
Nurturing OCaml day by day, part two

Florian Angeletti

Inria

florian.angeletti@inria.fr
1 June 2022

1

mailto:florian.angeletti@inria.fr

Releasing often and predictably

Target release cycle

3 months feature development phase

3 months Bug fixing

alpha releases stable features and IRs, no guarantee for users

beta releases stable internal API, ready for library writers

rc release opam ecosystem ready

2

Release rhythm

2020/09 2020/12 2021/03 2021/06 2021/09 2021/12 2022/03 2022/06

4.14.0
4.13.1

4.14.0-rc2
4.14.0-rc1

4.14.0-beta1

4.14.0-alpha2
4.14.0-alpha1

4.12.1

4.13.0

4.13.0-rc2
4.13.0-rc1

4.13.0-beta1

4.13.0-alpha2
4.13.0-alpha1

4.12.0

4.11.2

4.12.0-rc1

4.12.0-beta2
4.12.0-beta1

4.10.2

4.12.0-alpha3
4.12.0-alpha2

4.12.0-alpha1

3

Opam ecosystem as an extended compiler test suite

Core idea � Using opam ecosystem as CI as soon as a new version is branched

� require to patch core packages to explore more packages

� Collaboration with Kate Deplaix

Successes � OCaml 4.14: computation time for new metadata exploded on

functor heavy codebase like irmin, fixed before alpha

� Typechecker refactoring broke some recursive types: fixed in

4.14.0 rc2

Failures � 4.13.0→4.13.1 : classes named “row” triggered an internal error

� 4.11.0→4.11.1: no more value restriction

Result
4.14.0 released with most opam packages ready

4

User experience

Improved error messages

� Error messages are the voice of the compiler during development

� If an error message suggests a fix, it should be the right one

� Error messages should be exhaustive

5

Higher-level error messages for functors and type definitions

Signature mismatch:
...
Type declarations do not match:

type t = A | B | D | C
is not included in

type t = A | B | C | D
Constructors number 3 have different names, D and C.

(Work in collaboration with Gabriel Radanne)

6

Higher-level error messages for functors and type definitions

Signature mismatch:
...
Type declarations do not match:

type t = A | B | D | C
is not included in

type t = A | B | C | D
Constructors C and D have been swapped.

(Work in collaboration with Gabriel Radanne)

6

Improved Merlin support

� Go-to definition is a complicated notion in OCaml

� Where is the Euler-Mascheroni constant defined in the code below?

module type S = sig val euler_mascheroni: float end
module F(X:S)(Y:S) = struct

module A = Y module B = X
end
module G(X:sig module A:S end)=X.A
include G(F(Origin)(Origin))

� New metadata information for tracking the origin of definition across includes and

functors applications. (Work by Thomas Refis, Ulysse Gérard; review by Gabriel

Scherer, Nathanaëlle Courant and me)

7

Improved documentation

� Odoc-compatible generation of the documentation for the standard library

� New style for the online version of the manual by San Vũ Ngo.c (reviewed by me)

� Many fixes in the latex code by Wiktor Kuchta (reviewed by me)

� Future work: integration with the new version of ocaml.org

8

Refactoring

Error traces extended

� Before OCaml 4.14.0, error traces at the module level did not explain type

mismatches.

val f : y -> x
is not included in
val f : a -> b

� Refactoring work by Antal Spector-Zabusky (Janestreet) (reviewed by me)

9

Error traces extended

� Before OCaml 4.14.0, error traces at the module level did not explain type

mismatches.

val f : y -> x
is not included in
val f : a -> b
The type y -> x is not compatible with

the type a -> b
Type x = [‘C | ‘D] is not compatible with

type b = [‘C | ‘D | ‘E]
The first variant type does not allow tag(s) ‘E

� Refactoring work by Antal Spector-Zabusky (Janestreet) (reviewed by me)

9

Making the typechecker more approachable

Classes and class types

� Class and class types typechecking was full of implicit invariants

� Leo White refactored the code to be more explicit and more maintainable

Type expressions

� Types expressions are represented as mutable digraphs in the OCaml typechecker

type 'a t = < x: 'a > as 'a
� Manipulating those digraphs without breaking abstractions was an art form

� Jacques Garrigue and Takafumi Saikawa refactored the typechecker to add

abstraction barriers to make it easier for non-expert to manipulate those digraphs

(reviewed by Gabriel Radanne, Leo White, and me)

10

Monitoring compiler performance

Abstraction versus performance

� More abstraction for type expressions =⇒ loss of optimization opportunity

� Does that matter? How do we know?

� Few tests on few programs =⇒ statistical bias

11

Statistical monitoring

� Benchmarking compilation time with enough opam packages to avoid selection

bias, with enough runs to collect statistical information

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100

af
te

r/
be

fo
re

Quantiles

CDF

Quantiles for minimal typechecking times

0

0.2

0.4

0.6

0.8

1

base
containers

coq
dune

ocam
lbuild

topkg

af
te

r/
be

fo
re

files

Ratio of average typechecking time compared to average total compilation time

12

Long-term monitoring

� Compiler performance: detecting regressions, guiding design decisions

� Collaboration with Tarides (Arthur Wendling, Shakthi Kannan, Jon Ludlam, Jan

Midtgaard, Puneeth Chaganti, Zineb Jambin): long-term monitoring with more

data points both in term of monitored packages and historical data

13

OCaml 5 on the horizon

OCaml multicore

� Long-term effort since 2014 with major contribution from KC Sivaramakrishnan,

Stephen Dolan, Enguerrand Decorne, Sadiq Jaffer, Sudha Parimala, David

Allsopp, Leo White, and the rest of the Tarides multicore team

� Convergence between the OCaml experimental runtime and the main runtime

started with OCaml 4.10

� Acceleration in OCaml 4.12 and OCaml 4.13

� OCaml multicore has been merged in the main OCaml branch on January 10

� OCaml core team has been working on understanding, stabilising, and

documenting the new code.

� OCaml 5.0: experimental version

14

OCaml 5 is coming
... this summer

14

Parallelism

� OCaml 4 runtime was protected by a global lock: only one thread was ever doing

OCaml-side work

� OCaml 5 supports parallelism using domains

� The standard library expose low-level constructs. Users are expected to use

higher-level libraries.

15

module Task = Domainslib.Task
let rec fib_par pool n =

if n > 20 then begin
let a = Task.async pool (fun _ -> fib_par pool (n-1)) in
let b = Task.async pool (fun _ -> fib_par pool (n-2)) in
Task.await pool a + Task.await pool b

end else fib n

16

Effect handlers

Effect handlers allow the programmers to describe computations that perform effectful

operations, whose meaning is described by handlers that enclose the computations.

� OCaml 5 runtime supports algebraic effects and effect handlers

� Experimental support in the language exposed through low-level primitives

� Syntax and type systems will be designed in future versions

17

open Effect
open Effect.Deep
type _ Effect.t += Xchg: int -> int t
let comp1 () = perform (Xchg 0) + perform (Xchg 1)

try_with comp1 ()
{ effc = fun (type a) (eff: a t) ->

match eff with
| Xchg n -> Some (fun (k: (a, _) continuation) ->

continue k (n+1))
| _ -> None }

18

Sequential compatibility

� Mostly identical performance for sequential code

� Full compatibility with OCaml 4.14

� ... except for some long deprecated modules

� ... with compatibility libraries available when 5.0 release

19

Conclusion

Conclusion

� Regular releases, better user experience, internal refactoring, better development

analytic

� A lot of progress ... a lot of work remaining

� A new exciting major version is on the horizon

� And stay tuned for the next talk on longer-term evolutions for OCaml

20

Thank you for your attention

20

	Releasing often and predictably
	User experience
	Refactoring
	Monitoring compiler performance
	OCaml 5 on the horizon
	Conclusion

