
Salto: Static Analyses for Trustworthy OCaml

Benoît Montagu (lead), Thomas Genet, Thomas Jensen

Inria+Nomadic Labs Scientific Day — June 1st 2022 — Inria Paris

1/9

https://people.irisa.fr/Benoit.Montagu/
https://people.irisa.fr/Thomas.Genet/
https://www.irisa.fr/celtique/jensen/


Salto project

What: static analysis for OCaml programs

Where: Celtique research team, Inria Rennes

Who: B. Montagu + T. Genet + T. Jensen + Nomadic Labs

Accepted: in summer 2021

Starting: as soon as possible!

We are hiring a research engineer
on a 2 year contract

Contact me!
 benoit.montagu@inria.fr 2/9

mailto:benoit.montagu@inria.fr


Static Analysis of OCaml Programs

Goals
▶ Detect the most common mistakes in OCaml programs, that cannot already

be caught by the type system
▶ Improve the safety of Nomadic Labs’ code by detecting actual issues
▶ Make the analyser available to the OCaml ecosystem

Examples

▶ Uncaught exceptions (e.g., system calls)
Fatal error: exception Sys_error("foo.txt: No such file or directory")

▶ Violated preconditions (e.g., non-empty list)
Fatal error: exception Failure("hd")

▶ Failure of an assertion that was explicitly written by a programmer
Fatal error: exception Assert_failure("bar.ml", 6, 14)

▶ Arithmetic errors (e.g., off-by-one, overflows)
Fatal error: exception Invalid_argument("index out of bounds")

3/9



Static Analysis of OCaml Programs

Goals
▶ Detect the most common mistakes in OCaml programs, that cannot already

be caught by the type system
▶ Improve the safety of Nomadic Labs’ code by detecting actual issues
▶ Make the analyser available to the OCaml ecosystem

Examples
▶ Uncaught exceptions (e.g., system calls)

Fatal error: exception Sys_error("foo.txt: No such file or directory")

▶ Violated preconditions (e.g., non-empty list)
Fatal error: exception Failure("hd")

▶ Failure of an assertion that was explicitly written by a programmer
Fatal error: exception Assert_failure("bar.ml", 6, 14)

▶ Arithmetic errors (e.g., off-by-one, overflows)
Fatal error: exception Invalid_argument("index out of bounds")

3/9



Static Analysis of OCaml Programs

Goals
▶ Detect the most common mistakes in OCaml programs, that cannot already

be caught by the type system
▶ Improve the safety of Nomadic Labs’ code by detecting actual issues
▶ Make the analyser available to the OCaml ecosystem

Examples
▶ Uncaught exceptions (e.g., system calls)

Fatal error: exception Sys_error("foo.txt: No such file or directory")
▶ Violated preconditions (e.g., non-empty list)

Fatal error: exception Failure("hd")

▶ Failure of an assertion that was explicitly written by a programmer
Fatal error: exception Assert_failure("bar.ml", 6, 14)

▶ Arithmetic errors (e.g., off-by-one, overflows)
Fatal error: exception Invalid_argument("index out of bounds")

3/9



Static Analysis of OCaml Programs

Goals
▶ Detect the most common mistakes in OCaml programs, that cannot already

be caught by the type system
▶ Improve the safety of Nomadic Labs’ code by detecting actual issues
▶ Make the analyser available to the OCaml ecosystem

Examples
▶ Uncaught exceptions (e.g., system calls)

Fatal error: exception Sys_error("foo.txt: No such file or directory")
▶ Violated preconditions (e.g., non-empty list)

Fatal error: exception Failure("hd")
▶ Failure of an assertion that was explicitly written by a programmer

Fatal error: exception Assert_failure("bar.ml", 6, 14)

▶ Arithmetic errors (e.g., off-by-one, overflows)
Fatal error: exception Invalid_argument("index out of bounds")

3/9



Static Analysis of OCaml Programs

Goals
▶ Detect the most common mistakes in OCaml programs, that cannot already

be caught by the type system
▶ Improve the safety of Nomadic Labs’ code by detecting actual issues
▶ Make the analyser available to the OCaml ecosystem

Examples
▶ Uncaught exceptions (e.g., system calls)

Fatal error: exception Sys_error("foo.txt: No such file or directory")
▶ Violated preconditions (e.g., non-empty list)

Fatal error: exception Failure("hd")
▶ Failure of an assertion that was explicitly written by a programmer

Fatal error: exception Assert_failure("bar.ml", 6, 14)
▶ Arithmetic errors (e.g., off-by-one, overflows)

Fatal error: exception Invalid_argument("index out of bounds")
3/9



What We Achieved So Far

▶ An analyser for a subset of OCaml (pure, exception-less, shallow patterns…)
 This is already an interesting challenge! (untyped, higher-order language)

▶ An abstract interpretation-based control-flow analysis (∇CFA)
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-based control-flow analysis”. In: PLDI

’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211. Ed. by Stephen N. Freund and
Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

▶ ∇CFA uses a local fixpoint solver [1, 7, 9] performing widened Kleene iterations
val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
 Cleanly separates the declaration of transfer functions from the

iteration/convergence strategy
 Advocated by B. Jeannet [3], and actually used in the goblint C analyser [10]

▶ ∇CFA exploits an abstract domain for regular sets of algebraic values:
 Draws some ideas from tree automata
 Reuses standard arithmetic abstract domains
 Inspired from the type graphs (cyclic structures, used in analysis of Prolog [2])
 Inspired from the theory of equi-recursive types

4/9

https://doi.org/10.1145/3453483.3454057
https://goblint.in.tum.de/home


What We Achieved So Far

▶ An analyser for a subset of OCaml (pure, exception-less, shallow patterns…)
 This is already an interesting challenge! (untyped, higher-order language)

▶ An abstract interpretation-based control-flow analysis (∇CFA)
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-based control-flow analysis”. In: PLDI

’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211. Ed. by Stephen N. Freund and
Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

▶ ∇CFA uses a local fixpoint solver [1, 7, 9] performing widened Kleene iterations
val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
 Cleanly separates the declaration of transfer functions from the

iteration/convergence strategy
 Advocated by B. Jeannet [3], and actually used in the goblint C analyser [10]

▶ ∇CFA exploits an abstract domain for regular sets of algebraic values:
 Draws some ideas from tree automata
 Reuses standard arithmetic abstract domains
 Inspired from the type graphs (cyclic structures, used in analysis of Prolog [2])
 Inspired from the theory of equi-recursive types

4/9

https://doi.org/10.1145/3453483.3454057
https://goblint.in.tum.de/home


What We Achieved So Far

▶ An analyser for a subset of OCaml (pure, exception-less, shallow patterns…)
 This is already an interesting challenge! (untyped, higher-order language)

▶ An abstract interpretation-based control-flow analysis (∇CFA)
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-based control-flow analysis”. In: PLDI

’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211. Ed. by Stephen N. Freund and
Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

▶ ∇CFA uses a local fixpoint solver [1, 7, 9] performing widened Kleene iterations
val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
 Cleanly separates the declaration of transfer functions from the

iteration/convergence strategy
 Advocated by B. Jeannet [3], and actually used in the goblint C analyser [10]

▶ ∇CFA exploits an abstract domain for regular sets of algebraic values:
 Draws some ideas from tree automata
 Reuses standard arithmetic abstract domains
 Inspired from the type graphs (cyclic structures, used in analysis of Prolog [2])
 Inspired from the theory of equi-recursive types

4/9

https://doi.org/10.1145/3453483.3454057
https://goblint.in.tum.de/home


What We Achieved So Far

▶ An analyser for a subset of OCaml (pure, exception-less, shallow patterns…)
 This is already an interesting challenge! (untyped, higher-order language)

▶ An abstract interpretation-based control-flow analysis (∇CFA)
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-based control-flow analysis”. In: PLDI

’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 20211. Ed. by Stephen N. Freund and
Eran Yahav. ACM, 2021, pp. 482–496. DOI: 10.1145/3453483.3454057

▶ ∇CFA uses a local fixpoint solver [1, 7, 9] performing widened Kleene iterations
val fix: ((X.t -> Y.t) -> (X.t -> Y.t)) -> (X.t -> Y.t)
 Cleanly separates the declaration of transfer functions from the

iteration/convergence strategy
 Advocated by B. Jeannet [3], and actually used in the goblint C analyser [10]

▶ ∇CFA exploits an abstract domain for regular sets of algebraic values:
 Draws some ideas from tree automata
 Reuses standard arithmetic abstract domains
 Inspired from the type graphs (cyclic structures, used in analysis of Prolog [2])
 Inspired from the theory of equi-recursive types

4/9

https://doi.org/10.1145/3453483.3454057
https://goblint.in.tum.de/home


An OCaml Example: Insertion In a Sorted List

1 (* absolute value *)
2 let abs x = if x >= 0 then x else -x
3

4 (* insertion in a sorted list *)
5 let rec insert x l = match l with
6 | [] -> [x]
7 | y :: l' ->
8 if x < y then x :: l else y :: insert x l'
9

10

11 (* arbitrary sorted list of size n whose elements are >= 42 *)
12 let rec make n =
13 if n <= 0 then [] else insert (42 + (Random.int max_int)) (make (n-1))
14

15 let head = match insert 1 (make (Random.int max_int)) with
16 | [] -> -127 (* /!\ should never happen *)
17 | x :: _ -> x (* head of the list: must be 1 *)
18

19 let result = (head = 1) (* should always return true *) 5/9



The Same Example, Translated

1 (* absolute value *)
2 val abs x = if x >= 0 then x else -x
3

4 (* insertion in a sorted list *)
5 val rec insert x l = match l with
6 | Nil -> Cons (x, Nil)
7 | Cons p -> match p with (y, l') ->
8 if x < y then Cons (x, l) else Cons (y, insert x l')
9 end end

10

11 (* arbitrary sorted list of size n whose elements are >= 42 *)
12 val rec make n =
13 if n <= 0 then Nil else insert (42 + (abs ?int)) (make (n-1))
14

15 val head = match insert 1 (make (abs ?int)) with
16 | Nil -> -127 (* /!\ should never happen *)
17 | Cons p -> match p with (x, _) -> x end (* head of the list: must be 1 *)
18 end
19 val result = (head = 1) (* should always return true *) 6/9



The Same Example, Analysed

▶ The analyser runs natively, and in the
web browser thanks to js_of_ocaml

▶ On this program, the analyser infers
the most precise result

▶ And emits no warning

Some remarks:
▶ Line 19: result is necessarily the

boolean true
▶ Line 16 is detected as unreachable
 it could be deleted!

▶ Line 15: the list
insert 1 (make (abs ?int))
necessarily starts with the value 1

Tested on plenty of examples (higher-order, monadic, CPS, ill-typed…)

7/9



The Same Example, Analysed

▶ The analyser runs natively, and in the
web browser thanks to js_of_ocaml

▶ On this program, the analyser infers
the most precise result

▶ And emits no warning
Some remarks:

▶ Line 19: result is necessarily the
boolean true

▶ Line 16 is detected as unreachable
 it could be deleted!

▶ Line 15: the list
insert 1 (make (abs ?int))
necessarily starts with the value 1

Tested on plenty of examples (higher-order, monadic, CPS, ill-typed…)

7/9



The Same Example, Analysed

▶ The analyser runs natively, and in the
web browser thanks to js_of_ocaml

▶ On this program, the analyser infers
the most precise result

▶ And emits no warning
Some remarks:

▶ Line 19: result is necessarily the
boolean true

▶ Line 16 is detected as unreachable
 it could be deleted!

▶ Line 15: the list
insert 1 (make (abs ?int))
necessarily starts with the value 1

Tested on plenty of examples (higher-order, monadic, CPS, ill-typed…) 7/9



The Road Ahead (1)

Support more features found in OCaml
▶ Support exceptions

 Exceptions as values
 Local exceptions (difficult inside recursive functions)

▶ Detect arithmetic overflows/underflows for Int31, Int32, Int63, Int64
▶ Support mutable state

 References and mutable data-types
 Arrays
 External state provided by the OS (e.g., file descriptors)

▶ Cyclic values, e.g.: let rec l = 1 :: l
▶ Labelled arguments, modules, functors, objects, classes…

8/9



The Road Ahead (2)

Refine the analysis
▶ Extend the fixpoint solver to interleave forward and backward analyses

 Asks to find a pair of (post-)fixpoints for two mutually-defined functionals
▶ Incorporate a narrowing phase to the fixpoint solver
▶ Exploit the types inferred by the OCaml compiler (reduced product)
▶ Specific abstract domains for strings, bytes, sets, maps, hash-tables…

8/9



The Road Ahead (3)

Improve efficiency
▶ Transition from a simple/naive implementation to an efficient/clever one

Improve usability
▶ Handle the actual OCaml AST as input

 A rather large AST…
 … that contains some redundant features
 … and may change over time

▶ Discover the structure of an OCaml project
 Start some work on improving dune describe

▶ Make the analyser incremental
 Minimise the number of necessary re-computations
 Save partial results on the filesystem

 This is where a research engineer would be extremely useful! 8/9



The Road Ahead (4)

Long term challenges
▶ Relational analysis (especially: input/output relations)

 Stable relations
Benoıt̂ Montagu and Thomas P. Jensen. “Stable Relations and Abstract

Interpretation of Higher-order Programs”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 119:1–119:30. DOI: 10.1145/3409001
 S. Bautista and T. Losekoot Ph.D theses on relational domains

▶ Non-sequential code (LWT/Async)

Much longer term challenges
▶ Low-level representation of data (Obj module)
▶ Polymorphic and physical equality
▶ Signals? Algebraic effects (one-shot continuations)? Multicore?
 For “Salto 2”?

8/9

https://doi.org/10.1145/3409001


The Road Ahead (4)

Long term challenges
▶ Relational analysis (especially: input/output relations)

 Stable relations
Benoıt̂ Montagu and Thomas P. Jensen. “Stable Relations and Abstract

Interpretation of Higher-order Programs”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 119:1–119:30. DOI: 10.1145/3409001
 S. Bautista and T. Losekoot Ph.D theses on relational domains

▶ Non-sequential code (LWT/Async)

Much longer term challenges
▶ Low-level representation of data (Obj module)
▶ Polymorphic and physical equality
▶ Signals? Algebraic effects (one-shot continuations)? Multicore?
 For “Salto 2”? 8/9

https://doi.org/10.1145/3409001


Thank you for your attention

Salto: Static Analyses for Trustworthy OCaml

B. Montagu + T. Genet + T. Jensen + Nomadic Labs

Celtique research team, Inria Rennes

9/9





References i

Baudouin L. Charlier and Pascal Van Hentenryck. A Universal Top-Down
Fixpoint Algorithm. Tech. rep. USA, 1992. URL:
ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf.
Pascal Van Hentenryck, Agostino Cortesi and Baudouin Le Charlier. “Type
analysis of prolog using type graphs”. In: The Journal of Logic Programming
22.3 (Mar. 1995), pp. 179–209. DOI: 10.1016/0743-1066(94)00021-w.
Bertrand Jeannet. “Some Experience on the Software Engineering of Abstract
Interpretation Tools”. In: Electronic Notes in Theoretical Computer Science
267.2 (Oct. 2010), pp. 29–42. DOI: 10.1016/j.entcs.2010.09.016.
Xavier Leroy and François Pessaux. “Type-based analysis of uncaught
exceptions”. In: ACM Trans. Program. Lang. Syst. 22.2 (2000), pp. 340–377. DOI:
10.1145/349214.349230.

ftp://ftp.cs.brown.edu/pub/techreports/92/cs92-25.pdf
https://doi.org/10.1016/0743-1066(94)00021-w
https://doi.org/10.1016/j.entcs.2010.09.016
https://doi.org/10.1145/349214.349230


References ii

Benoıt̂ Montagu and Thomas P. Jensen. “Stable Relations and Abstract
Interpretation of Higher-order Programs”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 119:1–119:30. DOI: 10.1145/3409001.
Benoıt̂ Montagu and Thomas P. Jensen. “Trace-based control-flow analysis”.
In: PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25,
20211. Ed. by Stephen N. Freund and Eran Yahav. ACM, 2021, pp. 482–496. DOI:
10.1145/3453483.3454057.
Helmut Seidl and Ralf Vogler. “Three Improvements to the Top-Down Solver”.
In: Proceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming, PPDP 2018, Frankfurt am Main,
Germany, September 03-05, 2018. Ed. by David Sabel and Peter Thiemann.
ACM, 2018, 21:1–21:14. DOI: 10.1145/3236950.3236967.

https://doi.org/10.1145/3409001
https://doi.org/10.1145/3453483.3454057
https://doi.org/10.1145/3236950.3236967


References iii

Olin Shivers. “The Semantics of Scheme Control-Flow Analysis”. In:
Proceedings of the 1991 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation. PEPM ’91. New York, NY, USA:
Association for Computing Machinery, 1991, pp. 190–198. ISBN: 0897914333.
DOI: 10.1145/115865.115884.
Paulo Emı́lio de Vilhena, François Pottier and Jacques-Henri Jourdan. “Spy
game: verifying a local generic solver in Iris”. In: Proc. ACM Program. Lang.
4.POPL (2020), 33:1–33:28. DOI: 10.1145/3371101.
Vesal Vojdani et al. “Static race detection for device drivers: the Goblint
approach”. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016. ACM, 2016, pp. 391–402. DOI:
10.1145/2970276.2970337.

https://doi.org/10.1145/115865.115884
https://doi.org/10.1145/3371101
https://doi.org/10.1145/2970276.2970337

	Appendix

