
CAVOC: Compositional Automated Verification of OCaml

Guilhem Jaber
Gallinette Team, LS2N, Univ. Nantes

Journée scientifique Inria - Nomadic Labs
1st of June

1 / 16



CAVOC in a nutshell

Started in September 2021

Members:

Hamza Jaâfar (PhD student, Gallinette team)
Guilhem Jaber (mâıtre de conférences, Nantes Univ., Gallinette team)
Gabriel Radanne (Inria researcher, Cash team)

External member:

Laure Gonnord (professor, ESISAR, INP Grenoble, LCIS)

Objective:

Automatically check module-safety of OCaml code

Based on:

Game semantics
Higher-order model checking
Constrained Horn clauses

2 / 16



Module-safety ?

module M : sig
type t

val get : unit→ t

val check : t→ unit

end = struct

type t = int

let c = ref 0

let get () = c :=!c + 1; !c
let check x = assert (x > 0)

end

Check that no OCaml code that uses this module trigger the assert

3 / 16



Long-term goal: Safety of the Buffer module

“This module implements buffers that automatically expand as necessary.”

(* Excerpt of the signature:*)

type t

val create : int -> t

val contents : t -> string

val add_string : t -> string -> unit

(* Example of code *)

let concat_strings ss =

let b = Buffer.create 16 in

List.iter (Buffer.add_string b) ss;

Buffer.contents b

Abstract type t is implemented as a record with some mutable byte

field;

Resizing done by add string is safe: no out of range access in the
byte field.

4 / 16



5 / 16



Fµωρε
F: Church-style parametric polymorphism

µ: iso-recursive types

ω: type constructors, higher-order polymorphism

ρ: mutable references and region type system

ε: exceptions and effect type system

6 / 16



From OCaml to Fµωρε

Use the OCaml compiler to parse and infer types

producing a Typedtree, the typed abstract syntax tree used internally
by the compiler

Elaborate the Typedtree into Fµωρε

introduce variants and records construction into Fµωρε
translate GADT via equality constraints and existential types
applicative/generative functors via the F-ing module methodology

7 / 16



Effect and Region inference for Fµωρε

Annotate function types with their associated effects:

uncaught exceptions

using row polymorphism
useful for benign exceptions (like Not found)

mutable references

using regions associated to syntactic allocation points
detect location disclosure
provide aliasing information

detect pure (effect-free) functions

easier to analyze

8 / 16



Behind the stage...

A fully-abstract game model for Fµωρε

Interaction between a Fµωρε program and its environment is
represented as a play between Proponent (the program) and
Opponent (the environment).

Denotation of a program is formed by all the possible interactions
with any environment.

Plays in a denotation should be in exact correspondence with
environment written in Fµωρε: full-abstraction.

9 / 16



Operational presentation of game semantics

Plays correspond to traces formed by calls and returns of functions
exchanged between Proponent and Opponent.

Such traces are computed by a labelled transition system representing
the denotation of programs

 by computing interaction on the fly using operational semantics

10 / 16



Typing as behavioral specification

Types specifies the rules of the game between Player and Opponent:

based on a polarized interpretation:

Interacting with values of negative types (codata)
Observing values of positive types (data)

abstract values for polymorphic types are represented as atoms that
can only be exchanged

computational interpretation of parametricity as dynamic sealing

effect and region annotations constrains the behavior of Opponent.

11 / 16



Scaling to more complex interaction models

Asynchronous callbacks for signal handlers;

Finalizers from garbage collected values;

Asynch/Lwt’s promises;

Multiple domains running in parallel (OCaml 5);

algebraic effect and handlers with one-shot continuation (OCaml 5).

Future work!

12 / 16



Towards symbolic representation of the interactive
denotation of Fµωρε terms

Main challenges:

Disentangle the internal control flow (recursion, interprocedural) of a
module with its interaction with Opponent;

Reason symbolically on values exchanged between Proponent and
Opponent;

Represent dynamical allocation and the heap structure logically.

13 / 16



Constrained Horn Clauses

A first-order formula of the shape

∀x̄ .C ∧ B1 ∧ · · · ∧ Bn ⇒ H

C a constraint formula written in a specified theory (linear integer
arithmetic, arrays, algebraic data-types,. . . )
each Bi is a of the form r(t1, . . . , tm) with r an uninterpreted relation
symbol;
H is either false or of the form r(t1, . . . , tm) as well.

Solvers for checking satisfiability of CHC: z3, Eldarica, RInGen;

Used for automated verification of various programming languages

C (SeaHorn), Java (JayHorn), Ada (AdaHorn); Rust (RustHorn)

Simplification of CHCs via some transformations

Elimination of algebraic data-types, arrays, heaps
From non-linear to linear CHCs.

14 / 16



module M : sig
type t

val get : unit→ t

val check : t→ unit

end = struct

type t = int

let c = ref 0

let get () = c :=!c + 1; !c
let check x = assert (x > 0)

end

0 1

2

3

4

trueVc 7→0

c 7→yV(c 7→z∧Pt(z)

∧z=y+1)

Pt(x)∧c 7→yVc 7→y ,y>0

P
t (x)V

x≤0

15 / 16



16 / 16


