
preprint version

Coherent Coercion Abstraction
with a step-indexed strong-reduction semantics

Julien Cretin Didier Rémy
INRIA

{julien.cretin,didier.remy}@inria.fr

Abstract
The usual notion of type coercions that witness subtyping relations
between types is generalized to a more expressive notion of typ-
ing coercions that witness subsumption relations between typings,
e.g. pairs composed of a typing environment and a type. This is
more expressive and allows for a clearer separation of language
constructs with and without computational content.

This is illustrated on a second-order calculus of implicit coer-
cions that allows multiple but simultaneous type and coercion ab-
stractions and has recursive coercions and general recursive types.
The calculus is equipped with a very liberal notion of reduction. It
models a wide range of type features including type containment,
bounded and instance-bounded polymorphism, as well as subtyp-
ing constraints as used for ML-style type inference with subtyping.

Type soundness is proved by adapting the step-indexed seman-
tics technique to strong reduction strategies, moving indices inside
terms so as to control the reduction steps internally.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Design, Languages, Theory

Keywords Type, Typings, System F, F-eta, Polymorphism, Coer-
cion, Retyping functions, Recursive coercions, Type constraints,
Type containment, Subtyping, Bounded Polymorphism, Step-
indexed semantics, Strong reduction, Recursive types.

1. Introduction
Type systems are syntactical languages to express properties and
invariants of programs. Their objects are usually types, environ-
ments, typings, and typing derivations. These can be interpreted as
mathematical objects or proofs. For instance, a typing judgment
Γ ` a : τ can be interpreted as a proof that the term a never “goes
wrong” and that its computational behavior is approximated by the
type τ when the approximations of the behavior of its free variables
are given by the typing context Γ.

Since program invariants are approximations of their exact be-
haviors, it is natural to consider the induced pre-order relation be-
tween such invariants. For example, subtyping was introduced to
compare types as program approximations: a subtyping judgment

[Copyright notice will appear here once ’preprint’ option is removed.]

τ ≤ σ is a syntactical approximation of the pre-order relation be-
tween the interpretation of types τ and σ.

Used for long in object-oriented languages as a key feature,
subtyping appears nowadays in many type systems, for numerical
types, objects types, records types, variants types, private types,
modules types, refinement types, capabilities, etc.

While type inference with subtyping is possible in ML using
constraints [10], the interaction of subtyping and first-class poly-
morphism is often a source of difficulties. For example, checking
subtyping constraints in some interesting variants of F<: or check-
ing Mitchell’s notion of type containment are undecidable. Surpris-
ingly, typing constraints in ML are more general and more regu-
lar than bounded quantification which privileges upper bounds to
lower bounds, thus breaking the symmetry in the subtyping re-
lation. Hence, whether F<: can be extended with subtyping con-
straints is a natural question to ask, whose answer is not obvious.

Subtyping derivations are mathematical objects that must be
manipulated by reasoning. Type coercions are concrete objects that
can manipulate subtyping derivations by computation. Besides re-
placing reasoning by computing, type coercions can be provided
explicitly, which allows to express certain forms of subtyping that
cannot be checked mechanically.

Coercions are being used more and more often, as type systems
are getting more sophisticated with advanced forms of type con-
versions that are hard to track implicitly. A typical example is the
internal language Fc used in the Haskell compiler [16].

Explicit coercions may be maintained during reduction so as to
preserve well-typedness. When coercions are just subtyping wit-
nesses, they should have no computational content. That is, they
should just change types of programs but not their meaning. In such
cases, there is an underlying implicit calculus of coercions, where
coercions are only used in subtyping derivations but do not appear
in source programs—and obviously do not take part in reduction.

Some languages also use coercions with computational content.
These are necessarily explicit and cannot be erased at runtime.
They are of quite a different nature, and we restrict our study
to erasable coercions. Notice that the difference between explicit
and implicit coercions is not always fundamental. For example,
coercions for record subtyping may have no computation content in
a language with a rich runtime where the representation of records
carries some information about their domains, while a language
with a simple runtime will have to copy records when subtyping
them, as for ML modules.

Coercion abstraction In [6], we introduced a rich language of
type coercions that allows to abstract over coercions themselves.
Coercion abstraction increases expressiveness considerably. For
example, it can express subtyping under subtyping assumptions.

Unfortunately, the types of abstract coercions must be restricted
in some way to preserve type soundness. Indeed, using nonsensical

1 2013/7/12

types for abstract coercions would amount to allowing arbitrary
casts. In [6], we introduced a language called Fpι where abstract
coercions have to be parametric in either their domain or their
range. This condition ensures that abstract coercions cannot be used
in between the destructor and the constructor of a redex, forming a
pattern called a wedge which could typically block the reduction.

Despite this restriction, the language Fpι already models many
features of type systems: type-containment found in the language
Fη [9], bounded polymorphism found in F<: [3], and instance-
bounded polymorphism found in MLF [8], which can thus all be
safely combined together in the same language.

Relaxing coercion abstraction Still, parametricity remains a
strong restriction and some simple forms of subtyping do not fit
in Fpι . For instance, subtyping constraints as proposed for adding
subtyping to an ML-like language with type inference necessitate
the use of multiple bounds for type variables, which cannot be ex-
pressed in Fpι . Moreover, abstract coercions between complex types
must be decomposed into multiple abstract coercions between more
atomic, hopefully parametric types.

Therefore, relaxing the restriction of Fpι seems necessary. Un-
fortunately, it also revealed quite challenging. The difficulties lie in
the possibility for abstract coercions to appear in between redexes
and block the reduction. This pattern is called a wedge in [6] and
is of the form (c〈λ(x : τ ′)M〉N). Some wedges such as arbitrary
casting operations are really unsafe. The first challenge is to find
reasonable restrictions under which only safe wedges will ever ap-
pear during reduction. Then, when coercions are kept during the
reduction, as in Fpι , additional reduction steps must be introduced
to break wedges apart and allow the reduction to proceed. How-
ever, the residual of broken wedges must themselves be expressible
as (new forms of) coercions—and typable. This is the most chal-
lenging part: since coercions may introduce binders, breaking them
apart introduces residual coercions with unusual scoping rules.
Solving one difficulty immediately uncovers another one (§6.1).

Simultaneous coercion abstractions In the rest of this paper we
present a solution to relax coercion abstraction that compromises
between expressiveness and simplicity.

We relax the parametricity restriction of Fpι , allowing coercions
whose domain and range are simultaneously structured types. We
also allow multiple coercion abstractions to constrain multiple type
abstractions provided they are introduced simultaneously.

Coherence does not come by construction as in Fpι . Instead,
coherence proofs must be provided explicitly as witnesses that
the types of coercions are inhabited, i.e. that they can be at least
instantiated once in the current environment.

Grouping related abstractions allows to provide coherence
proofs independently for every group of abstractions, and simul-
taneously for every coercion in the same group.

Recursive coercions Recursive types are another interesting new
feature of Fcι . They are essential in practice and also very useful
in theory, as they model several advanced features of programming
languages, such as objects or closures. Recursive types are tech-
nically challenging however. Thus, they are often presented with
some restrictions, for instance, restricting to positive recursion or
to the folding-unfolding rules, which are easier to formalize. How-
ever, general recursive types are already needed in OCaml or in ML
with subtyping constraints. We therefore follow a general approach
to recursive types to cover these useful cases. The introduction of
recursive coercions is then natural to operate on expressions with
recursive types. Quite interestingly, this brings an induction princi-
ple for reasoning on recursive types from which the most general
subtyping rules for recursive types [1] are derivable (§2).

Implicit coercions While coercions are explicit in Fpι and main-
tained during reduction, we leave them implicit in our new pro-

posal, so as to surround the difficulties raised by wedges. Indeed,
since coercions are not represented in the source, there are no
wedges any longer. We thus avoid having to introduce new forms of
coercions for reducing wedges and twisting the type system to type
these new forms. This simplifies the presentation considerably.

Explicit coercions were a real advantage over implicit coercions
in the language Fpι as their reduction remained relatively simple.
However, while computing is usually easier than reasoning, the
lesson is that when coercion reduction becomes too intricate, sim-
ple mathematical reasoning becomes preferable over too complex
computation steps and typing rules.

From type coercions to typing coercions Besides the introduc-
tion of simultaneous coercion abstractions, we also generalize our
approach to coercions. Pushing the idea of coercions further, typ-
ings (the pair of an environment and a type, written Γ ` τ)
are themselves approximations of program behaviors, which are
also naturally ordered. Thus, we may consider syntactical objects,
which we call typing coercions, to be interpreted as proofs of inclu-
sions between the interpretation of typings. By analogy with type
coercions that witness a subtyping relation between types, typing
coercions witness a relation between typings. This idea, which was
already translucent in our previous work [6], is now internalized.
Typing coercions generalize type coercions.

Conversely, there are type system features that can be described
by typing coercions but not by type coercions. Type generaliza-
tion is one example: it turns a typing Γ, α ` τ into the typing
Γ ` ∀α τ . This allows to replace what is usually a term typing
rule by a coercion typing rule, with two benefits: superficially, it al-
lows for a clearer separation of term constructs that are about com-
putation from coercion constructs that do not have computational
content (type abstraction and instantiation, subtyping, etc.); more
importantly, it makes type generalization automatically available
anywhere a coercion can be used and, in particular, as parts of big-
ger coercions. An illustration of this benefit is that the distributivity
rules (e.g. found in Fη) are now derivable by composing type gen-
eralization, type instantiation, and η-expansion (a generalization of
the subtyping rule for the arrow type).

The advantage of using typing coercions is particularly striking
in the fact that all type system features studied in this paper can be
expressed as coercions, so that computation and typing features are
perfectly separated. This can already be seen in Figure 4, but more
details can be found in Section §2.

Type soundness proof via step-indexed terms While moving
from explicit to implicit coercions, we are simultaneously chang-
ing our approach to type soundness. Instead of the standard syntac-
tic proof based on subject reduction and progress, which became
lengthy and intractable, a semantic approach where types are inter-
preted as sets of terms is better suited and more concise.

Our calculus is equipped with a strong reduction semantics, for
several reasons. As our language is implicitly typed, both type ab-
straction and coercion abstraction are implicit and cannot reason-
ably stop evaluation. However, even if they were explicit, as in Fpι ,
they could not stop evaluation because our assumption is that coer-
cions are erasable and thus do not change the underlying semantics
of the untyped term. While it would be possible to choose a weak
reduction strategy just for value abstraction, and a programming
language will probably do so, there is no reason to do so in our cal-
culus: proving type soundness for a more liberal strong reduction
strategy gives a stronger result. Indeed, weak-reduction strategies
are a subset of strong reduction strategies, hence by restricting the
semantics afterward, the absence of errors during the reduction will
still be guaranteed.

Moreover, this better fits our intuition of a safe type system.
Even if we eventually pick a weak reduction strategy, our system

2 2013/7/12

should be sound for all reduction strategies. Indeed, it would be
weird if the type system accepted as well-typed a program contain-
ing the addition of an integer and a boolean when appearing under
an abstraction.

Since our calculus features general recursive types, we follow a
step-indexed approach. Unfortunately, the step-indexed approaches
to type soundness do not seem to work directly for strong reduction
strategies. We propose a new approach based on step-indexing
terms that pushes the indices inside terms themselves, which we
believe is another interesting side contribution of our work.

Summary Our contribution is multiple facets. First, we intro-
duce a language Fcι with simultaneous coercion abstractions that
relaxes the parametricity restriction and is thus more expressive
than Fpι . Second, our language Fcι can also model ML-style type
constraints—with some differences. This shows for instance that
MLF can be safely combined with ML-style type constraints—
leaving type inference aside of course. Third, this includes a general
form of recursive coercions, from which we can recover powerful
subtyping rules between equi-recursive types. Fourth, we present
our coercions as an implicit calculus with a denotational seman-
tics soundness proof, which provides another new insight into co-
ercions. Fifth, we generalize our coercion framework from type co-
ercions to typing coercions, bringing a clearer separation of lan-
guage constructs. Last, we adapt step-indexed semantics to strong
reduction strategies by moving indices inside terms.

The rest of the paper is organized as follows. We present Fcι —
our type system for the λ-calculus—to illustrate these ideas in §2.
We introduce our variant of step-indexed denotational semantics in
Section §3 and apply it to prove the soundness of our calculus in
Section §4. We discuss the expressivity of Fcι in §5 and differences
with our previous work and other related works as well as future
works in Section §6.

The language Fcι and its soundness proof have been formalized
and mechanically verified1 in Coq [14].

2. Language definition
Since our calculus is implicitly typed, its syntax is that of the λ-
calculus extended with pairs, reminded on Figure 1. Terms are
variables x, abstractions λx a, applications (a b), pairs 〈a, b〉, and
projections πi a for i in {1, 2}.

The reduction rules are given on Figure 3. We write a[x ← b]
for the capture avoiding substitution of the term b for the variable x
in the term a, defined as usual. Head reduction is described by the
β-reduction rule REDAPP, and the projection rule REDPROJ. Reduc-
tion can be used under any evaluation context as described by Rule
REDCTX. Evaluation contexts, written E , are defined on Figure 2.
Since we choose a strong reduction relation, all possible contexts
are allowed. Notice that evaluation contexts contain a single node,
since the context rule REDCTX can be applied recursively.

The terms we are interested are the sound ones, i.e. whose
evaluation never produces an error. We write Ω for the set of
errors. They are the subset of syntactically well-formed terms that
“we don’t want to see” neither in source programs nor during
their evaluation. Namely, an error r is either immediate, i.e. the
application of a pair or the projection of an abstraction, or an error
occurring in an arbitrary context E . Notice that we always put
parentheses around applications.

The absence of errors implies as a corollary that well-behaved
terms that cannot be further reduced are values. Values are given on
Figure 2. They are either constructors applied to values, or preval-
ues, which are either variables or destructors applied to prevalues.

1 Scripts are available at http://gallium.inria.fr/~remy/coercions/.

α, β Type variables
x, y Term variables

τ, σ, ρ ::= α | τ → τ | τ × τ Types
| ∀(α,C) τ | µα τ | ⊥ | >

a, b ::= x | λx a | (a a) | 〈a, a〉 | π1 a | π2 a Terms
B ::= (x : τ) | (α,C) Bindings
C ::= ∅ | C, τ . τ Coercions
Γ ::= ∅ | Γ, B Environments
Θ ::= ∅ | Θ, (τ . τ) | Θ, (τ I τ) Fix coercions

wf ::= WF | NE Well-foundness

Figure 1. Syntax

Σ ::= ∅ | Σ, (α,C) Coercion environments
p ::= x | (p v) | πi p Prevalues
v ::= p | λx v | 〈v, v〉 Values
r ::= E [r] | (〈a, a〉 a) | πi (λx a) Errors
E ::= λx [] | ([] a) | (a []) | 〈[], a〉 | 〈a, []〉 | πi [] Contexts

Figure 2. Notations

REDCTX

a; b

E [a] ; E [b]

REDAPP

((λx a) b) ; a[x← b]
REDPROJ

πi 〈a1, a2〉 ; ai

Figure 3. Reduction relation

TERMVAR

` Γ (x : τ) ∈ Γ

x : Γ ` τ

TERMLAM

a : Γ, (x : τ) ` σ
λx a : Γ ` τ → σ

TERMAPP

a : Γ ` τ → σ b : Γ ` τ
(a b) : Γ ` σ

TERMPAIR

(ai : Γ ` τi)i∈{1,2}

〈a1, a2〉 : Γ ` τ1 × τ2

TERMPROJ

a : Γ ` τ1 × τ2
πi a : Γ ` τi

TERMCOER

a : Γ,Σ ` τ Γ ` Στ . σ

a : Γ ` σ

Figure 4. Term typing rules

We use types to approximate the behavior of terms and we use
environments to approximate the behavior of variables. Types are
given on Figure 1. They contain type variables α, arrow types τ →
σ, product types τ × σ, block-abstractions ∀(α,C) ρ, recursive
types µα τ , the top type >, and the bottom type ⊥. We write α for
a sequence of variables. CoercionsC are possibly empty sequences
of elementary coercions τ . σ. We also sometimes write τ . σ for
a sequence of coercions instead of C. We also write τ [α ← σ] for
the capture avoiding substitution of the type σ for the variable α
in the type τ . We write fv(τ) the set of free variables of τ , defined
in the obvious way. We extend free variables and substitutions to
coercions and sequences of coercions pointwise. The syntax of
environments is given on Figure 1. They are simply lists of binders,
which are term binders (x : τ) or block binders (α,C).

We write a : Γ ` τ instead of the usual notation Γ ` a : τ
to mean that the term a has the typing Γ ` τ , i.e. its behavior is
approximated by τ whenever its free variables are in the approxi-
mations described by Γ. This can also be read syntactically in the
usual way as “term a can be typed with τ in environment Γ”. The

3 2013/7/12

http://gallium.inria.fr/~remy/coercions/

judgment a : Γ ` τ implies that τ is well-formed under Γ which
implies that Γ is also well-formed, as stated below by the extraction
lemma (Lemma 19). Typing rules for term derivations are given
on Figure 4. Observe that these are exactly the typing rules of the
simply-typed λ-calculus, except for the new rule TERMCOER. This
rule says that if a term a admits the typing Γ,Σ ` τ and there exists
a coercion from the typing Γ,Σ ` τ to the typing Γ ` σ, which we
write as Γ ` Στ . σ, then the term a also admits the typing Γ ` σ.

This factorization of all rules but those of the simply-typed λ-
calculus under one unique rule, namely TERMCOER, emphasizes
that coercions are only decorations for terms. Rule TERMCOER

annotates the term a to change its typing without changing its
computational content, as the resulting term is a itself. This is only
made possible by using typing coercions instead of type coercions.

The general coercion typing judgment Γ; Θ ` Στ . σ is de-
fined on Figure 5. The coercion environment Θ contains additional
coercions hypotheses used coinductively. When Θ is empty, we just
write Γ ` Στ . σ. We first explain typing rules ignoring the envi-
ronment Θ, as it only matters for coercion fixpoints. We explain the
role of Θ last, together with Rule COERFIX.

Intuitively, the judgment Γ ` Στ . σ implies that any term
that admits the typing Γ,Σ ` τ also admits the typing Γ ` σ.
(The converse is not true: the fact that any term that admits the
typing Γ,Σ ` τ also admits the typing Γ ` σ does not imply that
the judgment Γ;∅ ` Στ . σ is derivable; therefore, the coercion
typing judgment is incomplete, unsurprisingly.) One could expect
the right premise of TERMCOER to be written (Γ,Σ ` τ) . (Γ ` σ),
or more generally of the form (Γ1 ` τ1) . (Γ2 ` τ2). However, we
only use this judgment when the environment on the left-hand side
is an extension of the environment on the right-hand side.2 Thus,
we maintain this invariant in the syntax and just write Γ ` Στ . σ.
Moreover, when Σ is empty, we write Γ ` C for the conjunction
of judgments Γ ` τ . σ for all coercions τ . σ in C. Notice
that Γ; Θ ` Στ . σ implies that τ is well-formed under Γ,Σ and
σ is well-formed under Γ, which again implies that Γ and Γ,Σ
are well-formed as stated by the extraction lemma (Lemma 19). In
particular, Θ is ignored by well-formedness judgments.

The coercion typing rules can be understood under the light of
Rule TERMCOER. The first two rules, COERREFL and COERTRANS,
close the coercion relation by reflexivity and transitivity. To under-
stand COERTRANS let’s take a term a with typing Γ,Σ2,Σ1 ` τ1
ignoring Θ. Applying Rule TERMCOER with the second premise
of Rule TERMTRANS ensures that the term a admits the typing
Γ,Σ2 ` τ2. Applying Rule TERMCOER again with the first premise
of Rule TERMTRANS, ensures that a admits the typing Γ ` τ3 as if
we have applied Rule TERMCOER to the original typing of a with
the conclusion of Rule COERTRANS.

The Rule COERWEAK implements a form of weakening. It tells
that if any term of typing Γ,Σ ` τ can be seen as Γ ` σ, then any
term of typing Γ ` τ can also be seen as Γ ` σ. Since weakening
holds for term judgments, we can do the following reasoning to
justify this rule. Assume that the premise Γ,Σ ` τ holds; we
argue that the conclusion should also hold. Indeed, a term that
admits the typing Γ ` τ also have typing Γ,Σ ` τ by weakening;
therefore, by the premise Rule COERWEAK, it must also have typing
Γ ` σ. However, this reasoning is mathematical and based on our
interpretation of coercions: Rule COERWEAK is required as it is not
derivable from other rules—nor admissible (if we removed it from
the definition). Notice that this is the only rule that removes binders.
The two next rules, COERBOT and COERTOP, close the coercion
relation with extrema. For any typing Γ ` τ , there is a smaller
typing, namely Γ ` ⊥, and a bigger typing, namely Γ ` >.

2 The general case would be useful if we treated weakening explicitly as a
coercion, but weakening is much simpler implicitly.

The next two rules, COERETAPROD and COERETAARR, close the
coercion relation by η-expansion, which is the main feature of sub-
typing. Here, η-expansion is generalized to typing coercions in-
stead of type coercions. The η-expansion rules describe how the
coercion relation goes under computational type constructors, i.e.
those of the simply-typed λ-calculus. Interestingly, the η-expansion
rules for erasable type constructors can be derived since their intro-
duction and elimination rules are already coercions.

Intuitively, η-expansion rules can be understood by decorating
the η-expansion context with coercions at their respective type
constructor. These coercions are erasable because the η-expansion
of a term has the same computational behavior as the term itself.

For example, consider the η-expansion of the arrow type which
is λx ([]x). If we place in the hole a term with typing Γ,Σ `
τ ′ → σ′, we may give λx ([]x) the typing Γ ` τ → σ provided a
coercion of type Γ,Σ ` τ . τ ′ is applied around x. The result of
the application has typing Γ,Σ ` σ′ which can in turn be coerced
to Γ ` σ if there exists a coercion of type Γ ` Σσ′ . σ. Thus, the
η-expansion has typing Γ ` τ → σ. While the coercion applied
to the result of the application may bind variables Σ for the hole
(and the argument), the coercion applied to the argument a needs
not bind variables, since the variable a could not use them anyway.

λx

@

x

Γ ` τ → σ

Γ,Σ ` σ′

Γ ` σ

Γ,Σ ` τ ′ → σ′
Γ,Σ ` τ
Γ,Σ ` τ ′

The next three rules, COERVAR, COERGEN, and COERINST, im-
plement the main feature of the language, namely simultaneous
coercion abstractions. Rule COERVAR for coercion assumptions
reads the coercion type from the context. Rule COERGEN combines
several type and coercion abstractions. It uses an auxiliary bind-
ing judgment, described below, to check that the binding is well-
formed and thus coherent. Rule COERINST performs simultaneous
instantiation of types and coercions with a substitution [α← σ]:
the premises check well-formedness of the types σ and well-
typedness of the instantiation of the coercions with [α← σ]; the
conclusion returns the instantiation of the schema with [α← σ].
Notice that COERGEN is the only rule that extends the environment.
This rule can be presented as a typing coercion but could not have
been written as a type coercion.

The next two rules COERFOLD and COERUNFOLD are the usual
folding and unfolding of recursive types, which give the equiva-
lence between µα τ and τ [α← µα τ].

We may now reread the previous rules with the additional en-
vironment Θ—without changing the explanation, except for rules
COERVAR and the two η-expansion rules, which we explain together
with Rule COERFIX. This rule provides an induction principle for
building recursive coercions. Namely, it allows to build a coercion
by coinduction by adding the goal as an hypothesis in Θ. One may
first read the rule ignoring coercionsC, which are there to reinforce
the coinduction hypothesis: that is, we may also use C coinduc-
tively to prove the conclusion τ . σ, provided we may also prove
C coinductively. Of course, coinduction would be ill-founded if we
could use the coinductive hypotheses immediately. Therefore, hy-
potheses are first introduced as locked coercions of the form τ I σ,
as opposed to a free coercion τ . σ. CI stands for C where every
free coercion τ1 . τ2 has been changed into the locked coercion

4 2013/7/12

WFVAR

α 7→ α : NE

WFCST

α /∈ fv(τ)

α 7→ τ : WF

WFSUB

α 7→ τ : WF

α 7→ τ : NE

WFARR

α 7→ τ : NE α 7→ σ : NE

α 7→ τ → σ : WF

WFPROD

(α 7→ τi : NE)i∈{1,2}

α 7→ τ1 × τ2 : WF

WFMULTI

α /∈ fv(C) α 7→ ρ : wf

α 7→ ∀(α,C) ρ : wf

WFMU

β 7→ τ : WF α 7→ τ : wf

α 7→ µβ τ : wf

Figure 6. Well-foundness judgment relation

τ1 I τ2. Locked coercions are inaccessible through Rule COERVAR

which only searches for free coercions in Γ or Θ. However, locked
coercions are freed once we use an η-expansion rule which are pro-
ductive since computational. This is realized by changing Θ into
Θ. into the premises of rules COERETAARROW and COERETAPROD

which unlocks all coercions of the form τ1 I τ2 in Θ into free co-
ercions τ1 . τ2, making them available for coinductive reasoning
via Rule COERVAR.

Interestingly, the usual rules for reasoning on recursive types [1]
are derivable using COERFIX (τ1 /. τ2 means τ1 . τ2, τ2 . τ1).

COERPERIOD

α 7→ σ : WF

Γ; Θ ` (τi /. σ[α← τi])
i∈{1,2}

Γ; Θ ` τ1 . τ2

COERETAMU

Γ, (α, β, α . β); Θ ` τ . σ
Γ; Θ ` µα τ . µβ σ

Interestingly, the proof for COERPERIOD requires reinforcement of
the coinduction hypothesis since we need τ1 /. τ2 and not just
τ1 . τ2 in the coinduction hypothesis.

The judgment Γ ` τ defines when type τ is well-formed
under the environment Γ. We also write Γ ` τ as an abbreviation
for the conjunction Γ ` τ for all types τ in the sequence τ .
The rules for this type judgment, given on Figure 7, are as usual.
A type variable is well-formed if it is bound in its environment
(Rule TYPEVAR). Top and Bottom types are unconditionally well-
formed (rules TYPEBOT and TYPETOP). Product and arrow types are
well-formed if both components are well-formed under the same
environment (rules TYPEPROD and TYPEARR). A polymorphic type
is well-formed if its binders are erasable and well-formed under the
same environment and its body is well-formed under the extended
environment. A recursive type is well-formed if it is well-founded
and its body is well-formed under the extended environment.

The most important rule is BINDTYPECOER, which defines when
an erasable binder is well-formed and also checks for coherence.
Judgments for well-formedness of bindings are written Γ ` B.
Term binding is defined as usual, the variable has to be disjoint
from the domain of the environment and its type has to be well-
formed under this environment. The simultaneous binding of type
and coercion variables is more involved: first, bound type variables
α must be disjoint from the domain of the current environment;
then, both the domain and the range of the coercion type must
be well-formed under the current environment extended with type
variables α; finally, the last two premises ensure the coherence
of the coercions τ1 . τ2 requiring that there exists a substitution
[α← σ] that makes the coercions τ1 . τ2 well-formed under Γ.

Notice that the last two premises of Rule BINDTYPECOER are the
same as the premises of Rule COERINST, since checking coherence
is just checking that the erasable binder can be instantiated in the
current environment. The substitution [α← σ] is called the witness
for the coherence of this binder. It is not explicitly given, since
coercions are implicit. An explicit calculus would provide them

explicitly, so should a surface language, since inferring witnesses
is certainly undecidable in the general case.

We write ` Γ for the well-formedness of environments, defined
on Figure 7. Well-formed environments are the empty one (Rule
ENVEMPTY) or the concatenation of a well-formed environment
with a well-formed binding in this environment (Rule ENVBIND).

Finally, the well-foundedness judgment, written α 7→ τ : wf,
means that α 7→ τ is well-founded if wf is WF or non-expansive
if wf is NE. Rule WFVAR tells that the identity functor is non-
expansive. Rule WFCST tells that constant functors are well-
founded. Rule WFSUB tells that well-founded functors are non-
expansive. Rules WFARR and WFPROD tell that arrow and product
types are well-founded if there components are non-expansive.
Rules WFMULTI and WFMU tell that polymorphic and recursive
types are well-founded (resp. non-expansive) if there body is
well-founded (resp. non-expansive). Additionally for polymorphic
types, the abstract coercions should not mention the recursive type
variable, and for recursive types, it has to be well-founded as well.

The dependencies between these judgments is as follows: well-
foundedness do not have dependencies; type, coercion, binding,
and environment well-formedness are mutually defined and depend
on well-foundedness; and term judgment depends on the preceding.

3. Semantics
A term is sound if none of its reduction lead to an error. To avoid
the negation, it is easier to reason with valid terms defined as the
complement of Ω, i.e. terms that are not errors, which we write 0.
Hence, a term is sound if all its reduction paths lead to valid terms.
Since this construction appears repeatedly, we define the expansion
of a set of terms R, which we write (;?R), the set of terms a such
that any reduction path starting with a leads to a term in R. The set
S of sound terms is the expansion (;?0) of valid terms.

Head normal forms ∆ are terms whose root node is a construc-
tor, i.e. abstractions and pairs, while neutral terms ∇ are variables,
applications, and projections. Notice that ∆ and∇ are complement
of one another, i.e. terms are the disjoint union of ∆ and∇.

Progress is a way to double-check the definition of the seman-
tics, by defining values syntactically and checking that semantic
values (irreducible valid terms) are syntactic values (and neutral
values are prevalues):

Lemma 1 (Progress). If a ∈ 0 and a 6; , then a is of the form v.

The converse is also true, i.e. values do not contain errors. However,
this won’t remain true when we restrict the strategy, e.g. to call-by-
value. In this case, redefining the grammar of values, progress will
still hold, but some grammatically well-formed values may contain
“inaccessible” errors, such as errors occurring under an abstraction.

Type soundness states that well-typed terms are sound. We
prove this by interpreting syntactic types as semantic types which
are themselves sets of terms. However, since we allow general
recursive types the evaluation of terms may not terminate. This is
not a problem, since type soundness is not about termination, but
ruling out unsound terms, which if they reach an error do so in a
finite number of steps.

The idea of step-indexed techniques is to stop the reduction after
a certain number of steps, as if some initially available fuel (the
number of allowed reduction steps) has all been consumed. Since
errors are necessarily reached after a finite number of steps, we may
always detect errors with some finite but arbitrary large number of
reduction steps.

However, there is a difficulty applying this technique with
strong reduction strategies, which we solve by including the fuel
inside terms, called indexed terms, and block the reduction inter-
nally when terms do not have enough fuel, rather than control the
number of reduction steps externally.

5 2013/7/12

COERREFL

Γ ` τ
Γ; Θ ` τ . τ

COERTRANS

Γ; Θ ` Σ2τ2 . τ3 Γ,Σ2; Θ ` Σ1τ1 . τ2

Γ; Θ ` (Σ2,Σ1)τ1 . τ3

COERWEAK

Γ; Θ ` Στ . σ Γ ` τ
Γ; Θ ` τ . σ

COERBOT

Γ ` τ
Γ; Θ ` ⊥ . τ

COERTOP

Γ ` τ
Γ; Θ ` τ . >

COERETAARR

Γ ` τ ′ Γ,Σ; Θ. ` τ ′ . τ Γ; Θ. ` Σσ . σ′

Γ; Θ ` Σ(τ → σ) . τ ′ → σ′

COERETAPROD

(Γ; Θ. ` Στi . τ
′
i)
i∈{1,2}

Γ; Θ ` Σ(τ1 × τ2) . τ ′1 × τ ′2

COERVAR

τ . σ ∈ Γ; Θ Γ ` τ Γ ` σ
Γ; Θ ` τ . σ

COERGEN

Γ ` ∀(α,C) ρ

Γ; Θ ` (α,C)ρ . ∀(α,C) ρ

COERINST

Γ ` ∀(α,C) ρ Γ ` σ Γ ` C[α← σ]

Γ; Θ ` ∀(α,C) ρ . ρ[α← σ]

COERFOLD

Γ ` µα τ
Γ; Θ ` τ [α← µα τ] . µα τ

COERUNFOLD

Γ ` µα τ
Γ; Θ ` µα τ . τ [α← µα τ]

COERFIX

Γ; Θ, CI, (τ I σ) ` C, (τ . σ)

Γ; Θ ` τ . σ

Figure 5. Coercion typing rules

TYPEVAR

` Γ α ∈ Γ

Γ ` α

TYPEARR

Γ ` τ, σ
Γ ` τ → σ

TYPEPROD

Γ ` τ1, τ2
Γ ` τ1 × τ2

TYPEBOT

` Γ

Γ ` ⊥

TYPETOP

` Γ

Γ ` >

TYPEMU

α 7→ τ : WF Γ, α ` τ
Γ ` µα τ

TYPEMULTI

Γ ` (α,C) Γ, (α,C) ` ρ
Γ ` ∀(α,C) ρ

ENVEMPTY

` ∅

ENVBIND

` Γ Γ ` B
` Γ, B

BINDTERM

x /∈ dom(Γ) Γ ` τ
Γ ` (x : τ)

BINDTYPECOER

α /∈ dom(Γ) Γ, α ` τ1 , τ2 Γ ` σ Γ ` τ1 . τ2 [α← σ]

Γ ` (α, τ1 . τ2)

Figure 7. Well-formedness judgments for types, environments, and bindings

bxkcj = xkj

bλkx ecj = λkjx becj
b(e f)kcj = (becj bfcj)kj

b〈e1, e2〉kcj = 〈be1cj , be2cj〉kj
bπi

k ecj = πi
kj becj

Figure 8. Lower function

3.1 The indexed calculus
Terms of the indexed calculus are terms of the λ-calculus where
each node is annotated with a natural number called the index (or
fuel) of this node. They are written with letter f or e and formally
defined on Figure 9: indexed terms are variables xk, abstractions
λkx e, applications (e f)k, pairs 〈e, f〉k, and projections πi

k e. We
consistently label one hole contexts and errors. We write Ek for
one-hole context with index k and s for indexed errors.

Intuitively, indices indicate the maximum number of reduction
steps allowed under the given node. Since redexes usually involve
several nodes, we must take the minimum of indices of the redex
nodes. We use an auxiliary lowering function on indexed terms to
keep track of such constraints by lowering the indices in a subterm.
It is written becj and defined on Figure 8. We use concatenation
of indices to denote the minimum of their values. This is not
ambiguous since we never use multiplication of indices. Lowering
simply changes all indices in the term ewith their minimum with j.

The capture avoiding substitution e[x ← f] of term f for vari-
able x in the term e replaces in e all free occurrences xj of x by
bfcj . The definition is generalized in the obvious way to simulta-
neous substitutions. We use letter γ to range over substitutions. The
lowering of substituted occurrences is necessary to make substitu-
tion commute with the lowering function:

Lemma 2. be[x← f]ck = beck[x← f] = beck[x← bfck]

In particular, renaming commutes with the lowering function.
The reduction rules of the indexed calculus mimic those of

the λ-calculus, but with some index manipulation, as described

e, f ::= xk | λkx e | (e e)k | 〈e, e〉k | πi
k e

Ek ::= λkx [] | ([] e)k | (e [])k | 〈[], e〉k | 〈e, []〉k | πi
k []

s ::= Ek[s] | (〈e, e〉k e)k | πi
k (λkx e)

Figure 9. Syntax of indexed terms

on Figure 10. Reduction can only proceed when the index on the
nodes involved in the reduction are strictly positive; the indices are
lowered after reduction by the minimum of the involved indices
decremented by one. As a corollary, reduction cannot occur at or
under a node with a null index. This applies both to head reduction
rules (FREDAPP and FREDPROJ) and to reduction in an evaluation
context (Rule FREDCTX). That is, a head reduction can only be
applied along a path of the form Ek11 [. . . E

kp
p [e]] when indices ki’s

are all strictly positive; they are all decremented after the reduction.
For example, here is a decorated reduction of apply (the λ-term

λxλy (x y)) applied to two terms a and b:

(((λk3+1xλj1y (xj3 yj4)j2) a)k2+1 b)k1+1

; ((λj1k2k3y (bacj3k2k3 yj4k2k3)j2k2k3) b)k1

Since the reduction happens under the external application, it must
have some fuel k1+1, which is decreased by one in the result. Then,
for the redex to fire, the application must have some fuel k2 + 1 as
well as the abstraction k3 + 1, which are both decreased by 1 and
combined as k2k3 to lower the result of the reduction. Before that,
the term a, which has been substituted for xj3 has been lowered to
j3 in the result. The important feature is that b has not been lowered,
which is an important difference with what would happen with the
traditional step-indexed approach when indices are outside terms.

Strong normalization By design, the indexed calculus is strongly
normalizing, i.e. all reduction paths of all terms are finite. In partic-
ular, they are bounded by the index of their root node.

6 2013/7/12

FREDCTX

e; f

Ek+1[e] ; Ek[f]

FREDAPP

((λj+1x e) f)k+1
; be[x← f]ckj

FREDPROJ

πi
k+1 〈e1, e2〉j+1

; beickj

Figure 10. Indexed calculus reduction relation

Pxk = P k
P (λkx e) = P (πi

k e) = P k ∧ P e
P (e1 e2)k = P 〈e1, e2〉k = P k ∧ P e1 ∧ P e2

Figure 11. Lifting integer predicates to indexed terms

3.2 Bisimulation
To show that reduction between undecorated terms and decorated
terms coincides, we define bec the erasure of an indexed term e
obtained by dropping all indices. We lift this function to sets of
terms: bRc is the set {bec | e ∈ R}. By construction, dropping
is stronger than lowering, i.e. dropping after lowering is the same
as dropping, or in math, bbecjc = bec. As for lowering, dropping
commutes with substitution: be[x← f]c = bec[x← bfc].

We overload the notations Ω and ∇ for the sets of errors and
neutral terms for indexed terms. This overloading is not a problem
since it is always clear from context which version of terms we
mean. Moreover, the definitions coincide with bΩc, and b∇c, so it
could also be seen as leaving the dropping implicit.

We also overload the notation S for the set of sound indexed
terms. Although it is defined as for λ-terms as (;?0), the meaning
is different since the reduction is now bridled by indices.

The calculus on indexed terms is just an instrumentation of the
λ-calculus that behaves the same up to the consumption of all the
fuel. Formally, we show that they can simulate one another, up to
some condition on the indices.

Indexed terms can be simulated by λ-terms. That is, if an in-
dexed term can reduce, then the same reduction step can be per-
formed after dropping indices.

Lemma 3 (forward simulation). If e; f , then bec ; bfc.

In order to make the other direction concise, we lift predicates
on integers to predicates on indexed terms by requiring the pred-
icate to hold for all indices occurring in the term. For instance,
e ≤ k means that the indices in e are smaller or equal to k. This is
formally defined on Figure 11.

Indexed terms can simulate λ-terms, provided they have enough
fuel. This means that if an indexed term has strictly positive indices
and can be reduced after dropping its indices, then the same reduc-
tion step can be performed on the indexed term.

Lemma 4 (backward simulation). If e > 0 and bec ; a′, then
there exists e′ such that e; e′ and be′c = a′.

3.3 Semantic types
In order to define semantic types concisely, it is convenient to have
a few helper operations on sets of indexed terms. We first lift binary
properties on indices to indexed terms. This is done by asking the
two terms to share the same skeleton (they drop on the same λ-
term) and the indices of corresponding nodes to be related by the
property on indices. A formal definition is given on Figure 12.

The interior of a set R is the set R↓ containing all terms smaller
than a term in R, i.e. {f | ∃e ∈ R, f ≤ e}. The contraction of a set
R is the set (R;) of all terms obtained by one-step reduction of a
term in R, i.e. {f | ∃e ∈ R, e; f}.

A pretype is a set of sound terms that contains both its interior
and its contraction. We write P the set of pretypes.

xj ? xk = j ? k
λjx e ? λkx f = πi

j e ? πi
k f = j ? k ∧ e ? f

(e1 e2)j ? (f1 f2)k

〈e1, e2〉j ? 〈f1, f2〉k
}

= j ? k ∧ e1 ? f1 ∧ e2 ? f2

Figure 12. Lifting of a binary predicate ? on indices to terms

Definition 5 (Pretypes). P def
= {R ⊆ S | R↓ ∪ (R;) ⊆ R}

Notice that the empty set and S are pretypes. Pretypes only contain
sound terms since types will be pretypes and types will be sets of
sound terms. The closure of pretypes by interior is just technical.
The main property of pretypes is to be closed by reduction. Types
are pretypes that are also closed by a form of expansion. As a
first approximation, sound terms that reduce to a term in a type
R should also be in R. However, a type R should still not contain
unsound terms even if these reduce to some term in R. Moreover,
the meaning of a set of terms R is in essence determined by its
set of head normal forms, which we call the kernel of R. We use
concatenation for intersection of sets of terms. Hence, the kernel
of R is ∆R. A type R need not contain every head normal form
that reduces to some term in R. Consider for example the term
e0 equal to λxx and one of its expansion is the term e1 equal to
λx ((λy x) (xx)). The sets {e0} and {e0, e1} have quite different
meanings. Notice that by definition, the kernel is an idempotent
operation: ∆(∆R) = ∆R.

The expansion-closure of a set of terms R, written♦R, is the set
(;?(∇0]∆R)), which contains terms of which every reduction
path leads to either a valid neutral term or a head normal form of R.
By definition, the expansion closure is monotonic: if R ⊆ S, then
♦R ⊆ ♦S; it is also idempotent: ♦ (♦R) = ♦R.

Finally, semantic types are pretypes that are stable by expansion
closure:

Definition 6 (Semantic types). T def
= {R ∈ P | ♦R ⊆ R}.

The kernel of a type is a pretype—but not a type. Conversely,
the expansion-closure of a pretype is a type. Actually expansion-
closure and kernel are almost invert of one another: if R is a type,
then ♦ (∆R) = R.

The smallest type, called the bottom type and written ⊥̂, is equal
to♦{}, that is (;?(∇0)). The largest type, >̂, called the top type
is the set S of sound terms.

3.4 Simple types
We can now define the semantics of functions and products as
semantic type operators.

Definition 7 (Arrow and product operators).
R →̂ S

def
= ♦{λkx e ∈ S | k > 0⇒

∀f, bfck−1 ∈ R⇒ be[x← f]ck−1 ∈ S}
R×̂S

def
= ♦{〈e, e′〉k ∈ S | k > 0⇒ beck−1 ∈ R ∧ be′ck−1 ∈ S}

The arrow and product operators preserve types.

Lemma 8. If R and S are types, then so are R →̂ S and R ×̂ S.

The proof uses the following easy properties on indices:

• bbecjck = beckj
• If k′ ≤ k and e′ ≤ e, then be′ck′ ≤ beck.
• If e′ ≤ e and f ′ ≤ f , then e′[x← f ′] ≤ e[x← f].

And this less easy one:

Lemma 9. If e ; f holds, then beck+1 ; f ′ and bfck ≤ f ′ for
some f ′.

7 2013/7/12

Proof. We only detail the proof for the arrow operator, which uses
indexed terms in a crucial way. The proof for the product oper-
ator is similar, but easier. Since the arrow operator is defined by
expansion-closure, it is a type if its kernel is a pretype. Its kernel
contains only sound terms by definition. So it remains to show that
the definition contains its interior and contraction.

Let λjx e′ ≤ λkx e (1), λkx e ∈ S (2), and k > 0 ⇒
∀f, bfck−1 ∈ R ⇒ be[x ← f]ck−1 ∈ S (3), and show that
λjx e′ ∈ S (4) and j > 0 ⇒ ∀f, bfcj−1 ∈ R ⇒ be′[x ←
f]cj−1 ∈ S (5). The first assertion (4) comes easily with (1)
and (2) since S contains its interior. To show (5), let j > 0 and
bfcj−1 ∈ R (6) and show be′[x← f]cj−1 ∈ S (7). By (1) we have
j ≤ k, so k > 0. We also have bbfcj−1ck−1 = bfcj−1 which is in
R by (6). So from (3) we have be[x ← bfcj−1]ck−1 ∈ S. Since S
is a type, it contains its interior so be′[x ← bfcj−1]cj−1 ∈ S.
Since the substitution and the lowering function commute, we
conclude (7).

Let λkx e; e1 (8), λkx e ∈ S (9), and k > 0⇒ ∀f, bfck−1 ∈
R ⇒ be[x ← f]ck−1 ∈ S (10). By inversion of the reduction
relation we have k = k′ + 1 and e1 = λk

′
x e′ for some k′ and e′

such that e ; e′ (11). We now have to show that λk
′
x e′ ∈ S (12)

and k′ > 0 ⇒ ∀f, bfck′−1 ∈ R ⇒ be′[x ← f]ck′−1 ∈ S (13).
We show (12) with (8) and (9) since S contains its contraction. To
show (13), let k′ > 0 and bfck′−1 ∈ R (14) and show be′[x ←
f]ck′−1 ∈ S (15). We have bbfck′−1ck−1 = bfck′−1 which is
in R by (14). So from (10) we have be[x ← bfck′−1]ck−1 ∈ S.
Since S is a type, it contains its contraction and interior so be′[x←
bfck′−1]ck′−1 ∈ S by Lemma 9. Since the substitution and the
lowering function commute, we conclude (15).

3.5 Intersection types
The intersection

⋂
i∈I Ri of a nonempty family of types (Ri)

i∈I

is a type. (As a particular case, the bottom type ⊥̂ is also the
intersection of all types.)

3.6 Recursive types
This section follows the usual description of recursive types using
approximations as done in [2]. This addition of recursive types is
the main reason for using a step-indexed semantics. However, while
they require the need for step-indexed semantics, they do not raise
any difficulty once the semantics has been correctly set up.

The k-approximation of a set R, written 〈R〉k is the subset
{e ∈ R | e < k} of element of R that are smaller than k

The following properties of approximations immediately follow
from the definition. 〈R〉0 is the empty set; a sequence of approx-
imations is the approximation by the minimum of the sequence:
〈〈R〉j〉k = 〈R〉jk; Two sets of terms that are equal at all approxi-
mations are equal: If 〈R〉k = 〈S〉k holds for all k, then R = S.

Definition 10 (Well-foundness). A function F on sets of terms is
well-founded (resp. non-expansive) if for any set of terms R, the
approximations of F R and F 〈R〉k are equal at rank k + 1 (resp.
k), i.e. 〈F R〉k+1 = 〈F 〈R〉k〉k+1 (resp. 〈F R〉k = 〈F 〈R〉k〉k)

Intuitively, well-foundedness (resp. non-expansiveness) ensures
that F builds terms smaller than k + 1 (resp. k) by only looking at
terms smaller than k in its argument.

The iteration of a well-founded function F does not look at its
argument for terms of small indices: 〈Fk R〉k is independent of
R; in particular, it is equal to 〈Fk ⊥〉k. Therefore, 〈Fj R〉kj and
〈Fk R〉kj are equal.

Definition 11 (Recursive operator). Given a well-founded function
F on sets of terms, we define µ̂F as the set of terms

⋃
k≥0 〈F

k⊥〉k.

The recursive operator preserves semantic types:

Lemma 12. If F is well-founded and maps semantic types to
semantic types, then µ̂F is a semantic type.

Moreover, recursive types can be unfolded or folded as expected: if
F is well-founded, then µ̂F = F (µ̂F). This is proved by showing
that 〈µ̂F〉k is equal to both 〈Fk ⊥〉k and 〈F (µ̂F)〉k for every k.

The following Lemma, which although in a different settings, is
stated exactly as with traditional step-indexed semantics [2]:

Lemma 13. We have the following properties:

• Every well-founded function is non-expansive.
• X 7→ X is non-expansive.
• X 7→ R where X is unused in R (R is constant) is well-founded.
• The composition of non-expansive functors is non-expansive.
• The composition of a non-expansive functor with a well-

founded functor (in either order) is well-founded.
• If F and G are non-expansive, then X 7→ F X →̂ G X and

X 7→ F X ×̂ G X are well-founded.
• If (Fi)

i∈I is a family of non-expansive (resp. well-founded)
functors, then X 7→

⋂
i∈I(Fi X) is non-expansive (resp. well-

founded).
• If X 7→ F X Y is non-expansive (resp. well-founded) for every

Y and F X is well founded for every X, then X 7→ µ̂ (F X) is
non-expansive (resp. well-founded).

Just for illustration X 7→ X →̂ S is well-founded since X 7→ X
is non-expansive and X 7→ S is constant, thus well-founded, and
therefore non-expansive.

3.7 Semantic judgment
A binding is a pair (x : R) of a variable and a semantic type. A
context is a set of bindings (x : R), defining a finite mapping from
term variables to types. We say that a substitution γ is compatible
with a context G and we write γ : G if dom(γ) and dom(G)
coincide and for all (x : R) in G, the term γ x is in R.

We define the semantic judgment G |= S as the set of terms e
such that γ e is in S for any substitution γ “compatible” with G.

Definition 14 (Semantic judgment).
γ : G

def
= ∀(x : R) ∈ G, γ x ∈ R

G |= S
def
= {e | ∀γ : G, γ e ∈ S}

We may now present the semantic typing rules for the simply-
typed λ-calculus.

Lemma 15 (Variable). If R is a type and (x : R) is in G, then xk

is in G |= R.

Proof. Let γ be compatible with G (1). We show that γ xk is in R.
Since (x : R) is in G, we have γ x in R by (1), Being a type, R
is closed by lowering. Hence, bγ xck is also in R. By definition of
substitution, this is equal to γ xk, which is thus also in R.

Lemma 16 (Abstraction). If R and S are types and e is in G, (x :
R) |= S, then λkx e is in G |= R →̂ S.

Proof. Let γ be compatible with G (1). We show that γ (λkx e) is
in R →̂ S (2). Assume γ (λkx e) ;? e1. Then e1 is necessarily of
the form λjx e′ where γ e;? e′.

We first show that λjx e′ ∈ S (3). Since γ is compatible with G,
γ, x 7→ x is compatible with G, (x : R) as variables are in all types.
Since e is in (G, (x : R) |= S), we have (γ, x 7→ x) e, i.e. γ e in S.
Since S is closed by reduction, we have e′ in S and a fortiori in S.
This implies (3).

Assume j > 0 and bfcj−1 ∈ R. Let γ′ be γ, x 7→ bfcj−1. By
construction γ′ : G, (x : R). Since e is in (G, (x : R) |= S), we

8 2013/7/12

have γ′ e in S and, since S is closed by reduction, e′[x← bfcj−1]
is also in S. By decreasing index we have be′[x← bfcj−1]cj−1 ∈
S, from which by Lemma 2 becomes be′[x ← f]cj−1 ∈ S. This
ends the proof of (2).

Lemma 17 (Application). If R and S are types, e is in G |= R→̂S,
and f is in G |= R, then (e f)k is in G |= S for any k.

Proof. Let γ be compatible with G. We show that γ (e f)k ∈ S. By
hypotheses we have γ e ∈ R →̂ S and γ f ∈ R. We prove the more
general result that for all k, e, and f , if e ∈ R →̂ S and f ∈ R hold,
then (e f)k ∈ S also holds. This is proved is by induction over the
strong normalization of e and f using the closure expansion of S.

The term (e f)k is neutral. It is also valid since e and f are
sound and, by construction of R →̂ S, e is an abstraction when
in normal form. If (e f)k reduces by a context rule, we use our
induction hypothesis. Otherwise, e must be of the form λj+1x e′

for some j and e′ and k be of the form k′ + 1 and the reduction is
(e f)k ; be′[x← f]cjk′ . It remains to show be′[x ← f]cjk′ ∈
S (1). We have bfcj ∈ R by stability under decreasing index. So,
we have be′[x ← f]cj ∈ S by definition of the arrow operator.
Then (1) follows by stability under decreasing index.

Lemma 18 (Pairs). Let R1 and R2 be types. If ei is in G |= Ri,
then 〈e1, e2〉k is in G |= R1 ×̂ R2. If e in G |= R1 ×̂ R2, then πi

k e
is in G |= Ri.

Note that when S is a type and R is a type for all (x : R) ∈ G,
then G |= S is a pretype.

4. Soundness
In order to show the soundness property we need the extraction
lemma (Lemma 19), which uses the usual weakening and substitu-
tion lemmas.

Lemma 19 (Extraction). The following properties hold:

• If Γ ` τ holds, then ` Γ holds.
• If Γ; Θ ` Στ . σ holds, then Γ,Σ ` τ and Γ ` σ hold.
• If a : Γ ` τ holds, then Γ ` τ holds.

The soundness proof is not direct. We will translate Fcι type
system from the λ-calculus to a temporary type system on the
indexed calculus. We will prove soundness for the indexed calculus
type system and migrate the result to the λ-calculus type system.
The relation between both type systems will be that if a λ-term is
well-typed then all indexed terms that drop on this λ-term are well-
typed too. And reciprocally, if an indexed term is well-typed, then
its dropped λ-term is well-typed too. Both directions preserve the
typing (the pair of the environment and type). Notice that only the
term judgment needs to be changed since it is the only one talking
about terms.

Syntactically, the indexed term judgment e : Γ ` τ contains
the exact same rules as those of the λ-term judgment. However
index annotations now appear on the term node we are typing. This
annotation has no constraint, which gives us that if a term is typed
with annotations it can be typed without and reciprocally if a term
is typed without annotations it can be typed with any annotations.

Lemma 20. The following assertions hold:

• If e : Γ ` τ holds, then bec : Γ ` τ holds.
• If a : Γ ` τ holds, then e : Γ ` τ holds for all e such that
bec = a.

To state and prove the soundness of the indexed type system we
interpret (syntactic) types and typing environments. The interpre-
tation of a syntactic type is a semantic type, but it is parametrized

over a mapping from type variables to semantic types written η.
The interpretation of a type variable is its value in the mapping. If
it is not present in the mapping, the top semantic type is returned.
The interpretation of arrow and product types simply use the ar-
row and product operators defined in §3.4. The interpretation of the
polymorphic type ∀(α, τ1 . τ2)ρ under η is the intersection of all
interpretations of ρ under η′ when η′ ranges in Iη(α, τ1 , τ2), i.e.
all extensions of η mapping α to R that validate the inclusions in-
duced by the coercions τ1 . τ2 . The interpretation of the recursive
type µα τ under η is the infinite iteration of the functor mapping X
under the extension of η mapping α to X—which corresponds to
the infinite unfolding of the recursive type. Finally, top and bottom
are mapped to their semantic equivalent.

Definition 21 (Type interpretation). The interpretation of a type τ
under η, written |τ |η is the set of terms recursively defined as:

• |α|η = η(α)

• |τ → σ|η = |τ |η →̂ |σ|η and |τ × σ|η = |τ |η ×̂ |σ|η
• |∀(α, τ1 . τ2)ρ|η =

⋂
η′∈Iη(α,τ1 ,τ2) |ρ|η′

• |µα τ |η = µ̂ (X 7→ |τ |η,α7→X)

• |⊥|η = ⊥̂ and |>|η = >̂

where Iη(α, τ1 , τ2) is defined as
{η′ | ∃R ∈ T, η′ = η, α 7→ R ∧ |τ1|η′ ⊆ |τ2|η′ }

We define the interpretation of environments as the pair of a
term substitution (a mapping from term variables to indexed terms)
and a semantic type mapping (from type variables to semantic
types). The interpretation is parametrized by initial mappings γ and
η. The empty environment is interpreted by the singleton set con-
taining the initial mappings. The interpretation of an environment
Γ extended with a term binding (x : τ) extends the term mappings
in the interpretation of Γ with x bound to a term in the interpreta-
tion of τ under the associated type mapping. The interpretation of
an environment Γ extended with an erasable binding (α, τ1 . τ2)
extends the type mapping η′ according to Iη′(α, τ1 , τ2).

We write |Γ| to stand for |Γ|∅∅. And we write |Γ|η the second
projection of |Γ|γη , which does not depend on γ, since the type
mapping does not depend on the term mapping.

Definition 22 (Environment semantic). We define |Γ|γη as follows:

• |∅|γη = {γη}
• |Γ, (x : τ)|γη = {(γ′, x 7→ e)η′ | γ′η′ ∈ |Γ|γη ∧ e ∈ |τ |η′}
• |Γ, (α, τ1 . τ2)|γη

= {γ′η′′ | γ′η′ ∈ |Γ|γη ∧ η
′′ ∈ Iη′(α, τ1 , τ2)}

Lemma 23 (Semantic weakening). If η′ ∈ |Γ|η and dom(Γ) is
disjoint from fv(τ), then |τ |η′ = |τ |η holds.

Lemma 24 (Semantic substitution). |τ |η′ = |τ [α← σ]|η,η′′
where η′ = η, α 7→ |σ|η , η

′′.

We have the following lemmas. If τ is non-expansive (resp.
well-founded) with respect to α, then its interpretation as a func-
tor is also non-expansive (resp. well-founded). If a concatenated
environment is well-formed then the interpretation of the second
one under the first is nonempty. If a type is well-formed, then its
interpretations under all type mappings in the interpretation of its
environment are semantic types. If a coercion is well-formed, then
the intersection of its domain type is included in the interpretation
of its codomain type. The intersection is taken according to the en-
vironment extension Σ and hypotheses in Θ are taken at the right
level. Finally, the application of a substitution γ to a term of type τ
in an environment Γ is in the interpretation of τ under η for all γη
in the interpretation of Γ.

9 2013/7/12

dxek = xk

dλx aek = λkx daek
d(a b)ek = (daek dbek)k

d〈a1, a2〉ek = 〈da1ek, da2ek〉k
dπi aek = πi

k daek

Figure 13. Fill function

Lemma 25. The following assertions hold.

• If α 7→ τ : NE holds, then (X 7→ |τ |η,α7→X) is non-expansive.
• If α 7→ τ : WF holds, then (X 7→ |τ |η,α7→X) is well-founded.
• If ` Γ,Γ′ holds, then ∀γη ∈ |Γ| , |Γ′|γη is not empty.
• If Γ ` τ holds, then ∀γη ∈ |Γ| , |τ |η ∈ T holds.
• If Γ; Θ ` Στ . σ holds, then ∀γη ∈ |Γ| ,∀k, |Θ0|kη ∧
|Θ1|k−1

η ⇒ ∀e < k, (∀η′ ∈ |Σ|η , e ∈ |τ |η′) ⇒ e ∈ |σ|η
holds where Θ0 = {τ . σ ∈ Θ} and Θ1 = {τ I σ ∈ Θ}.

• If e : Γ ` τ holds, then ∀γη ∈ |Γ| , γ e ∈ |τ |η holds.

The filling of λ-term a at rank k is the indexed-term obtained by
annotating each node of a with index k (Figure 13). By construc-
tion, we have bdaekc = a.

Theorem 26 (Soundness). If a : Γ ` τ holds, then a ∈ S.

Proof. Let a ;? b, we have to show b ∈ 0. Let k be the length
of the reduction and e be daek. We have e : Γ ` τ by Lemma 20.
By Lemma 19 we have ` Γ and Γ ` τ . By Lemma 25 we have
idη ∈ |Γ| for some η, |τ |η ∈ T, and id e ∈ |τ |η . By definition of
T we have |τ |η ⊆ S. From which we deduce e is in S and thus
also in 0. Thus a is also in 0.

Termination in the absence of recursive types Although evalua-
tion may not terminate because of the presence of recursive types, it
remains interesting to show that recursive types are the only source
of non-termination. We already know this in System F. We show
that coercions do not themselves introduce non-termination, as long
as all types remain non-recursive. The proof is based on reducibil-
ity candidates as for System F and does not raise any difficulties.
We thus omit the details.

Theorem 27 (Termination). If a : Γ ` τ holds in the sublanguage
without recursive types, then a strongly normalizes.

Subject reduction While by definition, there is subject reduction
on semantic types (as they are closed by reduction), we do not
have subject reduction syntactically. This just means that the type
system is too rough an approximation to still capture the invariant
of programs after they have been reduced.

4.1 Coq development
We have a Coq development of the soundness proof for Fcι . This
Coq development also contains a proof of equivalence between 3
versions of the typing rules: a first version with minimum redun-
dancy, a second version with enough redundancy to make extrac-
tion holds, and a last version even more redundant used to prove
soundness. This version is necessary for the induction hypothesis to
hold even for extracted judgments and not only the direct premises.

The development differs from the paper by using de-Bruijn
indices and using three homogeneous environments (for types,
coercions, and terms) instead of a heterogeneous dependent one.
The development can be found online.3

3 http://gallium.inria.fr/~remy/coercions/

5. Expressivity
The language Fcι is more expressive than Fpι : apart from the change
of presentation, moving from type coercions to typing coercions
and from explicit coercions to implicit coercions, the only signifi-
cant change is for type and coercion abstraction: the new construct
of Fcι which by design generalizes the two forms of coercion ab-
straction in Fpι . Indeed, we can choose ⊥ (resp. >) to witness co-
ercions that are parametric in their domain (resp. range). Therefore
the languages F<:, MLF, and Fη which are subsumed by Fpι can be
seen as sublanguages of Fcι too.

We show that languages with ML-like subtyping constraints [10]
can be simulated in Fcι . Term judgments are usually written
A ` e : τ | C where A is the environment, e the expression,
and τ its type, and C is a sequence of constraints, e.g. in [11]. We
may simulate these term judgments as e : (fv(A,C, τ), C), A ` τ .
Types and expressions are usually like ours: we unfold the let-
definitions of e and we write ∀(α,C)τ instead of ∀α.τ | C. No-
tice that the environment is of the form (α,C), A of one multiple
abstraction block (α,C) followed by term bindings A.

We claim that solvability implies the existence of coercions,
since it amounts to exhibit type witnesses such that the constraints
hold. These witnesses lie in a syntax with simple types and recur-
sive types. Moreover, since solvability is equivalent to consistency,
we conclude that consistency is equivalent witnesses existence.

The two interesting typing judgments we usually find are the
let-binding and the subsumption rule, which are derivable in Fcι :

α ` σ α ` C′[β ← σ]
b : (α,C),Γ, (x : ∀(β,C′)τ) ` ρ a : (α, β, C′),Γ ` τ

((λx b) a) : (α,C),Γ ` ρ

a : (α,C),Γ ` τ (α,C′) ` C, τ . σ (1)

a : (α,C′),Γ ` σ

However, there are two main differences with the way subtyping
constraints are handled in ML. With subtyping constraints, a judg-
ment A ` e : τ | C is valid when C is consistent; our corre-
sponding judgment (fv(A,C, τ), C), A ` e : τ is valid when C is
solvable, i.e. ` (fv(C), C), which must exhibit a substitution θ of
domain fv(C) such that ∅ ` Cθ. While consistency and solvability
coincide in ML, this need not be the case. Consistency is a seman-
tic property while solvability is a syntactic property. Using consis-
tency instead of solvability, we have only to verify a property of
the constraints, without having to exhibit a concrete solution. Con-
sistency is more flexible than solvability. In practice, it can also be
checked more modularly. It would be interesting if we could also
abstract from solvability and not have to always produce explicit
witnesses. Generalizing from sequences of elementary constraints
to some richer language of constraints with standard logic connec-
tives is also worth studying.

Subtyping constraints in ML are syntactic and take in a closed-
world view: subtyping relations that cannot be expressed syntacti-
cally do not hold, which can be used to reinforce constraint entail-
ment. Our approach in Fcι is semantic and syntactic coercions must
be interpreted in the semantics. Since our semantics has many more
types and coercions than the syntax allows to build, some reason-
ing principles that would be true from a purely syntactic point of
view will not hold in our semantics and thus cannot be added in
the syntax. We are bound to an open-world view. Still, it would be
interesting to see how our approach could be extended to allow a
form of closed world view and express some negative information.

10 2013/7/12

http://gallium.inria.fr/~remy/coercions/

6. Discussion
We first compare Fcι with our prior work Fpι and other related works
and discuss extensions of the language and future works.

6.1 Comparison with F
p
ι and other approaches

In previous work, we introduced a coercion language Fpι with type
abstraction and restricted coercion abstraction. The main novelty of
Fpι is to allow abstraction over coercions. However, this comes in
a restricted form that requires abstract coercions to be parametric
in either their domain or their range. This amounts to have the
following two forms of bounded quantification: ∀(α . τ)σ and
∀(α / τ)σ. The former means for all type variableα smaller than τ
and correspond to the bounded quantification written ∀(α <: τ)σ
in F<:; the latter ∀(α / τ)σ means for all type variable α that is an
instance of τ and correspond to the instance bounded quantification
of MLF.

The restriction to parametric coercions in Fpι ensures that co-
ercions cannot appear in wedges, which gives Fpι a type-erasing
semantics, i.e. coercions only contribute to typing but not to the re-
duction per se. In other words, they are carried on during the reduc-
tion, but reduction proceeds as if coercions had been erased prior
to reduction.

Relaxing the parametricity restriction of Fpι would allow to
abstract over wedges, as explained in the introduction. Then to
preserve the type-erasing semantics, we would have to introduce a
new reduction rule to break this wedge apart into a term of the form
G2〈M [x ← G1〈N〉]〉, where the two coercions G1 and G2 are
built from c. The intuition is that c should eventually be instantiated
by a coercion expecting an argument of type τ ′ → σ′ and applying
G1 of type τ . τ ′ to its argument follow by an application of G2

of type σ′ . σ to the result.
Even a simplification of this problem raises difficulties. Con-

sider the following simpler problem in our implicit calculus Fcι .
Assume that we have the following inclusion between semantic
types R′ → S′ ⊆ R→ S. There we can easily prove the inclusion
S′ ⊆ S. However, it is unclear whether R ⊆ R′ always holds.

Coherence is sufficient for type soundness, but in an explicit
language of coercions it does not suffice for subject reduction,
which also requires thatG1 andG2 have a syntactic representation.

Our approach in Fcι is to we avoid the need for decomposing ab-
stract coercions into smaller ones by presenting an implicit version
of the language. This also avoids introducing new coercion con-
structs in the language and their associated typing rules—which
we failed to proved to be sound by syntactic means in an explicit
language of coercions.

Besides, we abstract over related types and coercions simulta-
neously. That is, we abstract over a set of types along with a set of
coercions—and also require an example of type instantiation that
is used to prove coherence of the abstraction.

Actually, we also explored a syntactically more atomic version
of Fcι where type and coercion abstraction are separate constructs
as in Fι [6]. Namely, the usual type abstraction ∀α τ and coercion
abstraction (τ1 . τ2)⇒ σ—a term of type σ under the hypothesis
that τ1 . τ2 holds. The idea is write for instance a function of type
∀α (α → (τ1 . τ2) ⇒ σ) and apply it to a type parameter, then a
value of type α then a coercion. However, this additional flexibility
is negligible, these are just η-expansion variants of terms in Fcι .
Moreover, related type abstractions and coercions must still be
checked simultaneously. That is, even if the arguments are passed
separately, the typing derivation must maintain a notion of grouping
underneath so as to check for coherence. Moreover, it would be
much harder to find an explicit version of the calculus well-suited
for typechecking. The solution in Fcι seems a better compromise
between simplicity and expressiveness.

6.2 Related work
To the best of our knowledge there is no previous work considering
coercions as a inclusion of typings. However, the use of coercions
to study features of type system is not at all new.

Subtyping have been popularized by object-oriented languages,
even though inheritance is somehow better modeled by match-
ing [4] or row polymorphism [12]. In our view subtyping and poly-
morphism are both treated as coercions.

The heavy use of coercions in FC, the core language of GHC,
was one of our initial motivations for studying coercions. In FC,
only toplevel coercion axioms coming from type families and new-
types are checked for consistency. Local coercion abstractions are
not. This is safe because reduction does not proceed under coercion
abstraction in FC, and therefore, the code relying on incoherent as-
sumptions will never be reached. This simplifies the meta-theory
but at some significant cost, since coercions are not erasable in FC:
They must delay the evaluation order to prevent this above inconsis-
tencies. This makes our two works incomparable. However, if we
extend our language with existential types and higher-order types,
as discussed in §6.3 then the FC terms without dead codes due to
incoherent assumptions should be included in this extended lan-
guage.

All language features without computational content are treated
as coercions in Fcι . However, we have kept weakening implicit.
Explicit weakening would exercise our general approach to typ-
ing inclusions which we have only used in a restricted form. In-
terestingly, explicit weakening has already been used in combina-
tion with explicit substitution [7]. Moreover, a new form of reduc-
tion is introduced to break wedges creating a particular substitution
with the information about the weakening occurring in the wedge:
(〈k〉λt u) → [0/u, k]t. 〈k〉 is a constructor to lift a term by k de
Bruijn indices and [j/u, k] is the explicit substitution constructor:
the j de Bruijn index is substituted by 〈j〉u, indices smaller than j
are not modified, and those greater than j are incremented by k−1.

In [15] coercions are used to eliminate function call overhead
from datatype constructors. The folding and unfolding of datatype
definitions are done using erasable coercions, thus with no run-time
effect or hidden cost and preserving the semantics.

Recursive coercions have also been used to provide coercion
iterators over recursive structures [5]. However, the motivations are
quite different and coercions are only a tool to compile bounded
quantification away into intersection types.

6.3 Extensions and variations
Higher-order types We introduced Fcι as an extension of Sys-
tem F, thus restricting ourselves to second-order polymorphism.
We believe that our approach can be transferred to a calculus with
higher-order types such as Fω . The change is however significant,
since semantic types would have to be categorized by their kind.
We would also interpret kinds as set of semantic types. A type τ
would be of kind κ if its interpretation |τ | is in the interpretation of
its kind |κ|. The internal language FC of GHC already has higher-
order kinds.

Intersection types It should also be possible to add intersection
types. Our semantics already has intersection types. However, fol-
lowing the work of Wells [17] on branching types, it would be inter-
esting to have intersection types as branching typings, which would
be trees of typings where leaves are usual typings and nodes are
chunks of typing environments.

Existential types We haven’t included existential types in Fcι .
One possibility is using the CPS encoding of existential types into
universal types.

Adding primitive existential types is not immediate. This is not
so surprising as the combination of existential types with strong

11 2013/7/12

reduction strategies is known to raise difficulties. The natural inter-
pretation of existential types is the infinite union of the interpreta-
tions when the hidden part varies over all possible witnesses. The
problem is already present and easier to explain with union types:
the union of two semantic types is not obviously a type, and more
precisely closed by expansion, as is the case for intersection. A term
e in♦ (R ∪ S) could a priory reduce to both e1 in ∆R \∆S and e2
in ∆S \∆R and not be in R ∪ S.

In the current setting, where the underlying language is the λ-
calculus, it seems that e should be in R ∪ S by a complex stan-
dardization argument [13] in the absence of indices and may not
be applicable in the case of indices—or force us to have a more
involved definition of indexing compatible with standardization,
namely so that semantics types are closed by a form of standard-
ization. In any case, this argument cannot apply anymore if we add
non-determinism such as random choice to the calculus. In this
case, existential types must be reduced to a head normal form be-
fore unpacking, which is exactly what the CPS encoding of exis-
tential types enforces!

Alternate indexing Nevertheless, this raises the question of
whether our definition of indexing is the right one. There is a lot
of room for variations in the definition of indexing, since they are
only a mean of abruptly stopping the reduction as long as other
indexing of the same term will always allow to proceed further.
However, in this process we have lost some interesting properties
of the underlying λ-calculus such as confluence and standardiza-
tion. Finding alternative—but probably more complex—indexing
that would preserve those properties may still be worth exploring.

Side effects We have studied a calculus of coercions in an ideal
theoretical setting. Still, we do not foresee any problem in applying
this to a real programming language, in particular one with side
effects. As we have explained in the introduction, we are not bound
to a strong reduction strategy, but on the opposite have all the
freedom to choose weak reduction strategies for term abstractions.

Soundness in the presence of side-effects also require a form of
value-restriction: type and thus coercions abstractions should only
be allowed on values. We do not expect this to raise new problems
with coercions—nor them to disappear!

Other application of step-indexed semantics. Our semantics is
a form of unary logical relation, and we expect no difficulties
when considering binary relations. Step-indexing is also used in the
presence of side effects to break the recursion in the store. Checking
how indexed terms would work in the presence of a store remains
to be done.

From implicit to explicit coercions When coercions are left im-
plicit they must be inferred—as well as coercion witnesses, which
is obviously undecidable in the general case. In practice, the user
should provide both explicitly—or at least provide sufficient in-
formation so that they can be inferred. Hence, a surface language
would probably have explicit coercions—just for typing purposes.
Hence coercions should be dropped after typechecking. Indeed, we
do not describe how coercions—and in particular wedges—could
be reduced. Thus, our soundness result still applies—reduction will
not introduce erroneous programs—but it does not imply subject
reduction: it may happen that after reduction there is no way to
redecorate the residual program with explicit coercions so that it is
well-typed. We believe that this is the price to pay for the generality
that our approach offers.

Conclusion
Generalizing the notion of type coercions to typing coercions, we
have proposed a type system where the distinction between the

computation and the typing aspects of terms have been completely
separated. It subsumes many features of existing type systems in-
cluding subtyping, bounded quantification, instance bounded quan-
tification, and type constraints.

We have adapted the step-indexed semantics to work for calculi
with strong reduction strategies and used it to prove the soundness
of our language in a general setting. The step-indexed terms have
been introduced just for our needs, but it would be worth exploring
this approach further.

As for coercions, many research directions remain to be ex-
plored. Hopefully, new type system features such as higher-order
and dependent types could still be added. A surface language with
explicit coercions or coercions annotations is a prerequisite for de-
cidable type checking. Variations on constraints, moving from con-
crete coercion objects to proofs of coercibility in a logic, replacing
solvability by consistency, or allowing closed-world views, are all
worth further investigation.

References
[1] R. Amadio and L. Cardelli. Subtyping recursive types. ACM TRANS-

ACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 15
(4):575–631, 1993.

[2] A. W. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Transactions on
Programming Languages and Systems., 23(5), Sept. 2001.

[3] P. Baldan, G. Ghelli, and A. Raffaetà. Basic theory of F-bounded
quantification. Information and Computation, 153:173–237, 1999.

[4] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not a good
"match" for object-oriented languages. In ECOOP, pages 104–127,
1997.

[5] K. Crary. Typed compilation of inclusive subtyping. In Proceedings
of the International Conference on Functional Programming, 2000.

[6] J. Cretin and D. Rémy. On the power of coercion abstraction. In
Proceedings of the annual symposium on Principles Of Programming
Languages, 2012.

[7] R. David and B. Guillaume. A lambda-calculus with explicit weak-
ening and explicit substitution. Mathematical Structures in Computer
Science, 11(1), Feb. 2001.

[8] D. Le Botlan and D. Rémy. Recasting MLF. Information and Compu-
tation, 207(6), 2009.

[9] J. C. Mitchell. Polymorphic type inference and containment. Infor-
mation and Computation, 2/3(76), 1988.

[10] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with con-
strained types. Theory and Practice of Object Systems, 5(1):35–55,
1999.

[11] F. Pottier. Simplifying subtyping constraints. In Proceedings of the
International Conference on Functional Programming, 1996.

[12] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory And Practice of Object Systems, 4(1):27–50,
1998. A preliminary version appeared in the proceedings of the 24th
ACM Conference on Principles of Programming Languages, 1997.

[13] C. Riba. On the stability by union of reducibility candidates. In
H. Seidl, editor, FoSSaCS, volume 4423 of Lecture Notes in Computer
Science. Springer, 2007.

[14] T. C. D. Team. The Coq Proof Assistant, Reference Manual, Version
8.4. INRIA, 2012-2013.

[15] J. C. Vanderwaart, D. Dreyer, L. Petersen, K. Crary, R. Harper, and
P. Cheng. Typed compilation of recursive datatypes. In Workshop on
Types in Language Design and Implementation (TLDI), 2003.

[16] S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Gener-
ative type abstraction and type-level computation. POPL’11, 2011.

[17] J. B. Wells and C. Haack. Branching types. In Proc. of the European
Symposium On Programming Languages and Systems, 2002.

12 2013/7/12

	Introduction
	Language definition
	Semantics
	The indexed calculus
	Bisimulation
	Semantic types
	Simple types
	Intersection types
	Recursive types
	Semantic judgment

	Soundness
	Coq development

	Expressivity
	Discussion
	Comparison with F-iota-param and other approaches
	Related work
	Extensions and variations

