

#### A labeled lambda-calculus (2/3)



abstract syntax trees of labeled  $\lambda$ -terms

#### A labeled lambda-calculus (1/3)

- Give names to redexes and to (some) subterms
- make names consistent with permutation equivalence.

$$M, N, \dots ::= x \mid MN \mid \lambda x.M \mid M^{\alpha}$$

• Conversion rule is:

$$(\lambda x.M)^{\alpha}N \longrightarrow M^{\lceil \alpha \rceil} \{x := N^{\lfloor \alpha \rfloor}\}$$

 $\alpha$  is the **name** of that redex

#### where

$$(M^lpha)^eta=M^{lphaeta}$$
 and  $(M^lpha)\{x:=N\}=(M\{x:=N\})^lpha$ 

# A labeled lambda-calculus (2/3)



# A labeled lambda-calculus (3/3)

• Labels are strings of atomic labels:

 $\alpha, \beta, \dots ::= \underbrace{\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots \mid \left\lceil \alpha \right\rceil \mid \left\lfloor \alpha \right\rfloor \mid \alpha \beta \mid \epsilon}_{\texttt{atomic labels}}$ 

• Labels are strings of atomic labels:

| a, b, c,                                            | atomic letters               |
|-----------------------------------------------------|------------------------------|
| $\lceil \alpha \rceil$ , $\lfloor \alpha \rfloor$ , | overlined, underlined labels |
| lphaeta                                             | compound labels              |
|                                                     |                              |

 $\epsilon = \lfloor \epsilon \rfloor = \lceil \epsilon \rceil \quad \text{empty label}$ 

# Example



# Example



# Example



3 redexes names:  $a, i, \gamma = u \lfloor i \rfloor k$ 

• 3 redex families: red, blue, green.

#### Example



 $D = \lambda x.(x^{c} x^{d})^{b}$  $\Delta = \lambda x.(x^{g} x^{h})^{f}$  $\gamma_{1} = e\lfloor a \rfloor c$ 

$$\begin{split} \gamma_2 &= \delta_1 \lfloor \gamma_1 \rfloor g \\ \gamma_3 &= \delta_2 \lfloor \gamma_2 \rfloor g \\ \gamma_4 &= \delta_3 \lfloor \gamma_3 \rfloor g \end{split}$$

 $\delta_{1} = e\lfloor a \rfloor d$   $\delta_{2} = \delta_{1} \lfloor \gamma_{1} \rfloor h$   $\delta_{3} = \delta_{2} \lfloor \gamma_{2} \rfloor h$  $\delta_{4} = \delta_{2} \lfloor \gamma_{2} \rfloor h$ 

#### Example



 $F = \lambda f.(f^c 3^d)^b$  $I = \lambda x.x^v$  $\Delta = \lambda x.(x^k x^\ell)^j$ 

2 independent redexes a and u creates the new one  $i\lfloor u \rfloor v \lceil u \rceil q \lfloor a \rfloor c$ 

# Example



## Empirical facts (bis)

| deterministic result when it exists               | Church-Rosser        |
|---------------------------------------------------|----------------------|
| <ul> <li>multiple reduction strategies</li> </ul> |                      |
| <ul> <li>terminating strategy ?</li> </ul>        |                      |
| efficient reduction strategy ?                    | optimal reduction    |
| <ul> <li>worst reduction strategy ?</li> </ul>    |                      |
| when all reductions are finite ?                  | strong normalisation |
| • when finite, the reduction graph has a lattice  | e structure ? YES!   |

redexes names:  $\ell$ ,  $\psi$ , a,  $\gamma_1$ ,  $\gamma_2$ ,  $\gamma_3$ , ...

#### Permutation equivalence (1/7)

- Proposition [residuals of labeled redexes]  $S \in R/\rho$  implies name(R) = name(S)
- Definition [created redexes] Let  $\rho : M \xrightarrow{*} N$ we say that  $\rho$  creates R in M when  $\nexists R', R \in R'/\rho$ .
- **Proposition** [created labeled redexes]
- If S creates R, then name(S) is strictly contained in name(R).

#### Permutation equivalence (3/7)

- Labeled laws  $M^{\alpha} \{ x := N \} = (M\{x := N\})^{\alpha}$   $(M^{\alpha})^{\beta} = M^{\alpha\beta}$ If  $M \longrightarrow N$ , then  $M^{\alpha} \longrightarrow N^{\alpha}$
- Labeled parallel moves lemma+ [74] If  $M \xrightarrow{\mathcal{F}} N$  and  $M \xrightarrow{\mathcal{G}} P$ , then  $N \xrightarrow{\mathcal{G}/\mathcal{F}} Q$  and  $P \xrightarrow{\mathcal{F}/\mathcal{G}} Q$ for some Q.
- Parallel moves lemma++ [The Cube Lemma] still holds.

#### Permutation equivalence (2/7)

Proof (cont'd) Created redexes contains names of creator



#### Permutation equivalence (4/7)

- · Labels do not break Church-Rosser, nor residuals
- Labels refine  $\lambda$ -calculus:
- any unlabeled reduction can be performed in the labeled calculus
- but two cofinal unlabeled reductions may no longer be cofinal Take I(I3) with  $I = \lambda x.x.$



## Permutation equivalence (5/7)

#### • **Definition** [pure labeled calculus]

Pure labeled terms are labeled terms where all subterms have non empty labels.

#### • Theorem [labeled permutation equivalence, 76]

Let  $\rho$  and  $\sigma$  be coinitial pure labeled reductions. Then  $\rho \simeq \sigma$  iff  $\rho$  and  $\sigma$  are labeled cofinal.

**Proof** Let  $\rho \simeq \sigma$ . Then obvious because of labeled parallel moves lemma. Conversely, we apply standardization thm and following lemma.

# Permutation equivalence (7/7)

- Notation [prefix ordering]  $\rho \sqsubseteq \sigma$  for  $\exists \tau. \rho \tau \simeq \sigma$
- Corollary [labeled prefix ordering] Let  $\rho: M \xrightarrow{\star} N$  and  $\sigma: M \xrightarrow{\star} P$  be coinitial pure labeled reductions. Then  $\rho \sqsubseteq \sigma$  iff  $N \xrightarrow{\star} P$ .
- **Corollary** [lattice of labeled reductions] Labeled reduction graphs are upwards semi lattices for any pure labeling.

In other terms, reductions up-to permutation equivalence is a push-out category.

**Exercise** Try on  $(\lambda x.x)((\lambda y.(\lambda x.x)a)b)$  or  $(\lambda x.xx)(\lambda x.xx)$ 

#### Permutation equivalence (6/7)

• **Definition:** The following reduction is **standard**  $\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ 

iff for all *i* and *j*, *i* < *j*, then  $R_j$  is not residual along  $\rho$  of some  $R'_i$  to the left of  $R_i$  in  $M_{i-1}$ .

- Standardization [Curry 50] Let  $M \xrightarrow{*} N$ . Then  $M \xrightarrow{*} N$ .
- Labeled standardization  $\forall \rho, \exists! \sigma_{st}, \rho \simeq \sigma_{st}$





# Example



• 3 redex families: red, blue, green.

# hRedexes

• **Definition** [hRedex]

hRedex is a pair  $\langle \rho, R \rangle$  where R is a redex in final term of  $\rho$ 

• **Definition** [copies of hRedex]

 $\langle 
ho, R \rangle \leq \langle \sigma, S \rangle$  when  $\exists \tau. 
ho \tau \simeq \sigma$  and  $S \in R/\tau$ 

• **Definition** [families of hRedexes]

 $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$  for reflexive, symmetric, transitive closure of the copy relation.

# Labels and history (1/4)



# Labels and history (2/4)

- **Proposition** [same history  $\rightarrow$  same name] In the labeled  $\lambda$ -calculus, for any labeling, we have:  $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$  implies name(R) = name(S)
- The opposite direction is clearly not true for any labeling (For instance, take all labels equal)

• But it is true when all labels are distinct atomic letters in the initial term.

• **Definition** [all labels distinct letters] INIT(*M*) = True when all labels in *M* are distinct letters.

## Labels and history (3/4)



## Labels and history (4/4)

• Theorem [same history = same name, 76] When INIT(*M*) and reductions  $\rho$  and  $\sigma$  start from *M*:  $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$  iff name(*R*) = name(*S*)

• Corollary [decidability of family relation]

The family relation is decidable (although complexity is proportional to length of standard reduction).



# Parallel steps revisited (1/3)

parallel steps were defined with inside-out strategy
 [à la Martin-Löf]

Can we take any order as a reduction strategy ?

 Definition A reduction relative to a set *F* of redexes in *M* is any reduction contracting only residuals of *F*.
 A development of *F* is any maximal relative reduction of *F*.

#### Parallel steps revisited (2/3)

- Theorem [Finite Developments, Curry, 50]
- Let  $\mathcal{F}$  be set of redexes in M.
- (1) there are no infinite relative reductions of  $\mathcal{F}$ ,
- (2) they all finish on same term N
- (3) Let R be redex in M. Residuals of R by all finite developments of  $\mathcal{F}$  are the same.
- Similar to the parallel moves lemma, but we considered a particular inside-out reduction strategy.

## Example



developments of red, blue.

# Example



## Parallel steps revisited (3/3)

- Notation [parallel reduction steps] Let  $\mathcal{F}$  be set of redexes in M. We write  $M \xrightarrow{\mathcal{F}} N$ if a development of  $\mathcal{F}$  connects M to N.
- This notation is consistent with previous definition (since inside-out parallel step is a particular development)
- Corollaries of FD thm are also parallel moves + cube lemmas

developments of red, blue.

#### Finite and infinite reductions (1/3)

• Definition A reduction relative to a set  $\mathcal{F}$  of redex families is any reduction contracting redexes in families of  $\mathcal{F}$ .

A development of  $\mathcal{F}$  is any maximal relative reduction.

- Theorem [Generalized Finite Developments+, 76] Let  $\mathcal{F}$  be a finite set of redex families.
- (1) there are no infinite reductions relative to  $\mathcal{F}$ ,
- (2) they all finish on same term N
- (3) All developments are equivalent by permutations.

## Example



developments of families.



# Finite and infinite reductions (2/3)

- Corollary An infinite reduction contracts an infinite set of redex families.
- **Corollary** Any term generating a finite number of redex families strongly normalizes
  - finite number of redex families



#### Example



#### Bound on heights of labels

- **Definition** The height of a label is its nesting of underlines and overlines
  - h(a) = 0  $h(\overline{\alpha} = h(\underline{\alpha}) = 1 + h(\alpha)$  $h(\alpha\beta) = \max\{\alpha, \beta\}$

• **Fact** Let  $\mathcal{F}$  be a finite set of redex families, then there is an upper bound  $H(\mathcal{F})$  on labels of subterms in reductions relative to  $\mathcal{F}$ .

When initial term is labeled with atomic letters, we have

$$H(\mathcal{F}) = \max \left\{ h(\alpha) \mid \alpha \in \mathcal{F} \right\}$$

# Proof of finite developments

- Notation  $\tau(M^{\alpha}) = \alpha$  when *M* has an empty external label
- Lemma 1 Let  $M \xrightarrow{\star} M'$ , then  $h(\tau(M)) \leq h(\tau(M'))$
- Lemma 2 Let  $(\cdots ((M M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \stackrel{*}{\longrightarrow} (\lambda x. N)^{\alpha}$ Then  $h(\tau(M)) \leq h(\alpha)$
- Lemma 3 [Barendregt] Let  $M\{x := N\} \stackrel{\star}{\longrightarrow} (\lambda y.P)^{\alpha}$ There are 2 cases:  $M \stackrel{\star}{\longrightarrow} (\lambda y.M')^{\alpha}$  and  $M'\{x := N\} \stackrel{\star}{\longrightarrow} P$ 
  - $M \stackrel{\star}{\longrightarrow} M' = (\cdots ((x^{\beta} M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \text{ and } M' \{x := N\} \stackrel{\star}{\longrightarrow} (\lambda y . P)^{\alpha}$

# Proof of finite developments

- Notation Let  $\mathcal{SN}_{\mathcal{F}}$  be the set of strongly normalizable terms w.r.t. reductions relative to  $\mathcal{F}$ .
- Lemma [subst] Let  $\mathcal{F}$  be a finite set of redex families.  $M, N \in SN_{\mathcal{F}}$  implies  $M\{x := N\} \in SN_{\mathcal{F}}$

**Proof** [van Daalen] by induction on  $\langle H(\mathcal{F}) - h(\tau(N)), \operatorname{depth}(M), \|M\| \rangle$ 

• **Theorem GFD** Let  $\mathcal{F}$  be a finite set of redex families. Then  $M \in SN_{\mathcal{F}}$  for all M.

**Proof** by induction on ||M||



## 1st-order typed λ-calculus (1/2)

Residuals of redexes keep their types (of names)

Created redexes have lower types



# 1st-order typed $\lambda$ -calculus (2/2)

- Typed  $\lambda$ -calculus as a specific labeled calculus

 $s, t ::= \mathbb{N}, \mathbb{B} \mid s \to t$ 

Decorate subterms with their types



Apply following rules to labeled λ-calculus

 $[s \to t] = t$  $[s \to t] = s$ s t = s

#### Scott D-infinity model (1/2)

- Another labeled  $\lambda$ -calculus was considered to study Scott D-infinity model [Hyland-Wadsworth, 74]
- D-infinity projection functions on each subterm (*n* is any integer):

$$M, N, \dots ::= x^n \mid (MN)^n \mid (\lambda x.M)^n$$

• Conversion rule is:

$$((\lambda x.M)^{n+1}N)^p \longrightarrow M\{x := N_{[n]}\}_{[n][p]}$$
  
 $n+1$  is degree of redex

$$U_{[m][n]} = U_{[p]}$$
 where  $p = \min\{m, n\}$   
 $x^n \{x := M\} = M_{[n]}$ 

#### Scott D-infinity model (2/2)

- **Proposition** Hyland-Wadsworth calculus is derivable from labeled calculus by simple homomorphism on labels.
- **Proof** Assign an integer to any atomic letter and take:

$$\begin{split} \mathsf{h}(\alpha\beta) &= \min\{\mathsf{h}(\alpha), \, \mathsf{h}(\beta)\}\\ \mathsf{h}(\lceil \alpha \rceil) &= \mathsf{h}(\lfloor \alpha \rfloor) = \mathsf{h}(\alpha) - 1 \end{split}$$

- Redex degrees are bounded by maximum of labels in initial term. therefore a finite number of redex families
- Proposition Hyland-Wadsworth calculus strongly normalizes.

#### Conclusion

- many proofs of strong normalization for various calculi
- these proofs look often magic
- but intuition is

#### GFD theorem $\equiv$ strong normalization

- more properties on redex families + labeled calculus
  - standardization theorem
  - completeness of inside-out reductions
  - compactness of main theorems about syntax
  - stability of redexes and sequentiality
  - optimal reductions and relation to Girard's GOI