
Latest Improvements and Applications of
Steel, a Concurrent Separation Logic for F*

1

Aymeric Fromherz
Inria Paris

What is F*

• A proof-oriented, functional programming language
• With support for dependent types, user-defined effects, …
• Semi-automated verification by relying on SMT solving
• Also offers a metaprogramming and tactic framework (Meta-F*)

2

F* Successes

• Vale/HACL*/EverCrypt:
• A verified, large, industrial-grade cryptographic provider
• Over 100k lines of verified C and Assembly code

(~200k-300k lines of manually-written F* code)
• Deployed in Firefox, Linux, Wireguard, Tezos, …

3

F* Successes

• Vale/HACL*/EverCrypt:
• A verified, large, industrial-grade cryptographic provider
• Over 100k lines of verified C and Assembly code

(~200k-300k lines of manually-written F* code)
• Deployed in Firefox, Linux, Wireguard, Tezos, …

• EverParse
• Verified parsers and serializers for binary formats
• Deployed in Microsoft Azure

• Also EverQuic, Noise*, Signal*, miTLS, …

4

F* Successes

• Vale/HACL*/EverCrypt:
• A verified, large, industrial-grade cryptographic provider
• Over 100k lines of verified C and Assembly code

(~200k-300k lines of manually-written F* code)
• Deployed in Firefox, Linux, Wireguard, Tezos, …

• EverParse
• Verified parsers and serializers for binary formats
• Deployed in Microsoft Azure

• Also EverQuic, Noise*, Signal*, miTLS, …
• But no concurrency, and memory reasoning is tedious

5

A Different Approach: Separation Logic

• Separating memory through the ⋆ operator: P ⋆ Q

6

A Different Approach: Separation Logic

• Separating memory through the ⋆ operator: P ⋆ Q
• Modular heap reasoning through the Frame rule

7

𝑄 𝑐 {𝑅}
𝑃 ⋆ 𝑄 𝑐 {𝑃 ⋆ 𝑅}

A Different Approach: Separation Logic

• Separating memory through the ⋆ operator: P ⋆ Q
• Modular heap reasoning through the Frame rule

• Predicates to reason about memory: r ↦ 𝑣

• Many extensions (Concurrency, Resource usage, …)
8

𝑄 𝑐 {𝑅}
𝑃 ⋆ 𝑄 𝑐 {𝑃 ⋆ 𝑅}

𝑟 ↦ 𝑣 𝑟 ≔ 0 {𝑟 ↦ 0}
𝑠 ↦ 𝑢 ⋆ 𝑟 ↦ 𝑣 𝑟 ≔ 0 {𝑠 ↦ 𝑢 ⋆ 𝑟 ↦ 0}

Steel: An Overview

• A shallow embedding of Concurrent Separation Logic (CSL) in F*

9

Steel: An Overview

• A shallow embedding of Concurrent Separation Logic (CSL) in F*
• With an expressive, extensible program logic [ICFP’ 20]

Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, …

10

Steel: An Overview

• A shallow embedding of Concurrent Separation Logic (CSL) in F*
• With an expressive, extensible program logic [ICFP’ 20]

Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, …

• Automation through a cooperation between SMT solving and custom
separation logic decision procedures [ICFP’ 21]

11

Steel: An Overview

• A shallow embedding of Concurrent Separation Logic (CSL) in F*
• With an expressive, extensible program logic [ICFP’ 20]

Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, …

• Automation through a cooperation between SMT solving and custom
separation logic decision procedures [ICFP’ 21]

• Many verified, dependently-typed libraries (AVL trees, concurrent
queues, lock-free concurrency, message-passing concurrency, …)

12

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2)
(λ _→ ptr p1 ★ ptr p2)
(requires λ _→ ⊤)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2] /\ s0.[p2] == s1.[p1])

Steel by Example

13

Steel a p q: a computation that has
return type a, under the
precondition p, and with the
postcondition q

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2)
(λ _→ ptr p1 ★ ptr p2)
(requires λ _→ ⊤)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2] /\ s0.[p2] == s1.[p1])

Steel by Example

14

Expects two valid, disjoint pointers

Steel a p q: a computation that has
return type a, under the
precondition p, and with the
postcondition q

Returns two valid, disjoint pointers } Memory Shape

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2)
(λ _→ ptr p1 ★ ptr p2)
(requires λ _→ ⊤)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2] /\ s0.[p2] == s1.[p1])

Steel by Example

15

Expects two valid, disjoint pointers

Steel a p q: a computation that has
return type a, under the
precondition p, and with the
postcondition q

Returns two valid, disjoint pointers } Memory Shape

} Functional Correctness

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2)
(λ _→ ptr p1 ★ ptr p2)
(requires λ _→ ⊤)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2] /\ s0.[p2] == s1.[p1])

= let v1 = read p1 in
let v2 = read p2 in
write p1 v2;
write p2 v1

Steel by Example

16

Expects two valid, disjoint pointers

Steel a p q: a computation that has
return type a, under the
precondition p, and with the
postcondition q

Returns two valid, disjoint pointers } Memory Shape

} Functional Correctness

• Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

Memory Allocator

Ongoing Project: Verifying a Memory Allocator

17

malloc

free

• Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

Memory Allocator

Ongoing Project: Verifying a Memory Allocator

18

Efficient map library

Metadata

Array of bytes

Data

malloc

free

• Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

• Current status:
• Partially verified C implementation
• Working with the Zathura PDF viewer

Memory Allocator

Ongoing Project: Verifying a Memory Allocator

19

Efficient map library

Metadata

Array of bytes

Data

malloc

free

Ongoing Project: Improving Automation

• Problem: How to reduce SMT response time to make verification
more developer-friendly?
• Idea: Leverage specification logic specifications to reason on a

functionalized version of the program

• Translation is done using tactics, and is hence provably sound
20

Ongoing Project: Improving Automation

• Problem: How to reduce SMT response time to make verification
more developer-friendly?
• Idea: Leverage specification logic specifications to reason on a

functionalized version of the program

• Translation is done using tactics, and is hence provably sound
21

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2) (ptr p1 ★ ptr p2)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2])

= let v1 = read p1 in
let v2 = read p2 in
write p1 v2; write p2 v1

Ongoing Project: Improving Automation

• Problem: How to reduce SMT response time to make verification
more developer-friendly?
• Idea: Leverage specification logic specifications to reason on a

functionalized version of the program

• Translation is done using tactics, and is hence provably sound
22

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2) (ptr p1 ★ ptr p2)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2])

= let v1 = read p1 in
let v2 = read p2 in
write p1 v2; write p2 v1

let swap_func (p1 p2:int)
: Pure (int * int)

(ensures λ p1!, p2! → p1 == p2’)
= let v1 = p1 in

let v2 = p2 in
return (v2, v1)

Ongoing Project: Improving Automation

• Problem: How to reduce SMT response time to make verification
more developer-friendly?
• Idea: Leverage specification logic specifications to reason on a

functionalized version of the program

• Translation is entirely done using tactics, and is hence provably sound
23

let swap (p1 p2:ref int) : Steel unit
(ptr p1 ★ ptr p2) (ptr p1 ★ ptr p2)
(ensures λ s0 _ s1 → s0.[p1] == s1.[p2])

= let v1 = read p1 in
let v2 = read p2 in
write p1 v2; write p2 v1

let swap_func (p1 p2:int)
: Pure (int * int)

(ensures λ p1!, p2! → p1 == p2’)
= let v1 = p1 in

let v2 = p2 in
return (v2, v1)

A Vision for Steel
• Steel: A foundation for high-assurance systems programming
• Extraction to verified C
• Support for lock-free concurrency
• High level of automation through a mixture of tactics and SMT

24

A Vision for Steel
• Steel: A foundation for high-assurance systems programming
• Extraction to verified C
• Support for lock-free concurrency
• High level of automation through a mixture of tactics and SMT

• Ongoing and Future Directions:
• Verification of a secure memory allocator
• Improve the programmability, usability and tooling
• End-to-end verification of secure communication protocols
• Drop-in replacements for high-assurance Rust libraries

25

aymeric.fromherz@inria.fr

