
Programming in JoCaml (Tool Demonstration)

Louis Mandel1 and Luc Maranget2

1 Lri, Univ Paris-Sud 11, cnrs, Orsay F-91405
Inria Futurs, Orsay F-91893

2 Inria Paris - Rocquencourt, Le Chesnay F-78153

{Louis.Mandel,Luc.Maranget}@inria.fr

Abstract. JoCaml is a language for concurrent and distributed pro-
gramming. The language is an extension of Objective Caml with concur-
rent features inspired by the join-calculus.

We here present the recent release of JoCaml, motivate our fundamental
design choices, compare the new release with previous ones, and give a
taste of JoCaml by means of a few examples.

1 Introduction

JoCaml is a language for programming concurrent and distributed systems. It
is based on ML for the computational part, and on the join-calculus for the
concurrent part.

The join-calculus is a name passing calculus. The purpose of such calculi is
to describe concurrent and distributed systems. Programming such systems is a
different, although related, issue, since a good model offers suitable abstractions
that help programmers.

Our language, JoCaml, is an extension of Objective Caml (OCaml), a popular
dialect of ML. By choosing to extend an existing language, and not to design one
of our own, we first intend to minimize our work. We also intend to benefit from
functional programming, from pre-existing code base, and from a population of
programmers open to innovation.

Up to three new keywords, JoCaml is a conservative extension of OCaml:
OCaml programs retain their type and behavior. But we understand compati-
bility in a stronger sense: JoCaml provides a concurrent extension of ML that
strictly adheres to the spirit of functional programming. Channel definitions
and synchronization behaviors are programmed concisely, by the high-level join-
definition concept, and declaratively, by the introduction of ML pattern match-
ing of messages in channel definitions. Moreover, channels are typed polymorphi-
cally, as functions are in ML, types being inferred. Channels are first class-values
that, amongst other things, can be passed as arguments to functions, sent as mes-
sages on channels, and occur as members of modules. This, with the polymorphic
typing of channels, is our way to code re-use for concurrent components.

JoCaml web site is http://jocaml.inria.fr/. The site offers a source re-
lease (dating June 2007), links to articles, and a 70 pages tutorial and reference



expression ::= ocaml-expression
| def x1(p1) & . . . & xn(pn) = process

. . .
or xk(p

′
k) & . . . & xm(p′

m) = process
in expression

join-definition

| spawn process process execution

process ::= x(expression) message sending
| reply expression to x reply to synchronous channel
| process & process parallel composition
| expression ; process sequential composition
| let . . . in process local value definition
| def . . . in process local channel definition

Fig. 1. JoCaml syntax

manual. We have programmed a few applications in the language ourselves.
Amongst those, a distributed ray tracer is the most mature. The ray tracer is
available on the web site and its source code amounts to about 7000 lines.

2 The new JoCaml

The new JoCaml system is a re-implementation from scratch of the previous
prototype. It focuses on compatibility with OCaml. Any OCaml source code is a
valid JoCaml source code and JoCaml can also call external OCaml libraries that
do not need to be re-compiled.

Briefly, we proceed by altering the OCaml compiler from parsing phase to
first intermediate code generation, and by enriching the thread library of OCaml
with specific support. Compiler alteration is justified by specific typing and pat-
tern matching compilation, which both need to be perform inside the compiler.
Compiler alteration is limited in the sense that we change or add a few thousand
lines in the compiler original source files, add a few source files, and retain the
OCaml formats for binary files.

Our focus over compatibility and limited alteration of OCaml, made us aban-
don the mobility features of the join-calculus. Nevertheless, there are useful dis-
tributed programs that can be written without code mobility.

Moreover, the new JoCaml extends the synchronization mechanism of the
join-calculus with pattern matching. It allows to define synchronization not only
on the presence of a message on a channel, but also on the value of the message.

3 A join-definition

JoCaml adds the new syntactical category of processes to OCaml syntax (Fig. 1).
In contrast to expressions processes yield no result and execute asynchronously.
Additionally, JoCaml slightly extends OCaml expressions. The spawn proc con-
struct introduces processes in expressions: proc is executed asynchronously and
spawn returns immediately.



The join-definition is the distinctive feature of the join-calculus: it defines
several channels and their reception behavior at the same time. In JoCaml, join-
definitions are introduced by def and can occur both in processes and expressions.
We illustrate join-definitions by the example of a concurrent buffer based on the
two-lists implementation of functional FIFO queues.

type ’a buffer = { put: ’a -> unit; get: unit -> ’a }

let create_buffer () =
def state(xs,ys) & put(x) = state(x::xs,ys) & reply () to put
or state(xs,y::ys) & get() = state(xs,ys) & reply y to get
or state(_::_ as xs,[]) & get() =
state([], List.rev xs) & reply get() to get

in
spawn state([],[]) ;
{put=put; get=get;}

Our buffers are records, a pure OCaml concept, the novelty resides in the join-
definition (def. . . in above). Three channels are defined: state, put and get.
Channel state is asynchronous. Message sending on an asynchronous channel
is an elementary process, as illustrated by spawn state([],[]) above, for in-
stance. By contrast, put and get are synchronous channels. Message sending on
a synchronous channel yields a result, and thus is an expression. In fact, to the
sender, synchronous channels behave as functions and have functional types.

The behavior of the buffer is expressed by three reaction rules that compete
(or) for consuming messages. A reaction rule consists in a join-pattern and in
a guarded process (separated by =). The semantics is as follows: when there are
messages pending on all the channels in the join-pattern and they match the
patterns present as formal arguments, then the guarded process may be fired.
The guarded process is executed asynchronously, but may transmit return values
to the callers of synchronous channels (reply/to).

The idea of the buffer is to store the FIFO queue (implemented by a pair of
lists) as a message on the channel state. By the organization of join-patterns,
which all include state, and the fact that there is at most one message on this
channel, exclusive access to the internal state of the buffer is granted to the
callers of synchronous put and get.

The first join-pattern state(xs,ys) & put(x) is satisfied whenever there
are messages on both state and put. The behavior of the guarded process is
to perform two actions in parallel (& in processes): (1) send a new message on
state where the value x is added to the list xs and (2) return the value () to
the caller of put.

The second join-pattern state(xs,y::ys) & get() is satisfied when there
are messages on both state and put and that the message on state matches
the pattern (xs,y::ys). That is, the message is a pair whose second compo-
nent is a non-empty list. The process guarded by this join-pattern removes one
value from the buffer and returns it to the caller of get. The last join-pattern
state(_::_ as xs,[]) & get() is satisfied when there is a message on get and



a message on state that matches a pair whose first component is a non-empty
list and second component is an empty list. The corresponding guarded pro-
cess transfers elements from one end of the queue to the other and performs get
again. Notice that there is no join-pattern that satisfies state([],[]) & get().
As a consequence, a call to get is blocked when the buffer is empty.

To initialize the buffer, a message ([],[]) is sent on state. The spawn
construct is here necessary, since the message sending appears in expression
context (the body of the function create_buffer).

4 Distributed computation

The join-calculus provides a transparent model for distributed computation.
Guarded processes always execute on the site where they are defined but can be
fired from any site. More precisely given a channel c, the sending of a message
on c can be performed on any site (provided c is known), while the reception
on c can occur only on the site where c is defined. This is by design, and comes
in sharp contrast to the model of the π-calculus, where it is sufficient to know c
to perform emission and reception on c.

Obviously, the join semantics is much easier to implement than the π se-
mantics in a distributed setting. Basically, message sending to a remote site
decomposes into a transport phase and a synchronization phase (join-pattern
matching), the latter being performed locally on the receiving site.

However, performing the transport phase (and the related global naming of
sites and channels) does not upgrade concurrent JoCaml into distributed JoCaml
as if by magic. Two important issues arise that are not really expressed in the
join model: channel publication and failures. We addressed those pragmatically,
so as not to delay the release of the new JoCaml.

When they start, sites (JoCaml programs) have nothing in common. But, so
as to initiate communication, sites need to share at least a few channel names. To
that aim, JoCaml provides a name service that basically is a repository of channel
names, indexed by plain strings. In contrast to the JoCaml language, there is no
type safety at all. As to failures, our treatment is rather unsophisticated as we
rely exclusively over direct routing: communicating sites are connected by a bi-
directional link (a TCP socket). Then, the failure of the link, is interpreted by
one partner as the failure of the other partner. We plan to improve these two
points in future releases.

5 Conclusion

JoCaml is one amongst many recent language that offer serious support for con-
currency and distribution (Erlang, Cω, Alice, Scala to cite a few). In our view,
JoCaml main contribution resides in the programming style it favors: a smooth
integration of functional programming for concurrent and distributed applica-
tions. Our tool demonstration will focus on this point.


