T o A

e o A et S SO N A Y '
e VR Mo ORI gt o P or e KSR, A A A

'~ Latest Improvements and Applications of
Steel, a Concurrent Separation Logic for F*

& e *N v . ‘ VAU X LA A g, ok Kt SRR SRS i A -1 et ] y RIS ATS SRR | C7 27 LT T Edneae vt 41, - _—
P , R IR R an S SRS A FHOASE P SR iy DI PASE 120 RS :
p . TS WA (T
o ¢
.

Aymeric Fromherz
Inria Paris



What is F*

* A proof-oriented, functional programming language
* With support for dependent types, user-defined effects, ...
* Semi-automated verification by relying on SMT solving Zgl

* Also offers a metaprogramming and tactic framework (Meta-F*)




F* Successes

* Vale/HACL*/EverCrypt:

* A verified, large, industrial-grade cryptographic provider

* Over 100k lines of verified C and Assembly code
(~200k-300k lines of manually-written F* code)

* Deployed in Firefox, Linux, Wireguard, Tezos, ...



F* Successes

* Vale/HACL*/EverCrypt:

* A verified, large, industrial-grade cryptographic provider

* Over 100k lines of verified C and Assembly code
(~200k-300k lines of manually-written F* code)

* Deployed in Firefox, Linux, Wireguard, Tezos, ...

* EverParse
 Verified parsers and serializers for binary formats
* Deployed in Microsoft Azure

* Also EverQuic, Noise*, Signal*, miTLS, ...



F* Successes

* Vale/HACL*/EverCrypt:

* A verified, large, industrial-grade cryptographic provider

* Over 100k lines of verified C and Assembly code
(~200k-300k lines of manually-written F* code)

* Deployed in Firefox, Linux, Wireguard, Tezos, ...

* EverParse
 Verified parsers and serializers for binary formats
* Deployed in Microsoft Azure

* Also EverQuic, Noise*, Signal*, miTLS, ...
e But no concurrency, and memory reasoning is tedious



A Different Approach: Separation Logic

e Separating memory through the x operator: P *xQ



A Different Approach: Separation Logic

e Separating memory through the x operator: P *xQ
* Modular heap reasoning through the Frame rule

0} c {R}
tP*Q)c{P*R}




A Different Approach: Separation Logic

e Separating memory through the x operator: P *xQ
* Modular heap reasoning through the Frame rule

0} c {R}
tP*Q)c{P*R}

* Predicates to reason about memory: r— v
{r>vjr =0{r - 0}
ispPuxrevir =0{s>uxrm» 0}

* Many extensions (Concurrency, Resource usage, ...)



Steel: An Overview

* A shallow embedding of Concurrent Separation Logic (CSL) in F*



Steel: An Overview

* A shallow embedding of Concurrent Separation Logic (CSL) in F*

* With an expressive, extensible program logic [ICFP’ 20]

Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, ...



Steel: An Overview

* A shallow embedding of Concurrent Separation Logic (CSL) in F*

* With an expressive, extensible program logic [ICFP’ 20]
Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, ...

* Automation through a cooperation between SMT solving and custom
separation logic decision procedures [ICFP’ 21]



Steel: An Overview

* A shallow embedding of Concurrent Separation Logic (CSL) in F*

* With an expressive, extensible program logic [ICFP’ 20]
Partial Commutative Monoids (PCMs), Dynamically-allocated invariants,
Monotonicity, Impredicativity, ...

* Automation through a cooperation between SMT solving and custom
separation logic decision procedures [ICFP’ 21]

* Many verified, dependently-typed libraries (AVL trees, concurrent
queues, lock-free concurrency, message-passing concurrency, ...)



Steel a p g: a computation that has

Stee‘ by Fxam p | e return type a, under the

precondition p, and with the
postcondition g

let swap (p1 p2:ref int) : Steel unit
(ptr p1 % ptr p2)
A _— ptrpl % ptr p2)

(
(requiresA _— T)
(ensures AsO _s1 — s0.[p1] ==s1.[p2] /\ sO.[p2] == s1.[p1])



Steel a p g: a computation that has
return type a, under the
St@@‘ by Exa M p l € precondition p, and with the
postcondition g

let swap (p1 p2:ref int) : Steel unit
(ptr pl ) ¢ ptr p2) < Expects two valid, disjoint pointers
A _— ptr pl % ptr p2) < Returns two valid, disjoint pointers

} Memory Shape

(
(requiresA _— T)
(ensures AsO _s1 — s0.[p1] ==s1.[p2] /\ sO.[p2] == s1.[p1])

14



Steel a p g: a computation that has
return type a, under the
St@@‘ by Exa M p l € precondition p, and with the
postcondition g

let swap (p1 p2:ref int) : Steel unit
(ptr pl ) ¢ ptr p2) < Expects two valid, disjoint pointers
A _— ptr pl % ptr p2) < Returns two valid, disjoint pointers

} Memory Shape

(
(requires A _— T) _
(ensures A sO _s1 — s0.[p1] ==s1.[p2] /\ sO.[p2] == s1.[p1]) } Functional Correctness

15



Steel a p g: a computation that has
return type a, under the
precondition p, and with the
postcondition g

Steel by Example

let swap (p1 p2:ref int) : Steel unit
(ptr pl ) ¢ ptr p2) < Expects two valid, disjoint pointers
(A _— ptr pl % ptr p2) < Returns two valid, disjoint pointers

} Memory Shape

(requiresA _— T)
(ensures AsO _s1 — s0.[p1] ==s1.[p2] /\ sO.[p2] == s1.[p1])

=letvl =read plin
let v2 =read p2 in
write pl v2;
write p2 vl

} Functional Correctness

16



Ongoing Project: Veritying a Memory Allocator

e Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

C N

—

malloc =—
R

—
free |

0 Memory Allocator 4




Ongoing Project: Verifying a Memory Allocator

e Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

malloc

free Metadata

18



Ongoing Project: Veritying a Memory Allocator

e Goal: Develop a verified, performant, concurrent memory allocator
with modern security defenses in Steel

. )
malloc —— | Efficient map library x Array of bytes
——
free /7 J 2
0 Memory Allocator 4

* Current status:

 Partially verified C implementation
* Working with the Zathura PDF viewer




Ongoing Project: Improving Automation

* Problem: How to reduce SMT response time to make verification
more developer-friendly?

* Idea: Leverage specification logic specifications to reason on a
functionalized version of the program




Ongoing Project: Improving Automation

* Problem: How to reduce SMT response time to make verification
more developer-friendly?

* Idea: Leverage specification logic specifications to reason on a
functionalized version of the program

let swap (pl p2:ref int) : Steel unit
(ptr p1 % ptr p2) (ptr p1 * ptr p2)

=let vl =read plin
let v2 =read p2in
write pl v2; write p2 vl



Ongoing Project: Improving Automation

* Problem: How to reduce SMT response time to make verification
more developer-friendly?

* Idea: Leverage specification logic specifications to reason on a
functionalized version of the program

let swap (pl p2:ref int) : Steel unit let swap_func (p1 p2:int)
(ptr p1 % ptr p2) (ptr p1 * ptr p2) : Pure (int * int)
e—
=let vl =read plin =letvl=plin
let v2 =read p2 in letv2 =p2in

write p1 v2; write p2 vl return (v2, v1)



Ongoing Project: Improving Automation

* Problem: How to reduce SMT response time to make verification
more developer-friendly?

* Idea: Leverage specification logic specifications to reason on a
functionalized version of the program

let swap (pl p2:ref int) : Steel unit let swap_func (p1 p2:int)

(ptr p1 % ptr p2) (ptr pl % ptr p2) : Pure (int * int)

(ensures A sO _s1 — s0.[p1] == 51.[p2]) === (ensures A (p1’,p2') - pl==p2’)
=let vl =read plin =letvl=plin

let v2 =read p2 in letv2 =p2in

write p1 v2; write p2 vl return (v2, v1)

* Translation is entirely done using tactics, and is hence provably sound



A Vision for Steel

* Steel: A foundation for high-assurance systems programming
* Extraction to verified C
e Support for lock-free concurrency
* High level of automation through a mixture of tactics and SMT



A Vision for Steel

* Steel: A foundation for high-assurance systems programming
 Extraction to verified C
e Support for lock-free concurrency
* High level of automation through a mixture of tactics and SMT

* Ongoing and Future Directions:
 Verification of a secure memory allocator
* Improve the programmability, usability and tooling
* End-to-end verification of secure communication protocols
* Drop-in replacements for high-assurance Rust libraries

aymeric.fromherz@inria.fr

25



