
22

Extending Intel-x86 Consistency and Persistency
Formalising the Semantics of Intel-x86 Memory Types and Non-Temporal Stores

AZALEA RAAD, Imperial College London, United Kingdom
LUC MARANGET, Inria, France
VIKTOR VAFEIADIS,MPI-SWS, Germany

Existing semantic formalisations of the Intel-x86 architecture cover only a small fragment of its available
features that are relevant for the consistency semantics of multi-threaded programs as well as the persistency
semantics of programs interfacing with non-volatile memory.

We extend these formalisations to cover: (1) non-temporal writes, which provide higher performance and are
used to ensure that updates are flushed tomemory; (2) reads andwrites to other Intel-x86memory types, namely
uncacheable, write-combined, and write-through; as well as (3) the interaction between these features. We
develop our formal model in both operational and declarative styles, and prove that the two characterisations
are equivalent. We have empirically validated our formalisation of the consistency semantics of these additional
features and their subtle interactions by extensive testing on different Intel-x86 implementations.

CCS Concepts: • Theory of computation → Semantics and reasoning; Concurrency; Axiomatic se-
mantics; Operational semantics; • Hardware→ Hardware validation.

Additional Key Words and Phrases: weak memory, memory consistency, memory persistency, non-volatile
memory, Intel-x86, non-temporal accesses, memory types, cacheability

ACM Reference Format:
Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022. Extending Intel-x86 Consistency and Persistency:
Formalising the Semantics of Intel-x86 Memory Types and Non-Temporal Stores. Proc. ACM Program. Lang. 6,
POPL, Article 22 (January 2022), 31 pages. https://doi.org/10.1145/3498683

1 INTRODUCTION
Since the seminal work of Sewell et al. [2010], it is widely understood in the programming language
literature that the Intel-x86 architecture follows the TSO (‘total store order’) memory consistency
model. This, in particular, means that the annotated weakly consistent behaviour of the sb (‘store
buffering’) program below is allowed on Intel-x86, whereas that of mp (‘message passing’) is not.1

x:= 1;
a:= y; // 0

y:= 1;
b:= x; // 0 (sb) x:= 1;

y:= 1;
a:= y; // 1
b:= x; // 0 (mp)

This, however, constitutes a very shallow understanding of the consistency semantics of the
Intel-x86 architecture. The outcomes of these litmus tests crucially depend on the memory type

attribute of the pages containing x and y, which is set by the operating system and recorded
1In all our examples we use x, y, z for (shared) memory locations initialised with 0, and use a, b, c for (local) registers. For
readability, rather than Intel-x86 assembly instructions, we use the assignment notation and write e.g. x:= v for writing v
to x, and a:= x to denote reading the value of x into a. The // v annotation after a read denotes that the value read is v.

Authors’ addresses: Azalea Raad, Imperial College London, United Kingdom, azalea@imperial.ac.uk; Luc Maranget, Inria,
France, luc.maranget@inria.fr; Viktor Vafeiadis, MPI-SWS, Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART22
https://doi.org/10.1145/3498683

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683

22:2 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

in the page table. The most common memory type is write-back (wb) memory, whose semantics
corresponds to TSO, as prior work has discovered [Sewell et al. 2010]. However, Intel-x86 supports
other memory types such as uncacheable (uc) memory, which is mainly used for memory-mapped
I/O; write-combining (wc) memory, which is meant for bulk data transfer such as displaying videos;
and write-through (wt) memory. All these memory types have very different semantics. For example,
if x and y were in wc memory, then the weak behaviour of sb would not be allowed, whereas that
of mp would be! To restrict the additional weak behaviours of wc memory in programs such as mp,
Intel-x86 provides an additional fence instruction, sfence (store fence), which is strictly weaker
than a memory fence (mfence) in that it only orders store instructions. (Existing formalizations of
Intel-x86 treat sfence simply as a NOP, since stores are already ordered under TSO.)
We note that such weaker-than-TSO effects are not observable only under these specialised

memory types. Even when using wb memory, it is possible to get similar effects with non-temporal

writes (MOVNT). Non-temporal writes provide higher performance than regular writes in cases where
the written data is not expected to be used immediately, by reducing cache contention and giving
more flexibility to the hardware to reorder them with respect to other accesses. Specifically, the
Intel manual (see (nt) in §2) explains non-temporal writes in terms of wc memory: a non-temporal
write on x behaves as if x were in wc memory. The reality, however, is more complex in that when
using non-temporal writes both sb and mp can exhibit their annotated weak behaviours!

Naturally, these different memory types can be used together in a program, leading to subtle inter-
actions between them and further complicating their semantics. The semantics of such interactions
is barely discussed in the Intel manuals, creating confusion even amongst seasoned programmers
on these topics – as witnessed by contradicting answers to a relevant query on StackOverflow
[Anonymous 2021] – and highlighting the need for their formal, empirically-validated semantics.

A closely related aspect of architectural semantics is memory persistency, which describes when
and how memory stores are propagated to memory, and thus may be seen by an external device.
Memory persistency is hugely important for systems with non-volatile memory (NVM) because
it determines the possible contents of memory after a power failure. As with consistency, prior
work [Raad et al. 2020] has only formalised the semantics of regular stores to wb memory and basic
cache-line flushing instructions. This subset of features is quite limiting for practical purposes:
other memory types and non-temporal stores are often used for better performance and/or simpler
persistency semantics. In particular, the PMDK library for persistent programming [Intel 2015] (a
large-scale open-source project) uses non-temporal writes to avoid cache-line flushes.

We address the shortcomings of the existing formal Intel-x86 consistency and persistency models
by extending them to cover non-temporal writes and the wide range of memory types available. To
our knowledge, we have developed the first formal semantic models of these architectural features,
which we integrate into the existing x86-TSO [Sewell et al. 2010] and Px86sim [Raad et al. 2020]
models. Specifically, we develop two formal models – an operational one in terms of a machine
with a collection of buffers and a declarative one in terms of execution graphs – and prove their
equivalence. Having two equivalent models is useful not only for ensuring the canonicity of the
formalism, but also because one or the other formulation may be more useful for establishing
different results. For instance, operational models are better suited for underpinning program
logics and checking reachability of an erroneous configuration and/or robustness for finite-state
programs with loops (e.g. [Abdulla et al. 2021; Bouajjani et al. 2013; Lahav and Boker 2020]), whereas
declarative models are better suited for deriving stateless model checking of programs with only
bounded loops (e.g. [Kokologiannakis et al. 2021, 2019b]).

We have developed our formal models through a careful reading of the Intel manuals, informal
discussions/exchanges with Intel engineers, and, in the case of consistency, empirical validation by
extensive testing of multiple Intel-x86 implementations. As setting the memory type of a page is

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:3

only possible in the kernel, the latter involved adapting the diy toolsuite [Alglave and Maranget
2021] to run litmus tests in kernel mode, allocate each variable on a different page, and set the
page memory types accordingly. By contrast, as in previous work we could not test our persistency
semantics since it requires specialised hardware to monitor the memory bus traffic (see §2).

Prevalence of Intel-x86 Non-TemporalWrites andMemory Types. Non-temporal writes pro-
vide an application-level mechanism for enforcing wc cacheability and avoiding cache pollution.
Non-temporal writes are ubiquitous. For instance, searching for MOVNTI (an Intel-x86 non-temporal
write) on GitHub returns over 300K results [GitHub 2021], spread across over ten languages, in-
cluding C, C++ and Assembly. Searching for other non-temporal writes such as MOVNTQ, MOVNTDQ,
MOVNTPS and MOVNTPD return similar results. Moreover, non-temporal writes are available in lan-
guages such as Rust [Rust 2021], which are in turn compiled to non-temporal writes on Intel-x86
machines. Another notable use of non-temporal writes is in the memset function in the C runtime
[LWN 2007]. Similarly, non-temporal writes are used by memcpy in glibc (the core libraries for
GNU/Linux) [Free Software Foundation 2016]. Consequently, a large body of existing code us-
ing glibc uses non-temporal writes by extension. As with PMDK [Intel 2015], other large-scale
projects such as SPDK [SPDK 2021], DPDK [DPDK 2021] and DML [DML 2021] use non-temporal
writes; e.g. DPDK and DML use MOVDIR64b (a non-temporal write) to atomically communicate
with accelerators, while SPDK uses non-temporal writes to interface with NVM [GitHub 2019].

As we describe in §2, the Intel-x86 memory types are declared either through the page attribute
table (PAT) or custom registers, and are thus used within system-level code, e.g. the Linux kernel
[LWN 2008]. Moreover, wcmemory is used inside the Linux kernel for e.g. frame buffer optimisation
[LWN 2016]. Similarly, the Linux kernel uses uc memory for memory-mapped I/O (MMIO) [LWN
2016]. Finally, non-wb memory types are typically used to interact with non-cache-coherent DMA
(direct memory access) device drivers.

Contributions and Outline. Our contributions (detailed in §2) are as follows:
§3 We develop the declarative Ex86 model as the first formal model of Intel-x86 consistency that

accounts for memory types and non-temporal stores.
§4 We develop an operational Ex86 model, which we prove equivalent to our declarative model.
§5 We describe how we empirically validated Ex86 through extensive litmus testing.
§6 We extend Ex86 to develop declarative and operational characterisations of the PEx86 model as

the first formal model of Intel-x86 persistency that accounts for memory types and non-temporal
writes, and show that the two characterisations of PEx86 are equivalent.

We discuss related and future work in §7.

Additional Material. The proofs of all theorems stated in the paper are given in the accompa-
nying technical appendix [Raad et al. 2022a]. Our library of litmus tests in our validation effort is
available online [Raad et al. 2022b].

2 OVERVIEW
Memory consistency models describe the permitted behaviours of programs by constraining the
volatile memory order, i.e. the order in which memory instructions (e.g. writes) are made visible
to other threads. Analogously, memory persistency models describe the permitted behaviours
of programs upon recovering from a crash (e.g. due to power loss) in the context of the NVM
technology by defining a persistent memory order, i.e. the order in which the effects of memory
instructions are committed to persistent memory. To distinguish between the two memory orders,
memory stores are differentiated frommemory persists. The former denotes the process of making an
instruction (e.g. a write) visible to other threads, whilst the latter denotes the process of committing

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:4 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

instruction effects durably to persistent memory. We proceed with an intuitive account of our Ex86
(‘extended x86’) model, the first formal Intel-x86 consistency semantics that covers memory types
and non-temporal writes (§2.1). We then present an overview of our PEx86 (‘persistent Ex86’) model
as the first formal account of Intel-x86 persistency semantics that extends to memory types and
non-temporal writes. In what follows we often cite the Intel reference manual [Intel 2021] in “double
quotation marks”, at times including [text in square brackets] denoting our added clarification.

2.1 Ex86: The Extended Intel-x86 Consistency Model
Validating Ex86. We have empirically validated our Ex86 consistency model (described shortly

below), including all behaviours and examples discussed in this paper. Specifically, using the diy
toolsuite [Alglave and Maranget 2021], we have built a vast library of litmus tests and ran them
against Ex86 and as kernel modules. Litmus testing involves running small, concurrent programs
(e.g. sb in §1) that exercise specific features of consistency on a machine while simultaneously
stressing the memory with heavy background traffic. With thousands of tests and hundreds of
thousands of runs per test, one can observe all possible behaviours on the machine, ensuring
behaviour coverage. A full catalogue of our tests and their results on various platforms is given in
[Raad et al. 2022b]. As we discuss below, we have validated all Ex86 features and instructions except
one instruction, flushopt, which constitutes a small fragment of Ex86. This is because on most
modern hardware, including all machines available to us for testing, the flushopt implementation
is commonly stronger than its specification in the Intel manual [Intel 2021]. Nevertheless, we have
generated extensive tests that could be used to validate the flushopt behaviour in the future on
machines that implement it more faithfully.

Intel-x86 Memory Types at a Glance. Intel-x86 processors allow any area of system memory
to be cached. Moreover, for each individual page or region of memory, the caching type, also called
the memory type may be specified [Intel 2021, Vol. 3A, §11.3] either through the page attribute table
(PAT) or memory type range registers (MTRRs). Specifically, the memory type can be defined as
strong-uncacheable (uc), uncacheable (uc-), (uncacheable) write-combining (wc), (cacheable) write-
back (wb), (cacheable) write-through (wt), and write protected (wp). Although the memory type of a
location may be altered during execution, doing so entails a complex mechanism invoking kernel
code. As such, for simplicity we assume that memory types do not change once assigned, and thus
the sets of locations associated with memory types are pairwise disjoint. As we describe below, all
behaviours described below are empirically validated through extensive litmus testing [Raad et al.
2022b]. As we describe in §5, we could not support the wp memory in our validation infrastructure.
Hence, to avoid speculating about the behaviour of wp memory, we forgo wp in our Ex86 formalism.
As we elaborate shortly, the uc type is the strongest of all types and its accesses follow strong

ordering (Intel terminology). Specifically, accesses to uc memory cannot be reordered with respect
to any other accesses except later (in program order) reads on wb and wtmemory. As such, when all
locations accessed in a program P lie in uc memory, no reordering is allowed and the P behaviours
are those observed under SC (‘sequential consistency’) [Lamport 1979] – see Theorem 1.
(uc) “System memory locations are not cached. All reads and writes appear on the system bus

and are executed in program order without reordering. . . . [uc] is useful for memory-mapped
I/O devices.” [Intel 2021, Vol. 3A, p. 11-6]

Note that the interaction between uc and other types (e.g. reordering later wb/wt reads before uc
writes) is not discussed in the Intel manual and we have uncovered it through our experiments.

As with uc, accesses to uc- memory follow the strong ordering (and thus follow the same ordering
constraints) and they only differ in how they are selected (assigned). As accesses on uc and uc-

memory are subject to the same ordering constraints, they exhibit the same behaviours and follow

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:5

the same semantics. As such, in our Ex86 formalism we forgo the uc- memory and only model uc.
Nevertheless, all behaviours and semantics we ascribe to uc memory also hold of uc- memory.
(uc-) “[uc-] Has same characteristics as uc memory type, except that uc- type can be overridden

by programming the MTRRs for the wc memory type.” [Intel 2021, Vol. 3A, p. 11-6]
The wcmemory type is the weakest of all types in that its accesses follow the weak ordering (Intel

terminology). A main characteristic of wc memory is that it allows write-write reordering: write
accesses on different wc locations may be reordered, leading to weak behaviours disallowed under
both SC (governing uc memory) and TSO (governing wb memory – see below). Specifically, as we
show later in Theorem 1, when all accesses in a program P are on wc memory, then the behaviours
of P are those observed under a strengthening of the PSO (‘partial store order’) model we refer to
as SPSO (‘strong PSO’), where only write-write reordering on different locations is allowed.
(wc) “Systemmemory locations are not cached (as with uc). . . . [wc] is appropriate for video frame

buffers, where the order of writes is unimportant as long as the writes update memory so
they can be seen on the graphics display.” [Intel 2021, Vol. 3A, p. 11-7]

Once again, the Intel manual does not discuss the subtle interaction between wc and other memory
types. For instance, as we discuss below, our tests revealed that wc writes can be reordered with
respect to writes on different locations in wc/wb memory but not those in uc/wt memory.
The wb memory type provides the best performance for the typical memory access patterns of

applications. When all locations in a program P lie in wb memory, the behaviours of P are those
allowed under processor ordering (Intel terminology), also referred to as TSO [Sewell et al. 2010] –
see Theorem 1. The main characteristic of TSO is that it allows write-read reordering: later reads
can be reordered before earlier writes. Note that wb memory is strictly weaker than uc in terms
of ordering constraints: while write-read reordering is allowed on wb, all reorderings (including
write-read) are prohibited on uc. By contrast, wb and wc are incomparable: write-read reordering is
allowed on wb but not on wc, write-write reordering is allowed on wc but not on wb.
(wb) “Writes and reads to and from system memory are cached . . .writes are performed entirely

in the cache . . .Writes to a cache line are not immediately forwarded to system memory;
instead, they are accumulated in the cache. The modified cache lines are written to system
memory later . . . [wb] provides the best performance . . . ” [Intel 2021, Vol. 3A, p. 11-7]

The wt memory lies between wb and uc in terms of its ordering constraints. Specifically, wt reads
follow the same constraints as wb reads in that write-read reordering on wtmemory is allowed. The
main difference between wt and wb lies in how their writes interact with wc writes. More concretely,
as we describe shortly, wb writes may be reordered with respect to wc writes. By contrast, unlike
wb and as with uc memory, wt writes cannot be reordered with respect to wc writes.
(wt) “Writes and reads to and from system memory are cached. . . .All writes are written to a

cache line (when possible) and through to system memory. . . . [wt] is appropriate for frame
buffers . . . ” [Intel 2021, Vol. 3A, p. 11-7]

Note that as well as enforcing certain ordering constraints, memory types also prescribe memory
cacheability. Specifically, locations in uc and wc memory are not cached (see (uc) and (wc) above);
their accesses bypass the cache and directly interact with the memory. Hereafter, we refer to uc and
wc memory collectively as non-cacheable (nc). By contrast, the locations in both wb and wt memory
may be cached. As such, henceforth we refer to wb and wt memory collectively as cacheable (c).
However, while wb writes are cached and propagated to memory only later, wt writes are cached
and propagated to memory immediately (see (wb) and (wt) above).

Intel-x86 Non-Temporal Accesses. The Intel reference manual categorises the data referenced
by a program as either temporal (data that will be reused, e.g. program code), or non-temporal (data

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:6 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

that will be referenced once and not reused in the immediate future, e.g. multi-media data, such as the
display list in a 3-D graphics application). Ideally, to use processor caches efficiently, temporal data
should be cached, whereas non-temporal data should not be cached. Filling processor caches with
non-temporal data is referred to as “polluting the caches”. To minimise cache pollution, Intel-x86
architectures provide several non-temporal store instructions that treat the memory accessed as wc
memory, storing data to memory directly and bypassing the caches. More concretely, if a program
executes a non-temporal store on location x, and x lies in wb, wt or wc memory, then the store on x

is written to memory with wc semantics. If, however, x lies in uc memory, then the non-temporal
hint is ignored and the store follows uc semantics. Through our validation effort we have confirmed
that non-temporal stores (on wb/wt/wc memory) indeed follow wc semantics, as intended.
(nt) “If a program specifies a non-temporal store and the memory type of the destination region

is wb, wt or wc, the processor will do the following: if the memory location being written to
is present in the cache hierarchy, the data in the caches is evicted; the non-temporal data is
written to memory with wc semantics.” [Intel 2021, Vol. 1, p. 10-12].

In addition to several non-temporal store instructions, Intel-x86 architectures provide a single
non-temporal load instruction. However, as our private correspondence with the lead architect of
the Intel instruction set system architecture has revealed, the non-temporal load instruction has
been a source of implementation issues, it has not been implemented consistently, and there has
been ambiguity regarding its semantics. Moreover, we have been unable to validate the behaviour of
non-temporal loads (see §5). As such, rather than speculating about its ambiguous and inconsistent
semantics, in our Ex86 formalism we forgo the single non-temporal load instruction.

Litmus Test Notation. In what follows we elaborate on the behaviour of Ex86 memory types
and how they interact with one another through several representative litmus test programs. Given
a location x and memory type t∈ {uc, wc, nc, wb, wt, c}, we write x ∈ Loct to denote that x is in t
memory. When the memory type of location x is immaterial and the exhibited behaviours hold
regardless of the memory type of x, we forgo the type annotation and write x ∈ Loc.

In our programs we write x:=v to denote writing (storing) value v to (shared) memory location
x , and write a:= x to denote reading (loading) the value of location x into the (thread-local) register
a. Analogously, we write x:=NTv to denote storing v to location x with a non-temporal hint. As
discussed above, the non-temporal hint is ignored if x < Locwb∪ wt∪ wc.

Ordering Constraints of mfence, sfence and Atomic Updates. In order to afford more con-
trol over instruction reordering, Intel-x86 provides fence instructions, including memory fences,
writtenmfence, and store fences, written sfence. Memory fences are strictly stronger than store
fences: while memory fences cannot be reordered with respect to any memory instruction, store
fences may be reordered with respect to only reads. Additionally, Intel-x86 provides instructions
for atomically updating the memory through ‘read-modify-write’ (RMW) operations such as CAS
(‘compare-and-set’) and FAA (‘fetch-and-add’). RMW instructions follow the same ordering con-
straints as memory fences in that they cannot be reordered with respect to any memory instruction.

Ordering between Earlier Reads and Later Memory Instructions. Earlier read instructions
cannot be reordered with respect to any later memory instruction (including later reads and writes).
This is illustrated in the programs of Fig. 1a and Fig. 1b, showing examples of read-read and read-
write reordering, respectively. More concretely, the program in Fig. 1a depicts a variant of the
canonical ‘message passing’ (mp) litmus test with anmfence between the two writes of the left
thread. This interveningmfence ensures that the two writes cannot be reordered (regardless of the
memory types of x and y), and thus the two writes are executed in program order. Let us assume it
were possible for the two reads of the right thread to be reordered. Then it would be possible to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:7

x, y ∈ Loc x, y ∈ Loc x ∈ Locc, y ∈ Loc x ∈ Locnc, y ∈ Loc x ∈Locc ∨ y ∈Locc
x:= 1;
mfence;
y:= 1;

a:= y;
b:= x;

a=1 ∧ b=0: ✗

(a) read-read

x:= 2;
mfence;
y:= 1;

a:= y;
x:= 1;

a=1 ∧ x=2: ✗

(b) read-write

x:= 1;
mfence;
a:= y;

y:= 1;
b:= x;

a=0 ∧ b=0: ✓

(c) write-read

x:= 1;
mfence;
a:= y;

y:= 1;
b:= x;

a=0 ∧ b=0: ✗

(d) write-read

x:= 1;
sfence;
a:= y;

y:= 1;
sfence;
b:= x;

a=0 ∧ b=0: ✓

(e) sfence-read

x,y ∈Locuc∪ wb∪ wt
x, y ∈ Locwc∪ wb,

x ∈Locwc∨y ∈Locwc
x, y ∈ Locwb∪ wt∪ wc

x ∈ Locwb∪ wt∪ wc,

y ∈ Locwb∪ wc

y ∈ Locwb∪ wt∪ wc,

x ∈ Locwb∪ wc

x:= 2;
mfence;
y:= 1;

y:= 2;
x:= 1;

x=2 ∧ y=2: ✗

(f) write-write

x:= 2;
mfence;
y:= 1;

y:= 2;
x:= 1;

x=2 ∧ y=2: ✓

(g) write-write

x:= 2;
mfence;
y:= 1;

y:=NT 2;
x:=NT 1;

x=2 ∧ y=2: ✓

(h) write-write

x:= 2;
mfence;
y:= 1;

y:= 2;
x:=NT1;

x=2 ∧ y=2: ✓

(i) write-write

x:= 2;
mfence;
y:= 1;

y:=NT2;
x:= 1;

x=2 ∧ y=2: ✓

(j) write-write

Fig. 1. Ex86 Litmus tests illustrating possible reordering of read and write instructions and the resulting

weak behaviours, where ✓ (resp. ✗) denotes that the depicted weak behaviour is (resp. is not) observed. The

underlined subfigure captions are hyperlinks to the corresponding (class of) tests in our validation effort.

observe a=1 ∧ b=0: when b:= x is reordered before a:= y, then this outcome is observed when all
instructions of the left thread are executed between b:= x and a:= y. However, as corroborated by
our validation (see read-read), we ran each variant (with different memory types for x and y) of
the Fig. 1a program 1.5 billion times, and never observed a=1 ∧ b=0. Analogously, the a=1 ∧ x=2
behaviour was never observed in any of the variants of the program in Fig. 1b (see read-write). We
therefore conclude that read-read and read-write reordering are not allowed under Ex86, regardless
of the memory types of the underlying locations.

Earlier Reads and Later sfence (✓† in Fig. 2). As noted by Raad et al. [2020], although sfence
instructions are not ordered with respect to reads, reordering an earlier read after a later sfence
does not affect the program behaviour: as earlier reads are ordered with respect to all other later
instructions, reordering them after a later sfence does not alter the program behaviour. That is,
given a program P ≜ a:= x; sfence; c with c , sfence, the a:= x read cannot be reordered after c,
and reordering it after sfence alone does not affect the behaviour of P. As such, as in [Raad et al.
2020], we opt to order earlier reads and all later memory instructions, including later sfence.

Write-Write Reordering. As briefly discussed above (1) write-write reordering is allowed on
wc memory; and (2) wb writes can be reordered (in both directions) with respect to wc writes.
That is, write-write reordering is allowed when one write is on wc memory, and the other is on
either wc or wb memory. This is illustrated in Fig. 1g: as before, the writes of the left thread cannot
be reordered thanks to mfence; however, the two writes of the right thread may be reordered
since x, y ∈ Locwc∪ wb and x ∈Locwc ∨ y ∈Locwc. As such, when all instructions of the left thread
execute before x:= 1 and after y:= 1, then the x=2∧y=2 weak behaviour shown can be observed, as
confirmed by our experiments (see write-write). By contrast, write-write ordering is disallowed
when neither write is on wc memory, as shown in Fig. 1f: as x,y ∈Locuc∪ wb∪ wt, the writes of the
right thread cannot be reordered and thus the weak behaviour x=2 ∧ y=2 cannot be observed.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype/rr.html
http://diy.inria.fr/x86-memtype/rw.html
http://diy.inria.fr/x86-memtype/wr.html
http://diy.inria.fr/x86-memtype/wr.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+UC.html
http://diy.inria.fr/x86-memtype/ww.html
http://diy.inria.fr/x86-memtype/ww.html
http://diy.inria.fr/x86-memtype/ww.html
http://diy.inria.fr/x86-memtype/ww.html
http://diy.inria.fr/x86-memtype/ww.html
http://diy.inria.fr/x86-memtype/rr.html
http://diy.inria.fr/x86-memtype/rw.html
http://diy.inria.fr/x86-memtype/ww.html

22:8 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Note that since non-temporal writes follow wc semantics, write-write reordering is also allowed
when one write is non-temporal (on wb/wt/wc memory) and the other is either a non-temporal
write or a write on wc or wb memory. This is illustrated in the examples of Figs. 1h to 1j.

Write-Read Reordering. As discussed above, write-read reordering is allowed on both wb and
wt. Indeed, later reads on wb and wt memory (i.e. on c memory) can be reordered before all

writes, regardless of their memory type. This is illustrated in Fig. 1c, depicting a variant of the
‘store-buffering’ (sb) litmus test with an additionalmfence. As before, the instructions of the left
thread cannot be reordered due to the intervening mfence. However, the b:= x read on c memory
(x ∈ Locc) can be reordered before the earlier y:= 1 write regardless of the memory type of y
(y ∈ Loc). As such, when all instructions of the left thread execute between b:= x and y:= 1, then the
a=0 ∧ b=0 behaviour shown can be observed, as confirmed by our experiments (see write-read).
By contrast, the reads on non-cacheable (nc) memory cannot be reordered before any earlier

writes, as shown in Fig. 1d. That is, unlike in Fig. 1c, the b:= x read on nc memory (x ∈ Locnc)
cannot be reordered before y:= 1 (y ∈ Loc), and thus the a=0 ∧ b=0 weak behaviour shown is not
observed, as corroborated by our experiments (see write-read).

Finally, as non-temporal writes follow wc semantics, write-read reordering is also allowed (resp.
disallowed) for a non-temporal write and a read on c (resp. nc) memory. That is, if we replace y:= 1
in Figs. 1c and 1d with y:=NT 1 (y ∈Locwb∪ wt∪ wc), then the outcomes shown will remain unchanged.

Earlier sfence and Later Non-Cacheable Reads (✓‡ in Fig. 2). Although sfence instructions
are not ordered with respect to reads, reordering a later nc read before an earlier sfence does
not affect the program behaviour: as later nc reads are ordered with respect to all other earlier
instructions under Ex86, reordering them before sfence does not alter the program behaviour. That
is, given a program P ≜ c; sfence; a:= x with c, sfence and x ∈ Locnc, the a:= x read cannot be
reordered before c, and reordering it before sfence alone does not affect the P behaviour. As such,
for simplicity we opt to order all earlier instructions (including earlier sfence) and later nc reads.
By contrast, reordering a later c read before an earlier sfence can be observed because later c

reads can be reordered before earlier writes. An example of this is illustrated in Fig. 1e, depicting a
variant of sb with sfence instructions: without loss of generality, when x ∈ Locc, then the b:= x
read can be reordered before both sfence and y:= 1, allowing us to observe a=0 ∧ b=0.

Cache Line Instructions. As discussed above, a location x in wb memory may be cached in
that a store to x does not immediately reach the memory; rather, for better performance the store
may be cached and written back (evicted) to memory at a later time (e.g. when the cache is full). In
order to afford more control over when stores reach the memory, Intel-x86 architectures provide
three persist instructions (described at length in §2.2 below) for writing back a given cache line to
memory: flush x, flushopt x and wb x.2 More concretely, given a location x in cache line (set of
locations) X , written x ∈X , executing flush x, flushopt x or wb x writes back the X cache line to
memory. As described in [Intel 2021] and formalised by Raad et al. [2020], persist instructions vary
in strength (their constraints on instruction reordering) and performance: flush is the strongest of
the three (enforcing additional ordering constraints), while flushopt and wb are equally weak with
wb offering better performance than flushopt. That is, flushopt andwb have the same specification
and exhibit equivalent behaviour; as such, as in [Raad et al. 2020], we only modelflush andflushopt.
Nevertheless, all behaviours and specifications ascribed to flushopt also hold of wb.
As mentioned above, flush instructions enforce strong ordering constraints with respect to

writes and other flush in that they are ordered with respect to (1) all earlier and later flush; and
(2) all earlier and later (non-temporal) writes regardless of their memory type. As such, flush
2In [Intel 2021], flush is referred to asCLFLUSH, flushopt is referred to asCLFLUSHOPT andwb is referred to asCLWB.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype/wr.html
http://diy.inria.fr/x86-memtype/wr.html

Extending Intel-x86 Consistency and Persistency 22:9

behaves as an sfence when inserted between two writes that could otherwise be reordered. For
instance, were we to insert flush z between the two stores of the right threads in Figs. 1g to 1j, then
they could no longer be reordered and thus the weak behaviour x=2 ∧ y=2 could not be observed.
Our tests in our validation effort have confirmed the strong ordering enforced by flush (see here).
By contrast, flushopt instructions are only ordered with respect to earlier writes on the same

cache line. As such, unlike flush, they cannot serve as an sfence as they can be reordered after
later writes. Although we ran extensive tests on several machines to validate the behaviour of
flushopt, we could not observe the weak behaviours enabled by flushopt except in a few cases. This
is because the flushopt implementation is commonly stronger than its specification (in the Intel
manual), as was the case on all machines available to us for testing. Nevertheless, as our validation
endeavour confirmed that the manual faithfully captures the behaviour of flush, we chose to ‘trust’
the weak behaviour of flushopt as specified in the manual and reflected it in our Ex86 formalism,
albeit without validating it. However, note that flushopt instructions constitute a small fragment of
the Ex86 language and are the only instruction in our Ex86 model that we could not validate. As
such, we argue that Ex86 is fully validated up to implementation fidelity.

Ordering between flush and flushopt (✗∗ in Fig. 2). An earlier version of the Intel reference
manual [Intel 2019] stated that flush and flushopt on the same cache line are ordered with respect
to one another, as later reflected in the Px86sim model of Raad et al. [2020]. This older version of the
manual has since been removed from the Intel pages and is currently only available through the
Internet Archive [Intel 2019]. However, the latest version of the manual [Intel 2021] has weakened
this constraint, guaranteeing no ordering betweenflush andflushopt. As such, we have accordingly
left out this constraint from our Ex86 model, thus minorly diverging from Px86sim.

Putting it All Together: Ex86 Ordering Constraints. Fig. 2 presents a summary of ordering
constraints between earlier (in program order) instructions (rows) and later instructions (columns)
under Ex86, where Rt and W t denote reads and writes on t memory, respectively; MF , SF and
U denotemfence, sfence and RMW (update) instructions, respectively; FL and FO denote flush
and flushopt instructions, respectively; and NTW denote non-temporal writes. If two instructions
are ordered (denoted by ✓), they cannot be reordered and thus their program order (i.e. the order
in which they appear in the program) and store order (the order in which they are made visible
to other threads) always agree. Conversely, if two instructions are unordered and thus can be
reordered (denoted by ✗), then their program and store orders may disagree. The sloc (resp. scl)
entries denote that two instructions are ordered if and only if they access the same location (resp.
cache line). The white (not highlighted) cells in the table correspond to the Px86sim model by Raad
et al. [2020]. We develop Ex86 by extending Px86sim with Intel-x86 memory types and non-temporal
stores. The ordering constraints on the Ex86 extensions are denoted by the highlighted cells. All
permitted reorderings (i.e. non-✓ entries), except those of flushopt (i.e. in the FO row or column),
are annotated with links to our validation tests that witness the reordering as a weak behaviour.

2.2 PEx86: The Persistent Ex86 Model
We next present PEx86, our extension of Ex86 that additionally accounts for the persistency seman-
tics of Intel-x86 memory types and non-temporal writes in the presence of non-volatile memory.
Persistency models are typically categorised along two axes: (1) strict or relaxed persistency; and
(2) unbuffered or buffered persistency. Under strict persistency, instruction effects persist to memory
in the order they become visible to other threads, i.e. the volatile and persistent memory orders
coincide. By contrast, relaxed persistency allows for volatile and persistent memory orders to
disagree. The second categorisation describes when persists occur. Under unbuffered persistency,
persists occur synchronously: instruction effects are immediately committed to persistent memory

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype/clflush.html

22:10 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Ea
rli
er

in
Pr
og

ra
m

O
rd
er

Later in Program Order
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Rwb Rwt Ruc Rwc W wb W wt W uc W wc NTW U MF SF FL FO

A Rwb ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓† ✓ ✓

B Rwt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓† ✓ ✓

C Ruc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓† ✓ ✓

D Rwc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓† ✓ ✓

E W wb
✗

1, 2
✗

3, 4
✓ ✓ ✓ ✓ ✓

✗

5, 6, 7, 8
sloc

9, 10, 11, 12, 13
✓ ✓ ✓ ✓ scl

F W wt
✗

14, 15
✗

16, 17
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

G W uc
✗

18, 19
✗

20, 21
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H W wc
✗

22, 23
✗

24, 25
✓ ✓

✗

26, 27
28, 29

✓ ✓

sloc

30, 31, 32
33, 34

sloc

35, 36, 37
38, 39, 40

✓ ✓ ✓ ✓ scl

I NTW

✗

41, 42, 43, 44
✗

45, 46, 47, 48
✓ ✓

sloc

49, 50, 51
52, 53, 54

✓ ✓

sloc

55, 56 57
58, 59

sloc

60, 61, 62, 63
64, 65, 66, 67
68, 69, 70, 71

✓ ✓ ✓ ✓ scl

J U ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K MF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L SF

✗

72, 73, 74, 75
76, 77, 78, 79

✗

80, 81, 82, 83
84, 85, 86, 87

✓‡ ✓‡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M FL ✗ 88 ✗ 89 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗∗

N FO ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗∗ ✗

Fig. 2. The Ex86 ordering constraints where ✓ denotes that two instructions are ordered, ✗ denotes they are

not ordered (and thus may be reordered), and sloc (resp. scl) denotes that they are ordered iff they are on

the same location (resp. cache line); see pp. 7, 8 and 9 for explanations of ✓†
, ✓‡

and ✗∗, respectively. The

highlighted cells denote the Ex86 extensions from Px86sim [Raad et al. 2020]. All non-✓ entries (but those of

FO) are accompanied with links to litmus tests in our validation effort that witness the associated reordering.

upon execution; i.e. execution is stalled by persists. By contrast, buffered persistency allows memory
persists to occur asynchronously [Condit et al. 2009], buffering memory persists in a queue to be
committed to memory at a later time. This way, persists occur after their corresponding stores and
as prescribed by the persistent memory order; however, execution may proceed ahead of persists.
As such, upon crash recovery, only a prefix of the persistent memory order may have persisted.

The persistency semantics of wb memory has been previously formalised by Raad et al. [2020]
and later refined in [Cho et al. 2021; Khyzha and Lahav 2021]. As we describe shortly, wb memory
follows relaxed, buffered persistency. Specifically, recall that wb writes are cached and propagated
(persisted) to memory at a later time, thus following buffered persistency. Moreover, for better
performance, cached wb writes may be persisted to memory in a different order than that they were
cached (made visible to to other threads), thus enabling relaxed persistency.
We develop PEx86 as the first formal Intel-x86 persistency semantics that accounts for wc, wt

and uc memory and non-temporal writes. As we describe below, wc, wt and uc all follow strict,
unbuffered persistency. In the case of nc (wc and uc) memory, this is due to their non-cacheability:
nc writes bypass the caches and directly interact with memory. As such, nc writes reach (persist

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype/wrwb-SB+mfence+po+WB+WB.html
http://diy.inria.fr/x86-memtype/wrwb-R+mfence+po+WB+WB.html
http://diy.inria.fr/x86-memtype/wrwt-SB+mfence+po+WT+WB.html
http://diy.inria.fr/x86-memtype/wrwt-R+mfence+po+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+po+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+po+mfence+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+po+mfence+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-MP+po+mfence+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+ponant+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+ponant+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+ponant+mfence+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+ponant+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+ponant+mfence+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WB+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WB+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WT+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WT+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+po+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+po+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+po+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+po+mfence+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+po+mfence+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-MP+po+mfence+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+po+WC+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+WC+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+po+mfence+WC+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+po+mfence+WC+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-MP+po+mfence+WC+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+ponant+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+ponant+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+ponant+mfence+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+ponant+mfence+WC+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+ponant+mfence+WC+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+ponant+mfence+WC+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+pontna+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+pontna+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+pontna+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+pontna+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+pontna+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+mfence+pontna+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+pontna+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+mfence+pontna+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontna+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontna+WB+WT.html
http://diy.inria.fr/x86-memtype/wwnt-R+pontna+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/wwnt-R+pontna+mfence+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontna+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontna+mfence+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontna+WC+WB.html
http://diy.inria.fr/x86-memtype/wwnt-R+pontna+mfence+WB+WC.html
http://diy.inria.fr/x86-memtype/wwnt-R+pontna+mfence+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontna+mfence+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontna+mfence+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontnt+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontnt+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontnt+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-2+2W+mfence+pontnt+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+pontnt+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+pontnt+mfence+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+pontnt+mfence+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+pontnt+mfence+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontnt+mfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontnt+mfence+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontnt+mfence+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-S+pontnt+mfence+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WB+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WT+UC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WT+WB.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WT+WC.html
http://diy.inria.fr/x86-memtype/invalid-sc-R+sfence+sfence+WT+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+UC+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WB+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WC+WT.html
http://diy.inria.fr/x86-memtype/invalid-sc-SB+sfences+WT+WT.html
http://diy.inria.fr/x86-memtype/clf00-SB+clflushnexts+WB+WB.html
http://diy.inria.fr/x86-memtype/clf00-SB+clflushnexts+WT+WT.html

Extending Intel-x86 Consistency and Persistency 22:11

x, y ∈Locwb x, x ′, y ∈Locwb x, x ′, y ∈Locwb x, x ′, y ∈Locwb x, x ′, y ∈Locwb
x ∈Locwb,
y ∈Loc

x:= 1;
y:= 1

(a)

x:= 1;
flush x

′;
y:= 1

(b)

x:= 1;
flushopt x

′;
y:= 1

(c)

x:= 1;
flushopt x

′;
FAA(y, 1)

(d)

x:= 1;
flushoptx

′;
sfence;
y:= 1

(e)

C≜x:= 1;
y:= 1

(f)

rec: x,y ∈ {0,1} rec: y=1⇒x=1 rec: x,y ∈ {0,1} rec: y=1⇒x=1 rec: y=1⇒x=1 rec: x,y ∈ {0,1}

x, x ′∈Locwb,
y ∈Loc

x ∈Locwc,
y ∈Locuc∪ wt

x ∈Locwc,
y ∈Locwc∪ wb

x ∈Locuc∪ wt

y ∈Loc
x ∈Locwb∪ wt∪ wc

y ∈Locuc∪ wt

x ∈Locwb∪wt∪wc
y ∈Locwc∪ wb

CP ≜x:= 1;
persist x ′;
y:= 1

(g)

x:= 1;
y:= 1

(h)

x:= 1;
y:= 1

(i)

x:= 1;
y:= 1

(j)

x:= 1;
x:=NT 2;
y:= 1

(k)

x:= 1;
x:=NT 2;
sfence;
y:= 1

(l)

rec: y=1⇒x=1 rec: y=1⇒x=1 rec: x,y ∈ {0,1} rec: y=1⇒x=1 rec: y=1⇒x=2 rec: y=1⇒x=2

Fig. 3. Examples of PEx86 programs and possible values of x, y upon recovery; in all examples x, y are

locations in persistent memory where x=y=0 initially, a is a (local) register, x, x ′ ∈X (x, x ′ are in cache line

X), y <X , and persist x denotes either flush x or flushopt x; cb , where cb is either mfence, sfence or an

atomic update (RMW). Replacing an sfence with mfence or an RMW yields the same result upon recovery.

to) memory synchronously, at which point they also become visible to other threads (i.e. the
store and persist orders are one and the same), thus following strict, unbuffered persistency.
Analogously, recall that wt writes are cached (made visible to other threads) and also written
to memory immediately (i.e. persisting the writes synchronously and in the same order as they
were made visible to other threads), therefore following strict, unbuffered persistency. Lastly, as
non-temporal writes are subject to wc semantics, they also follow strict, unbuffered persistency.

We next describe PEx86 persistency through several examples in Figs. 3 and 4. The rec specifica-
tion below each example denotes possible values observed in memory upon recovery from a crash
at an arbitrary program point. That is, we make no assumptions of when the crash occurs; rather,
we assume that a crash may occur at any point during the execution.

Persistency of wbMemory. The relaxed, buffered persistency of wb is reflected in the example of
Fig. 3a. Due to the buffered nature of persists, if a crash occurs during the execution of this program,
at crash time either write may or may not have already persisted and thus x, y ∈ {0, 1} upon
recovery. Note that the relaxed nature of wb persistency admits somewhat surprising behaviours
that are not possible during normal (non-crashing) executions. In particular, at no point during the
normal execution of the program the x=0, y,1 behaviour is observable: the two wb writes cannot
be reordered under Intel-x86. Nevertheless, in case of a crash it is possible to observe y=1, x=0 after
recovery. This is due to relaxed persistency of wb: the store order, describing the order in which
writes are made visible to other threads (x before y), is separate from the persist order, describing
the order in which writes are persisted to memory (y before x). More concretely, two wb writes may
be persisted (1) in any order, when they are on distinct locations; or (2) in the store order, when
they are on the same location. That is, for each wb location, its store and persist orders coincide.

In order to afford more control over when pending writes are persisted, the persist instructions,
namely flush x and flushopt x, can be used to persist the pending writes on all locations in the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:12 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

cache line of x. The persist behaviour of flush is illustrated in Fig. 3b: when x, x ′∈X (i.e. x, x ′ are
in cache line X), executing flush x

′ persists the earlier write on X (i.e. x:= 1) to memory. As such,
if a crash occurs during the execution of Fig. 3b and upon recovery y=1, then x=1. That is, if y:= 1
has executed and persisted before the crash, then so must the earlier x:= 1;flush x

′. Note that this
behaviour is guaranteed thanks to the ordering constraints on flush instructions. Specifically, as
we discussed in §2.1, flush instructions are ordered with respect to all writes; as such, flush x

′ in
Fig. 3b cannot be reordered with respect to either write, and thus upon recovery y=1 ⇒ x=1.

However, instruction reorderings mean that persist instructions may not execute at the intended
program point and thus may not guarantee the intended persist ordering. For instance, recall that
when x

′ ∈X , flushopt x
′ is only ordered with respect to earlier writes on the same cache line X

and thus may be reordered with respect to writes on locations in different cache lines, i.e. those
not in X . This is illustrated in the example of Fig. 3c: since y < X , the flushopt x

′ in Fig. 3c is
not ordered with respect to y:= 1 and may be reordered after it. Therefore, if a crash occurs after
y:= 1 has executed and persisted but before flushopt x

′ has executed, then upon recovery it is also
possible to observe y=1, x=0. That is, there is no guarantee that x:= 1 persists before y:= 1, despite
the intervening flushopt x

′. By contrast, recall that flushopt instructions are ordered with respect
to (earlier and later) RMW, sfence andmfence instructions. As such, flushopt x

′ in Fig. 3d cannot
be reordered after FAA(y, 1) and thus y=1 ⇒ x=1 upon recovery. Similarly, flushopt x

′ in Fig. 3e
cannot be reordered after sfence and once again y=1 ⇒ x=1 upon recovery.

In summary, given wb locations x, x ′ in the same cache line, to ensure that a write on x is persisted,
one can use a persist sequence on x

′, written persist x ′, via either (1) flush x
′; or (2) flushopt x

′; cb ,
where cb is an mfence/sfence/RMW. Conceptually, one can think of flush as synchronous (it
blocks until all pending writes in its cache line have persisted), and of flushopt as asynchronous (it
may not persist the pending writes at the intended program point) unless followed by a barrier
as in (2). This pattern is shown in Fig. 3g, where persist x ′ ensures that x:= 1 on wb memory is
persisted before executing y:= 1, ensuring y=1 ⇒ x=1 on recovery. That is, regardless of the y
memory type (y ∈Loc), the persist x ′sequence cannot be reordered after y:= 1 (as flush,mfence,
sfence and RMWs are ordered with respect to all writes), ensuring y=1 ⇒ x=1 on recovery. By
contrast, without the persist sequence in Fig. 3f, the wbwrite x:= 1may not have yet persisted when
executing y:= 1 on arbitrary memory (y ∈Loc), and thus if a crash occurs after y:= 1 has executed
and persisted but before x:= 1 has persisted, then one may also observe y=1, x=0 on recovery.

Persistency of wc, uc and wtMemory. As mentioned above, wc, uc and wt memory all follow
strict, unbuffered persistency, as shown in Figs. 3h and 3j. In the case of Fig. 3h, as x ∈ Locwc,
executing x:= 1 directly writes to memory; moreover, as y ∈Locuc∪ wt, the two writes cannot be
reordered. As such if upon recovery y:= 1 has executed and persisted (y=1), then so must the earlier
x:= 1 (x=1). Similarly, in the case of Fig. 3j, as x ∈ Locuc∪ wt, the two writes cannot be reordered
and executing x:= 1 directly writes to memory, and thus y=1 ⇒ x=1 on recovery.
Note that as wc writes can be reordered with respect to wb/wc writes, it may be executed (and

thus persisted) out of order. This is illustrated in Fig. 3i: as x ∈Locwc and y ∈Locwc∪ wb, the x:= 1
can be reordered after y:= 1. As such, if a crash occurs after y:= 1 has executed and persisted but
before x:= 1 has executed, then it is also possible to observe y=1, x=0 upon recovery.

Persistency of Non-Temporal Writes. As mentioned above, as with wc memory, non-temporal
writes follow strict unbuffered persistency. For instance, were we to replace x:= 1 in Figs. 3h and 3j
with x:=NT 1 such that x ∈Locwb∪ wt∪ wc, then their recovery specifications would remain unchanged.
Interestingly, a non-temporal store on x ∈Locwb additionally serves as a persist instruction in that it
persists (evicts) the pending (in-cache) writes on x to memory – see (nt) above. This is illustrated
in Fig. 3k when x ∈ Locwb. Specifically, (1) as y ∈ Locuc∪ wt and the first two writes are on the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:13

x ∈Locwb,
y ∈Loc

x ∈Locwb,
y ∈Loc

x ∈Locwc,
y ∈ Locwc∪ wb

x ∈Locwc,
y ∈ Locuc∪ wt

x ∈Locuc∪ wt,

y ∈ Locwb
x ∈Locuc∪ wt,

y < Locwb

CP

a:= y;
if (a= 1)
z:= 1;

(a)

C

a:= y;
if (a= 1)
z:= 1;
(b)

C

a:= y;
if (a= 1)
z:= 1;
(c)

C

a:= y;
if (a= 1)
z:= 1;
(d)

C

a:= y;
if (a= 1)
z:= 1;
(e)

C

a:= y;
if (a= 1)
z:= 1;
(f)

rec: xP ∧y ∧yP rec: x ∧y ∧yP rec: x ∧y ∧yP rec: xP ∧yP rec: xP ∧y rec: xP ∧yP

with
x≜ z=1⇒x ∈ {0, 1} xP ≜ z=1 ⇒ x=1 y≜ z=1∧y ∈Locwb⇒y ∈{0,1} yP ≜ z=1∧y<Locwb⇒y=1

Fig. 4. Examples of concurrent PEx86 programs and possible values of x, y, z upon recovery, where C and CP

are as defined in Fig. 3; all examples use the same notation and conventions as in Fig. 3.

same location x, all three writes are ordered with respect to one another and thus no reordering is
allowed; and (2) executing x:=NT 2 first ensures that the earlier x:= 1 is persisted to memory, and
then writes 2 to x in memory. As such, if upon recovery y:= 1 has executed and persisted (y=1),
then so must x:=NT 2 (x=2). Note that if y in Fig. 3k were instead in wc/wb memory, y:= 1 could be
reordered before both writes on x, and on recovery it would be possible to observe x ∈ {0, 1, 2}
even when y=1. To prevent this reordering, we can insert an sfence (or mfence/RMW) before
y:= 1, as illustrated in Fig. 3l, restoring y=1 ⇒ x=2.

Concurrent Persistency Examples. The examples discussed thus far all concern sequential
programs and the persist orderings in the same thread. The example in Fig. 4 illustrates how persist
orderings can be imposed on different threads. Note that CP and C in the left threads of Figs. 4a
to 4f are as defined in Fig. 3. Under PEx86 one can use message-passing between threads to enforce
persist ordering. A message is passed from thread τ1 to τ2 when τ2 reads a value written by τ1.

For instance, if the right thread in Fig. 4a reads 1 from y (written by CP in the left thread), then
the left thread passes a message to the right thread. Message passing ensures that the instruction
writing the message (e.g. y:= 1) is executed (ordered) before the instruction reading it (e.g. a:= y). As
such, since x:= 1; persist x ′ (in CP) is executed before y:= 1 (as in Fig. 3g), y:= 1 is executed before
a:= y, and z:= 1 is executed after a:= y when a=1, we know x:= 1; persist x ′ is executed before z:= 1.
Consequently, if upon recovery z=1 (i.e. z:= 1 has executed and persisted before the crash), then
x=1 (x:= 1; persist x ′ must have also persisted before the crash, as given by xP.
By contrast, in the absence of persist x ′ in Fig. 4b, we have z=1 ⇒ x ∈ {0, 1}, as denoted by x.

This is because as x ∈ Locwb, the x:= 1 (in C) may persist after z:= 1, even though it is executed
before it. As such, if a crash occurs after z:= 1 has executed and persisted but before x:= 1 has
persisted, it is possible to observe z=1, x=0 on recovery, even though z=1, x=0 is never possible
during non-crashing executions. Similarly, if y ∈Locwb, then in both Figs. 4a and 4b the y:= 1 may
persist after z:= 1, and thus it is possible to observe z=1, y=0 on recovery, as captured by y. On
the other hand, if y<Locwb (y ∈Locwc∪ uc∪ wt), then in both Figs. 4a and 4b the y:= 1 is persisted to
memory as soon as it is executed (wc/uc/wt follow strict, unbuffered persistency); that is, y:= 1 is
persisted before z:= 1 is executed. Therefore, if upon recovery z=1, then y=1, as denoted by yP.

The remaining examples in Figs. 4c to 4f all use message passing and thus the values of y upon
crash recovery are analogously captured by y and yP, depending on the memory type of y. Moreover,
in all Figs. 4c to 4f, x is persisted as soon as it is executed since it is in wc/uc/wt memory (subject to
strict, unbuffered persistency). In Figs. 4d to 4f, the x:= 1 and y:= 1 writes in C cannot be reordered
as either x or y is in uc/wtmemory. As such, in Figs. 4d to 4f x:= 1 is executed before y:= 1, and (due

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:14 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

to message passing) y:= 1 is executed before z:= 1; consequently, upon recovery if z=1, then x=1
(given by xP). By contrast, in Fig. 4c as x ∈Locwc and y ∈ Locwc∪ wb, the x:= 1 and y:= 1 writes in C

may be reordered. Consequently, z:= 1 may be executed after y:= 1 but before x:= 1, additionally
allowing us to observe z=1, x=0, upon recovery (given by x).

The Challenges of Validating Persistency. As discussed in §2.1, we have successfully extended
the diy toolsuite [Alglave and Maranget 2021] to validate the Ex86 consistency model, whereby
litmus testing techniques are used to monitor the store order (the order in which writes are made
visible to threads). Unfortunately, however, these techniques cannot currently be used to validate
a persistency model: doing so involves monitoring the persist order (the order in which writes
are persisted from processor caches to non-volatile memory), which is invisible to the processors.
Specifically, the contents of memory cannot be observed directly while employing caches, and a
program (litmus test) alone cannot distinguish volatile (in-cache) data from persistent (in-memory)
data. The only reliable way to ensure a write persists is to contrive a crash (turn off the machine)
and then read persistent data from memory once the machine restarts. However, this only allows
one to observe the latest persisted write for each memory location, and is not sufficient to infer
the order in which earlier writes persisted. Moreover, continually restarting a machine makes it
infeasible to run the large number of tests required for high-coverage validation.

As such, we could not validate PEx86 using conventional litmus-testing techniques. Nevertheless,
we argue that PEx86 is a faithful description of Intel-x86 persistency. First, we note that PEx86
is an extension of Px86sim (for wb persistency) which was developed in collaboration with (and
endorsed by) Intel engineers [Raad et al. 2020]. Second, we formalised the PEx86 extensions (for
wc/uc/wt memory and non-temporal writes) by thoroughly studying the Intel reference manual
Intel [2021]. Lastly, we formalised these extensions after detailed discussions with the lead architect
of the Intel instruction set system architecture, and they have confirmed that our understanding
of the persistency semantics of these extensions and our reading of the manual text are accurate.
Nevertheless, as we discuss in §7, we aim to validate PEx86 in the future by using custom hardware
that allows us to monitor the traffic between the CPU caches and the memory, thus inferring the
persist ordering. However, doing so is beyond the scope of this paper.

Verification Techniques for Ex86 and PEx86. As we discuss later, the Ex86/PEx86 models
are conservative extensions of the TSO/Px86sim models, respectively, in that for programs that
do not use the additional features of Ex86/Px86sim (non-temporal writes and non-wb memory
types), the behaviours of Ex86 and TSO (respectively PEx86 and Px86sim) coincide. As such, existing
verification techniques for TSO/Px86sim can be used to reason about such Ex86/PEx86 programs,
e.g. the program logics of OGRA [Lahav and Vafeiadis 2015] and POG [Raad et al. 2020], as well
as the model checkers Nidhugg [Abdulla et al. 2015a] and GenMC [Kokologiannakis et al. 2019b].
Moreover, the full Ex86/PEx86 models (including non-temporal writes and all memory types) both
meet the conditions stipulated by GenMC; as such, the Ex86 (resp. PEx86) model can be fed into
GenMC as-is, yielding a model-checking technique for Ex86 (resp. PEx86) for free.

3 THE DECLARATIVE Ex86 SEMANTICS
Addresses, Locations andCache Lines. We assume a set of addresses,Addr, and definememory

locations as pairs comprising an address and a memory type. We then define cache lines as disjoint
location sets of the same memory type.

Definition 1 (Memory types). A memory type t ∈ MType may be (strong)-uncacheable, uc; write-
through, wt; write-back, wb; or (uncacheable)-write-combining, wc.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:15

Basic domains
a ∈ Reg Registers
v ∈ Val Values
τ ∈ TId Thread IDs

Programs
P ∈ Prog ≜ TId

fin
→ Com

Expressions and sequential commands
Exp ∋ e ::=v | a | e + e | · · · xnt ∈ Locwb∪ wt∪ wc

PCom ∋ c ::= load(x) | store(x, e) | ntstore(xnt, e) |CAS(x, e, e′)
|mfence | sfence |flushopt x |flush x

Com ∋ C ::= e | c | let a:=C in C

| if (C) then C else C | repeat C

Fig. 5. A simple concurrent programming language for Ex86 and PEx86

Derived memory types. We refer to the uc and wc types collectively as non-cacheable: nc ≜
uc ∪ wc. Analogously, we refer to wt and wb collectively as cacheable types: c ≜ wt ∪ wb.

Definition 2 (Locations and cache lines). Assume a set of memory addresses Addr. The set of
memory locations, Loc ⊆ Addr ×MType, is the largest subset of Addr ×MType such that:

∀α , β, t, t′. (α , t), (β, t′) ∈ Loc ∧ t , t′ ⇒ α , β

Assume a set of cache lines, CL ⊆ P (Loc), such that:
(1) all locations in a cache line have the same memory type: ∀X ∈ CL. ∃t. X ⊆ Loct; and
(2) distinct cache lines are disjoint: ∀X , Y ∈ CL. X=Y ∨ X ∩ Y=∅.

Given a memory type t, we write Loct for Loc∩
{
(α , t) α ∈ Addr

}
; e.g. Locuc denotes locations

in ucmemory. Recall from §2 that we assume that the types of locations cannot change once assigned.
As such, the definition of locations above requires that the addresses in Locuc, Locwt, Locwb and
Locwc sets be pairwise disjoint. Given a memory type t, we use xt, yt, · · · as meta-variables for
locations in Loct. We write xnt when x ∈ Locwb∪ wt∪ wc, i.e. x is a location for which the non-
temporal hint will not be ignored. When the memory type is immaterial, we simply use x, y, · · · as
meta-variables for locations in Loc; we use X , Y , . . . as meta-variables for cache lines.

Programming Language. We employ a simple concurrent programming language as given in
Fig. 5. We assume a finite set Reg of registers (local variables); a finite set Val of values; a finite
set TId ⊆ N+ of thread identifiers; and any standard interpreted language for expressions, Exp,
containing registers and values. We use v as a metavariable for values, τ for thread identifiers, and
e for expressions. We model a multi-threaded program P as a function mapping each thread to its
(sequential) program. We write P=C1 | | · · · | |Cn when dom(P)= {τ1 · · · τn} and P(τi)=Ci . Sequential
programs are described by the Com grammar and include primitives (c), as well as the standard
constructs of expressions, assignments, conditionals and loops.
The load(x) denotes a read from location x; similarly, the store(x, e) (resp. ntstore(xnt, e))

denotes a write (resp. non-temporal write) to x (resp. xnt). The CAS(x, e, e′) denotes the atomic
‘compare-and-swap’, where the value of location x is compared against e: if the values match then
the value of x is set to e′ and 1 is returned; otherwise x is unchanged and 0 is returned. Analogously,
FAA(x, e) denotes the atomic ‘fetch-and-add’ operation, where the value of x is incremented by e

and its old value is returned. The CAS and FAA are collectively known as atomic update or RMW
(‘read-modify-write’) instructions. The mfence and sfence denote a memory fence and a store

fence, respectively. Lastly, flushopt and flush denote persist instructions as discussed in §2.
To aid readability, we may not follow syntactic conventions and write e.g. a:= C for let a:=C in a,

andC1;C2 for let a:=C1 inC2, where a is a fresh local variable.Wewrite a:= x for let a:=load(x) in a;
similarly for CAS/FAA. We write x:= e and x:=NT e for store(x, e) and ntstore(x, e), respectively.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:16 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

3.1 Ex86: The Extended Intel-x86 Consistency Model
Executions and Events. In the literature of declarative models, the traces of shared memory

accesses generated by a program are commonly represented as a set of executions, where each
execution is a graph comprising: (i) a set of events (graph nodes); and (ii) a number of relations on
events (graph edges). Each event corresponds to the execution of a primitive command (c∈PCom
in Fig. 5) and is a tuple of the form e=⟨n,τ , l⟩, where n ∈ N is the (unique) event identifier ; τ ∈ TId
is the thread identifier of the executing thread; and l ∈ Lab is the event label, defined below.

Definition 3 (Labels and events). An event e ∈ Event is a tuple ⟨n,τ , l⟩, where n ∈ N is an event
identifier, τ ∈ TId is a thread identifier, and l ∈ Lab is an event label. A label may be:
• (R, x,v) to denote reading v from location x;
• (W, x,v) to denote writing v to x;
• (NTW, xnt,v) to denote non-temporally writing v to xnt;
• (U, x,v,v ′) to denote a successful update (RMW) modifying x to v ′ when its value matches v ;
• (U, x,v,⊥) to denote a failed update (RMW) when x holds v , with ⊥ < Val;
• MF or SF to denote the execution of mfence or sfence, respectively; and
• (FO, x) or (FL, x) to denote the execution of flushopt x or flush x, respectively.

The set of read events is: R ≜ {e ∈ Event | ∃x,v . lab(e)=(R, x,v)}. The sets of writes (W), non-
temporal writes (NTW), successful updates (U s), failed updates (U f),memory fences (MF), store fences
(SF), flush-opt events (FO) and flushes (FL) are defined analogously. We write U for successful and
failed updates: U ≜ U s ∪ U f ; and write ST for events that store to memory: ST ≜ W ∪ U s ∪ NTW .

The functions loc, valr and valw respectively project the location, the read value and the written
value of a label, where applicable. For instance, loc(l)=x and valw(l)=v for l=(W, x,v). We typically
use a, b and e to range over events. The functions tid and lab respectively project the thread
identifier and the label of an event. We lift the label functions loc, valr and valw to events, and
given an event e , we write e.g. loc(e) for loc(lab(e)). An event e is an initialisation event iff
tid(e)=0. Given a set of events E, we write E0 for E restricted to initialisation events.

Notation. Given a set of events A, a location x and a memory type t, we write Ax for {a ∈ A |

loc(a)=x} andAt for
{
e ∈ E loc(e) ∈ Loct

}
, e.g. Ruc denotes the set of read events on uc locations.

Similarly, given a relation r, we write rx for r ∩ (Ax ×Ax) and rt for r ∩ (At ×At). Given a relation
r and a set A, we write r?, r+ and r∗ for the reflexive, transitive and reflexive-transitive closures of r,
respectively. We write r−1 for the inverse of r; r|A for r ∩ (A ×A); [A] for the identity relation on
A, i.e. {(a,a) | a ∈ A}; irreflexive(r) for �a. (a,a) ∈ r ; and acyclic(r) for irreflexive(r+). We write
r1; r2 for the relational composition of r1 and r2, i.e. {(a,b) | ∃c . (a, c) ∈ r1 ∧ (c,b) ∈ r2}. Finally, we
define the same-location relation as sloc ≜

{
(a,b) ∈ Event × Event loc(a) = loc(b)

}
, and the

same-cache-line relation as scl ≜
{
(a,b) ∈ Event × Event ∃X ∈ CL. loc(a) ∈ X ∧ loc(b) ∈ X

}
.

Definition 4 (Ex86 executions). An execution, G ∈ Exec, is a tuple (E, po, rf,mo), where:
• E denotes a set of events, including a set of initialisation events, E0 ⊆ E, comprising a single
write event with label (W, x, 0) for each x ∈ Loc.

• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union of strict total orders,
each ordering the events of one thread, with E

0 × (E \ E0) ⊆ po.
• rf ⊆ (E ∩ ST) × (E ∩ (R ∪ U)) denotes the ‘reads-from’ relation on events of the same location
with matching values; i.e. (a,b) ∈ rf ⇒ (a,b) ∈ sloc∧valw(a)=valr(b). Moreover, rf is total and
functional on its range: every read/update is related to exactly one (non-temporal) write/update.

• mo ≜ {mox}x∈Loc is the ‘modification-order’, such that each mox is a strict total order on ST x ,
and E

0
x
× (ST x \ E

0
x
) ⊆ mox .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:17

ppo Component Label ✓ in Fig. 2
ord ≜ E

0 × E (init)
∪ E × (Euc ∪ Rwc ∪W wt ∪MF ∪ SF ∪ U) ∪ (E \ FO) × FL (col) Cols. 3,4,6,7,10,11,12,13
∪ (R ∪ U ∪MF) × E (row) Rows A,B,C,D,J,K
∪ (W wt ∪W uc ∪ SF) × (E \ Rc) ∪ FL × (E \ FO \ Rc) (row2) Rows F,G,L,M
∪ W wb ×W wb (w-wb) E5
∪ ((W ∪ NTW) × (W ∪ NTW)) ∩ sloc (w-loc) E5:I9
∪ ((W ∪ NTW) × FO) ∩ scl (fo) E14:I14

Fig. 6. The Ex86 ppo components on a given program order po ⊆ E × E with ppo(po) ≜ (po ∩ ord)+

Given an executionG , we typically use the “G .” prefix to extract the various components ofG , e.g.
G .po. When the choice ofG is clear from the context, we drop the “G .” prefix. The ‘modification-
order’ mo describes the store order on the (non-temporal) writes and updates of each location.

Derived Relations. Given an execution (E, po, rf,mo), the derived ‘reads-before’ relation is
defined as rb ≜ rf

−1;mo, relating each read r to all writes that are mo-after the write r reads from.
We further define the ‘preserved program order’ on po as in Def. 5 below. Intuitively, ppo ⊆ po

denotes the po edges between instructions that cannot be reordered; i.e. the non-✗ entries in Fig. 2.

Definition 5 (The ppo relation). Given E ⊆ Event, a relation r ⊆ E × E is a program order iff (1) r
orders the initialisation events in E before all others in E; and (2) r additionally comprises a disjoint
union of strict total orders on the events of each thread. That is, r ≜ E

0 × (E \ E0) ∪
⊎

rτ , where
rτ ⊆ Eτ × Eτ is a strict total order on Eτ ≜

{
e ∈ E tid(e) = τ

}
.

Given a program order po ⊆ E × E, the Ex86 ‘preserved-program-order’ on po is ppo(po) ≜
(po ∩ ord)+, where ord is as defined in Fig. 6 with E

0 ≜
{
e ∈ E tid(e)=0

}
.

Note that given an execution G, the conditions on G .po in Def. 4 ensure that G .po is indeed a
program order. As such, in the context of an executionG we simply write ppo in lieu of ppo(G .po).

Definition 6 (Ex86-consistency). An execution (E, po, rf,mo) is Ex86-consistent iff:
• moi ∪ rfi ∪ rbi ⊆ po (internal)
• acyclic(ob), where ob denotes the ‘ordered-before’ relation defined below: (external)

ob ≜ ppo ∪moe ∪ rfe ∪ rbe

Note that the internal and external axioms are identical to those of TSO in [Alglave et al.
2014], except that the Ex86 ppo relation is more elaborate than that of TSO: while ppo for TSO is
simply po\(W×R) thus prohibiting write-read reordering (see Def. 7), the Ex86 ppo is as in Def. 5.

We next relate Ex86-consistency to the exiting memory models of SC (‘sequential consistency’)
[Lamport 1979] and TSO (‘total store order’) [Sewell et al. 2010]. While SC allows no reordering,
TSO allows write-read reordering (later reads (in program order) can be reordered before earlier
writes). We further relate Ex86-consistency to a variant of PSO (‘partial store order’) which we refer
to as SPSO (‘strong PSO’). PSO is a weakening of TSO: in addition to write-read reordering it also
allows write-write reordering on different locations. The SPSO model is a strengthening of PSO
where write-read reordering is prohibited and thus only allows write-write reordering on different
locations. As such, TSO and SPSO are incomparable: TSO allows write-read but not write-write
reordering, whereas SPSO allows write-write (on different locations) but not write-read reordering.

In Theorem 1 we show that given an Ex86-consistent executionG comprising read, write, update
and memory fences: (1) if all locations accessed inG are in ucmemory, thenG is also SC-consistent;
(2) if all locations accessed inG are in cmemory, thenG is also TSO-consistent; and (3) if all locations
accessed in G are in wc memory, then G is also SPSO-consistent. Note that (2) demonstrates that

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:18 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Thread transitions: Com
TId:Lab∪{ϵ }
−−−−−−−−−−→ Com Program transitions: Prog

TId:Lab∪{ϵ }
−−−−−−−−−−→ Prog

C1
τ :l
−−→ C

′
1

let a:=C1 in C2
τ :l
−→ let a:=C′

1 in C2

T-Let1
let a:=v in C

τ :ϵ
−→ C[v/a]

T-Let2

C

τ :l
−−→ C

′

if (C) then C1 else C2
τ :l
−−→ if (C′) then C1 else C2

T-If1 v,0 ⇒ C=C1 v=0 ⇒ C=C2

if (v) then C1 else C2
τ :ϵ
−−−→ C

T-If2

repeat C
τ :ϵ
−−−→ if (C) then (repeat C) else 0

T-Repeat
store(x,v)

τ :(W,x,v)
−−−−−−→ v

T-Write

ntstore(x,v)
τ :(NTW,x,v)
−−−−−−−−→ v

T-NTW
load(x)

τ :(R,x,v)
−−−−−−→ v

T-Read
mfence

τ :MF
−−→ 1

T-MF

v , v1

CAS(x,v1,v2)
τ :(U,x,v,⊥)
−−−−−−−−−→ 0

T-CAS0
CAS(x,v1,v2)

τ :(U,x,v1,v2)
−−−−−−−−−−−→ 1

T-CAS1
sfence

τ :SF
−−→ 1

T-SF

flushopt x
τ :(FO,x)
−−−−−→ 1

T-FO
flush x

τ :(FL,x)
−−−−−→ 1

T-FL
P(τ)

τ :l
−−→ C

P

τ :l
−→ P[τ 7→ C]

Prog

Fig. 7. Program transitions in Ex86 and PEx86

Ex86 is a conservative extension of TSO: for programs that do not use the additional features of
Ex86 (non-temporal writes and non-wb memory types), the behaviours of Ex86 and TSO coincide.
As such, existing verification techniques for TSO [Abdulla et al. 2015a; Kokologiannakis et al. 2019b;
Lahav and Vafeiadis 2015] can be used to reason about such Ex86 programs.

Definition 7 (SC, TSO and SPSO consistency). Given a memory model MM ∈ {SC, TSO, SPSO},
an execution (E, po, rf,mo) is MM-consistent if:
• moi ∪ rfi ∪ rbi ⊆ po (MM-internal)
• acyclic(ppoMM ∪moe ∪ rfe ∪ rbe) with: (MM-external)
ppoSC ≜ po ppoTSO ≜ po \ (W × R) ppoSPSO ≜ po \ ((W ×W) \ sloc)

Theorem 1. For all executions G = (E, po, rf,mo) such that E ⊆ R ∪W ∪ U ∪MF:

(1) if loc(E) ⊆ Locuc, thenG is SC-consistent iffG is Ex86-consistent, where loc(E)≜
{
loc(e) e ∈E

}
;

(2) if loc(E) ⊆ Locc, then G is TSO-consistent iff G is Ex86-consistent; and
(3) if loc(E) ⊆ Locwc, then G is SPSO-consistent iff G is Ex86-consistent.

4 THE OPERATIONAL Ex86 SEMANTICS
We describe the Ex86 operational model by separating the transitions of its program and storage

subsystems. The former describe the steps in program execution, e.g. how a conditional branch
is triggered. The latter describe how the storage subsystem evolves throughout the execution,
e.g. how memory writes reach the memory. The Ex86 operational semantics is then defined by
combining the transitions of its program and storage subsystems.

Ex86 Program Transitions. The Ex86 program transitions in Fig. 7 are defined via the transi-
tions of their constituent threads. Thread transitions are of the form: C

τ :l
−−→ C

′, where C,C′∈Com
(Fig. 5). The τ :l marks the transition by recording the identifier of the executing thread τ , as well
as the transition label l , which may be ϵ for no-ups, or in Lab (Def. 3) for primitive commands.
Most thread transitions are standard. The T-CAS0 transition describes the reduction of the

CAS(x,v1,v2) instruction when unsuccessful; i.e. when the value read (v) is different from v1. The

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:19

T-CAS1 transition dually describes the reduction of a CAS when successful. The T-MF and T-SF
transitions respectively describe executing an mfence and sfence, reducing to value 1 (successful
termination). Analogously, T-FO and T-FL describe the execution of persist instructions.
Program transitions are of the form: P

τ :l
−−→ P

′, where P,P′ ∈ Prog denote multi-threaded
programs (Fig. 5). Program transitions are given by simply lifting the transitions of their threads.
We model the Ex86 storage subsystem after that of TSO by Sewell et al. [2010] (accounting for

wb memory only). We thus proceed with a brief account of the TSO storage subsystem and then
describe how we generalise it to model the Ex86 storage subsystem.

The TSO Storage Subsystem. In the TSO storage subsystem, each thread is connected to the
(volatile) memory via a local buffer, as illustrated in Fig. 8. Specifically, the execution of writes is
delayed: when a thread issues a write, the write is recorded only in its buffer. The delayed writes
are debuffered in FIFO order and propagated to the memory at non-deterministic times. By contrast,
reads are executed in real time. When a thread issues a read from a location x, it first consults
its own buffer. If it contains delayed writes for x, it reads the value of the last buffered write to
x; otherwise, it consults the memory. In other words, local buffers are used to model instruction
reordering: one can model the reordering of a later read r before an earlier write w (cell E1 of
Fig. 2) by delaying the debuffering ofw until after r has executed in real time. Programmers can
use mfence and RMW instructions to control this debuffering: executing an mfence or an RMW
blocks until all delayed writes in the buffer of the executing thread are propagated to the memory.

thread

bu
ffe

r

delayed
instructions reads

from
buffer

thread

bu
ffe

r

. . .

. . .
debuffered
instructions

(volatile) memory

reads
from
memory

Fig. 8. The TSO/Ex86 storage subsystem

The Ex86 Storage Subsystem. As in TSO, in the Ex86
storage subsystem each thread is connected to the (volatile)
memory via a local buffer (as in Fig. 8) used to model in-
struction reordering. Analogously, as cacheable reads (on
c locations) can be reordered before write, non-temporal
write,flush,flushopt and sfence instructions, we delay the
execution of these instructions by recording them in the
local buffer, while executing reads in real-time. Intuitively,
in both TSO and Ex86 the order in which the entries are
added to the buffer corresponds to po, while the order they
are removed (debuffered) corresponds to ppo. Specifically,
since the TSO buffers only contain writes and write-write
ordering is preserved under TSO (po∩(W ×W) ⊆ ppoTSO),
under TSO the order in which entries are added and re-
moved from the local buffer agree, i.e. the buffer entries are removed in the FIFO order. By contrast,
the Ex86 local buffers contain write, non-temporal write, flush, flushopt and sfence entries, and
since their respective orders are not included in ppo, the FIFO order and ppo may disagree, and it
is possible for a later entry to be debuffered before an earlier one. For instance, under Ex86 a later
writew may be reordered before a flushopt instruction fo (e.g. cell N5 in Fig. 2); as such, fo will be
added to the buffer beforew , but may be debuffered afterw .

Ex86 Storage Transitions. The Ex86 storage transitions are given in Fig. 9 and are of the form:
M,B

τ :l
−−→ M

′,B′, where M,M′∈Mem denote the memory, modelled as a (finite) map from locations
to values; and B,B′ ∈ BMap denote the buffer map, associating each thread with its local buffer.
Each local buffer b∈Buff is modelled as as a sequence of BLab, recording the labels of delayed
instruction, namely those of writes, non-temporal writes, flush, flushopt and sfence instructions.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:20 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Ex86 Storage transitions: SConf
TId:Lab∪{ϵ }
−−−−−−−−−−−→ SConf Σ∈SConf ≜ Mem × BMap

M ∈ Mem ≜ Loc
fin
→ Val BLab ≜ Lab ∩ {(W, x,v), (NTW, x,v), (FL, x), (FO, x), SF}

B ∈ BMap ≜ TId
fin
→ Buff b ∈ Buff ≜ Seq ⟨BLab⟩

x ∈Locc rd(M,B(τ), x)=v

M,B
τ :(R,x,v)
−−−−−−−→ M,B

M-ReadC
x ∈Locnc B(τ)=ϵ M(x)=v

M,B
τ :(R,xnc,v)
−−−−−−−−−→ M,B

M-ReadNC

l ∈BLab B(τ)=b

M,B
τ :l
−→ M,B[τ 7→ b.l]

M-Buff
B(τ) = ϵ M(x) = vr

M,B
τ :(U,xwb,vr ,vw)
−−−−−−−−−−−−−→ M[x 7→ vw],B

M-RmwS

B(τ) = ϵ

M,B
τ :MF
−−−→ M,B

M-MF
B(τ) = ϵ M(x) = vr

M,B
τ :(U,xwb,vr ,⊥)
−−−−−−−−−−−−→ M,B

M-RmwF

B(τ)=b1.l .b2 l ∈ {(W, x,v), (NTW, x,v)} b1 ∩ LPPO(B(τ),τ)=∅

M,B
τ :ϵ
−→ M[x 7→ v],B[τ 7→ b1.b2]

M-PropW+NTW

B(τ)=b1.l .b2 l ∈ {(FL, x), (FO, x), SF} b1 ∩ LPPO(B(τ),τ)=∅

M,B
τ :ϵ
−→ M,B[τ 7→ b1.b2]

M-PropFL+FO+SF

rd(M, b, x) ≜

{
v if ∃b1, b2, l . b = b1.l .b2 ∧ l ∈ {(W, x,v), (NTW, x,v)} ∧ ∀v ′. (W, x,v ′), (NTW, x,v ′)<b2
M(x) otherwise

PO(b,τ) ≜
{
((n1,τ , l1), (n2,τ , l2)) b#n1=l1 ∧ b#n2=l2 ∧ n1 < n2

}
LPPO(b,τ) ≜

{
(l1, l2) (−,−, l1), (−,−, l2) ∈ ppo(PO(b,τ))

}
Fig. 9. Storage transitions in Ex86 with ppo(.) as defined in Fig. 6

When a thread executes a delayed instruction with label l ∈ BLab, it appends l to its local buffer
as described by M-Buff. Recall that when a thread reads from x, it first consults its own buffer,
followed by the non-volatile memory (if no write on x is found in the local buffer). This lookup
chain is captured by rd(M, b, x) in the premise of M-ReadC, defined at the bottom of Fig. 9.
Note that M-ReadC captures reading from cacheable memory (x ∈ Locc), while M-ReadNC

captures that of non-cacheable memory (x ∈Locnc). Recall that unlike later cacheable reads, later
non-cacheable reads cannot be reordered before any instruction. As such, in M-ReadNC we
additionally require that the local buffer of the executing thread be empty (B(τ)=ϵ). This way, we
do not allow the (real-time) execution of non-cacheable reads to overtake delayed instructions,
thereby precluding later non-cacheable reads from being reordered before them. As the local buffer
is empty (i.e. contains no writes on x), the value of x is read directly from the memory (M(x)=v).
Analogously, M-MF, M-RmwS and M-RmwF require that B(τ)=ϵ , ensuring that mfence and

RMW instructions are not reordered with respect to other instructions. As such, since B(τ)=ϵ , in
M-RmwS andM-RmwF the value of x is read directly from the memory (M(x)=vr).
The M-PropW+NTW describes the debuffering of delayed writes and non-temporal writes.

Recall that delayed entries are added and removed (debuffered) in po and ppo orders, respectively.
To this end, we first compute the po on the delayed entries of τ via PO(B(τ),τ), defined at the
bottom of Fig. 9, where b#n denotes the nth entry in b. Given po on delayed entries, we then use
LPPO(B(τ),τ) to compute ppo on delayed entries and lift it to their labels. That is, LPPO(B(τ),τ)
captures ppo on delayed entries and thus their debuffering must respect LPPO(B(τ),τ), as stipulated

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:21

Operational semantics: Prog × SConf ⇒ Prog × SConf
P

τ :ϵ
−−−→ P

′

P, Σ ⇒ P
′, Σ

SilentP Σ
τ :ϵ
−−−→ Σ′

P, Σ ⇒ P, Σ′
SilentS P

τ :l
−−→ P

′ Σ
τ :l
−−→ Σ′

P, Σ ⇒ P
′, Σ′

Step

Fig. 10. The operational semantics of Ex86 and PEx86

by b1 ∩ LPPO(B(τ),τ)=∅: when B(τ)=b1.l .b2, then l can be debuffered provided that the earlier
entries in the buffer (b1) are not ppo-before it. Once the write/non-temporal write is debuffered, its
associated value is written to memory, thus capturing when its associated store finally takes place.
Analogously, M-PropFL+FO+SF captures the debuffering of flush, flushopt and sfence.

Ex86 Combined Transitions. The Ex86 operational semantics is defined by combining the Ex86
program and storage transitions as shown in Fig. 10. SilentP describes the case where the program
subsystem takes a silent step and thus the storage subsystem is left unchanged; mutatis mutandis

for SilentS. Step describes the case where the program and storage subsystems both take the same

transition (with the same label) and thus the transition effect is that of their combined effects.
Finally, we show that the declarative and operational characterisations of Ex86 are equivalent.

Theorem 2 (Ex86 equivalence). The declarative and operational Ex86 models are equivalent.

5 VALIDATING THE Ex86 MODEL
We validate our Ex86 model using the diy toolsuite [Alglave and Maranget 2021]. A more detailed
account of our experiments, including our test base, executable Catmodel and run logs, is available
at [Raad et al. 2022b]. Our approach is as follows:

(1) We have transliterated the Ex86 declarative model (§3) into Cat, the domain-specific language of
the herd simulator for memory models. This translation was immediate because Cat supports
the relational syntax used in §3.

(2) We have built a test base of over 2200 tests. Most of our tests are derived from 20 tests (with
up to 3 threads) that demonstrate SC (‘sequential consistency’) violations – see here. We
have also included several tests that target specific objectives such as highlighting a given
relaxation or non-relaxation (see here). The SC violations build upon an extension of the
critical cycles of Shasha and Snir [1988] with up to 3 threads. Using these cycles, we have used
diy to systematically construct variants of these basic tests by a) considering all possible memory
types for each shared location; b) using non-temporal writes in place of standard writes; and
c) inserting flush, flushopt, sfence andmfence instructions at appropriate program points.

(3) For each of our tests, we have used an extension of the herd simulator to record the valid
outcomes according to our Cat model. This extension implements the Intel-x86 memory types
as well as the flush and flushopt instructions.

(4) We have also run our tests on existing hardware and recorded the set of observed outcomes. To
do so, we have used multiple testing machines with various Intel-x86 CPU implementations,
including multiple versions of the Intel coreI5, coreI7 and Xeon CPU. We have run each test at
least 6 × 108 times, with some critical tests run up to a few billion times.

(5) To run the tests, we have extended the klitmus tool of Alglave et al. [2018] for testing the
kernel memory model. Specifically, a) we have extended it to accept tests written in Intel-x86
assembly (klitmus originally only accepted tests written in idiomatic C following the Linux
kernel conventions); and b) we have further extended it to allocate each shared variable in a
different virtual page to allow for tests that specify the memory type of each variable. For the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype//tests.html
http://diy.inria.fr/x86-memtype/index.html

22:22 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

x, ∈ Locwb, y ∈ Locwc x, y ∈ Locwb x ∈ Locwc, y ∈ Locwb x ∈ Locwb, y ∈ Locwb∪ wt

x:= 1;
flushopt y;
y:= 1;

a:= y;
mfence;
b:= x;

a=1 ∧ b=0: ✓

(a)

x:=NT 1;
flushopt y;
y:= 1;

a:= y;
mfence;
b:= x;

a=1 ∧ b=0: ✓

(b)

x:= 1;
flushopt z;
y:= 1;

a:= y;
mfence;
b:= x;

a=1 ∧ b=0: ✓

(c)

x:= 1;
flushopt z;
y:=NT 1;

a:= y;
mfence;
b:= x;

a=1 ∧ b=0: ✓

(d)

Fig. 11. Ex86 Selected litmus tests illustrating the weak behaviours of flushopt, where ✓ denotes that the

depicted weak behaviour is observed; see here for a full list of tests. In all examples, the weak behaviour

depicted is not observed if the flushopt instruction is replaces with a corresponding flush instruction.

latter, our klitmus extension produces Linux kernel modules that call several Linux kernel
functions, including those that change the memory-types of virtual pages.3

(6) Finally, we have compared the set of outcomes allowed by our formal Ex86 model against the
set of outcomes observed by our experiments.
The main result of our experiments is the absence of invalid behaviours, thereby empirically

validating our Ex86 model. That is, in our experiments we did not observe any behaviour that is
forbidden by Ex86. Moreover, only 64 tests include behaviours that are allowed by Ex86 and yet not
observed on hardware, showing that Ex86 closely captures existing implementations. Among those
64 tests, 53 are SC violations that involve the flushopt instruction, showing that the implementation

of this relatively recent instruction is stronger than its specification both in the Intel manual and
in Ex86, at least on the machines tested. The remaining (11) unobserved outcomes are valid SC

behaviours whose concrete occurrence is thwarted by timing and synchronisation considerations.
Finally, we have empirically validated the results in Theorem 1: (1) changing the memory type

of all shared variable from (the default) wb to uc rules out non-SC behaviours; and (2) changing the
memory type of a shared variable to wc relaxes (the default) TSO model by allowing write-write
reordering (when changing the memory type of any of the two writes involved).

The Weak flushopt Behaviours Observed. As discussed above, our experiments could not
validate the weak behaviours of flushopt described in the Intel manual (as captured by Ex86), and in
most cases the behaviours of flushopt and flush coincide. Nonetheless, a few of our tests confirmed
the weaker behaviour of flushopt compared to that of flush; we present several such tests in Fig. 11.
The examples shown are variants of the canonical ‘message passing’ (mp) litmus test, with an
mfence between the reads in the right thread and a flushopt between the writes in the left thread.

Observe that the read instructions cannot be reordered under Ex86, and the interveningmfence
merely emphasises the absence of such read-read reordering. Note that were we to remove the
flushopt in each example, the two writes could be reordered under Ex86 (given the use of non-
temporal writes and the memory types of x, y), and thus the weak behaviour shown (a=1 ∧ b=0)
could be observed. On the other hand, were we to replace the flushopt in each example with a
corresponding flush, such write-write reordering would be prohibited (flush instructions are
ordered against all earlier and later writes) and the weak behaviour shown would not be observed.
By contrast, our experiments confirmed that adding an intervening flushopt between the two

writes (as shown in the examples) does not preclude such write-write reordering, allowing us
to observe the weak behaviour shown. Nevertheless, it is unclear what direction of reordering
enables the weak behaviour observed. For instance, in the case of Fig. 11a, it is unclear whether

3A previous attempt of building over the kvm infrastructure failed because we found no technique to control memory-types
in a virtualised setting.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

http://diy.inria.fr/x86-memtype/clflushopt.html

Extending Intel-x86 Consistency and Persistency 22:23

the weak behaviour shown is due to write-flushopt reordering (i.e. reordering x:= 1 and flushopty)
or flushopt-write reordering (i.e. reordering flushopty and y:= 1). Specifically,our Ex86 model (as
well as the Intel manual) admits both directions of reordering (cells E14 and N8 in Fig. 2), and it is
thus unclear to which reordering we can attribute the weak behaviour observed. More generally,
note that we cannot devise litmus tests that definitively distinguish write-flushopt reordering from
flushopt-write reordering. As such, since (1) the implementation of flushopt (on the machines
tested) is in most cases stronger than its specification in the Intel manual, and (2) in cases where the
weak behaviour of flushopt is observed we cannot conclusively determine the reordering direction,
in Ex86 we opt to model all weak behaviours of flushopt as described in the Intel manual.

Caveats. Beyond the expected limitation that testing can only validate and not prove model
compliance, our experiments have limitations in scope. Specifically, we could not test the wp (write-
protected) memory type since no kernel function supports assigning this memory type. Moreover,
we could not test non-temporal loads as they require enabling SSE (‘streaming SIMD extensions’),
which is disabled while compiling kernel code.

6 PEx86: THE PERSISTENT Ex86 MODEL
We extend Ex86 to develop declarative and operational characterisations of PEx86 as the first formal
model of Intel-x86 persistency that accounts for memory types and non-temporal writes. We show
that the two characterisations of PEx86 are equivalent.

6.1 The Declarative PEx86 Model
Durable Events. In order to define the persistency semantics of Intel-x86, we first introduce the

notion of durable events. Durable events are those whose effects may be observed when recovering
from a crash. For instance, the effects of x:=v may be observed upon recovery if the write of v on
x has persisted before the crash. As such, write events are durable. Note that durability does not
reflect whether the effects of the instruction do persist; rather that its effect could persist. That is,
regardless of whether the effects of x:=v persist, its associated label is deemed durable. By contrast,
mfence, sfence and read instructions have no durable effects and their events are thus not durable.

Definition 8 (Durable events). The set of durable events is: D ≜ ST .

Definition 9 (PEx86 executions). A PEx86 execution, G, is a tuple (E, P, po, rf,mo, pf), where:
• E, po, rf and mo are as defined in Def. 4.
• P : Loc → E ∩ D associates each location x with a durable event on x (i.e. ∀x . loc(P(x))=x).
• pf ⊆ (E ∩ ST) × (E ∩ (FL∪ FO)) denotes the ‘persists-from’ relation on events of the same cache
line: (a,b) ∈ pf ⇒ (a,b) ∈ scl. Moreover, for each event e ∈FLx ∪ FOx , and each location x

′ on
the same cache line as x (i.e. (x, x ′) ∈ scl), pf relates e to exactly one durable event on x ′.

Intuitively, for each location x, the P(x) denotes the last durable event (store) on x whose effects
have reached the persistent memory. The ‘persists-from’ relation relates each flush/flush-opt event
e to the mo-latest store for each location persisted by e . This is analogous to rf; however, while rf
relates a read/update to a single store, pf relates a flush/flush-opt to multiple stores (one for each
location) on the same cache line. Analogously, the derived ‘persists-before’ relation is defined as
pb≜pf−1;mo, relating each flush/flush-opt to mo-later stores (cf. rb).

Definition 10 (PEx86-consistency). An execution G=(E, P, po, rf,mo, pf) is PEx86-consistent iff:
• G satisfies the internal axiom in Def. 6
• acyclic(ob), where ob is extended from Def. 6 as follows: (external-revised)

ob ≜ ppo ∪moe ∪ rfe ∪ rbe ∪ pf ∪ pb

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:24 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

• ∀x ∈ Locnc∪ wt. P(x) = max (mox) (strict-persist)
• ∀x ∈ Locwb, e ∈ Sx . (e, P(x)) ∈ mo

? (weak-persist)
where S ≜ NTW wb ∪ dom(pf; [FL]) ∪ dom(pf; [FO]; po; [MF ∪ SF ∪ U]).

As with Ex86, the PEx86 axioms ensure internal and external consistency, with ob extended
with persistency relations pf and pb in external-revised. The strict-persist describes the strict,
unbuffered persistency of nc and wt memory: the last store persisted for x ∈ Locnc∪ wt is the
mo-latest write on x; i.e. writes on nc and wt memory become persistent (reach their persist point)
when they become visible to other threads (reach their store point). Analogously, weak-persist
describes the weak persistency of wb memory: the last store persisted for x ∈ Locwb must be
mo-after all other stores to x that are guaranteed to have persisted, namely (1) non-temporal writes
on wb memory (NTW wb) since non-temporal writes follow strict, unbuffered persistency; and (2) wb
writes persisted by a persist sequence, i.e. either a flush (dom(pf; [FL])) or a flushopt followed by
mfence/sfence/RMW (dom(pf; [FO]; po; [MF ∪ SF ∪ U])).

6.2 The Operational PEx86 Model
As with Ex86, we describe the PEx86 operational model by separating the transitions of its program
and storage subsystems. The PEx86 program transitions are those of Ex86 in Fig. 7; its storage
transitions are more complex and are presented in Fig. 13. The PEx86 operational semantics is then
defined by combining the transitions of its program and storage subsystems, as in Fig. 10.

thread

bu
ffe

r

thread

bu
ffe

r

. . .

. . .

persistence buffer

reads from
persistence
buffer

(non-volatile) memory

debuffered instructions

Fig. 12. The storage subsystem of PEx86

The PEx86 Storage Subsystem. Recall that
nc and wt memory follow strict, unbuffered per-
sistency (their store and persist orders agree), and
thus as in Ex86, when these writes are debuffered
from thread-local buffers, they are immediately
written to (non-volatile) memory. On the other
hand, wb memory follows relaxed, buffered per-
sistency; to model this, the PEx86 storage system
has an additional layer compared to Ex86, namely
a persistence buffer, as illustrated in Fig. 12. Intu-
itively, the persistence buffer contains those wb
writes that are pending to be persisted to the (non-
volatile) memory. As with the memory, the persis-
tence buffer is accessible by all threads. However,
while the memory is non-volatile, the persistence buffer is volatile and its contents are lost upon a
crash. When a delayed wbwritew in the local buffer is debuffered, it is propagated to the persistence
buffer; this debuffering denotes the store associated with w , i.e. when w is made visible to other
threads. A pending wb writesw in the persistence buffer is in turn debuffered and propagated to the
memory at non-deterministic points in time; this debuffering denotes the persist associated with
w , i.e. whenw is written durably to memory. This hierarchy models the notion that the store of
each write takes place before its associated persist. Note that the real time execution of reads must
accordingly traverse this hierarchy: when reading from x, the thread first inspects its own buffer
and reads the value of the last buffered write to x if such a write exists; otherwise, it consults the
persistence buffer for the value of the last persist-pending store to x if such a store exists; otherwise,
it reads x from the memory. Recall that wb writes on distinct locations may persist in any order (see
Fig. 3a), while those on the same location persist in the store order. Following [Khyzha and Lahav
2021], we thus model the persistence buffer as a per-location map (PBMap in Fig. 13), associating
each wb location x with a queue of persist-pending writes on x (PBuff in Fig. 13). The pending

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:25

writes on each location x (within the same queue) are persisted in the FIFO order, while those on
different locations (in different queues) are propagated in an arbitrary order.
Lastly, recall that while flush is synchronous, flushopt is asynchronous unless followed by

mfence/sfence/RMWs. As such, (FL, x) entries may be debuffered from the local buffer (i.e. ex-
ecuted) only when there are no persist-pending writes in PB(x ′), for each x

′ in the same cache
line as x, thus modelling its synchronous behaviour. By contrast, when (FO, x) is debuffered, it is
instead added to PB(x ′) (to be removed at a later point) for each x

′ in the same cache line as x, thus
modelling its asynchronous behaviour. Moreover, since executingmfence/RMWs renders flushopt
instructions synchronous, they may be executed only if there are no pending flushopt entries by
the executing thread in the persistence buffer. Similarly, an sfence entry may be removed from the
local buffer (i.e. executed) only when there are no pending flushopt entries by the executing thread.

PEx86 Storage Transitions. The storage transitions are of the formM,PB,B
τ :l
−−→M

′,PB′,B′,
whereM,M′∈Mem and B,B′∈BMap are as in Fig. 9, and PB,PB′∈PBMap denotes the per-location
persistence buffer map, associating each wb location with its persistence buffer. A persistence buffer,
pb∈PBuff, is modelled as a sequence of entries of the form (1) w(v), denoting a persist pending
write with value v on x; or (2) fo(τ), denoting a pending flushopt by thread τ on x.

The M-ReadNC and M-Buff are as in Ex86. Recall that when τ executes a read on x in wb
memory, it first consults its local buffer B(τ), followed by the persistence buffer PB(x) (if no write
to x is found in B(τ)), and then the memory (if no store to x is found in B(τ) or PB(x)). This lookup
chain is captured by rd(M,PB(x),B(τ), x) in the premise of M-ReadC, defined at the bottom of
Fig. 13.

As described above, executing mfence/RMWs by τ in M-MF, M-RmwS1, M-RmwS2, M-RmwF1
and M-RmwF2 additionally ensures that there are no pending flushopt entries by τ on any location
in the persistence buffer: ∀y. fo(τ)<PB(y). Note that M-RmwS1 captures executing a successful
RMW on a non-wb location (x <Locwb), where the update is written directly to memory. By contrast,
M-RmwS2 denotes executing a successful RMW on a wb location (x ∈Locwb), where the update is
written to the persistence buffer PB(x) instead. Moreover, when reading the value of x, we must
additionally check the persistence buffer (since it may contain persist-pending writes on x), as
captured by the lookup chain rd(M,PB(x), ϵ, x). Analogously, M-RmwF1 and M-RmFS2 capture
executing a failed RMW on a non-wb and wb location, respectively.

M-PropW1 describes the debuffering of wbwrites from the local buffer, where the debufferedwrite
is propagated to the persistence buffer. Analogously,M-PropW2 andM-PropNTW respectively
describe the debuffering of non-wb writes and non-temporal writes, where the debuffered write is
propagated directly to the memory. Recall from §2.2 that a non-temporal store on x in wb memory
additionally behaves as a persist instruction in that it persists the pending writes on x to memory
(see nt and Fig. 3k). This is captured by x ∈Locwb ⇒ PB(x)=ϵ in the premise of M-PropNTW.

M-PropFL describes debuffering (FL, x) from the local buffer; as discussed above, this can happen
only when PB(y) is empty for each y in the cache line of x: ∀y. (x, y) ∈ scl ⇒ PB(y)=ϵ . Analogously,
M-PropFO describes debuffering (FO, x) by thread τ , appending fo(τ) to PB(y) for each y is in
the cache line of x, as denoted by the standard ternary conditional operator (−?− : −) as PB′ =

λy. (y, x) ∈ scl ? PB(y).fo(τ) : PB(y). M-PropSF describes the debuffering of sfence entries by τ ,
ensuring that there are no pending fo(τ) on any location in the persistence buffer.

Lastly, M-PersistW and M-PersistFO describe removing entries from per-location persistence
buffers in the FIFO order. In the former the removed persist-pending write is written (persisted)
to memory. In the latter removing a pending flushopt from PB(x) is simply discarded: all earlier
pending writes on x have already been persisted to memory in the FIFO order.

Finally, we show that the declarative and operational characterisations of PEx86 are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:26 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

PEx86 Storage transitions: SConf
TId:Lab∪{ϵ }
−−−−−−−−−→ SConf Σ∈SConf≜Mem × PBMap × BMap

PB ∈ PBMap ≜ Locwb 7→ PBuff pb ∈ PBuff ≜ Seq
〈{
w(v), fo(τ) v ∈ Val,τ ∈ TId

}〉
x ∈Locc rd(M,PB(x),B(τ), x)=v

M,PB,B
τ :(R,x,v)
−−−−−−−→ M,PB,B

M-ReadC
x ∈Locnc B(τ)=ϵ M(x)=v

M,PB,B
τ :(R,xnc,v)
−−−−−−−−−→ M,PB,B

M-ReadNC

l ∈ BLab B(τ) = b

M,PB,B
τ :l
−−→ M,PB,B[τ 7→ b.l]

M-Buff
B(τ)=ϵ M(x)=vr x <Locwb ∀y. fo(τ)<PB(y)

M,PB,B
τ :(U,xwb,vr ,vw)
−−−−−−−−−−−−−→ M[x 7→ vw],PB,B

M-RmwS1

B(τ)=ϵ ∀y. fo(τ)<PB(y)
M,PB,B

τ :MF
−−→ M,PB,B

M-MF

B(τ)=ϵ rd(M,PB(x), ϵ, x)=vr x ∈ Locwb
∀y. fo(τ)<PB(y) PB

′=PB[x 7→ PB(x).w(vw)]

M,PB,B
τ :(U,x,vr ,vw)
−−−−−−−−−−−−→ M,PB′,B

M-RmwS2

B(τ)=ϵ M(x)=vr
x <Locwb ∀y. fo(τ)<PB(y)
M,PB,B

τ :(U,xwb,vr ,⊥)
−−−−−−−−−−−−→ M,PB,B

M-RmwF1

B(τ)=ϵ rd(M,PB(x), ϵ, x)=vr
x ∈ Locwb ∀y. fo(τ)<PB(y)
M,PB,B

τ :(U,x,vr ,⊥)
−−−−−−−−−−→ M,PB,B

M-RmwF2

B(τ)=b1.(W, x,v).b2 b1 ∩ LPPO(B(τ),τ)=∅ x ∈Locwb PB(x)=pb

M,PB,B
τ :ϵ
−→ M, PB[x 7→ pb.w(v)] ,B[τ 7→ b1.b2]

M-PropW1

B(τ)=b1.(W, x,v).b2 b1 ∩ LPPO(B(τ),τ)=∅ x < Locwb

M,PB,B
τ :ϵ
−→ M[x 7→ v],PB,B[τ 7→ b1.b2]

M-PropW2

B(τ)=b1.(NTW, x,v).b2 b1 ∩ LPPO(B(τ),τ)=∅ x ∈Locwb ⇒ PB(x)=ϵ

M,PB,B
τ :ϵ
−→ M[x 7→ v],PB,B[τ 7→ b1.b2]

M-PropNTW

B(τ)=b1.(FL, x).b2 b1 ∩ LPPO(B(τ),τ)=∅ ∀y. (x, y) ∈ scl ⇒ PB(y)=ϵ

M,PB,B
τ :ϵ
−→ M,PB,B[τ 7→ b1.b2]

M-PropFL

B(τ)=b1.(FO,x).b2 b1∩ LPPO(B(τ),τ)=∅
PB

′=λy. (y, x) ∈ scl ? PB(y).fo(τ) : PB(y)

M,PB,B
τ :ϵ
−→ M,PB′,B[τ 7→ b1.b2]

M-PropFO

B(τ)=b1.SF.b2 ∀y. fo(τ)<PB(y)
b1∩ LPPO(B(τ),τ)=∅

M,PB,B
τ :ϵ
−→ M,PB,B[τ 7→ b]

M-PropSF

PB(x) = w(v).pb

M,PB,B
τ :ϵ
−→ M[x 7→ v],PB[x 7→ pb],B

M-PersistW
PB(x) = fo(−).pb

M,PB,B
τ :ϵ
−→ M,PB[x 7→ pb],B

M-PersistFO

rd(M, pb, b, x) ≜

v if ∃b1, b2, l . b = b1.l .b2 ∧ l ∈ {(W, x,v), (NTW, x,v)} ∧ ∀v ′. (W, x,v ′), (NTW, x,v ′)<b2
v else if ∃pb1, pb2. pb = pb1.w(v).pb2 ∧ ∀v ′. w(v ′) < pb2
M(x) otherwise

Fig. 13. Storage transitions in PEx86, where highlighted sections denote extensions from Ex86

Theorem 3 (PEx86 equivalence). The declarative and operational PEx86 models are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

Extending Intel-x86 Consistency and Persistency 22:27

7 RELATED AND FUTUREWORK
Existing literature includes several examples of consistency models, both at hardware and software
levels. On the hardware side, Sewell et al. [2010] presented the first formal model of Intel-x86 consis-
tency, later reformulated by Alglave et al. [2014]. Subsequently, Abdulla et al. [2015b] presented an
alternative formulation of TSO (using load buffers rather than store buffers) which they argued to be
more suitable for model checking. However, none of these works covered the consistency semantics
of Intel-x86 memory types and non-temporal writes. Similarly, several works have formalised the
semantics of the ARMv8 and POWER architectures, both operationally and declaratively [Alglave
et al. 2021, 2014; Chakraborty and Vafeiadis 2019; Flur et al. 2016; Mador-Haim et al. 2012; Pulte
et al. 2018; Sarkar et al. 2011]. On the software side, there has been a number of formal models for
C11 consistency [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2016, 2017; Lee et al. 2020; Nienhuis
et al. 2016; Pichon-Pharabod and Sewell 2016] with verified compilation schemes [Moiseenko et al.
2020; Podkopaev et al. 2017, 2019], Java [Bender and Palsberg 2019; Manson et al. 2005], the Linux
kernel [Alglave et al. 2018] and the ext4 filesystem [Kokologiannakis et al. 2021].

Due to the emerging nature of NVM technology, the literature on formal persistency models is
more limited. On the hardware side, Raad and Vafeiadis [2018] developed a proposal for Intel-x86
persistency, which is rather different from the existing Intel-x86 model in [Intel 2021]. Raad et al.
[2020] later formalised the persistency semantics of Intel-x86 as described in [Intel 2021], which
was later refined in [Abdulla et al. 2021; Cho et al. 2021; Khyzha and Lahav 2021]. However, all
three formal models covered the persistency semantics of wb memory alone, and excluded the
other Intel-x86 memory types and non-temporal stores. Similarly, Raad et al. [2019] formalised the
persistency semantics of the ARMv8 architecture declaratively; Cho et al. [2021] later developed
an operational ARMv8 persistency model. On the software side, there are several proposals of
language-level persistency [Alshboul et al. 2021; Gogte et al. 2018, 2020; Kolli et al. 2017], as well as
higher-level persistency approaches such as transactions [Avni et al. 2015; Intel 2015; Kolli et al.
2016; Raad et al. 2019; Shu et al. 2018; Tavakkol et al. 2018]. Lastly, Kokologiannakis et al. [2021]
recently formalised the persistency semantics of the ext4 filesystem.

Future Work. We plan to build on top of this work in several ways. First, we will revisit the
compilation schemes from high-level languages such as C11 to Intel-x86, and study how they
can take advantage of the additional Intel-x86 memory types and non-temporal writes for better
performance. Second, equipped with a formal understanding of Intel-x86 non-temporal writes, we
will specify and verify several crucial fragments of the PMDK library [Intel 2015] that use this
feature (e.g. for persistent transactions). Recall from §2 that a key challenge of testing persistency
is that the persist order is not directly observable. To address this, as a third direction of future
work we will build custom hardware that allows us to monitor the traffic to persistent memory,
and thus to observe the persist order directly. This can be achieved when the processor under
test is a component of a system-on-chip (SoC) FPGA [Jain et al. 2018]. Lastly, we will develop
verification techniques for Ex86 and PEx86, including program logics such as those of [Dalvandi
et al. 2020; Doko and Vafeiadis 2016, 2017; Kaiser et al. 2017; Raad et al. 2020; Turon et al. 2014;
Vafeiadis and Narayan 2013], and stateless model checking [Kokologiannakis et al. 2021, 2019a,b;
Kokologiannakis and Vafeiadis 2020]. The latter would allow us to verify an Ex86/PEx86 program by
exhaustively generating its executions and inspecting them for consistency/persistency violations.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their feedback. This work was supported
in part by a UKRI Future Leaders Fellowship [grant number MR/V024299/1], and by a European

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

22:28 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Research Council (ERC) Consolidator Grant for the project “PERSIST” under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 101003349).

REFERENCES
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015a. Stateless Model Checking for TSO and PSO (LNCS), Vol. 9035. Springer, Berlin, Heidelberg, 353–367. https:
//doi.org/10.1007/978-3-662-46681-0_28

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2021. Deciding
Reachability under Persistent X86-TSO. Proc. ACM Program. Lang. 5, POPL, Article 56 (Jan. 2021), 32 pages. https:
//doi.org/10.1145/3434337

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. 2015b. The Best of Both Worlds: Trading Efficiency and
Optimality in Fence Insertion for TSO. In Proceedings of the 24th European Symposium on Programming on Programming

Languages and Systems - Volume 9032. Springer-Verlag New York, Inc., New York, NY, USA, 308–332. https://doi.org/10.
1007/978-3-662-46669-8_13

Jade Alglave, William Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed cats: formal
concurrency modelling at Arm. ACM Trans. Program. Lang. Syst. (2021). http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/
toplas21.pdf

Jade Alglave and Luc Maranget. 2011–2021. The diy7 tool suite, Software and Documentation. (2011–2021). http://diy.inria.fr/
Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and

Disconcerting Grown-Ups: Concurrency in the Linux Kernel. SIGPLAN Not. 53, 2 (March 2018), 405âĂŞ418. https:
//doi.org/10.1145/3296957.3177156

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining
for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mohammad Alshboul, Prakash Ramrakhyani, WilliamWang, James Tuck, and Yan Solihin. 2021. BBB: Simplifying Persistent
Programming using Battery-Backed Buffers. In 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). 111–124. https://doi.org/10.1109/HPCA51647.2021.00019
Anonymous. 2021. Intel-x86:The interaction between WC, WB and UC Memory. (2021). https://stackoverflow.com/

questions/66978388/intel-x86the-interaction-between-wc-wb-and-uc-memory
Hillel Avni, Eliezer Levy, and Avi Mendelson. 2015. Hardware Transactions in Nonvolatile Memory. In Proceedings of the

29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015). Springer-Verlag, Berlin, Heidelberg,
617–630. https://doi.org/10.1007/978-3-662-48653-5_41

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11).
ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

John Bender and Jens Palsberg. 2019. A Formalization of JavaâĂŹs Concurrent Access Modes. Proc. ACM Program. Lang. 3,
OOPSLA, Article 142 (Oct. 2019), 28 pages. https://doi.org/10.1145/3360568

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In ESOP

2013 (LNCS), Vol. 7792. Springer, 533–553. https://doi.org/10.1007/978-3-642-37036-6_29
Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. Proc. ACM Program.

Lang. 3, POPL, Article 70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383
Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. 2021. Revamping Hardware Persistency Models: View-

Based and Axiomatic Persistency Models for Intel-X86 and Armv8. In Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 16âĂŞ31. https://doi.org/10.1145/3453483.3454027

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.
2009. Better I/O Through Byte-addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd Symposium on

Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 133–146. https://doi.org/10.1145/1629575.1629589
Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike Wehrheim. 2020. Owicki-Gries Reasoning for C11 RAR. In

34th European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics

(LIPIcs)), Robert Hirschfeld and Tobias Pape (Eds.), Vol. 166. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 11:1–11:26. https://doi.org/10.4230/LIPIcs.ECOOP.2020.11

DML. 2021. (2021). https://github.com/intel/DML
Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In Verification, Model Checking, and

Abstract Interpretation, Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
413–430.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3434337
https://doi.org/10.1145/3434337
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/toplas21.pdf
http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/toplas21.pdf
http://diy.inria.fr/
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1109/HPCA51647.2021.00019
https://stackoverflow.com/questions/66978388/intel-x86the-interaction-between-wc-wb-and-uc-memory
https://stackoverflow.com/questions/66978388/intel-x86the-interaction-between-wc-wb-and-uc-memory
https://doi.org/10.1007/978-3-662-48653-5_41
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://github.com/intel/DML

Extending Intel-x86 Consistency and Persistency 22:29

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In Programming Languages

and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 448–475.
DPDK. 2021. (2021). https://www.dpdk.org/
Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.

2016. Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). Association for Computing Machinery,
New York, NY, USA, 608âĂŞ621. https://doi.org/10.1145/2837614.2837615

Free Software Foundation. 2016. (2016). https://elixir.bootlin.com/glibc/glibc-2.34/source/sysdeps/x86_64/multiarch/
memmove-vec-unaligned-erms.S#L36

GitHub. 2019. (2019). https://github.com/spdk/spdk/commit/7b0579df170f90b2d6b704116dea65739f9442cd
GitHub. 2021. (2021). https://github.com/search?q=MOVNTI&type=Code
Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018.

Persistency for Synchronization-free Regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 46–61. https://doi.org/10.1145/3192366.
3192367

Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch. 2020.
Relaxed Persist Ordering Using Strand Persistency. In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). 652–665. https://doi.org/10.1109/ISCA45697.2020.00060
Intel. 2015. Persistent Memory Programming. (2015). http://pmem.io/
Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). This is an old version of

the manual that has been since removed from the Intel pages and the referenced document is an internet archive. (May
2019). https://web.archive.org/web/20190525125151/https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf Order Number: 325462-070US.

Intel. 2021. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). (April
2021). https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-
combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html Order Number: 325462-074US.

Abhishek Kumar Jain, Scott Lloyd, and Maya Gokhale. 2018. Microscope on Memory: MPSoC-Enabled Computer Memory
System Assessments. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM). 173–180. https://doi.org/10.1109/FCCM.2018.00035
Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Programming

(ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Peter Müller (Ed.), Vol. 74. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-
Memory Concurrency. SIGPLAN Not. 52, 1 (Jan. 2017), 175âĂŞ189. https://doi.org/10.1145/3093333.3009850

Artem Khyzha and Ori Lahav. 2021. Taming X86-TSO Persistency. Proc. ACM Program. Lang. 5, POPL, Article 47 (Jan. 2021),
29 pages. https://doi.org/10.1145/3434328

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis. 2021. PerSeVerE: Persistency Semantics for
Verification under Ext4. Proc. ACM Program. Lang. 5, POPL, Article 43 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434324

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019a. Effective Lock Handling in Stateless Model Checking.
Proc. ACM Program. Lang. 3, OOPSLA, Article 173 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360599

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019b. Model Checking for Weakly Consistent Libraries. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019).
ACM, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.3314609

Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for Hardware Memory Models. In Proceedings

of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 1157âĂŞ1171. https://doi.org/10.1145/3373376.
3378480

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.
2017. Language-level Persistency. In Proceedings of the 44th Annual International Symposium on Computer Architecture

(ISCA ’17). ACM, New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229
Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. 2016. High-Performance Transactions for

Persistent Memories. SIGPLAN Not. 51, 4 (March 2016), 399–411. https://doi.org/10.1145/2954679.2872381
Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent shared memory. In PLDI 2020, Alastair F.

Donaldson and Emina Torlak (Eds.). ACM, 211–226. https://doi.org/10.1145/3385412.3385966
Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. SIGPLAN Not. 51, 1 (Jan.

2016), 649âĂŞ662. https://doi.org/10.1145/2914770.2837643

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

https://www.dpdk.org/
https://doi.org/10.1145/2837614.2837615
https://elixir.bootlin.com/glibc/glibc-2.34/source/sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S#L36
https://elixir.bootlin.com/glibc/glibc-2.34/source/sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S#L36
https://github.com/spdk/spdk/commit/7b0579df170f90b2d6b704116dea65739f9442cd
https://github.com/search?q=MOVNTI&type=Code
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1109/ISCA45697.2020.00060
http://pmem.io/
https://web.archive.org/web/20190525125151/https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://web.archive.org/web/20190525125151/https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://doi.org/10.1109/FCCM.2018.00035
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/2954679.2872381
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2914770.2837643

22:30 Azalea Raad, Luc Maranget, and Viktor Vafeiadis

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages, and

Programming, Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 311–323.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in
C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI 2017). ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352
Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439
Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

2020. Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 362âĂŞ376. https://doi.org/10.1145/3385412.3386010

LWN. 2007. (2007). https://lwn.net/Articles/255364/
LWN. 2008. (2008). https://lwn.net/Articles/282250/
LWN. 2016. (2016). https://lwn.net/Articles/698014/
Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K.

Martin, Peter Sewell, and Derek Williams. 2012. An Axiomatic Memory Model for POWER Multiprocessors. In Computer

Aided Verification, P. Madhusudan and Sanjit A. Seshia (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 495–512.
Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. In Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’05). Association for Computing Machinery, New
York, NY, USA, 378âĂŞ391. https://doi.org/10.1145/1040305.1040336

Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and Viktor Vafeiadis. 2020. Reconciling Event Structures
with Modern Multiprocessors (Artifact). Dagstuhl Artifacts Series 6, 2 (2020), 4:1–4:3. https://doi.org/10.4230/DARTS.6.2.4

Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An Operational Semantics for C/C++11 Concurrency. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA, 111âĂŞ128. https://doi.org/10.
1145/2983990.2983997

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation
and Avoids Thin-Air Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’16). Association for Computing Machinery, New York, NY, USA, 622âĂŞ633. https:
//doi.org/10.1145/2837614.2837616

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising Compilation to ARMv8 POP. In 31st European

Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),
Peter Müller (Ed.), Vol. 74. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:28. https:
//doi.org/10.4230/LIPIcs.ECOOP.2017.22

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap Between Programming Languages and Hardware
WeakMemoryModels. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290382

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM Concur-
rency: Multicopy-atomic Axiomatic and Operational Models for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19
(Dec. 2018), 29 pages. https://doi.org/10.1145/3158107

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-Gries Reasoning: A Program Logic for Reasoning
about Persistent Programs on Intel-X86. Proc. ACM Program. Lang. 4, OOPSLA, Article 151 (Nov. 2020), 28 pages.
https://doi.org/10.1145/3428219

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022a. Technical Appendix. (2022). https://www.soundandcomplete.org/
papers/POPL2022/NT/appendix.pdf

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022b. X86_64 Memory Type Tests. (2022). http://diy.inria.fr/x86-
memtype/reproduce.html

Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics forWeakMemory: Integrating Epoch Persistencywith the TSO
Memory Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276507

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency Semantics of the Intel-X86 Architecture.
Proc. ACM Program. Lang. 4, POPL, Article 11 (Dec. 2020), 31 pages. https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Persistency Semantics from the Ground Up: Formalising
the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. 3, OOPSLA, Article 135 (Oct.
2019), 27 pages. https://doi.org/10.1145/3360561

Rust. 2021. (2021). https://doc.rust-lang.org/core/intrinsics/fn.nontemporal_store.html
Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER Multiprocessors.

SIGPLAN Not. 46, 6 (June 2011), 175âĂŞ186. https://doi.org/10.1145/1993316.1993520

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3385412.3386010
https://lwn.net/Articles/255364/
https://lwn.net/Articles/282250/
https://lwn.net/Articles/698014/
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.4230/DARTS.6.2.4
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3428219
https://www.soundandcomplete.org/papers/POPL2022/NT/appendix.pdf
https://www.soundandcomplete.org/papers/POPL2022/NT/appendix.pdf
http://diy.inria.fr/x86-memtype/reproduce.html
http://diy.inria.fr/x86-memtype/reproduce.html
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doc.rust-lang.org/core/intrinsics/fn.nontemporal_store.html
https://doi.org/10.1145/1993316.1993520

Extending Intel-x86 Consistency and Persistency 22:31

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A Rigorous
and Usable Programmer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https://doi.org/10.
1145/1785414.1785443

Dennis Shasha and Marc Snir. 1988. Efficient and correct execution of parallel programs that share memory. ACM

Transactions on Programming Languages and Systems (TOPLAS) 10, 2 (1988), 282–312.
Hongping Shu, Hongyu Chen, Hao Liu, Youyou Lu, Qingda Hu, and Jiwu Shu. 2018. Empirical Study of Transactional

Management for Persistent Memory. 61–66. https://doi.org/10.1109/NVMSA.2018.00015
SPDK. 2021. (2021). https://spdk.io/
Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic, Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan, Claude Barthels,

Yaohua Wang, Mohammad Sadrosadati, Saugata Ghose, Ankit Singla, Pratap Subrahmanyam, and Onur Mutlu. 2018.
Enabling Efficient RDMA-based Synchronous Mirroring of Persistent Memory Transactions. CoRR abs/1810.09360 (2018).
arXiv:1810.09360 http://arxiv.org/abs/1810.09360

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory with Ghosts, Protocols, and
Separation. SIGPLAN Not. 49, 10 (Oct. 2014), 691âĂŞ707. https://doi.org/10.1145/2714064.2660243

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A Program Logic for C11 Concurrency. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA, 867âĂŞ884. https://doi.org/10.
1145/2509136.2509532

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 22. Publication date: January 2022.

https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1109/NVMSA.2018.00015
https://spdk.io/
https://arxiv.org/abs/1810.09360
http://arxiv.org/abs/1810.09360
https://doi.org/10.1145/2714064.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2509136.2509532

	Abstract
	1 Introduction
	2 Overview
	2.1 Ex86: The Extended Intel-x86 Consistency Model
	2.2 PEx86: The Persistent Ex86 Model

	3 The Declarative Ex86 Semantics
	3.1 Ex86: The Extended Intel-x86 Consistency Model

	4 The Operational Ex86 Semantics
	5 Validating the Ex86 Model
	6 PEx86: The Persistent Ex86 Model
	6.1 The Declarative PEx86 Model
	6.2 The Operational PEx86 Model

	7 Related and Future Work
	Acknowledgments
	References

