o Inside-out reductions
Finite Developments

in Ry R> R,
p:M:Mo—)Ml—)Mz"'—)Mn:N

*k the )\.'C&ICU'US iff for all / and j, i <, then R; is not residual
ﬁ < Part 3 along p of some RJ’ inside R; in M;_1.

* Definition: The following reduction is inside-out

jean-jacques.levy@inria.fr .
ISR 2021 * Theorem [ Inside-out completeness, 74]

Madrid Let M <> N. Then M > P and N => P for some P.
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Labeled lambda-calculus Exercises
Exercise 1 Show that residuals of redexes keep same names Exercise 6 Prove inside-out completeness
by case inspection on occurrences of redexes. Hint: use Finite Development theorem.

H H H « «
Exercise 2 Show that M —> N implies M —> N Exercise 7 Prove the following diagrams

Exercise 3 Show the parallel moves lemma (with Martin-Lof way)

F g G/F F/G - x >
If M— Nand M—> P, then N— Qand P—@Q@ T ' ¥
for some Q. ~..i~o!‘~ io'k
....”l ~\~ f’
Exercise 4 Label Y7, draw its reduction graph and show I‘a* oAl
redexes families when Yr = (Ax.f(xx))(Ax.f(xx)) RN

Exercise 5 Same with KaYs



Permutation equivalence

Proof [uniqueness of labeled standard]
Let p and o be 2 distinct coinitial pure labeled standard reductions.

Take first step when they diverge. Call M that term.

We make structural induction on M. Say p is more to the left.
If first step of p contracts an internal redex, we use induction.
If first step of p contracts an external redex, then:

M = (Ax.P)* Q)F

Pleldfy .= Qloly

NTe18 £ ((Ax.A)*B)?

Permutation equivalence

e Corollary [labeled prefix ordering]

Let p: M —=> N and 0 : M > P be coinitial pure labeled reductions.

Then pC o iff N 2> P.

* Exercise 8 Show the following properties

(i) pCp

(ii) pCoCp implies p~o
(iti)) pC o7 implies p~71
(iv) pC o implies p/TCo/T
(v) pEo iff I, pr~0
(vi) pCpUo, cCpUo

(vii) pC7,0C T implies pUo C T

Permutation equivalence

¢ Exercise 9 Show the following diagrams

unique

unique

Permutation equivalence

e Corollary [ lattice of labeled reductions]

Labeled reduction graphs are upwards semi lattices for any pure labeling.

¢ Corollary [push-out category]

Prefix ordering on reductions is a push-out.

 Exercise 10 Try on (Ax.x)((Ay.(Ax.x)a)b) or (Ax.xx)(Ax.xx)

e Exercise 11 Show that prefix ordering on reductions is not a pull-back.



Proof of finite developments

eLemma1 Let M —=> N, then h(r(M)) < h(r(N))

R
Proof by induction on length of reduction. Let M —> N, R = ((Ax.A)*B)?
If R is internal in M, then 7(M) = 7(N).

L ‘ f Of th e G F D If M=R=((Ax.A)B)’ — A{x:= BleJ}[e1f = N,
then h(7(M)) = h(B) < h(vB) = h(7(N)) for some ~.
theorem
eLemma2 Let (- - ((MM)P My)P2 ... M,)Pr =5 (Ax.N)®

Then h(7(M)) < h(a)

Proof by induction on n.
When n = 0, obvious by lemma 1.

Otherwise (- (M M)Pt Mp)P2 ... M, _1 )Pt =5 (\y.P)Y
and ((Ay.P)Y@)% — P{y := QWI}M15 =5 (Ax.N)®

So h(r(M)) < h(v) < h(6[7]18n) < h(a) by induction and lemma 1.

Proof of finite developments

e Notation 7(M®)=a when M has an empty external label e Lemma 3 [Barendregt] Let M{x:= N} 2> (\y.P)
There are 2 cases:
M => (Ay.M")* and M'{x := N} => P
M =5 M = (- ((<F M) Mo)% - Mp)P and M'{x := N} <> (\y.P)®

Proof of finite developments

eLemma1 Let M—=> M, then h(r(M)) < h(r(M))

Proof Let M* = M{x := N}. There are 3 cases on weak head reduction of M :

eLemma2 Let (- - (M M)5 M) .. M,)B =5 (Ax.N)
hr(M)) < h it reaches an abstraction or a head variable which has to be x.
Then h(7(M)) < h(a) More precisely, we consider the standard reduction from M* to (A\y.P)“.

Case 1: M = (A\y.M')* and we are done since M* = (\y.M'*)*.

Case 22 M = ((--- ((y® My)Pr My)%2) - M,)%. Then y = x and M’ = M.

e Lemma 3 [Barendregt] Let M{x:= N} 2> (Ay.P)*
Case 3: M = (- (\2.A)? B)Y G1)% Go)P2 -+ G)r

There are 2 cases:
M = (A\y.M")* and M'{x := N} => P Let My = (--- ((A{z := BB ) Gy)Pe - C,)n
M = M' = (- ((x" My)P* Mp)% .. M,)P» and M'{x := N} <> (\y.P)* Then M = (- (((A2.A*)7 B*) Cp)™ G5)2 - C)Pn —> My is the first
step of the standard reduction from M* to (Ay.P)®. By induction on its length,

we are done.



Proof of finite developments

» Notation Let SN be the set of strongly normalizable terms w.r.t.
reductions relative to F.

e Lemma [subst] Let F be a finite set of redex families.
M, N € SN, implies M{x := N} € SN>

Proof [van Daalen] by induction on (H(F) — h(r(N)), depth(M), ||M|])

e Theorem GFD Let F be a finite set of redex families.
Then M € SN for all M.

Proof by easy induction on ||M||

Proof of finite developments

e Lemma [subst] Let F be a finite set of redex families.
M, N € SN, implies M{x := N} € SN

Proof [van Daalen] by induction on (H(F) — h(7(N)), depth(M), || M]|)

Cases M = x, M =y, M = \y.M are obvious or easy by induction on ||M]||.

Write M* for M{x := N} and consider case M = (M;M,)*.

If all reductions are internal to M and M3, then easy induction on ||M]|.

Otherwise, let M; =5 (Ay.P)? and M <> Q and ((\y.P)?Q)* — P{y := Q{L#1}[Fle
Then M and Mj are in SN by induction on ||M]],

and My <> (\y.P)? and Mj <> Q. So P and Q are in SA;.

How is P{y := QL#1}1Ale 727

By lemma 3, we have 2 cases:

Proof of finite developments

Case 1:

Then My <> (\y.M;)? and M} <> P.

Therefore Mj*{y := M;U”}W“ = Py = QBI}[Fle,

But as M = (MyMo)® = ((Ay.M))PMp)® —> M’ = Mi{y := MLP1}T81a)
we have depth(M’) < depth(M).

Thus by induction M"* = M}*{y = M;P1}1Ble ¢ SN,
and P{y := QP11 1Pl ¢ SN/,

o (M) o (M; Mg)
(- M)? M) (Oy-Meymg) \
M{y := My I8l Mi{y = M3} 1P1e, T (y Py Q)

I

P{y = Qlﬁj}(/ﬂa

Proof of finite developments

Case 2:
M; => M{ = ( .. ((Xv Al)"“ AZ)’YZ) . "An)"’" and
My = (- (N7 A A)R) - A =2 (A P)
Therefore h(7(N)) < h(7(N7)) < h(3) by lemma 2.
So M* = (M; M§)™ => ((Ay.P)*)Q)% > P{y := Q#I}1¥le
and h(r(N)) < h(8) < h([5]) < h(r(Q)).
We get by induction P{y := QLA1}[Fle ¢ SN/,

e (M M)
1/Vi2 %
lﬁ l
(- ((NT A AZ)™) - AT M3 )
(( .. ((X’Y Al)’u Az)')'z) . ,An)'yn Mz)a l*

((\y.P)? Q)"

P{y := QL) 1A1a



