
Latest improvments in the Jasmin compiler
and protection against Spectre attacks

Benjamin Grégoire and Swarn Priya

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 1



Provable cryptography

Algorithms: EasyCrypt

Primitives(RSA)

Protocols(SSH)
Adversary

Provable security: Pr [A breaks P] ≤ Pr [B(A) breaks assumption] + ε

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 2



Provable cryptography

Algorithms: EasyCrypt

Primitives(RSA)

Protocols(SSH)
Adversary

Provable security: Pr [A breaks P] ≤ Pr [B(A) breaks assumption] + ε

Source code: Jasmin
Code Adversary

Provable security: Algorithms + Functional correctness + Safety

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 2



Provable cryptography

Algorithms: EasyCrypt

Primitives(RSA)

Protocols(SSH)
Adversary

Provable security: Pr [A breaks P] ≤ Pr [B(A) breaks assumption] + ε

Source code: Jasmin
Code Adversary

Provable security: Algorithms + Functional correctness + Safety

Assembly: Jasmin

Provable security: Source + Compiler + CCT

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 2



Jasmin language

Goal: combine performance, correctness, and security of implementations

1. Combine high level abstraction (loop, array, function, . . .) and low-level
(assembly instruction, register, stack)

2. A predictable compiler, formally proved in the Coq proof assistant

3. A simple and clear semantic⇒ automatic and interactif verification tools

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 3



A Jasmin program

inline fn mix2accs(stack u64[8] acc, inline int off, reg u64 p) −→ reg u64 {
reg u64[2] data;
reg u64 m;
inline int i;
for i = 0 to 2 {

data[i] = acc[i + off];
data[i] ˆ= [p + 8 * i];

}
m = mul128fold64(data);
return m;

}

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 4



The Jasmin compiler

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 5



Correctness of the compiler

• a and b are source states (Jasmin level)
• α and β are target states (x86 level)

P : a b

[[P]] :α β

≈ ≈

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 6



Correctness of the compiler

• a and b are source states (Jasmin level)
• α and β are target states (x86 level)

P : a b

[[P]] :α β

≈ ≈

Correctness of the compiler allows to map:
• functional correctness from source to assembly
• exact security from source to assembly

Does not help for CCT

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 6



Cryptographic Constant Time (CCT)

Crypto implementation need to be protected against cache attacks

if (e) { e leaks, so needs to be public
x = p[i]; the address of p[i] leaks, so · · ·
}

Cryptographic constant time:
• No branching on secret dependent condition
• No load/store on secret dependent address

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 7



Cryptographic Constant Time (CCT)

a b
l

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 8



Cryptographic Constant Time (CCT)

a b
l

a′ b′
l ′

l = l ′

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 8



Cryptographic Constant Time (CCT)

a b
l

a′ b′
l ′

l = l ′

α β
F (l)

≈ ≈

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 8



Cryptographic Constant Time (CCT)

a b
l

a′ b′
l ′

l = l ′

α β
F (l)

≈ ≈

α′ β′
F (l ′)

≈ ≈

F (l) = F (l ′)

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 8



Preservation of Constant Time

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Swarn Priya: Structured
Leakage and Applications to Cryptographic Constant-Time and Cost. CCS
2021:
• Preservation of constant time
• Cost analysis at assembly level from cost analysis at source level

Under submission:
• Strengthening the model (div, mod)
• Weakening the model (cache line)
• theoretical attack found in openSSL (MEE-CBC) + patch provided

Problem : CCT does not protect against Specter attacks.

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 9



The problem with speculation (Specter V1)

p[10] s[5]

// i = 11
if (i < 10) {

x = p[i];
if (x = 0) { · · · } leaks x = 0 (so (s[0] = 0)
[x] = 0; leaks x (so s[0])
}

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 10



Counter measures

• use LFENCE:
Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin
Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, Peter Schwabe:
High-Assurance Cryptography in the Spectre Era. IEEE Symposium on
Security and Privacy 2021: 1884-1901

• use Speculative Load Hardening (llvm)
• use Selective Speculative Load Hardening (Jasmin, work in progress)

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 11



Where we are ?

• A type system for SSLH at source level
• Various implementations of crypto and post-quantum crypto are already

protected (scalar and avx2 implementations):
- hash algorithms: sha256, sha3-224/256/384/512, shake128/256
- one time auth: poly1305
- stream: chacha, salsa20, xsalsa20
- KEM : Kyber (on going work)

• A proof of the type system for a toy language
• But we do not understand how to prove preservation of SCT . . .
• On going work:

- A type system for SSLH at assembly level
- The type system relies on a points-to analysis (provided by the compiler)
- Proof in progress for Jasmin

Benjamin Grégoire and Swarn Priya – Latest improvments in the Jasmin compiler and protection against Spectre attacks 12


