CAVOC: Compositional Automated Verification of OCaml

Guilhem Jaber
Gallinette Team, LS2N, Univ. Nantes

Journée scientifique Inria - Nomadic Labs
1st of June

1/16

CAVOC in a nutshell

Started in September 2021
@ Members:

o Hamza Jaifar (PhD student, Gallinette team)
o Guilhem Jaber (maitre de conférences, Nantes Univ., Gallinette team)
o Gabriel Radanne (Inria researcher, Cash team)

External member:
e Laure Gonnord (professor, ESISAR, INP Grenoble, LCIS)

Objective:

Automatically check module-safety of OCaml code

Based on:

o Game semantics
o Higher-order model checking
o Constrained Horn clauses

2/16

Module-safety ?

module M: sig
type t
val get :unit — t
val check : t — unit
end = struct
type t = int
letc =ref O
let get ()= c:=lc+1;lc
let check x = assert (x > 0)
end

Check that no OCaml code that uses this module trigger the assert

3/16

Long-term goal: Safety of the Buffer module

“This module implements buffers that automatically expand as necessary.”

(¥ Ezcerpt of the signature:*)

type t

val create : int -> t

val contents : t -> string

val add_string : t -> string -> unit

(¥ Ezample of code *)
let concat_strings ss =
let b = Buffer.create 16 in
List.iter (Buffer.add_string b) ss;
Buffer.contents b

@ Abstract type t is implemented as a record with some mutable byte
field:

@ Resizing done by add_string is safe: no out of range access in the
byte field.

4/16

Horn clauses H

Constrained

5/16

D™ & =T oM

FLwpe

Church-style parametric polymorphism

: iso-recursive types
: type constructors, higher-order polymorphism

. mutable references and region type system

exceptions and effect type system

6/16

From OCaml to Fuwpe

@ Use the OCaml compiler to parse and infer types

e producing a Typedtree, the typed abstract syntax tree used internally
by the compiler

o Elaborate the Typedtree into Fuwpe

e introduce variants and records construction into Fpuwpe
e translate GADT via equality constraints and existential types
e applicative/generative functors via the F-ing module methodology

7/16

Effect and Region inference for Fuwpe

Annotate function types with their associated effects:
@ uncaught exceptions
e using row polymorphism
o useful for benign exceptions (like Not_found)

@ mutable references

e using regions associated to syntactic allocation points
e detect location disclosure
e provide aliasing information

o detect pure (effect-free) functions
e easier to analyze

8/16

Behind the stage...

A fully-abstract game model for Fuwpe
@ Interaction between a Fuwpe program and its environment is

represented as a play between Proponent (the program) and
Opponent (the environment).

@ Denotation of a program is formed by all the possible interactions
with any environment.

@ Plays in a denotation should be in exact correspondence with
environment written in Fuwpe: full-abstraction.

9/16

Operational presentation of game semantics

@ Plays correspond to traces formed by calls and returns of functions
exchanged between Proponent and Opponent.

@ Such traces are computed by a labelled transition system representing
the denotation of programs
~ by computing interaction on the fly using operational semantics

10/16

Typing as behavioral specification

Types specifies the rules of the game between Player and Opponent:
@ based on a polarized interpretation:

o Interacting with values of negative types (codata)
o Observing values of positive types (data)

@ abstract values for polymorphic types are represented as atoms that
can only be exchanged

e computational interpretation of parametricity as dynamic sealing

o effect and region annotations constrains the behavior of Opponent.

11/16

Scaling to more complex interaction models

Asynchronous callbacks for signal handlers;

Finalizers from garbage collected values;

Asynch/Lwt’s promises;

Multiple domains running in parallel (OCaml 5);

algebraic effect and handlers with one-shot continuation (OCaml 5).

Future work!

12/16

Towards symbolic representation of the interactive
denotation of Fuwpe terms

Main challenges:

e Disentangle the internal control flow (recursion, interprocedural) of a
module with its interaction with Opponent;

@ Reason symbolically on values exchanged between Proponent and
Opponent;

@ Represent dynamical allocation and the heap structure logically.

13/16

Constrained Horn Clauses

@ A first-order formula of the shape
VX.CABiN---ANBy,=H
o C a constraint formula written in a specified theory (linear integer

arithmetic, arrays, algebraic data-types,...)
o each B; is a of the form r(ty,..., tm) with r an uninterpreted relation

symbol,
o H is either false or of the form r(ty,..., t,) as well.
@ Solvers for checking satisfiability of CHC: z3, Eldarica, RInGen;

@ Used for automated verification of various programming languages
o C (SeaHorn), Java (JayHorn), Ada (AdaHorn); Rust (RustHorn)

@ Simplification of CHCs via some transformations
e Elimination of algebraic data-types, arrays, heaps
e From non-linear to linear CHCs.

14/16

module M: sig
type t
val get :unit — t
val check:t — unit
end = struct
typet = int
let c =ref 0
let get ()= c:=lc+1;lc
let check x = assert (x > 0)
end

[TUe=>Cr! VO T .
Pi(x)Ac—y=crsy,y>0

»

c—y=(c—zAP:(2)
Az=y+1)

15/16

Horn clauses H

Constrained

16/16

