock-Nannestad
and Schürmann (2010) on intuitionistic linear logic.

Some of the most promising work on automated theorem prov-
ing for intuitionistic logic comes from applying the so-called “In-
verse Method” (see Degtyarev and Voronkov (2001) for a classi-
cal presentation) to focused logics. The inverse method was ported
to linear logic in Chaudhuri and Pfenning (2005), and turned into
an efficient implementation of proof search for intuitionistic logic
in McLaughlin and Pfenning (2008). It is a “forward” method: to
prove a given judgment, start with the instances of axiom rules
for all atoms in the judgment, then build all possible valid proofs
until the desired judgment is reached – the subformula property,
bounding the search space, ensures completeness for propositional
logic. Focusing allows important optimization of the method, no-
tably through the idea of “synthetic connectives”: invertible or non-
invertible phases have to be applied all in one go, and thus form
macro-steps that speed up saturation.

In comparison, our own search process alternates forward and
backward-search. At a large scale we do a backward-directed proof
search, but each non-invertible phase performs saturation, that is a
complete forward-search for positives. Note that the search space
of those saturation phases is not the subformula space of the main
judgment to prove, but the (smaller) subformula space of the cur-
rent subgoal’s context. When saturation is complete, backward
goal-directed search restarts, and the invertible phase may grow the
context, incrementally widening the search space. (The forward-
directed aspects of our system could be made richer by adding
positive products and positively-biased atoms; this is not our main
point of interest here. Our coarse choice has the good property that,
in absence of sum types in the main judgment, our algorithm im-
mediately degrades to simple, standard focused backward search.)

Lollimon (?) mixes backward search for negatives and forward
search for positives. The logic allows but does not enforce satura-

10 2015/10/10

tion; it is only in the implementation that (provability) saturation
is used, and they found it useful for their applications – modelling
concurrent systems.

Finally, an important result for canonical proof structures
is maximal multi-focusing (Miller and Saurin 2007; Chaudhuri,
Miller, and Saurin 2008). Multi-focusing refines focusing by intro-
ducing the ability to focus on several formulas at once, in parallel,
and suggests that, among formulas equivalent modulo valid permu-
tations of inference rules, the “more parallel” one are more canoni-
cal. Indeed, maximal multi-focused proofs turn out to be equivalent
to existing more-canonical proof structures such as linear proof
nets (Chaudhuri, Miller, and Saurin 2008) and classical expansion
proofs (Chaudhuri, Hetzl, and Miller 2012).

Saturating focused proofs are almost maximal muli-focused
proofs according to the definition of Chaudhuri, Miller, and Saurin
(2008). The difference is that multi-focusing allow to focus on both
variables in the context and the goal in the same time, while our
right-focusing rule SAT-INTRO can only be applied sequentially after
SAT (which does multi-left-focusing). To recover the exact structure
of maximal multi-focusing, one would need to allow SAT to also
focus on the right, and use it only when the right choices do not
depend on the outcome on saturation of the left (the foci of the
same set must be independent), that is when none of the bound
variables are used (typically to saturate further) before the start of
the next invertible phase. This is a rather artificial restriction from
a backward-search perspective. Maximal multi-focusing is more
elegant, declarative in this respect, but is less suited to proof search.

Equivalence of terms in presence of sums Ghani (1995) first
proved the decidability of equivalence of lambda-terms with sums,
using sophisticated rewriting techniques. The two works that
followed (Altenkirch, Dybjer, Hofmann, and Scott 2001; Balat,
Di Cosmo, and Fiore 2004) used normalization-by-evaluation in-
stead. Finally, Lindley (2007) was inspired by Balat, Di Cosmo,
and Fiore (2004) to re-explain equivalence through rewriting. Our
idea of “cutting sums as early as possible” was inspired from Lind-
ley (2007), but in retrospect it could be seen in the “restriction
(A)” in the normal forms of Balat, Di Cosmo, and Fiore (2004), or
directly in the “maximal conversions” of Ghani (1995).

Note that the existence of unknown atoms is an important aspect
of our calculus. Without them (starting only from base types 0 and
1), all types would be finitely inhabited. This observation is the
basis of the promising unpublished work of Ahmad, Licata, and
Harper (2010), also strongly relying on (higher-order) focusing.
Finiteness hypotheses also play an important role in Ilik (2014),
where they are used to reason on type isomorphisms in presence of
sums. Our own work does not handle 1 or 0; the latter at least is a
notorious source of difficulties for equivalence, but is also seldom
necessary in practical programming applications.

Elaboration of implicits Probably the most visible and the most
elegant uses of typed-directed code inference for functional lan-
guages are type-classes (Wadler and Blott 1989) and implic-
its (Oliveira, Moors, and Odersky 2010). Type classes elaboration
is traditionally presented as a satisfiability problem (or constraint
solving problem (Stuckey and Sulzmann 2002)) that happens to
have operational consequences. Implicits recast the feature as elab-
oration of a programming term, which is closer to our methodology.
Type-classes traditionally try (to various degrees of success) to en-
sure coherence, namely that a given elaboration goal always give
the same dynamic semantics wherever it happens in the program
– often by making instance declarations a toplevel-only construct.
Implicits allow a more modular construction of the elaboration
environment, but have to resort to priorities to preserve determin-
ism (Oliveira, Schrijvers, Choi, Lee, Yi, and Wadler 2014).

We propose to reformulate the question of determinism or am-
biguity by presenting elaboration as a typing problem, and proving
that the elaborated problems intrinsically have unique inhabitants.
This point of view does not by itself solve the difficult questions
of which are the good policies to avoid ambiguity, but it provides
a more declarative setting to expose a given strategy; for example,
priority to the more recently introduced implicit would translate to
an explicit weakening construct, removing older candidates at in-
troduction time, or a restricted variable lookup semantics.

(The global coherence issue is elegantly solved, independently
of our work, by using a dependent type system where the values
that semantically depend on specific elaboration choices (eg., a
balanced tree ordered with respect to some specific order) have a
type that syntactically depends on the elaboration witness. This
approach meshes very well with our view, especially in systems
with explicit equality proofs between terms, where features that
grow the implicit environment could require proofs from the user
that unicity is preserved.)

Smart completion and program synthesis Type-directed pro-
gram synthesis has seen sophisticated work in the recent years,
notably Perelman, Gulwani, Ball, and Grossman (2012), Gvero,
Kuncak, Kuraj, and Piskac (2013). Type information is used to fill
missing holes in partial expressions given by the users, typically
among the many choices proposed by a large software library.
Many potential completions are proposed interactively to the user
and ordered by various ranking heuristics.

Our uniqueness criterion is much more rigid: restrictive (it has
far less potential applications) and principled (there are no heuris-
tics or subjective preferences at play). Complementary, it aims for
application in richer type systems, and in programming constructs
(implicits, etc.) rather than tooling with interactive feedback.

Synthesis of glue code interfacing whole modules has been pre-
sented as a type-directed search, using type isomorphisms (?) or in-
habitation search in combinatory logics with intersection types (?).

We were very interested in the recent ?, which generates code
from both expected type and input/output examples. The works are
complementary: they have interesting proposals for data-structures
and algorithm to make term search efficient, while we bring a
deeper connection to proof-theoretic methods. They independently
discovered the idea that saturation must use the “new” context, in
their work it plays the role of an algorithmic improvement they call
“relevant term generation”.

7.2 Future work
We hope to be able to extend the uniqueness algorithm to more
powerful type systems, such as System F polymorphism or depen-
dent types. Decidability, of course, is not to be expected: decid-
ing uniqueness is at least as hard as deciding inhabitation, and this
quickly becomes undecidable for more powerful systems. Yet, we
hope that the current saturation approach can be extended to give
an effective semi-decision procedures. We will detail below two ex-
tensions that we have started looking at, unit and empty types, and
parametric polymorphism; and two extensions we have not consid-
ered yet, substructural logics and equational reasoning.

Unit and empty types As an experiment, we have added a non-
formalized support for the unit type 1 and the empty type 0 to our
implementation. The unit types poses no difficulties, but we were
more surprised to notice that they empty type seems also simple to
handle – although we have not proved anything about it for now.
We add it as a positive, with the following left-introduction rule
(and no right-introduction rule):

SINV-EMPTY

Γ; ∆, x : 0 `sinv absurd(x) : A

11 2015/10/10

Our saturation algorithm then naturally gives the expected equiva-
lence rule in presence of 0, which is that all programs in a inconsis-
tent context (0 is provable) are equal (A0 = 1): saturation will try
to “cut all 0”, and thus detect any inconsistency; if one or several
proofs of 0 are found, the following invertible phase will always use
the SINV-EMPTY rule, and find absurd() as the unique derivation.
For example, while the bind function for the A-translation monad
B 7→ (B → A) → A is not unique for arbitrary formulas A,
our extended prototype finds a unique bind for the non-delimited
continuation monad B 7→ B → 0→ 0.

Polymorphism Naively adding parametric polymorphism to the
system would suggest the following rules:

SINV-POLY
Γ; ∆, α `sinv t : A

Γ; ∆ `sinv t : ∀α.A

SELIM-POLY
Γ ` n ⇓ ∀α. A Γ ` B

Γ ` n ⇓ A[B/α]

The invertible introduction rule is trivially added to our algorithm.
It generalizes our treatment of atomic types by supporting a bit
more than purely prenex polymorphism, as it supports all quanti-
fiers in so-called “positive positions” (to the left of an even num-
ber of arrows), such as 1 → (∀α. α → α) or ((∀β. β → β) →
X) → X . However, saturating the elimination rule SELIM-POLY

would a priori require instantiating the polymorphic type with in-
finitely many instances (there is no clear subformula property any-
more). Even naive (and probably incomplete) strategies such as
instantiating with all closed formulas of the context lead to non-
termination, as for example instantiating the variable α of closed
type 1 → ∀α. α with the closed type itself leads to an infinite
regress of deduced types of the form 1→ 1→ 1→

Another approach would be to provide a left-introduction rule
for polymorphism, based on the idea, loosely inspired by higher-
order focusing (?), that destructing a value is inspecting all pos-
sible ways to construct it. For example, performing proof search
determines that any possible closed proof of the term ∀α. (X →
Y → α) must have two subgoals, one of type X and another of
type Y ; and that there are two ways to build a closed proof of
∀α. (X → α) → (Y → α), using either a subgoal of type X
or of type Y . How far into the traditional territory of parametricity
can we go using canonical syntactic proof search only?

Substructural logics Instead of moving to more polymorphic
type systems, one could move to substructural logics. We could
expect to refine a type annotation using, for example, linear arrows,
to get a unique inhabitant. We observed, however, that linearity
is often disappointing in getting “unique enough” types. Take the
polymorphic type of mapping on lists, for example: ∀αβ. (α →
β) → (List α → List β). Its inhabitants are the expected map
composed with any function that can reorder, duplicate or drop
elements from a list. Changing the two inner arrows to be linear
gives us the set of functions that may only reorder the mapped
elements: still not unique. An idea to get a unique type is to request
a mapping from (α ≤ β) to (List α ≤ List β), where the
subtyping relation (≤) is seen as a substructural arrow type.

(Dependent types also allow to capture List.map, as the unique
inhabitant of the dependent induction principle on lists is unique.)

Equational reasoning We have only considered pure, strongly
terminating programs so far. One could hope to find monadic types
that uniquely defined transformations of impure programs (e.g.
(α → β) → M α → M β). Unfortunately, this approach would not
work by simply adding the unit and bind of the monad as formal
parameters to the context, because many programs that are only
equal up to the monadic laws would be returned by the system. It
could be interesting to enrich the search process to also normalize
by the monadic laws. In the more general case, can the search
process be extended to additional rewrite systems?

Conclusion
We have presented an algorithm that decides whether a given type
of the simply-typed lambda-calculus with sums has a unique inhab-
itant modulo βη-equivalence; starting from standard focused proof
search, the new ingredient is saturation which egarly cuts any posi-
tive that can be derived from the current context by a focused elim-
ination. Termination is obtained through a context approximation
result, remembering one or “two-or-more” variables of each type.

This is a foundational approach to questions of code inference,
yet preliminary studies suggest that there are already a few potential
applications, to be improved with future support for richer systems.

Of course, guessing a program from its type is not necessarily
beneficial if the type is as long to write (or harder to read) than
the program itself. We see code and type inference as mutually-
beneficial features, allowing the programmer to express intent in
part through the term language, in part through the type language,
playing on which has developped the more expressive definitions
or abstractions for the task at hand.

Acknowledgments We are grateful to Adrien Guatto and anony-
mous reviewers for their helpful feedback.

References
Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct

equality with focusing. Online draft, 2010.

Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott.
Normalization by evaluation for typed lambda calculus with coproducts.
2001.

Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear
Logic. 1992.

Takahito Aoto. Uniqueness of normal proofs in implicational intuitionistic
logic. 1999.

Takahito Aoto and Hiroakira Ono. Non-Uniqueness of Normal Proofs for
Minimal Formulas in Implication-Conjunction Fragment of BCK. 1994.

Ali Babaev and Sergei Solov’ev. A coherence theorem for canonical
morphisms in cartesian closed categories. 1982.

Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Extensional normal-
isation and type-directed partial evaluation for typed lambda calculus
with sums. 2004.

Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of
type inhabitance in the simply-typed λ-calculus. 2011.

Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction.
2010.

Sabine Broda and Luı́s Damas. On long normal inhabitants of a type. 2005.

Kaustuv Chaudhuri and Frank Pfenning. Focusing the inverse method for
linear logic. 2005.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent
proofs via multi-focusing. 2008.

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A Systematic Approach
to Canonicity in the Classical Sequent Calculus. 2012.

Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of
computation under focus. 2010.

Anatoli Degtyarev and Andrei Voronkov. Introduction to the inverse
method. 2001.

Kosta Dosen. Identity of proofs based on normalization and generality.
2003.

Gilles Dowek and Ying Jiang. On the expressive power of schemes. 2011.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
1992.

Roy Dyckhoff. Intuitionistic decision procedures since gentzen, 2013. Talk
notes.

Didier Galmiche and Daniel Méry. A connection-based characterization of
bi-intuitionistic validity. 2013.

12 2015/10/10

http://www.cs.cmu.edu/~adahmad/coproduct_equality.pdf
http://apt13.unibe.ch/slides/Dyckhoff.pdf

Neil Ghani. Beta-eta equality for coproducts. 1995.
Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete

completion using types and weights. 2013.
Hugo Herbelin. A lambda-calculus structure isomorphic to gentzen-style

sequent calculus structure. 1994.
Danko Ilik. Axioms and decidability for type isomorphism in the presence

of sums. 2014. URL http://arxiv.org/abs/1401.2567.
Edward Kmett. Lens, TODOa. URL https://github.com/ekmett/

lens.
Edward Kmett. Lens wiki – types, TODOb. URL https://github.com/

ekmett/lens/wiki/Types.
Neelakantan R. Krishnaswami. Focusing on pattern matching. 2009.
Olivier Laurent. A proof of the focalization property of linear logic. 2004.
Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic

logic. 2007. URL http://arxiv.org/abs/0708.2252.
Sam Lindley. Extensional rewriting with sums. 2007.
Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized

inverse method for intuitionistic propositional logic. 2008.
Dale Miller and Alexis Saurin. From proofs to focused proofs: A modular

proof of focalization in linear logic. 2007.
Grigori Mints. Closed categories and the theory of proofs. 1981.
Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes

as objects and implicits. 2010.
Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee,

Kwangkeun Yi, and Philip Wadler. The implicit calculus: A new foun-
dation for generic programming. 2014.

Jens Otten and Christoph Kreitz. A uniform proof procedure for classical
and non-classical logics. 1996.

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-
directed completion of partial expressions. 2012.

Gabriel Scherer. Mining opportunities for unique inhabitants in dependent
programs, 2013.

Gabriel Scherer. 2-or-more approximation for intuitionistic logic. 2014.
URL https://hal.inria.fr/hal-T01094120.

Robert J. Simmons. Structural focalization. 2011. URL http://arxiv.
org/abs/1109.6273.

Colin Stirling. Proof systems for retracts in simply typed lambda calculus.
2013.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. 2002.
Nikolay Vorob’ev. A new algorithm of derivability in a constructive calcu-

lus of statements. 1958.
Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less

ad-hoc. 1989.
Lincoln A. Wallen. Automated proof search in non-classical logics: Effi-

cient matrix proof methods for modal and intuitionistic logic, 1987.
Joe B. Wells and Boris Yakobowski. Graph-based proof counting and

enumeration with applications for program fragment synthesis. 2004.
Marek Zaoinc. Fixpoint technique for counting terms in typed lambda-

calculus. Technical report, State University of New York, 1995.

A. The saturation algorithm as a system of
inference rules

In Figure 9 we present a complete set of inference rules that cap-
tures the behavior of our search algorithm.

Data structures The judgments uses several kinds data-structures.

• 2-sets S, T . . . , are sets restricted to having at most two (dis-
tinct) elements; we use {. . . }2 to build a 2-set, and (∪2) for
union of two-sets (keeping at most two elements in the resulting
union). We use the usual notation x ∈ S for 2-set membership.
To emphasize the distinction, we will sometimes write {. . . }∞
for the usual, unbounded sets. Remark that 2-sets correspond
to the “plurality monad” of Section ??: a monad is more con-
venient to use in an implementation, but for inference rules we
use the set-comprehension notation.
• 2-mappings are mappings from a set of keys to 2-sets. In par-

ticular, Γ denotes a 2-mapping from negative or atomic types to
2-sets of formal variables. We use the application syntax Γ(A)
for accessing the 2-set bound to a specific key, A 7→ S for the
singleton mapping from one variable to one 2-set, and (⊕) for
the union of 2-mappings, which applies (∪2) pointwise:

(Γ⊕ Γ′)(A)
def
= Γ(A) ∪2 Γ′(A)

Finally, we write ∅ for the mapping that maps any key to the
empty 2-set.
• multisets M are mappings from elements to a natural number

count. The “memories” of subgoal ancestors are such mappings
(where the keys are “judgments” of the form Γ ` A), and our
rules will guarantee that the value of any key is at most 2. We
use the application syntax M(Γ ` A) to access the count of
any element, and (+) for pointwise addition of multisets:

(M +M ′)(Γ ` A)
def
= M(Γ ` A) +M ′(Γ ` A)

• (ordered) lists Σ

Finally, we use a substraction operation (−2) between 2-
mappings, that can be defined from the 2-set restriction operation
S \2 n (where n is a natural number in {0, 1, 2}). Recall that #S
is the cardinal of the set (or 2-set) S.

(Γ′ −2 Γ)(A)
def
= Γ′(A) \2 #(Γ(A))

S \2 0
def
= S

∅ \2 1
def
= ∅ {a, . . . }2 \2 1

def
= {a}2

S \2 2
def
= ∅

Note that {a, b} \2 1 is not uniquely defined: it could be either
a or b, the choice does not matter. The defining property of S \2 n
is that it is a minimal 2-set S′ such as S′ ∪2 T = S.

Judgments The algorithm is presented as a system of judgment-
directed (that is, directed by the types in the goal and the context(s))
inference rules. It uses the following five judgment forms:

• invertible judgments M @ Γ; Γ′; Σ `alginv S : A

• saturation judgments M @ Γ; Γ′ `algsat S : Pat

• post-saturation judgments M @ Γ `algpost S : A

• introduction judgments M @ Γ `alg S ⇑ A

13 2015/10/10

http://arxiv.org/abs/1401.2567
https://github.com/ekmett/lens
https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types
https://github.com/ekmett/lens/wiki/Types
http://arxiv.org/abs/0708.2252
https://hal.inria.fr/hal-01094120
http://arxiv.org/abs/1109.6273
http://arxiv.org/abs/1109.6273

• elimination judgments M @ Γ `alg S ⇓ A
All algorithmic jugments respect the same conventions:

• M is a memory (remembering ancestors judgments for termi-
nation), a multiset of judgments of the form Γ ` A
• Γ,Γ′ are 2-mappings from negative or atomic types to 2-sets of

formal variables (we will call those “contexts”)
• Σ is an ordered list of pairs x : A of formal variables and

unrestricted types
• S is a 2-set of proof terms of the saturating focused logic
• A is a type/formula

The S position is the output position of each judgment (the
algorithm returns a 2-set of distinct proof terms); all other positions
are input positions; any judgment has exactly one applicable rule,
determined by the value of its input positions.

Sets of terms We extend the term construction operations to 2-
sets of terms:

λx. S
def
= {λx. t | t ∈ S}2

S T
def
= {t u | t ∈ S, u ∈ T}2

(S, T)
def
= {(t, u) | t ∈ S, u inT}2

πi S
def
= {πi t | t ∈ S}2

σi S
def
= {σi t | t ∈ S}2

δ(x, x.S, x.T)
def
= {δ(x, x.t, x.u) | t ∈ S, u ∈ T}2

Invertible rules The invertible focused rules Γ; ∆ `inv ? : A
exhibit “don’t care” non-determinism in the sense that their order
of application is irrelevant and captured by invertible commuting
conversions (see Section 2.1). In the algorithmic judgment, we
enforce a specific order through the two following restrictions.

The unrestricted context ∆ is split into both a negative context
(as a 2-mapping) Γ′ and a not-processed-yet unrestricted context
Σ. By using an ordered list for the unrestricted context, we fix the
order in which positives in the context are deconstructed. When
the head of the ordered list has been fully deconstructed (it is
negative or atomic), the new rule ALG-SINV-RELEASE moves it into
the known-negative context Γ′.

The invertible right-introduction rules are restricted to judg-
ments whose ordered context Σ is empty. This enforces that left-
introductions are always applied fully before any right-introduction.
Note that we could arbitrarily decide to enforce the opposite or-
der by un-restricting right-introduction rules, and requiring that
left-introduction (and releases) only happen when the succedent is
positive or atomic.

Finally, the final invertible rule ALG-SINV-END uses 2-mapping
substractions Γ −2 Γ′ to trim the new context Γ′ before handing
it to the saturation rules: for any given formula Nat, all bindings
for Nat are removed from Γ′ if there are already two in Γ, and
at most one binding is kept if there is already one in Γ. Morally,
the reason why it is correct to trim (that is, it does not endanger
unicity completeness (§1.5) is that the next rules in bottom-up
search will only use the merged context Γ∪2Γ′ (which is preserved
by trimming by construction of (−2)), or saturate with bindings
from Γ′. Any strictly positive that can be deduced by using one of
the variables present in Γ′ but removed from Γ ∪2 Γ′ has already
been deduced from Γ. It is useful to trim in this rule (we could trim
much more often) because subsequent saturated rules will test the
new context Γ′ −2 Γ for emptyness, so it is interesting to minimize
it. In any case, we need to trim in at least one place in order for
typing judgments not to grow unboundedly.

Saturation rules If the (trimmed) new context is empty, we test
whether the judgment of the current subgoal has already occurred

twice among its ancestors; in this case, the rule ALG-SAT-KILL ter-
minates the search process by returning the empty 2-set of proof
terms. In the other case, the number of occurences of this judgment
is incremented in the rule ALG-SAT-POST, and one of the (transpar-
ent) “post-saturation” rules ALG-POST-INTRO or ALG-POST-ATOM are
applied.

This is the only place where the memory M is accessed and
updated. The reason why this suffices is any given phase (invert-
ible phase, or phase of non-invertible eliminations and introduc-
tions) is only of finite length, and either terminates or is followed
by a saturation phase; because contexts grow monotonously in a fi-
nite space (of 2-mappings rather than arbitrary contexts), the trim-
ming of rule ALG-SINV-END returns the empty context after a finite
number of steps: an infinite search path would need to go through
ALG-SAT-POST infinitely many times, and this suffices to prove ter-
mination.

The most important and complex rule is ALG-SAT, which pro-
ceeds in four steps. First, we compute the 2-set SP of all ways to
deduce any strict positive P from the context – for any P we need
not remember more than two ways. We know that we need only
look for P that are deducible by elimination from the context Γ,Γ′

– the finite set of subformulas is a good enough approximation.
Second, we build a context B binding a new formal variable xn
for each elimination neutral n – it is crucial for canonicity that all
n are new and semantically distinct from each other at this point,
otherwise duplicate bindings would be introduced. Third, we com-
pute the set S of all possible (invertible) proofs of the goal under
this saturation context B. Fourth, we filter the elements of S to re-
tain, for each of them, only the bindings that were actually used –
this requires an application of weakening as a meta-property, as the
proof terms are supposed to live under the context extended with
the full binding B.

Non-invertible introduction and elimination rules The introduc-
tion rule ALG-SINTRO-SUM collects solutions using either left or
right introductions, and unites them in the result 2-set. Similarly,
all elimination rules are merged in one single rule, which corre-
sponds to all ways to deduce a given formula A: directly from the
context (if it is negative or atomic), by projection of a pair, or ap-
plication of a function. The search space for this sequent is finite,
as goal types grow strictly at each type, and we can kill search for
any type that does not appear as a subformula of the context.

(The inference-rule presentation differs from our OCaml imple-
mentation at this point. The implementation is more effective, it
uses continuation-passing style to attempt to provide function argu-
ments only for the applications we know are found in context and
may lead to the desired result. Such higher-order structure is hard
to render in an inference rule, so we approximated it with a more
declarative presentation here. This is the only such simplification.)

The properties of this algorithm are described and proved in
Section B.4, to justify the correctness Theorem 3 of Section ??.

B. Proofs
B.1 Focusing
Fact (1). The focused intuitionistic logic is complete with respect
to intuitionistic logic. It is also computationally complete: any well-
typed lambda-term is βη-equivalent to (the let-substitution of) a
proof witness of the focused logic.

Logical completeness. This system naturally embeds into the sys-
tem LJF of Liang and Miller (2007) (by polarizing the products and
all atoms negatively), which is proved sound, and complete for any
polarization choice.

14 2015/10/10

Computational completeness could be argued to be folklore, or
a direct adaptation of previous work on completeness of focusing:
a careful lecture of the elegant presentation of Simmons (2011) (or
Laurent (2004) for linear logic) would show that its logical com-
pleteness argument in fact proves computational correctness)for ex-
ample elegantly presents completeness. Without sums, it exactly
corresponds to the fact that β-short η-long normal forms are com-
putable for well-typed lambda-terms of the simply-typed calculus.

However, our use of let-bindings in the term calculus makes
our system slightly more exotic. We will thus introduce an ex-
plicit η-expanding, let-introducing transformation from β-normal
forms to valid focused proofs for our system. Detailing this trans-
formation also serves by building intuition for the computational
completeness proof of the saturating focused logic.

Computational completeness. Let us remark that simply-typed
lambda-calculus without fixpoints is strongly terminating, and
write NFβ(t) for the (full) β-normal form of t.

We define in Figure 10 an expansion relation Γ; ∆ ` t t′ : A
that turns any well-typed β-normal form Γ,∆ ` t : A into a valid
focused derivation Γ; ∆ `inv t′ : A.

We use three mutually recursive judgments, the invertible and
focusing translations Γ; ∆ ` t t′ : A and Γ `foc t t′ : Pat,
and the neutral translation Γ `ne n n′ ⇓ A. For the two
first judgments, the inputs are the context(s), source term, and
translation type, and the output is the translated term. For the
neutral judgment the translation type is an output – this reversal
follows the usual bidirectional typing of normal forms.

Two distinct aspects of the translation need to be discussed:

1. Finiteness. It is not obvious that a translation derivation Γ; ∆ `
t t′ : A exists for any Γ,∆ ` t : A, because subderivations
of invertible rules perform β-normalization of their source term,
which may a priori make it grow without bounds. It could be the
case that for certain source terms, there does not exist any finite
derivation.

2. Partiality. As the rules are neither type- nor syntax-directed, it is
not obvious that any input term, for example δ(t1 t2, x1.u1, x2.u2),
has a matching translation rule.

3. Non-determinism. The invertible rules are not quite typed-
directed, and the REW-FOC-ELIM rule is deeply non-determinist,
as it applies for any neutral subterm of the term being trans-
lated – that is valid in the current typing environment. This
non-determinism allows the translation to accept any valid fo-
cused derivation for an input term, reflecting the large choice
space of when to apply the FOC-ELIM rule in backward focused
proof search.

Totality The use of β-normalization inside subderivations pre-
cisely corresponds to the “unfocused admissibility rules” of Sim-
mons (2011). To control the growth of subterms in the premises of
rules, we will use as a measure (or accessibility relation) the two
following structures, from the less to the more important in lexico-
graphic order:

• The (measure of the) types in the context(s) of the rewriting re-
lation. This measure is strictly decreasing in the invertible elim-
ination rule for sums, but increasing for the arrow introduction
rule.
• The (measure of the) type of the goal of the rewriting relation.

This measure is strictly decreasing in the introduction rules for
arrow, products and sums, but increasing in REW-FOC-ELIM or
neutral rules.
• The set of (measures of) translation judgments Γ ` n : n′A

for well-typed neutral subterms n of the translated term whose
type A is of maximal mesaure.

Note that while that complexity seems to increase in the
premises of the judgment Γ `ne n n′ ⇓ A, this judg-
ment should be read top-down: all the sub-neutrals of n already
appear as subterms of the source t in the REW-FOC-ELIM appli-
cation Γ `foc t ? : Qat that called Γ `ne n ? ⇓ A.
This measure is non-increasing in all non-neutral rules other
than REW-FOC-ELIM, in particular the rules that require re-
normalization (β-reduction or η-reduction may at best duplicate
the occurences of the neutral of maximal type, but not create
new neutrals at higher types). In the sum-elimination rule, the
neutral x of type A + B is shadowed by another neutral x of
smaller type (A or B). In the arrow rule, a new neutral t x is
introduced if t is already neutral, but then t x : B is at a strictly
smaller type than t : A → B. In the product rule, new neutral
πi t : Ai are introduced if t : A1 ∗ A2 is neutral, but again at
strictly smaller types.
Finally, this measure is strictly decreasing when applying
REW-FOC-ELIM, except in the case where the chosen subterm
n ∈ t is in fact equal to t where it is only non-decreasing –
but this can only happen once in a row, as the next call is then
necessarily on a variable, that contains no neutral subterm of
strictly positive type.

This three-fold measures proves termination of Γ; ∆ ` t ? :
ta seen as an algorithm: we have proved that there are no infinite
derivations for the translation judgments.

Partiality The invertible translation rules are type-directed; the
neutral translation rules are directed by the syntax of the neutral
source term. But the focusing translation rules are neither type-
nor source-directed. We have to prove that one of those three rule
applies for any term – assuming that the context is negative or
atomic, and the goal type positive or atomic.

The term t either starts with a constructor (introduction form), a
destructor (elimination form), or it is a variable; a constructor may
be neither a λ or a pair, as we assumed the type is positive or atomic.
It it starts with a non-empty series of sum injections, followed by
a negative or atomic term, we can use REW-FOC-INTRO. Otherwise
it contains (possibly after some sum injections) a positive subterm
that does not start with a constructor.

If it starts with an elimination form or a variable, it may or
may not be a neutral term. If it is neutral, then one of the rules
REW-SAT-ATOM (if the goal is atomic) or REW-SAT (if the goal is
strictly positive) applies. If it is not neutral (in particular not a
variable), it has an elimination form applied to a subterm of the
form δ(t, x1.u1, x2.u2); but then (recursively) either t is a (strictly
positive) neutral, or of the same form, and the rule REW-SAT is
eventually applicable.

We have proved that for any well-typed Γ,∆ ` t : tA, there
exists a translation derivation Γ; ∆ ` t t′ : A for some t′.

Non-determinism The invertible rules may be applied in any
order; this means that for any t′ such that Γ; ∆ ` t t′ : A, for
any t′′ =icc t

′ we also have Γ; ∆ ` t t′′ : A: a non-focused term
translates to a full equivalence class of commutative conversions.

The rule REW-FOC-ELIM may be applied at will (as soon as
the let-extruded neutral n is well-typed in the current context).
Applying this rule eagerly would give a valid saturated focused
deduction. Not enforcing its eager application allows (but we need
not formally prove it) any βη-equivalent focused proof to be a
target of the translation.

Validity We prove by immediate (mutual) induction that, if
Γ,∆ ` t : A holds, then the focusing translations are valid:

• if Γ; ∆ ` t t′ : A then Γ; ∆; t′ `inv A :
• if ∆ = ∅ and Γ `foc t t′ : Pat then Γ `foc t′ : Pat

15 2015/10/10

• if ∆ = ∅ and Γ `ne n n′ ⇓ A then Γ ` n′ ⇓ A
• if ∆ = ∅ and Γ ` t t′ ⇑ A then Γ ` t′ ⇑ A

Soundness Finally, we prove that the translation preserves βη-
equivalence. If Γ,∆ ` t : A and Γ; ∆ ` t t′ : A, then t =βη t

′

(more precisely, t =βη letexp(t′)).
As for validity, this is proved by mutual induction on all judg-

ments. The interesting cases are the invertible rules and the focus-
ing elimination rule; all other cases are discarded by immediate
induction.

The invertible rules correspond to an η-expansion step. For
REW-INV-PROD, we have that t =η (π1 t, π2 t), and can thus deduce
by induction hypothesis that t =βη (u′

1, u
′
2). For REW-INV-ARROW,

we have that t =η λx. t, and can thus deduce by induction hypoth-
esis that t =βη λx. t

′. For REW-INV-SUM, let us write t as C[x] with
x /∈ C, we have that

t = C[x : A+B]
=η δ(x, x.C[σ1 x], x.C[σ2 x])
= δ(x, x.t[σ/ x]1x, x.t[σ/ x]2x)
=βη δ(x, x.t′1, x.t

′
2) (by induction hypothesis)

In the case of the rule REW-FOC-ELIM, the fundamental transfor-
mation is the let-binding that preserves βη-equivalence.

t = t[x/n][n/x]
=βη let x = n in t[x/n]
=βη let x = n′ in t′ (by induction hypothesis)

Conclusion We have proved computational completeness of the
focused logic: for any Γ,∆ ` t : A, there exists some Γ; ∆ `inv
t′ : A (such that Γ; ∆ ` NFβ(t) t′ : A) with t =βη t

′.

B.2 Saturated focusing
To prove the main theorems on saturating focused logic, we need
to describe how to convert a simply-typed lambda-term (or at least
a lambda-term for the focused logic, that is in β-short weak-η-
long normal-form) into a valid saturated proof derivation. This can
be done either as a small-step rewrite process, or as a big-step
transformation. The small-step rewrite would be very similar to
the preemptive rewriting relation of Chaudhuri et al. (2008); we
will here explore the alternative of a big-step transformation by
defining, in Figure 11, a type-preserving translation judgments of
the form Γ; ∆ `sinv t t′ : A, which turns a focused term t into a
valid saturating focused term t′.

Backward search for saturated proofs corresponds to enumerat-
ing the canonical inhabitants of a given type. Our translation can
be seen as a restriction of this proof search process, searching in-
side the βη-equivalence class of t. Because saturating proof terms
are canonical (to be shown), the restricted search is deterministic –
modulo invertible commuting conversions.

Compared to the focusing translation of Figure 10, this rewriting
is simpler as it starts from an already-focused proof whose overall
structure is not affected. The only real change is moving from the
left-focusing rule REW-FOC-ELIM to the saturating rule REW-SAT.
Instead of allowing to cut on any neutral subterm, we enforce a
maximal cut on exactly all the neutrals of t that can be typed
in the current environment. Because we know that “old” neutrals
(those that would not satisfy the n uses Γ′ condition) have already
been cut and replaced with free variables earlier in the translation,
this is fact respects the using condition – except for the very first
application of the rule if the initial judgment is not in the empty
context, which cuts on all “old” neutrals as well.

Compared to the focusing translation, the termination of this
translation is proved by structural induction – thanks to the focused
structure of the input. There is but one subtlety, in the REW-SAT rule,
the subcall is one t[x̄/n̄] which is not a subterm of the input t; but

this rule can only happen once in a row on t or its substitution:
either it introduces some positives, and there must be invertible
rules that recur on strict subterms (of t[x̄/n̄], which are smallers
than the strict subterms of t), or no neutrals were bound and the
next invertible rules can only be REW-SAT-INTRO or REW-SAT-ATOM.

Lemma 3 (Translation soundness). If Γ; ∆ `inv t : A and
Γ; ∆ `sinv t t′ : A then t =βη t

′.

Proof. By immediate induction.

Lemma 4 (Translation validity). Suppose that Γ; ∆ `inv t : A
holds in the focused logic, and that t has no “old” neutral: for no
n ∈ t do we have Γ ` n ⇓ P . Then, Γ; ∆ `sinv t t′ : A implies
that Γ; ∆ `sinv t′ : A in the saturated focusing logic.

Proof. The restriction on “old” neutrals is necessary because the
REW-SAT rule would not know what to do on such old neutrals –
it assumes that they were all substituted away for fresh variable in
previous inference steps.

With this additional invariant the proof goes by immediate in-
duction. In the REW-SAT rule, this invariant tells us that the bindings
satisfy the freshness condition of the SAT rule of saturated logic, and
because we select all such fresh bindings we preserve the property
that the extended context Γ,Γ′ has no old neutrals either.

Lemma 5 (Translation totality and determinism). If Γ; ∆ `inv t :
A there exists a unique t′ such that Γ; ∆ `sinv t t′ : A.

Proof. By immediate induction.

Note that the indeterminacy of invertible step ordering is still
present in saturating focused logic: a non-focused term t may
have several saturated translations that only equal upto commuting
conversions (=icc). However, there is no more variability than in
the focused proof of the non-saturating focused logic; because we
translate from those, we can respect the ordering choices that are
made, and the translation is thus fully deterministic.

Theorem (2: Computational completeness of saturating focused
logic). If we have ∅; ∆ `inv t : A in the non-saturating focused
logic, then for some u =βη t we have ∅; ∆ `sinv u : A in the
saturating focused logic.

Proof. This is an immediate corollary of the previous results. By to-
tality of the translation (Lemma 5) we have a u such that ∅; ∆ `sinv
t u : A. By validity (Lemma 4) we have that ∅; ∆ `sinv u : A in
the saturating focused calculus – the condition that there be no old
neutrals is trivially true for the empty context ∅. Finally, by sound-
ness (Lemma 3) we have that letexp(t) =βη letexp(u).

Lemma 6 (Determinacy of saturated translation). For any u1, u2,
if we have Γ; ∆ `inv t u1 : A and Γ; ∆ `inv t u2 : A then
we have Γ; ∆ `sinv u1 r1 : A and Γ; ∆ `sinv u2 r2 : A with
r1 =icc r2.

Proof. There are only two sources of non-determinism in the fo-
cused translation:

• an arbitrary choice of the order in which to apply the invertible
rules
• a neutral let-extrusion may happen at any point between the

first scope where it is well-defined to the lowest common an-
cestors of all uses of the neutral in the term.

16 2015/10/10

The first source of non-determinism gives (=icc)-equivalent
derivations. The second disappears when doing the saturating trans-
lation, which enforces a unique placement of let-extrusions at the
first scope where the strictly positive neutrals are well-defined.

As a result, two focused translations of the same term may differ
in both aspect, but their saturated translations differ at most by
(=icc).

Definition 1 (Normalization by saturation). For a well-typed (non-
focused) λ-term Γ,∆ ` t : A, we write NFsat(t) for any saturated
term t′′ such that

Γ; ∆ `inv NFβ(t) t′ : A Γ; ∆ `sinv t′ t′′ : A

Note that all possible t′′ are equal modulo (=icc), by the Determi-
nacy Lemma 6.

Lemma 7 (Saturation congruence). For any contextC[�] and term
t we have

NFsat(C[t]) =icc NFsat(C[NFsat(t)])

Proof. We reason by induction on C[�]. Without loss of generality
we will assume C[�] atomic. It is either a redex-forming context

� u πk � δ(�, x.u1, x.u2)

or a non-redex forming context
u � σi �

(u,�) (�, u)

δ(u, x.�, x.u2) δ(u, x.u1, x.�)

If it is a non-context-forming redex, then we have NFβ(C[t]) =
C[NFβ(t)]. The focused and saturated translations then work over
C[NFβ(t)]] just as they work with NFβ(t), possibly adding bindings
before C[�] instead of directly on the (translations of) NFβ(t). The
results are in the (=icc) relation.

The interesting case is when C[�] is a redex-forming context: a
reduction may overlap the frontier between C[�] and the plugged
term. In that case, we will reason on the saturated normal form
NFsat(t). Thanks to the strongly restricted structure of focused and
saturated normal form, we have precise control over the possible
reductions.

Application case C[�]
def
= � u. We prove that there exist t′

such that Γ; ∆ `inv t t′ : A → B, and a r such that both
Γ; ∆ `inv t u r : B and Γ; ∆ `inv t′ u r : B
hold. This implies the desired result – after translation of r into
a saturated term. The proof proceeds by induction on the derivation
Γ; ∆ `inv t u r : B (we know that all possible such translations
have finite derivations).

To make the proof easier to follow, we introduce the notation
NFfoc(Γ; ∆ ` t) to denote a focused translation t′ of NFβ(t) (that
is, Γ; ∆ `inv t t′ : A, where A is uniquely defined by
Γ; ∆ `inv t′ : A)). This notation should be used with care because
it is not well-determined: there are many such possible translations.
Statements using the notation should be interpreted existentially:
P (NFfoc(Γ; ∆ ` t)) means that there exists a translation t′ of t
such that P (t′) holds. The current goal (whose statement took the
full previous paragraph) can be rephrased as follows:

NFfoc(Γ; ∆ ` t u) = NFfoc(Γ; ∆ ` NFfoc(Γ; ∆ ` t) u)

We will simply write NFfoc(t) when the typing environment of the
translation is clear from the context.

If ∆ contains a strictly positive type, it is of the form (∆′, x :
C1 + C2) and we can get by induction hypothesis that

NFfoc(Γ; ∆′, x : Ci ` t u) = NFfoc(Γ; ∆′, x : Ci ` NFfoc(t) u)

for i in {1, 2}, from which we can conclude with

NFfoc(Γ; ∆′, x : C1 + C2 ` t u)
= δ(x, x.NFfoc(Γ; ∆′, x : C1 ` t u), x. . . . C2 . . .)
= δ(x, x.NFfoc(Γ; ∆′, x : C1 ` NFfoc(t) u), x. . . . C2 . . .)
= NFfoc(Γ; ∆′, x : C1 + C2 ` NFfoc(t) u)

Otherwise ∆ is a negative or atomic context.
Any focused translation of t at type A → B is thus necessarily

of the form λx. NFfoc(t x). In particular, any NFfoc(NFfoc(t) u), that
is, any NFfoc((λx. NFfoc(t x)) u), is equal by stability of the trans-
lation to β-reduction to a term of the form NFfoc(NFfoc(t x)[u/x]).
On the other hand, NFfoc(t u) can be of several different forms.

Note that t u is translated at the same type as t x. In particular, if
this is a negative type, they both begin with a suitable η-expansion
(of a product or function type); in the product case for example,
we have NFfoc(t u) = (NFfoc(π1 (t u)), NFfoc(π2 (t u))), and
similarly NFfoc(t x) = (NFfoc(π1 (t x)), NFfoc(π2 (t x))): we can
then conclude by induction hypothesis on those smaller pairs of
terms πi (t u) and πi (t x) for i in {1, 2}. We can thus assume that
t u is of positive or atomic type, and will reason by case analysis
on the β-normal form of t.

If NFβ(t) is of the form λx. t′ for some t′, then NFfoc(t u)
is equal to NFfoc((λx. t

′) u), that is, NFfoc(t′[u/x]). Finally, we
have NFfoc(t x) = NFfoc((λx. t

′) x) = NFfoc(t
′), which allows

to conclude from our assertion that NFfoc(NFfoc(t) u) is equal to
NFfoc(NFfoc(t x)[u/x]).

If NFβ(t) contains a strictly positive neutral subterm n : P (this
is in particular always the case when it is of the form δ(t′, . . .)),
we can let-extrude it to get

NFfoc(Γ; Γ′ ` t)
= let x = NFfoc(n) in NFfoc(Γ,Γ

′;x : P ` t[x/n])

But then n : P is also a strictly positive neutral subterm of
let x = NFfoc(n) in NFfoc(t[x/n]), so we have

NFfoc(NFfoc(t) u)
= NFfoc(let x = NFfoc(n) in NFfoc(t[x/n]))
= let x = NFfoc(n) in NFfoc(t[x/n])[x/n]
= let x = NFfoc(n) in NFfoc(t[x/n])
= NFfoc(t u)

Finally, if NFβ(t) contains no strictly positive neutral sub-
term, the rule REW-UP-ARROW applies: NFfoc(t u) is of the form
n NFfoc(u), where n

def
= NFfoc(t). In this case we also have

NFfoc(t x) = n x, and thus

NFfoc(NFfoc(t)x)
= NFfoc(NFfoc(t x)xu[
/)] = NFfoc(n u)
= NFfoc(t u)

Projection case C[�]
def
= πi � The case C[�]

def
= πi t is

proved in the same way as the application case: after some sum
eliminations, the translation of t is an η-expansion of the product,
which is related to the translations NFfoc(πi t), which either reduce
the product or build a neutral term πi n after introducing some
let-bindings.

Sum elimination case C[�]
def
= δ(�, x.u1, x.u2) Reusing the

notations of the application case, show that

NFfoc(δ(t, x.u1, x.u2)) = NFfoc(δ(NFfoc(t), x.u1, x.u2))

In the case of the function application or pair projection, the
congruence proof uses the fact that the translation of t (of function
or product type) necessarily starts with a λ-abstraction or pair
construction – in fact, we follow the incremental construction of

17 2015/10/10

the first invertible phase, in particular we start by eliminating sums
from the context.

In the case of the sum elimination, we must follow the transla-
tion into focused form further: we know the first invertible phase
of NFfoc(t) may only have sum-eliminations (pair or function intro-
ductions would be ill-typed as t has a sum type A+B).

As in the application case, we can then extrude neutrals from
t, and the extrusion can be mirrored in both NFfoc(δ(t, . . .)) and
NFfoc(δ(NFfoc(t), . . .)). Finally, we reason by case analysis on
NFβ(t).

If NFβ(t) is of the form σi t
′, then we have

NFfoc(δ(NFfoc(t), x.u1, x.u2))
= NFfoc(δ(σi NFfoc(t

′), x.u1, x.u2))
= NFfoc(ui[NFfoc(t

′)/x])

and
NFfoc(δ(t, x.u1, x.u2))

= NFfoc(δ(NFβ(t), x.u1, x.u2))
= NFfoc(δ(σi t

′, x.u1, x.u2))
= NFfoc(ui[t

′/x])

What is left to prove is that NFfoc(ui[NFfoc(t′)/x]) = NFfoc(ui[t
′/x])

but that is equivalent (by stability of the focusing translation by β-
reduction) to NFfoc((λx. ui) NFfoc(t′)) = NFfoc((λx. ui) t

′), which
is exactly the application case proved previously.

This is in fact the only possible case: when all strictly positive
neutrals have been extruded, then NFβ(t) is necessarily an injection
σi t

′ (already handled) or a variable x (this corresponds to the case
where t itself reduces to a strictly positive neutral), but this variable
would be in the context and of strictly positive type, so this case is
already handled as well.

Theorem (1: Canonicity of saturating focused logic). If we have
Γ; ∆ `sinv t : A and Γ; ∆ `sinv u : A in saturating focused logic
with t 6=icc u, then t 6=βη u.

Proof. By contrapositive: if t =βη u (that is, if letexp(t) =βη

letexp(u)) then t =icc u.
The difficulty to prove this statement is that βη-equivalence

does not preserve the structure of saturated proofs: an equivalence
proof may go through intermediate steps that are neither saturated
nor focused or in β-normal form.

We will thus go through an intermediate relation, which we will
write (∼sat), defined as follows on arbitrary well-typed lambda-
terms:

∅; ∆ `inv t : A ∅; ∆ `inv u : A
∅; ∆ `inv NFβ(t) t′ : A ∅; ∆ `inv NFβ(u) u′ : A
∅; ∆ `sinv t′ t′′ : A ∅; ∆ `sinv u′ u′′ : A

t′′ =icc u
′′

∆ ` t ∼sat u : A

It follows from the previous results that if t ∼sat u, then
t =βη u. We will now prove the converse inclusion: if t =βη u
(and they have the same type), then t ∼sat u holds. In the particular
case of terms that happen to be (let-expansions of) valid saturated
focused derivations, this will tell us in particular that t =icc u holds
– the desired result.

The computational content of this canonicity proof is an equiv-
alence algorithm: (∼sat) is a decidable way to check for βη-
equality, by normalizing terms to their saturated (or maximally
multi-focused) structure.

β-reductions It is immediate that (=β) is included in (∼sat).
Indeed, if t =β u then NFβ(t) = NFβ(u) and t ∼sat u is trivially
satisfied.

Negative η-expansions We can prove that if t =η u through one
of the equations

(t : A→ B) =η λx. t x (t : A ∗B) =η (π1 t, π2 t)

then both t and u are rewritten in the same focused proof r. We
have both ∅; ∆ `inv t r : A and ∅; ∆ `inv u r : A, and thus
t ∼sat u. Indeed we have:

∅; ∆, x : A `inv NFβ(t x) r′ : B

∅; ∆ `inv t λx. r′ : A→ B

NFβ((λx. t x) x) = NFβ(t x)
∅; ∆, x : A `inv NFβ((λx. t x) x) r′ : B

∅; ∆ `inv λx. t x λx. r′ : A→ B

and

∀i ∈ {1, 2}, ∅; ∆ `inv NFβ(πi t) r′i : Ai

∅; ∆ `inv t (r′1, r
′
2) : (A1, A2)

πi (π1 t1, π2 t2) = ti
∀i ∈ {1, 2}, ∅; ∆ `inv NFβ(πi (π1 t1, π2 t2)) r′i : Ai

∅; ∆ `inv (π1 t1, π2 t2) (r′1, r
′
2) : (A1, A2)

Positive η-expansion The interesting case is the positive η-
expansion

∀C[�], C[t : A+B] =η δ(t, x.C[σ1 x], x.C[σ2 x])

We do a case analysis on the (weak head) β-normal form of t. If
it is an injection of the form σi t

′, then the equation becomes true
by a simple β-reduction:

δ(σi t
′, x.C[σ1 x], x.C[σ2 x]) β C[σi t

′]

Otherwise the β-normal form of t is a positive term that does
not start with an injection. In particular, NFβ(t) is not reduced when
reducing the whole term C[t] (only possibly duplicated): for some
multi-hole context C′ we have NFβ(C[t]) = C′[NFβ(t)] and

NFβ(δ(t, x.C[σ1 x], x.C[σ2 x]))

= δ(NFβ(t), x.C′[σ1 x], x.C′[σ2 x])

Without loss of generality, we can assume that NFβ(t) is a neu-
tral term. Indeed, if it is not, it starts with a a (possibly empty) series
of non-invertible elimination forms, applied to a sum-elimination
construction – which is itself either a neutral or of this form. It
eventually contains a neutral strict subterm of strictly positive type
valid in the current scope. The focused translation can then cut on
this strictly positive neutral, split on the sum type, and replace the
neutral with either σ1 z or σ2 z for some fresh z. This can be done
on both terms equated by the η-equivalence for sums, and returns
(two pairs of) η-equivalent terms with one less strictly possible neu-
tral strict subterm.

Let n def
= NFβ(t). It remains to show that the translations of

C′[n] and δ(n, x.C′[σ1 x], x.C′[σ2 x]) are equal modulo invert-
ible commuting conversions. In fact, we show that they translate to

18 2015/10/10

the same focused proof:

Γ ` n : A+B Γ `ne n n′ ⇓ A+B
Γ;x : A `inv C′[σ1 x] r1 : D
Γ;x : B `inv C′[σ2 x] r2 : D

Γ;x : A+B `inv C′[x] δ(x, x.r1, x.r2) : D

Γ `foc C′[n] let x = n in δ(x, x.r1, x.r2) : D

Γ ` n : A+B Γ `ne n n′ ⇓ A+B
NFβ(δ(σi xx.C

′[σ1 x]x.C′[σ2 x],), =)C′[σi x]
Γ;x : A `inv C′[σ1 x] r1 : D
Γ;x : B `inv C′[σ2 x] r2 : D

Γ;x : A+B `inv δ(x, x.C′[σ1 x], x.C′[σ2 x]) δ(x, x.r1, x.r2) : D

Γ `foc δ(n, x.C′[σ1 x], x.C′[σ2 x]) let x = n in δ(x, x.r1, x.r2) : D

Transitivity Given t ∼sat u and u ∼sat r, do we have t ∼sat r?
In the general case we have

∅; ∆ `inv t : A ∅; ∆ `inv u : A
∅; ∆ `inv NFβ(t) t′ : A ∅; ∆ `inv NFβ(u) u′

1 : A
∅; ∆ `sinv t′ t′′ : A ∅; ∆ `sinv u′

1 u′′
1 : A

t′′ =icc u
′′
1

∆ ` t ∼sat u : A

∅; ∆ `inv u : A ∅; ∆ `inv r : A
∅; ∆ `inv NFβ(u) u′

2 : A ∅; ∆ `inv NFβ(r) r′ : A
∅; ∆ `sinv u′

2 u′′
2 : A ∅; ∆ `sinv r′ r′′ : A
u′′
2 =icc r

′′

∆ ` u ∼sat r : A

By determinacy of the saturating translation (Lemma 6) we have
that u′′

1 =icc u
′′
2 . Then, by transitivity of (=icc):

t′′ =icc u
′′
1 =icc u

′′
2 =icc r

′′

Congruence If ∆ ` t1 ∼sat t2 : A, do we have that C[t1] ∼sat

C[t2] for any term context C?
This is an immediate application of the Saturation Congruence

Lemma (7): it tells us that NFsat(C[t1]) =icc NFsat(C[NFsat(t1)])
and NFsat(C[t1]) =icc NFsat(C[NFsat(t2)]). So, by transitivity of
(=icc) we only have to prove NFsat(C[NFsat(t1)]) =icc NFsat(C[NFsat(t1)]),
which is a consequence of our assumption NFsat(t1) =icc NFsat(t2)
and congruence of (=icc).

B.3 Two-or-more counting
The full proofs, and additional results, are available as a research
report (Scherer 2014).

B.4 Algorithm
The algorithm is described as a system of inference rules in Fig-
ure 9.

Lemma 8 (Termination). The algorithmic inference system only
admits finite derivations.

Proof. We show that each inference rule is of finite degree (it has a
finite number of premises), and that there exists no infinite path of
inference rules – concluding with König’s Lemma.

Degree finiteness The rules that could be of infinite degree are
ALG-SAT (which quantifies over all positives P) and ALG-SELIM

(which quantifies over arbitrarily elimination derivations). But both
rules have been restricted through the subformula property to only
quantify on finitely many formulas (ALG-SAT) or possible elimina-
tion schemes (ALG-SELIM).

Infinite paths lead to absurdity We first assert that any given
phase (invertible, saturation, introductions/eliminations) may only
be of finite length. Indeed, invertible rules have either the context or
the goal decreasing structurally. Saturation rules are either ALG-SAT

if Γ′ 6= ∅, which is immediately followed by elimination and
invertible rules, or ALG-SAT-KILL or ALG-SAT-POST if Γ′ = ∅, in
which case the derivation either terminates or continues with a non-
invertible introduction or elimination. Introductions have the goal
decreasing structurally, and eliminations have the goal increasing
structurally, and can only form valid derivations if it remains a
subformula of the context Γ.

Given that any phase is finite, any infinite path will necessarily
have an infinite number of phase alternation. By looking at the
graph of phase transitions (invertible goes to saturating which goes
to introductions or eliminations, which go to invertible), we see that
each phase will occur infinitely many times along an infinite path.
In particular, an infinite path would have infinitely many invertible
and saturation phases; the only transition between them is the rule
ALG-SINV-END which must occur infinitely many times in the path.

Now, because the rules grow the context monotonically, an
infinite path must eventually reach a maximal stable context Γ, that
never grows again along the path. In particular, for infinitely many
ALG-SINV-END we have Γ maximal and thus Γ′ −2 Γ = ∅ – if
the trimming was not empty, Γ′ would grow strictly after the next
saturation phase, while we assumed it was maximal.

This means that either ALG-SAT-KILL or ALG-SAT-POST incurs
infinitely many times along the infinite path. Those rules check the
memory count of the current (context, goal) pair Γ ` P . Because of
the subformula property (formulas occurring in subderivations are
subformulas of the root judgment concluding the complete proof),
there can be only finitely many different Γ ` P pair (Γ is a 2-
mapping which grows monotonically).

An infinite path would thus necessarily have infinitely many
steps ALG-SAT-KILL or ALG-SAT-POST with the same (context, goal)
pair. This is impossible, as a given pair can only go at most twice
through ALG-SAT-POST, and going through ALG-SAT-KILL terminates
the path. There is no infinite path.

Lemma 9 (Totality and Determinism). For any algorithmic judg-
ment there is exactly one applicable rule.

Proof. Immediate by construction of the rules. Invertible rules
M @ Γ; Γ′; Σ `alginv S : A are directed by the shape of the con-
text Σ and the goal A. Saturation rules M @ Γ; Γ′ `algsat S : A are
directed by the new context Γ′. If Γ′ = ∅, the memory M(Γ ` A)
decides whether to kill or post-saturate, in which case the shape of
the goal (either strict positive or atomic) directs the post-saturation
rule. Finally, non-invertible introductions M @ Γ `alg S ⇑ A
are directed by the goal A, and there is exactly one non-invertible
elimination rule.

Note that the choice we made to restrict the ordering of invert-
ible rules is not necessary – we merely wanted to demonstrate an
example of such restrictions, and reflect the OCaml implementa-
tion. We could keep the same indeterminacy as in previous sys-
tems; totality would be preserved (all judgments have one applica-
ble rule), but determinism dropped. There could be several S such
that M @ Γ; Γ′; Σ `alginv S : A, which would correspond to (2-
set restrictions of) sets of terms equal upto invertible commuting
conversion.

Lemma 10 (Strengthening of saturated derivations). If Γ⊕(Nat 7→
{x}2); Γ′ `sat t : Pat or Γ; Γ′ ⊕ (Nat 7→ {x}2) `sat t : Pat but
¬(t uses x), then Γ; Γ′ `sat t : Pat already holds.

19 2015/10/10

Proof. By induction, this is immediate for all rules except SAT. In
this case we must note that the set of deducible positives Γ,Γ′ `
n ⇓ P is unchanged after strengthening, as by hypothesis we know
that each n does not use x and can thus already be defined in the
strengthened context.

Lemma 11 (Soundness). For any algorithmic judgment returning
a 2-set S, any element t ∈ S is a valid proof term of the corre-
sponding saturating judgment.

Proof. By induction, this is immediate for all rules except ALG-SAT.
This rule is designed to fit the requirements of the saturated logic
SAT rule; the one subtlety is the fact that all inhabitants S are
searched in the full context Γ,Γ′; ∅;B (where B binds all neutrals
reachable by saturation), and then each t ∈ S of them is implicitly
strengthened to be typed only in the subset of B actually used in t.
This strengthening preserves the validity of the saturated proof, by
by Lemma 10.

Definition 2 (Recurrent ancestors). Consider a complete algorith-
mic derivation of a judgment with empty initial memory ∅. Given
any subderivation Pabove, we call recurrent ancestor any other sub-
derivation Pbelow that is on the path between Pabove and the root (it
has Pabove as a strict subderivation) and whose derived judgment
is identical to the one of Pabove except for the memory M and the
output set S.

Lemma 12 (Correct Memory). In a complete algorithmic deriva-
tion whose conclusion’s memory is M , each subderivation of the
form M ′ @ Γ; ∅ `algsat S : Pat has a number of recurrent ancestors
equal to M ′(Γ ` Pat)−M(Γ ` Pat).

Proof. This is immediately proved by reasoning on the path from
the start of the complete derivation to the subderivation. By con-
struction of the algorithmic judgment, each judgment of the form
M ′ @ Γ′; ∅ `algsat S

′ : Qat is proved by either the rule ALG-SAT-KILL,
which terminates the path with the invariant maintained, or the rule
SAT-POST, which continues the path with the invariant preserved by
incrementing the count in memory.

Lemma 13 (Recurrence Decrementation). If a saturated logic
derivation contains n + 2 occurences of the same judgment along
a given path, then there is a valid saturated logic derivation with
n+ 1 occurences of this judgment.

Proof. If t is the proof term with n + 2 occurences of the same
judgment along a given path, let u1 be the subterm corresponding
to the very last occurence of the judgment, and u2 the last-but-one.
The term t[u1/u2] is a valid proof term (of the same result as t),
with only n+ 1 occurences of this same judgment.

Note that this transformation changes the computational mean-
ing of the term – it must be used with care, as it could break unicity
completeness.

Theorem 5 (Provability completeness). If a memory M contains
multiplicities of either 0 or 1 (never 2 or more), then any algorith-
mic judgment with memory M is complete for unicity: if the cor-
responding saturating judgment is inhabited, then the algorithmic
judgment returns an inhabited 2-set.

Proof. If the saturating judgment Γ; Γ′ `sat t : A holds for a given
t, we can assume without loss of generality that t contains no two
recurring occurences of the same judgment along any path – in-
deed, it suffices to repeatedly apply the Recurrence Decrementation
Lemma 13 to obtain such a t with no recurring judgment.

The proof of our result goes by induction on (the saturated
derivation of) this no-recurrence t, mirroring each inference step

into an algorithmic inference rule returning an inhabited set. Con-
sider the following saturated rule for example:

Γ ` u ⇑ A
Γ ` σ1 u ⇑ A+B

We can build the corresponding algorithmic rule

M ′ @ Γ `alg S1 ⇑ A M ′ @ Γ `alg S2 ⇑ B
M ′ @ Γ `alg σ1 S1 ∪2 σ2 S2 ⇑ A+B

By induction hypothesis we have that S1 is inhabited; from it we
deduce that σ1 S1 is inhabited, and thus σ1 S1 ∪2 σ2 S2 is
inhabited.

It would be tempting to claim that the resulting set is inhabited
by t. That, in our example above, u inhabits S1 and thus t = σ1 u
inhabits σ1 S1 ∪2 σ2 S2. This stronger statement is incorrect,
however, as the union of 2-sets may drop some inhabitants if it
already has found two distinct terms.

The first difficulty in the induction are with judgments of the
form Γ; ∅ `sat u : Pat: to build an inhabited result set, we need
to use the rule ALG-SAT-POST and thus check that Γ ` Pat does not
occur twice in the current memory M ′. By the Correct Memory
Lemma 12, we know that M ′(Γ ` Pat) is the sum of the number
of recurrent ancestors and of M(Γ ` Pat). By definition of t (as
a term with no repeated judgment), we know that Γ ` Pat did not
already occur in t itself – the count of recurrent ancestors is 0. By
hypothesis on M we know that M(Γ ` Pat) is at most 1, so the
sum cannot be 2 or more.

The second and last subtlety happens at the SINV-END rule
for Γ; Γ′ `sinv t : Pat. We read saturated derivation of premise
Γ; Γ′ `sat t : Pat, but build an algorithmic derivation in the
trimmed context Γ @ (Γ′ −2 Γ);S `algsat Pat :. It is not neces-
sarily the case that t is well-defined in this restricted context. But
that is not an issue for inhabitation: the only variables removed
from Γ′ are those for which at least one variable of the same type
appears in Γ. We can thus replace each use of a trimmed variable
by another variable of the same time in Γ, and get a valid derivation
of the exact same size.

Theorem 6 (Unicity completeness). If a memoryM contains mul-
tiplicities of 0 only, then any algorithmic judgment with memory
M is complete for unicity: if the corresponding saturating judg-
ment has two distinct inhabitants, then the algorithmic judgment
returns a 2-set of two distinct elements.

Proof. Consider a pair of distinct inhabitants t 6= u of a given
judgment. Without loss of generality, we can assume that t has no
judgment ocurring twice or more. (We cannot also assume that u
has no judgment occuring twice, as the no-recurrence reduction of
a general u may be equal to t.)

Without loss of generality, we will also assume that t and u
use a consistent ordering for invertible rules (for example the one
presented in the algorithmic judgment); this assumption can be
made because reordering inference steps gives a term in the (=icc)
equivalence class, that is thus βη-equivalent to the starting term.

Finally, to justify the SINV-END rule we need to invoke the
“two or more” result of Section 4: without loss of generality we
assume that t and u never use more than two variables of any
given type (additional variables are weakened as soon as they are
introduced). If t and u have distinct shapes (they are in disjoint
equivalent classes of terms that erase to the same logic derivation),
we immediately know that the disequality t 6= u is preserved.
If they have the same shape, we need to invoke the Counting
approximation Corollary 1 to know that we can pick two distinct
terms in this restricted space.

20 2015/10/10

We then prove our result by parallel induction on t and u: the
saturated judgment is inhabited by at least two distinct inhabitants.
As long as their subterms start with the same syntactic construc-
tion, we keep inducing in parallel. Their head constructor may only
differ in a non-invertible introduction or elimination rule (we as-
sumed that invertible steps were performed in the same order), for
example we may have

Γ ` t′ ⇑ A
Γ ` σ1 t

′ ⇑ A+B

Γ ` u′ ⇑ B
Γ ` σ2 u

′ ⇑ A+B

We then invoke the previous Provability Completeness Theo-
rem 5 on t′ and u′: we can build corresponding derivations M ′ @
Γ `alg S ⇑ A and M ′ @ Γ `alg T ⇑ B where S and T are in-
habited, and thus σ1 S ∪2 σ2 T is inhabited by at least two distinct
terms. The memory hypothesis of the provability theorem is ful-
filled: because we know that there are no repetitions in t, and that
we iterated in parallel on the structures of t and u, we know that
each judgment was seen at most once during the parallel induction.
As we assumed our starting memory was all 0, the memory M ′ at
the point where t and u differ is thus (by Lemma 12) of at most 1
for any judgment.

There is one difficulty during the parallel induction, which is
the SINV-END case. We read a saturated derivations of premise
Γ; Γ′ `sat t : Pat and Γ; Γ′ `sat u : Pat, but build an algorithmic
derivation in the trimmed context Γ @ (Γ′ −2 Γ);S `algsat Pat :.
This is why we restricted t and u to not use more than two different
variables of each type, so that they remain well-typed under this
restriction.

Corollary (Theorem 3). Our unicity-deciding algorithm is termi-
nating and complete for unicity §1.5.

Proof. Our unicity-deciding algorithm takes a judgment ∆ ` A
and returns the 2-set S uniquely determined by a complete al-
gorithmic derivation of the judgment ∅ @ ∅; ∅; ∆ `alginv S : A –
whose memory is empty. There always exists exactly one deriva-
tion (Lemma 9), and it is finite (Lemma 8). Our algorithm can
compute the next rule to apply in finite time, and all derivations are
finite, so the algorithm is terminating. This root judgment has an
empty memory, hence it is complete for unicity (Theorem 6).

ALG-SINV-SUM

M @ Γ; Γ′;x : A,Σ `alginv S : C

M @ Γ; Γ′;x : B,Σ `alginv T : C

M @ Γ; Γ′;x : A+B,Σ `alginv δ(x, x.S, x.T) : C

ALG-SINV-PROD

M @ Γ; Γ′; ∅ `alginv S : A M @ Γ; Γ′; ∅ `alginv T : B

M @ Γ; Γ′; ∅ `alginv (S, T) : A ∗B

ALG-SINV-ARR

M @ Γ; Γ′;x : A `alginv S : B

M @ Γ; Γ′; ∅ `alginv λx. S : A→ B

ALG-SINV-RELEASE

M @ Γ; Γ′ ⊕ (Nat 7→ {x}2); Σ `alginv S : A

M @ Γ; Γ′;x : Nat,Σ `alginv S : A

ALG-SINV-END

M @ Γ; (Γ′ −2 Γ) `algsat S : Pat

M @ Γ; Γ′; ∅ `alginv S : Pat

ALG-SAT-KILL
M(Γ ` Pat) = 2

M @ Γ; ∅ `algsat ∅ : Pat

ALG-SAT-POST

M(Γ ` Pat) < 2 M ⊕2 (Γ ` P) @ Γ `algpost S : Pat

M @ Γ; ∅ `algsat S : Pat

ALG-POST-INTRO

M @ Γ `alg S ⇑ P
M @ Γ `algpost S : P

ALG-POST-ATOM

M @ Γ `alg S ⇓ X
M @ Γ `algpost S : X

ALG-SAT
Γ′ 6= ∅

∀(P | P subformula (Γ,Γ′)), SP
def
=
⋃

2
{Sne |M @ Γ,Γ′ `alg Sne ⇓ P}

B
def
=
⊕
P

{P 7→ {xn}2 | n ∈ SP }

M @ Γ,Γ′; ∅;B `alginv S : Qat

S′ def
=

{
let x̄ = n̄ in t

∣∣∣∣ t ∈ S,(x̄, n̄)
def
= {(x, n) | xn ∈ B(P), t uses xn}∞

}
2

M @ Γ; Γ′ `algsat S
′ : Qat

ALG-SINTRO-SUM

M @ Γ `alg S ⇑ A M @ Γ `alg T ⇑ B
M @ Γ `alg (σ1 S) ∪2 (σ2 T) ⇑ A+B

ALG-SINTRO-END

M @ Γ; ∅; ∅ `alginv S : Nat

M @ Γ `alg S ⇑ Nat

ALG-SELIM
A subformula Γ

Svar
def
= Γ(A)

Sproj
def
=
⋃

2
{πi S |M @ Γ `alg S ⇓ B1 ∗B2, Bi = A}

Sapp
def
=
⋃

2
{S T |M @ Γ `alg S ⇓ B → A, M @ Γ `alg T ⇑ B}

M @ Γ `alg Svar ∪2 Sproj ∪2 Sapp ⇓ A

Figure 9. Saturation algorithm

21 2015/10/10

Γ ::= varmap(Nat) negative or atomic context
∆ ::= varmap(A) general context

REW-INV-SUM
Γ; ∆, x : A ` NFβ(t[σ1 x/x]) t′1 : C
Γ; ∆, x : B ` NFβ(t[σ2 x/x]) t′2 : C

Γ; ∆, x : A+B ` t δ(x, x.t′1, x.t
′
2) : C

REW-INV-ARROW
Γ; ∆, x : A ` NFβ(t x) u′ : B

Γ; ∆ ` t λx. u′ : A→ B

REW-INV-PROD
Γ; ∆ ` NFβ(π1 t) u′

1 : A1 Γ; ∆ ` NFβ(π2 t) u′
2 : A2

Γ; ∆ ` t (u′
1, u

′
2) : (A1, A2)

REW-INV-FOC
Γ,Γ′ `foc t t′ : Pat

Γ; Γ′ ` t t′ : Pat

REW-FOC-ATOM
Γ `ne n n′ ⇓ X
Γ `foc n n′ : X

REW-FOC-INTRO
Γ ` t t′ ⇑ P

Γ `foc t t′ : P

REW-FOC-ELIM
Γ, x : P ` C[x] : Qat

Γ `ne n n′ ⇓ P Γ;x : P ` C[x] t′ : Qat

Γ `foc C[n] let x = n′
in t′ : Qat

REW-UP-SUM
Γ ` t t′ ⇑ Ai

Γ ` σi t σi t
′ ⇑ A1 +A2

REW-UP-INV
Γ; ∅ ` t t′ : Nat

Γ ` t t′ ⇑ Nat

REW-UP-VAR
(x : Nat) ∈ Γ

Γ `ne x x ⇓ Nat

REW-UP-PAIR
Γ `ne n n′ ⇓ A1 ∗A2

Γ `ne πi n πi n
′ ⇓ Ai

REW-UP-ARROW
Γ ` t : A

Γ `ne n n′ ⇓ A→ B Γ ` t t′ ⇑ A
Γ `ne n t n′ t′ ⇓ B

Figure 10. Translation into focused terms

Γ ::= varmap(Nat) negative or atomic context
∆ ::= varmap(A) general context

REW-SINV-PAIR
Γ; ∆ `sinv t t′ : A Γ; ∆ `sinv u u′ : B

Γ; ∆ `sinv (t, u) (t′, u′) : A ∗B

REW-SINV-SUM
Γ; ∆, x : A `sinv t t′ : C Γ; ∆, x : B `sinv u u′ : C

Γ; ∆, x : A+B `sinv δ(x, x.t, x.u) δ(x, x.t′, x.u′) : C

REW-SINV-ARR
Γ; ∆, x : A `sinv t t′ : B

Γ; ∆ `sinv λx. t λx. t′ : A→ B

REW-SINV-END
Γ; Γ′ `foc t t′ : Pat

Γ; Γ′ `sinv t t′ : Pat

REW-SAT-INTRO
Γ ` t t′ ⇑ P

Γ; ∅ `sat t t′ : P

REW-SAT-ATOM
Γ ` n n′ ⇓ X

Γ; ∅ `sat n n′ : X

REW-SAT
Γ′ 6= ∅ (n̄, P̄) ⊆ {(n, P) | (Γ,Γ′ ` n ⇓ P)}

∀n ∈ n̄, n ∈ t Γ,Γ′; x̄ : P̄ `sinv t[x̄/n̄] t′ : Qat

Γ; Γ′ `sat t let x̄ = n̄ in t′ : Qat

REW-SINTRO-SUM
Γ ` t t′ ⇑ Ai

Γ ` σi t σi t
′ ⇑ A1 +A2

REW-SINTRO-END
Γ; ∅ `sinv t t′ : Nat

Γ ` t t′ ⇑ Nat

REW-SELIM-PAIR
Γ ` n n′ ⇓ A1 ∗A2

Γ ` πi n πi n
′ ⇓ Ai

REW-SELIM-START
(x : Nat) ∈ Γ

Γ ` x x ⇓ Nat

REW-SELIM-ARR
Γ ` n n′ ⇓ A→ B Γ ` u u′ ⇑ A

Γ ` n u n′ u′ ⇓ B

(let x = n in t)[y/n]
def
= t[y/x][y/n]

Figure 11. Saturation translation

22 2015/10/10

	Introduction
	Why unique inhabitants?
	Example use cases
	Aside: Parametricity?
	Formal definition of equivalence
	Terminology
	Focusing for a less redundant proof search
	Limitations of focusing
	Our idea: saturating proof search
	Termination

	Intuitionistic focused natural deduction
	Invertible commuting conversions

	A saturating focused system
	Saturation and maximal multi-focusing
	Search algorithm

	Two-or-more approximation
	Evaluation
	Inferring polymorphic library functions
	Inferring module implementations or type-class instances
	Non-applications
	On impure host programs

	Conclusion
	Related work
	Future work

	The saturation algorithm as a system of inference rules
	Proofs
	Focusing
	Saturated focusing
	Two-or-more counting
	Algorithm

