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Context: cleanup the OCaml type checker

low road incremental improvements to the implementation
(refactoring, documentation, etc.)
lots of work with Florian, Thomas, Jacques, Takafumi,
Antal, etc.
already mentiond by Florian

high road revolution... in the ivory tower rebuild from scratch to
understand better
with semantics and proofs
(and also code)

This work: part of the high road.

2



Inferno: the pitch (1/2)

Inferno: a type inference library by François Pottier.

Ideal world: for any type system, use Infero to easily write type inference.

Reality in 2018: for any ML subset with fun and let, ...
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Inferno: the pitch (2/2)

Inferno: a type inference library.

Our current objectives:

cover an interesting subset of the OCaml type system

client type-checkers are pleasant:
I for their developers (for example: good testing story)
I for their users (for example: decent error messages)
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Design of Inferno

Algorithmic building blocks:

generic unification

transactional union-find

generalization with ranks

A constraint language with semantic actions
elaborates to explicitly-typed terms
... forcing you to design a typed language

A programming style to use those constraints:

applicative functor for constraints and their actions

explicit CPS for quantifiers (context operators)
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let rec hastype (t : ML.term) (w : variable) : F.nominal_term co

= match t with

| ML.Abs (pos, x, u) -> (* fun x -> u *)

let@ v1 = exist in

let@ v2 = exist in

let+ () = w --- arrow v1 v2

and+ u’ = def (X.Var x) v1 (hastype u v2)

and+ ty1 = decode v1

in F.Abs (pos, x, ty1, u’) (* fun (x:ty) -> u’ *)

| ML.LetProd (pos, xs, t, u) ->(* let (x1, x2...) = t in u *)

let on_var (x:ML.tevar) : (’a, ’r) binder =

fun (k : ’b -> ’r co) : ’r co ->

let@ v = exist in

def (X.Var x) v (k v)

in

let@ vs = mapM_now on_var xs in

let+ t’ = lift hastype t (product vs)

and+ u’ = hastype u w

in F.LetProd(pos, xs, t’, u’) (* let (x1,x2..) = t’ in u’ *)
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Our deeds

Our project contributed to Inferno:

The current expression style for constraints (binding operators).

a “cram” testsuite

“typed holes” for better counter-example shrinking

client: inference for algebraic datatypes and pattern-matching

constraints: rigid variables (fun (type a) -> ...)

Ongoing work:

type-based disambiguation

GADTs

Thanks!
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Reasoning about effects

The project “Évolution d’OCaml” funds Paulo de Vilhena’s PhD grant.

Paulo studies delimited control effects,
also known as effect handlers, which will appear in OCaml 5.

His results include:

• verification rules for effects (POPL 2021);
• type-checking rules for effects (ongoing work, pending submission).
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http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf


An example: control inversion

A typical use of effects is control inversion,
that is, turning an iter function into a lazy sequence.

val invert :

((’a -> unit) -> unit) -> (* an iter function: producer in control *)

’a Seq.t (* a lazy sequence: consumer in control *)
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Control inversion in OCaml 5

Using so-called deep handlers:

open Effect

open Effect.Deep

let invert (type a) (iter : (a -> unit) -> unit) : a Seq.t =

let open struct type _ Effect.t += Yield : a -> unit t end in

let yield v = perform (Yield v) in

fun () ->

match_with iter yield {

retc = (fun () -> Seq.Nil);

exnc = raise;

effc = fun (type b) (e : b Effect.t) ->

match e with

| Yield v -> Some (fun (k : (b, _) continuation) ->

Seq.Cons (v, continue k))

| _ -> None }

(Beautiful syntax for effects is still missing in OCaml 5.)
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Control inversion in OCaml 5

Or, less mysteriously, using lower-level shallow handlers:

open Effect

open Effect.Shallow

let invert (type a) (iter : (a -> unit) -> unit) : a Seq.t =

let open struct type _ Effect.t += Yield : a -> unit t end in

let yield v = perform (Yield v) in

let rec loop (k : (unit, unit) continuation) : a Seq.node =

continue_with k() {

retc = (fun () -> Seq.Nil);

exnc = raise;

effc = fun (type b) (e : b Effect.t) ->

match e with

| Yield v -> Some (fun (k : (b, _) continuation) ->

Seq.Cons (v, fun () -> loop k))

| _ -> None }

in

fun () -> loop (fiber (fun () -> iter yield))
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How to specify and verify this code?

We use Separation Logic (Iris), extended with

• protocols, describing the effects that a computation may perform;
• new reasoning rules for performing an effect and installing a handler.
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Specification of invert

The specification of invert in Iris is roughly:

(* For every sequence xs,

for every function iter,

if iter produces the sequence xs,

then the function call invert(iter)

performs no effect

and returns seq

such that seq produces the sequence xs. *)

This specification relies on two auxiliary definitions,

• iter produces the sequence xs

• seq produces the sequence xs
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Specification of an iter function

What does it mean for iter to produce a sequence xs?

(* Pick an arbitrary definition of produced(ys) -- a loop invariant.

Pick an arbitrary effect protocol psi.

Suppose that, always, for every index i,

provided x is xs[i],

the function call f(x)

may perform effects according to psi

and transforms the state produced(xs[0..i))

into the state produced(xs[0..i+1)),

Then the function call iter(f)

may perform effects according to psi

and transforms the state produced([])

into the state produced(xs). *)

This specification is polymorphic in produced and psi.
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Specification of an iter function

What does it mean for seq to produce a sequence xs?

(* Either xs is empty and

the function call seq()

performs no effect

and returns Seq.Nil

or xs is nonempty and

the function call seq()

performs no effect

and returns Seq.Cons(xs[0], seq’)

where seq’ produces the sequence xs[1..]. *)
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Summary

I have briefly shown

• an implementation of invert in OCaml 5;
• a specification of invert.

Paulo has a machine-checked proof that the code meets the spec.

• The proof involves a custom loop invariant (defined using ghost
state) and a custom protocol (also tied with this ghost state).

Future work includes

• a strong type discipline for effects (ongoing work);
• support for effects in Gospel, OCaml’s specification language.
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