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Provable cryptography

Algorithms: EasyCrypt
Primitives(RSA)

<—— | Adversary
Protocols(SSH)

Provable security: Pr[A breaks P] < Pr[B(A) breaks assumption] + €
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Provable cryptography

EasyCrypt

Algorithms:

Primitives(RSA)
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Protocols(SSH)

Provable security: Pr[A breaks P] < Pr[B(A) breaks assumption] + €

Source code:
Code —

Provable security: Algorithms + Functional correctness + Safety
Jasmin

Jasmin

Assembly:

T

Provable security: Source + Compiler + CCT
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Jasmin language

Goal: combine performance, correctness, and security of implementations

1. Combine high level abstraction (loop, array, function, ...) and low-level
(assembly instruction, register, stack)

2. A predictable compiler, formally proved in the Coq proof assistant
3. A simple and clear semantic = automatic and interactif verification tools
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A Jasmin program

inline fn mix2accs(stack ué4[8] acc, inline int off, reg u64 p) — reg ué4 {
reg u64[2] data;
reg ué4 m;
inline int i;
fori=0to2{
datal[i] = accfi + off];
datafi] "= [p + 8 *i];

m = mul128fold64(data);
return m;
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The Jasmin compiler

Source level analysis
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Correctness of the compiler

» gand b are source states (Jasmin level)
* « and [ are target states (x86 level)

P.a——»b
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Correctness of the compiler

e aand b are source states (Jasmin level)
e o and g are target states (x86 level)

P:a——pb
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Correctness of the compiler allows to map:
« functional correctness from source to assembly
 exact security from source to assembly

Does not help for CCT
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Cryptographic Constant Time (CCT)

Crypto implementation need to be protected against cache attacks

if (e) { e leaks, so needs to be public
x = p[i]; the address of p[i] leaks, so - - -

Cryptographic constant time:

« No branching on secret dependent condition
* No load/store on secret dependent address
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Cryptographic Constant Time (CCT)
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Cryptographic Constant Time (CCT)
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Cryptographic Constant Time (CCT)

b

X
Q

F(I :
() 5

-
-
I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g




Cryptographic Constant Time (CCT)
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Preservation of Constant Time

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Swarn Priya: Structured
Leakage and Applications to Cryptographic Constant-Time and Cost. CCS
2021:

 Preservation of constant time

» Cost analysis at assembly level from cost analysis at source level
Under submission:

 Strengthening the model (div, mod)

» Weakening the model (cache line)

« theoretical attack found in openSSL (MEE-CBC) + patch provided
Problem : CCT does not protect against Specter attacks.
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The problem with speculation (Specter V1)

| p[10] | s8] |
Ni=11
if (i<10){
x = pli];
ifx=0){---} leaks x = 0 (so (s[0] = 0)
[x]=0; leaks x (so s[0])

}

-
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Counter measures

e use LFENCE:
Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin
Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, Peter Schwabe:
High-Assurance Cryptography in the Spectre Era. IEEE Symposium on
Security and Privacy 2021: 1884-1901

 use Speculative Load Hardening (llvm)
 use Selective Speculative Load Hardening (Jasmin, work in progress)
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Where we are ?

A type system for SSLH at source level

 Various implementations of crypto and post-quantum crypto are already
protected (scalar and avx2 implementations):
- hash algorithms: sha256, sha3-224/256/384/512, shake128/256
- one time auth: poly1305
- stream: chacha, salsa20, xsalsa20
- KEM : Kyber (on going work)

A proof of the type system for a toy language

» But we do not understand how to prove preservation of SCT ...
On going work:
- A type system for SSLH at assembly level

- The type system relies on a points-to analysis (provided by the compiler)
- Proof in progress for Jasmin
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