Latest improvments in the Jasmin compiler
and protection against Spectre attacks

Benjamin Grégoire and Swarn Priya

Benjamin Grégoire and Swarn Priya — Latest im‘ 'he Jasmin compiler and protection against Spectre attacks 1

Provable cryptography

Algorithms: EasyCrypt
Primitives(RSA)

<—— | Adversary
Protocols(SSH)

Provable security: Pr[A breaks P] < Pr[B(A) breaks assumption] + €

-
-
l 0&2&0/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 2

Provable cryptography

Algorithms: EasyCrypt
Primitives(RSA)

<—— | Adversary
Protocols(SSH)

Provable security: Pr[A breaks P] < Pr[B(A) breaks assumption] + €

Source code: Jasmin

Code ——>

Provable security: Algorithms + Functional correctness + Safety

-
l &Li&la/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 2

Provable cryptography

EasyCrypt

Algorithms:

Primitives(RSA)
—

Protocols(SSH)

Provable security: Pr[A breaks P] < Pr[B(A) breaks assumption] + €

Source code:
Code —

Provable security: Algorithms + Functional correctness + Safety
Jasmin

Jasmin

Assembly:

T

Provable security: Source + Compiler + CCT

-
I &Li&la/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 2

Jasmin language

Goal: combine performance, correctness, and security of implementations

1. Combine high level abstraction (loop, array, function, ...) and low-level
(assembly instruction, register, stack)

2. A predictable compiler, formally proved in the Coq proof assistant
3. A simple and clear semantic = automatic and interactif verification tools

l &ZW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 3

A Jasmin program

inline fn mix2accs(stack ué4[8] acc, inline int off, reg u64 p) — reg ué4 {
reg u64[2] data;
reg ué4 m;
inline int i;
fori=0to2{
datal[i] = accfi + off];
datafi] "= [p + 8 *i];

m = mul128fold64(data);
return m;

-
-
I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 4

The Jasmin compiler

Source level analysis

F—Jﬁ

Trusted front-end
Safety check
. . -rove
Expand ., [Jasmin «—
parameters . Source EasyCrypt security
. proof

........................... i Cost analysis

. Remove

. Dead code Constant . -

: il « propagation «— Unroling <€—— unu;ed «— Inlining
: functions

. ¢ C

: Constant N . > Dead code > & > Dead code
. propagation IRenElry elimination Sk SR elimination
Dead code ¢ Register ¢ Instruction ¢ Register aray ¢

: elimination allocation selection expansion

Stack Alloc Linearize

Asmgen | —>{ Pretty printer {{}
Trusted pretty-printer

-
-
l &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 5

Correctness of the compiler

» gand b are source states (Jasmin level)
* « and [are target states (x86 level)

P.a——»b

¢
1%

-
-
I 0&260/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks ¢

Correctness of the compiler

e aand b are source states (Jasmin level)
e o and g are target states (x86 level)

P:a——pb

: s~
~ : LR

1Pl — >

Correctness of the compiler allows to map:
« functional correctness from source to assembly
 exact security from source to assembly

Does not help for CCT

I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks ¢

Cryptographic Constant Time (CCT)

Crypto implementation need to be protected against cache attacks

if (e) { e leaks, so needs to be public
x = p[i]; the address of p[i] leaks, so - - -

Cryptographic constant time:

« No branching on secret dependent condition
* No load/store on secret dependent address

-
l &Li&la/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 7

Cryptographic Constant Time (CCT)

a———pb

-
-
I &le/- Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g

Cryptographic Constant Time (CCT)

//
g —»

a

b

-
-
I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g

Cryptographic Constant Time (CCT)

b

X
Q

F(I :
() 5

-
-
I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g

Cryptographic Constant Time (CCT)

I/
g —»)

b

Q
Q

-
I 0&260/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g

Preservation of Constant Time

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Swarn Priya: Structured
Leakage and Applications to Cryptographic Constant-Time and Cost. CCS
2021:

 Preservation of constant time

» Cost analysis at assembly level from cost analysis at source level
Under submission:

 Strengthening the model (div, mod)

» Weakening the model (cache line)

« theoretical attack found in openSSL (MEE-CBC) + patch provided
Problem : CCT does not protect against Specter attacks.

l &Z’Zﬁla/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks g

The problem with speculation (Specter V1)

| p[10] | s8] |
Ni=11
if (i<10){
x = pli];
ifx=0){---} leaks x = 0 (so (s[0] = 0)
[x]=0; leaks x (so s[0])

}

-
-
I &LW Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 19

Counter measures

e use LFENCE:
Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin
Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, Peter Schwabe:
High-Assurance Cryptography in the Spectre Era. IEEE Symposium on
Security and Privacy 2021: 1884-1901

 use Speculative Load Hardening (llvm)
 use Selective Speculative Load Hardening (Jasmin, work in progress)

l &Z’Z&a/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 11

Where we are ?

A type system for SSLH at source level

 Various implementations of crypto and post-quantum crypto are already
protected (scalar and avx2 implementations):
- hash algorithms: sha256, sha3-224/256/384/512, shake128/256
- one time auth: poly1305
- stream: chacha, salsa20, xsalsa20
- KEM : Kyber (on going work)

A proof of the type system for a toy language

» But we do not understand how to prove preservation of SCT ...
On going work:
- A type system for SSLH at assembly level

- The type system relies on a points-to analysis (provided by the compiler)
- Proof in progress for Jasmin

l &Z’Zéla/— Benjamin Grégoire and Swarn Priya — Latest improvments in the Jasmin compiler and protection against Spectre attacks 12

